Domino Tilings and the Arctic Circle Theorem

Andrew Lin

$$
\text { May } 11,2021
$$

Outline:
Based on Jockusch - Propp - Shor 195, Rest ' 81

- Review of Aztec diamond and random tilings; simplification to partitions and TASEP
- Calculating the density profile: convergence and inequalities
\rightarrow Doing continuous -time for simplicity
- Highlighting differences between discrete \& continuous case.
(1) Review and problem statement

Aztec diamond: tiled with four kinds of dominos.

Thy The size-n Aztec diamond has $2^{n(n+1) / 2}$ different tilings.

Proved by shuffling algorithm, which randomly generates uniform tiling recursively.

More formally:

- Find all \rightarrow s and remove them.
- Push all dominos in their corresponding directions.
- For each remaining 2×2 square, fill it \square or 4 .

Generates uniform tiling because:
Think about process in reverse. Only blocks of

$$
\Rightarrow 2^{-(n-1) n / 2} \cdot 2^{-n}=2^{-n(n+1) / 2}
$$

Looking more closely at frozen region:

Prop Each frozen region is the set of dominos that "sit" on the marked wall above dominos/wall of that color.

Specifically, no other orange domino touches region above.

Forms a partition diagram:

Dynamics of shuffling:

- Where can new orange dominos be added to the frozen region?
- How likely are those to be added?

This is the discrete-time TASER

We want to show:
Arctic Circle Thy The frozen regions trace out quarter-circle arcs in the limit $n \rightarrow \infty$ (that is, we're within $O(n)$ distance of this limit shape).

Equivalent to prove:
"Thu" Discrete-time TASEP has a limiting density profile along each line of constant slope (as above).

Idea is that path can only move down and right.
(2) TASEP and extracting the density profile

More formally setting up notation:

Let $X(k, t)$ be occupation indicator at position k, time t. Process is $X(t)$.

Interested in $\mathbb{E} X(\lfloor u t\rfloor, t)$.
Should behave like:

in TASEP visualization,

Stochastic ordering
Let x_{1}, x_{2} be two points in TASEP state space.
Say $x_{1} \leqq x_{2}$ if coordinate-wise \leq.
\rightarrow Induces order on prob. measures: $\mu \leqq \gamma$ if there is coupling σ s.t. $\sigma\left(x_{1} \leqq x_{2}\right)=1$ and μ, v are coordinate projections

Lemma Stochastic ordering is preserved under TASEP update.
Prop Let $S(k, t)=\sum_{i>k} X(i, t)$. Then for all k, ℓ, r, t,

$$
\mathcal{L}(S(k, r)) * \mathcal{L}(S(l, t)) \geq \mathcal{L}(S(k+l, r+t))
$$

Use a coupling argument:
let \widetilde{S} evolve like S until time r, then jump to

$$
\tilde{S}(j, r)=\left\{\begin{array}{l}
S(k, r), j \geq k \\
s(k, r)+(k-j), \\
\text { otherwise }
\end{array}\right.
$$

Then $\tilde{S}(k+l, r+t)-S(k, r)$ identical to $S(Q, t)$, but $\mathcal{L}(\tilde{S}) \geqq \mathcal{L}(S)$.

Specializing previous result,

$$
\begin{aligned}
&\underbrace{\mathcal{L}(S(\lfloor u r\rfloor, r))}_{\mathcal{L}_{r}} * \underbrace{\mathcal{L}(S(\lfloor u t\rfloor, t)}_{\mathcal{L}_{t}}) \geq \underbrace{\mathcal{L}(S(\lfloor u r\rfloor+\lfloor u t), r+t))}_{\mathscr{L}_{r+t}} \\
& \geq \underbrace{\mathcal{L}(S(\lfloor u(r+t)\rfloor, r+t)) .}
\end{aligned}
$$

By Kesten-Hammersley, this means $\frac{S(\lfloor u t\rfloor, t)}{t}$ converges to some $h(u)$ almost surely and in L^{\prime}.

Notice that h is convex:

$$
\begin{gathered}
\left.\mathbb{E}\left(S\left(\left\lfloor c_{1} u t\right\rfloor, c_{1} t\right)+S\left(\left\lfloor c_{2} v t\right), c_{2} t\right)\right) \geq \mathbb{E}\left(S\left(\left(c_{1} u+c_{2} v\right) t\right\rfloor,\left(c_{1}+c_{2}\right) t\right)\right) \\
\text { so } \quad c_{1} h(u)+c_{2} h(v) \geq\left(c_{1}+c_{2}\right) h\left(c_{1} u+c_{2} v\right) .
\end{gathered}
$$

$\longrightarrow\left[\begin{array}{l}\text { Prop As long as } \frac{k}{t} \rightarrow u \text {, we have } \\ \lim _{E} \times(k, t)=-h^{\prime}(u) \text {, as long }\end{array}\right.$ $\lim _{t \rightarrow \infty} \mathbb{E} X(k, t)=-h^{\prime}(u)$, as long as
h is diff. at u.
(Consider $\quad h_{n}(v)=\int_{v}^{\infty} \mathbb{E} X(\lfloor x n\rfloor, n) d x . \approx \frac{1}{n} \sum_{k=[v n\rfloor}^{\infty} \mathbb{E} X(k, n)$.
We have $h_{n}(v) \rightarrow h(v)$ as $n \rightarrow \infty$, and each h_{n} is convex, so we can indeed differentiate.)
(exponential clocks)
From here, we do continuous-time for ease of calculation.

Limiting "independence":
Prop The measures $\mu(\lfloor u t\rfloor, t)$ as $t \rightarrow \infty$ converge to an exchangeable measure

$$
\mu^{*}=\int_{0}^{1} \beta_{a} \rho_{\text {Bernoulli of parameter } a}(d a)
$$

- Similar coupling fact: if $\pi(s, \ell)=\mathbb{P}($ Pois $(s)=\ell)$.

$$
\begin{gathered}
\mu(k, t) \geqq \mu(k+1, t), \\
\mu(k, t+s) \geqslant / \leqq \sum_{\ell} \pi(s, \ell) \mu\left(k^{t} / \ell, t\right)
\end{gathered}
$$

[. μ^{*} and its shifted image must be identical, because one-point correlations are the same

- This implies invariance under TASEP semigroup.
L_{\rightarrow} these imply exchangability.
Also use di Finetti's theorem (conditionally independent given the value of a).

Identifying the density
We know

$$
h(u)=\lim _{t \rightarrow \infty} \frac{\mathbb{E} S(\lfloor u+\rfloor, t)}{t}=\int_{u}^{\infty} f(w) d w .
$$

$$
\text { (Want to show that } f(u)=\left\{\begin{array}{cc}
1 & u \leq-1 \\
\frac{1}{2}(1-u) & -1 \leq u \leq 1 \\
0 & u>1
\end{array} .\right)
$$

Prop $h(u) \geq \frac{1}{4}(1-u)^{2}$ for all u in $[-1,1]$.
Strategy: slow down particle in the front.

Study gaps Y_{i}. Invariant measure $\left(\gamma^{b}\right)$: all Y_{i} id with $\mathbb{P}\left(Y_{i}>m\right)=b^{m}$.

* Our inital measure \leqq invariant measure, so

$$
\begin{aligned}
\underset{\text { slow }}{\mathbb{E}}\left(\sum_{i=1}^{k} Y_{i}(t)\right) & \leq \int\left(\sum_{i=1}^{k} \begin{array}{c}
(\text { invariant }) \\
Y_{i}
\end{array}\right) \gamma^{b}(d y) . \\
& =k \sum_{m \geq 0} \mathbb{P}\left(Y_{i}>m\right)=\frac{k}{1-b} .
\end{aligned}
$$

Take $k=\lfloor a t\rfloor, t \rightarrow \infty$. Dividing through by t,

$$
\limsup _{t \rightarrow \infty} \frac{1}{t} \underset{\text { slow }}{\mathbb{E}} \sum_{i=1}^{\text {Lat] }} Y_{i}(t) \leq \frac{a}{1-b},
$$

- Use Law of Large Numbers on

$$
\text { LHS }=\frac{1}{t}\left(\begin{array}{c}
\text { Poisson }(b t) \\
\begin{array}{c}
\text { position of front } \\
\text { particle }
\end{array}
\end{array}\left(\begin{array}{c}
\text { Position of } \\
\text { Latjth } \\
\text { particle }
\end{array}\right) ~\right),
$$

to get (letting Z be pos. of particle)

$$
\lim _{t \rightarrow \infty} \mathbb{P}^{\text {slow }}\left(\frac{z(\text { Lat }), t)}{t}<b-\frac{a}{1-b}-\epsilon\right)=0
$$

for any $\epsilon>0$.
Also true for $\mathbb{P}^{\text {regular }}$ instead of $\mathbb{P}^{\text {slow }}$, also maximize RHS at $b=1-\sqrt{a}$ to find

$$
\begin{gathered}
\lim _{t \rightarrow \infty} \mathbb{P}\left(\frac{z(L a+1, t)}{t}<1-2 \sqrt{a}-\epsilon\right)=0, \\
\text { so } \mathbb{P}\left(\frac{S((1-2 \sqrt{a}-\epsilon) t, t)}{t}>a\right)=1 . \\
\Rightarrow h(1-2 \sqrt{a}) \geq a \\
\Rightarrow h(u) \geq \frac{1}{4}(1-u)^{2} .
\end{gathered}
$$

Prop $h(u) \leq \frac{1}{4}(1-u)^{2}$ for all $|u| \leq 1$.
Strategy: .. clever resumming?
Idea: $S(\lfloor u+\rfloor, t)$ is \#particles faster than a person traveling at speed u.

$$
\begin{aligned}
\mathbb{E} S\left(k, \frac{k}{u}\right)= & \frac{\sum_{i=1}^{k} \mathbb{E}\left(S\left(i, \frac{i}{u}\right)-S\left(i-1, \frac{i}{u}\right)\right)}{+\mathbb{E}\left(S\left(i-1, \frac{i}{u}\right)-S\left(i-1, \frac{i-1}{u}\right)\right)} \\
= & -\sum_{i=1}^{k} \mathbb{E}\left(X\left(i, \frac{i}{u}\right)\right)+\sum_{i=1}^{k} \mathbb{E}\left(\begin{array}{c}
\text { jumps from } \\
i-1 \\
\text { time to } i \\
u
\end{array}\right)
\end{aligned}
$$

Now Jensen's inequality: integrand is limiting to

$$
\int a(1-a) \rho(d a) \text {, so }
$$

because $f(u)=\int$ a $\rho(d a)$, we have

$$
\begin{aligned}
\star & f(u)(1-f(u)) \geq \\
\star: \quad h(u) \leq & -u f(u)+f(u)(1-f(u)) \leq \frac{1}{4}(u-1)^{2} . \\
& \text { minimized at } f(u)=\frac{1-u}{2}
\end{aligned}
$$

(3) Differences in the discrete-time case

- Markov measures μ_{d} are more complicated.
\longrightarrow Shift-invariant Markov measure depends on $P_{1}=\mathbb{P}\left(X_{0}=1\right)$, also $q_{i j}=\mathbb{P}(i \rightarrow j)$.
if d, turns out $\mathbb{P}\left(x_{1}=0 \mid x_{0}=0\right)$ is $\frac{-d+\sqrt{d^{2}+(1-d)^{2}}}{1-d}$.
Requirement: $q_{01} q_{10}=2 q_{00} q_{11}$
(think about stationary measure on a cycle).
\longrightarrow Verify invariant under TASEP evolution.
- All stationary, translation-invariant measures are convex combinations of the $\mu_{d} s$."
\longrightarrow Clever coupling makes this easier to prove than "exchangeable measures" argument above.
- Lower bound (LLN, etc):
γ^{b} invariant measure is now

$$
\mathbb{P}\left(y_{i} \geq m\right)= \begin{cases}1 & m=0 \\ b\left(\frac{b}{2-b}\right)^{m-1} & \text { otherwise. }\end{cases}
$$

- Upper bound (Jensen):

Instead of $\mathbb{P}\left(\left(x_{0}, x_{1}\right)=(1,0)\right)=a(1-a)$, we have $1-\sqrt{a^{2}+(1-a)^{2}}$.

But the general analytic techniques remain the same.

Verifying the final calculation:
(for discrete-time TASEP,)

$$
h(u)=\left\{\begin{array}{ll}
-u & u<-1 / 2 \\
\frac{1-u}{2}-\frac{1}{2} \sqrt{\frac{1}{2}-u^{2}} & -\frac{1}{2} \leq u \leq \frac{1}{2} \\
0 & u>1 / 2
\end{array},\right.
$$

so $f(u)= \begin{cases}\frac{1}{2}-\frac{u}{\sqrt{2-4 u^{2}}} & \mid u<-1 / 2 \\ 0 & u>\frac{1}{2} \\ & u .\end{cases}$

Indeed, for

$$
u^{2}+v^{2}=\frac{1}{2}
$$

slope at u is

$$
m=\frac{d v}{d u}=\frac{+u}{v}=\frac{+u}{\sqrt{\frac{1}{2}-u^{2}}} .
$$

Corresponds to

$$
f(u)=\frac{1-m}{2}=\frac{1}{2}-\frac{u}{\sqrt{2-4 u^{2}}}
$$

as predicted.

References:
[1] Rost, H. Non-equilibrium behavior of a many-particle process: Density profile and local equilibria. https: /l doi.org/10.1007/BF00536194
[2] Jockush, W., Propp, J., and Shor, P. Random domino tilings and the aretic circle theorem. arxiv. org /abs/math. CO/9801068

Any questions?

