Andrew Lin May 11, 2021

Outline:

Based on Jockusch - Propp - Shor '95, Rost '81

- Review of Aztec diamond and random tilings;
 simplification to partitions and TASEP
- Calculating the density profile:
 convergence and inequalities
 Doing continuous-time for simplicity
- Highlighting differences between discrete & continuous case.

1) Review and problem statement

Aztec diamond: tiled with four kinds of dominos.

. Find all - Find all -

- . Push all dominos in their corresponding directions.
- For each remaining 2×2 square, fill it for eff.

<u>Prop</u> Each frozen region is the set of dominos that "sit" on the marked wall above dominos/wall of that color.

Specifically, no other orange domino touches region above.

Forms a partition diagram:

- Where can new orange dominos be added to the frozen region?
- · How likely are those to be added?

This is the discrete-time TASEP

We want to show:

Arctic Circle Thm The forzen regions trace out quarter-circle arcs in the limit $n \rightarrow \infty$ (that is, we're within o(n) distance of this limit shape).

Equivalent to prove:

"<u>Thm</u>" Discrete-time TASEP has a limiting density profile along each line of constant slope (as above).

Idea is that path can only move down and right.

Stochastic ordering

$$L(S(k, r)) * I(S(k, t)) \ge I(S(k+k, r+t)).$$

Use a coupling argument:
let
$$\tilde{S}$$
 evolve like S until
time r , then jump to
 $\tilde{S}(j, r) = \begin{cases} S(k, r), j \ge k\\ S(k, r) + (k-j), \\ otherwise. \end{cases}$
Then $\tilde{S}(k+k, r+k) - S(k, r)$ identical to $S(k, k), k$
but $L(\tilde{S}) \ge L(S).$

Converges to some h(u) almost surely and in L^{I} .

Notice that h is convex:

$$\mathbb{E}\left(S\left(\lfloor c_{1}ut \rfloor, c_{1}t\right) + S\left(\lfloor c_{2}vt \rfloor, c_{2}t\right)\right) \ge \mathbb{E}\left(S\left(\lfloor c_{1}u+c_{2}v\right)t\right], (u+c_{2}vt)\right)$$
so $c_{1}h(u) + c_{2}h(v) \ge (c_{1}+c_{2})h(c_{1}u+c_{2}v).$

$$\lim_{k \to \infty} As \log as \frac{k}{k} \rightarrow u, we have$$

$$\lim_{k \to \infty} \mathbb{E} \times (k, t) = -h'(u), as \log as$$

$$h is diff. at u.$$

$$(Consider h_{n}(v) = \int_{v}^{\infty} \mathbb{E} \times (\lfloor xn \rfloor, n) dx. \approx \frac{1}{n} \sum_{k=\lfloor vn \rfloor}^{\infty} \mathbb{E} \times (k, n).$$
We have $h_{n}(v) \rightarrow h(v)$ as $n \rightarrow \infty$, and each
 h_{n} is convex, so we can indeed differentiate.)

$$(exponential clocks)$$
From here, we do continuous-time for ease of calculation.

Limiting "independence":
Prop The measures
$$\mu([ut], t)$$
 as $t \rightarrow \infty$
converge to an exchangeable measure
 $\mu^* = \int B_a p(da)$
"Bernoulli of parameter a.

Similar coupling fact: if
$$\pi(s, l) = \mathbb{P}(\text{Pois}(s) = l)$$
,

$$\mu(k, t) \geq \mu(k+1, t),$$

$$\mu(k, t+s) \neq \sum_{k=1}^{n} \pi(s, k) \mu(k/k, t).$$

M^{*} and its shifted image must be identical, because one-point correlations are the same
 This implies invariance under TASEP semigroup.

Ly these imply exchangability.

Also use <u>di</u> Finetti's theorem (conditionally independent given the value of a).

Identifying the density

We know

$$h(u) = \lim_{t \to \infty} \frac{\mathbb{E} S(\lfloor u + J, t)}{t} = \int_{u} f(w) dw.$$

$$(\text{Want to show that } f(u) = \begin{cases} 1 & u^{(-)} \\ \frac{1}{2}(1-w) & -1 \le u \le 1 \\ 0 & u > 1 \end{cases}$$

$$Prop \quad h(u) \ge \frac{1}{4}(1-u)^{2} \text{ for all } u \text{ in } [-1, 1].$$
Strategy: slow down particle in the front.
$$V_{2}$$

$$V_{1}$$

$$O = O = O$$

$$Study \text{ gaps } Y_{1}. \text{ Invariant measure } \{\overline{D}^{b}\}: \text{ all } Y_{1} \text{ iid } with } \mathbb{P}(Y_{1} > m) = b^{m}.$$

$$\neq Our \text{ initial measure } \le \text{ invariant measure, so}$$

$$\mathbb{E}\left(\sum_{i=1}^{k} Y_{i}(t)\right) \le \int \left(\sum_{i=1}^{k} (\text{invariant}) \right) \overline{D}^{b}(dy).$$

00

 $= k \sum_{m \ge 0} p(y; >m) = \frac{K}{1-b}.$

Take k=Lat], $t \rightarrow \infty$. Dividing through by t,

$$\lim_{t\to\infty} \frac{1}{t} \inf_{slow} \sum_{i=1}^{latj} Y_i(t) \leq \frac{a}{1-b},$$

$$\therefore \text{ Use Law of Large Numbers on}$$

$$LHS = \frac{1}{t} \left(\frac{\text{Poiscon}(bt)}{\text{position of form}} - \left(\frac{\text{position of }}{\text{particle}} \right) \right),$$

$$to get (letting Z be pos. of particle)$$

$$\lim_{t\to\infty} \mathbb{P}^{\text{slow}} \left(\frac{Z(\text{Lat}, t)}{t} \leq b - \frac{a}{1-b} - \epsilon \right) = 0$$

for any $\epsilon > 0.$
Also true for $\mathbb{P}^{\text{regular}}$ instead of \mathbb{P}^{Slow} also
maximize RHS at $b = 1 - \sqrt{a}$ to find

$$\lim_{t\to\infty} \mathbb{P} \left(\frac{Z(\text{Lat}, t)}{t} \leq 1 - 2\sqrt{a} - \epsilon \right) = 0,$$

so $\mathbb{P} \left(\frac{S((1-2\sqrt{a}-\epsilon)t, t)}{t} > a \right) = 1.$

$$\Rightarrow h(1-2\sqrt{a}) \ge a$$

$$\Rightarrow h(u) \ge \frac{1}{t}(1-u)^2.$$

Prop
$$h(u) \leq \frac{1}{4}(1-u)^2$$
 for all $[u|\leq 1$.
Strategy: ...clever resumming?
Idea: $S(\lfloor u+J,t)$ is # particles faster than
a person traveling at speed u.
 $E S(k, \frac{k}{u}) = \sum_{i=1}^{k} E(S(i, \frac{i}{u}) - S(i-1, \frac{i}{u}))$
 $+ E(S(i-1, \frac{i}{u}) - S(i-1, \frac{i-1}{u}))$
 $= -\sum_{i=1}^{k} E(X(i, \frac{i}{u})) + \sum_{i=1}^{k} F(jumps from integration time \frac{1}{u})$
 $\int scale by \frac{u}{k}, k \Rightarrow \infty$
 $* h(u) = -uh'(u) + (\lim_{t \to 0} 1) \mu(\lfloor u+J, t) - 1 \sum_{i=1}^{k} C(i, 0)$
Now Jensen's inequality: integrand is limiting to
 $\int a(1-a) p(da), so$
because $f(u) = \int a p(da),$ we have
 $* f(u) (1-f(u)) \ge (1-i)$.
 $* : h(u) \leq -uf(u) + f(u)(1-f(u)) \leq \frac{1}{4}(u-1)^2$.
minimized at $f(u) = \frac{1-u}{2}$

3 Differences in the discrete-time case
• Markov measures
$$\mu_d$$
 are more complicated.
 \rightarrow Shift-invariant Markov measure depends on
 $P_1 = \left[P(X_0 = 1), \text{ also } Q_{ij} = P(i \rightarrow j).\right]$
if d , turns out $P(X_1 = 0 \mid X_0 = 0)$ is $\frac{-d + \sqrt{d^2 + (1 - d)^2}}{1 - d}$
Requirement : $Q_{01} Q_{10} = 2Q_{00} Q_{11}$
(think about stationary measure on
a cycle).

•"All stationary, translation-invariant measures are convex combinations of the µds."

> L> Clever <u>Coupling</u> makes this easier to prove than "exchangeable measures" argument above.

· Lower bound (LLN, etc):

$$\mathcal{T}^{b}$$
 invariant measure is now
 $(\mathcal{P} (Y_{i} \ge m) = \begin{cases} l & m=0 \\ b(\frac{b}{2-b})^{m-l} & \text{otherwise.} \end{cases}$

Instead of
$$\mathbb{P}((X_0, X_1) = (1, 0)) = a(1-a),$$

we have $|-\sqrt{a^2 + (1-a)^2}$.

But the general analytic techniques remain the same.

Verifying the final calculation:

(for discrete -time TASEP,)

$$h(u) = \begin{cases} -u & u < -1/2 \\ \frac{1-u}{2} - \frac{1}{2} \sqrt{\frac{1}{2} - u^2} & -\frac{1}{2} \le u \le \frac{1}{2} \\ 0 & u > 1/2 \end{cases}$$

50
$$f(u) = \begin{cases} l & u < -1/2 \\ \frac{1}{2} - \frac{u}{\sqrt{2} - 4u^2} & |u| \le \frac{1}{2} \\ 0 & u > \frac{1}{2}. \end{cases}$$

Π

References:

Rost, H. Non-equilibrium behavior of

 a many-particle process: Density profile and
 local equilibria. https://doi.org/10.1007/BF00536194

 Jockush, W, Propp, J., and Shor, P. Random domino tilings and the arctic circle theorem.

 arxiv. org/abs/math. CO/9801068

Any questions?