
8.044: Statistical Physics I

Lecturer: Professor Nikta Fakhri
Notes by: Andrew Lin

Spring 2019

My recitations for this class were taught by Professor Wolfgang Ketterle.

1 February 5, 2019
This class’s recitation teachers are Professor Jeremy England and Professor Wolfgang Ketterle, and Nicolas Romeo

is the graduate TA. We’re encouraged to talk to the teaching team about their research – Professor Fakhri and

Professor England work in biophysics and nonequilibrium systems, and Professor Ketterle works in experimental atomic

and molecular physics.

1.1 Course information
We can read the online syllabus for most of this information. Lectures will be in 6-120 from 11 to 12:30, and a

5-minute break will usually be given after about 50 minutes of class. The class’s LMOD website will have lecture notes

and problem sets posted – unlike some other classes, all pset solutions should be uploaded to the website, because

the TAs can grade our homework online. This way, we never lose a pset and don’t have to go to the drop boxes.

There are two textbooks for this class: Schroeder’s “An Introduction to Thermal Physics” and Jaffe’s “The Physics

of Energy.” We’ll have a reading list that explains which sections correspond to each lecture. Exam-wise, there are

two midterms on March 12 and April 18, which take place during class and contribute 20 percent each to our grade.

There is also a final that is 30 percent of our grade (during finals week). The remaining 30 percent of our grade comes

from 11 or 12 problem sets (lowest grade dropped).

Office hours haven’t been posted yet; they will also be posted on the website once schedules are sorted out.

1.2 Why be excited about 8.044?
One of the driving principles behind this class is the phrase “More is different.” We can check the course website for

the reading “More is Different” by P.W. Anderson.

Definition 1

Thermodynamics is a branch of physics that provides phenomenological descriptions for properties of macroscopic

systems in thermal equilibrium.

Throughout this class, we’ll define each of the words in the definition above, and more generally, we’re going to

learn about the physics of energy and matter as we experience it at normal, everyday time and length scales. The
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most important feature is that we’re dealing with the physics of many particles at once – in fact, we’re going to be

doing a statistical description of about 1024 particles at once. It would be very hard and basically useless to try to use

ordinary equations of motion to describe the behavior of each particle.

Fact 2

Because thermodynamics is a study of global properties, like magnetism or hardness, the largeness of our systems

will often actually be an advantage in calculations.

The concept of time asymmetry will also come up in this class. In Newton’s laws, Maxwell’s equations, or the

Schrodinger equation, there is no real evidence that time needs to travel in a certain direction for the physics to be

valid. But the “arrow of time” is dependent on some of the ideas we’ll discuss in this class.

Two more ideas that will repeatedly come up are temperature and entropy. We’ll spend a lot of time precisely

understanding those concepts, and we’ll understand that it doesn’t make sense to talk about the temperature of an

individual particle – it only does to define temperature with regards to a larger system. Meanwhile, entropy is possibly

the most influential concept coming from statistical mechanics: it was originally understood as a thermodynamic

property of heat engines, which is where much of this field originated. But now, entropy is science’s fundamental

measure of disorder and information, and it can quantify ideas from image compression to the heat death of the

Universe.

Here’s a list of some of the questions we’ll be asking in this class:

• What is the difference between a solid, liquid, and gas?

• What makes a material an insulator or a conductor?

• How do we understand other properties of materials, like magnets, superfluids, superconductors, white dwarfs,

neutron stars, stretchiness of rubber, and physics of living systems?

None of these are immediately apparent from the laws of Newton, Maxwell, or Schrodinger. Instead, we’re going

to need to develop a theoretical framework with two main parts:

• Thermodynamics: this is the machinery that describes macroscopic quantities such as entropy, temperature,

magnetization, and their relationship.

• Statistical mechanics: this is the statistical machinery at the microscopic level. What are each of the degrees

of freedom doing in our system?

These concepts have been incorporated into different other STEM fields: for example, they come up in Monte-

Carlo methods, descriptions of ensembles, understanding phases, nucleation, fluctuations, bioinformatics, and (now

the foundation of most of physics) quantum statistical mechanics.

1.3 An example from biology
Many living systems perform processes that are irreversible, and the behavior of these processes can be quantified in

terms of how much entropy is produced by them. Statistical physics and information theory help us do this! As a

teaser, imagine we have a biological system where movement of particles is influenced by both thermal motion and

motor proteins. By watching a video, we can track each individual particle, and looking at the trajectory forward and

backward, and we can construct a relative entropy

〈Ṡ〉
kB
≡ D[pforward||pbackward] =

∑
pf ln

pf
pb
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which compares the probability distributions of forward and backward motion, and the point is that this relates to the

entropy production rate of the system! But it’ll take us a lot of work to get to that kind of result, so we’ll start with

some definitions and important concepts.

To summarize this general overview, there’s two complementary paths going on here:

Thermodynamics =⇒ global properties =⇒ (temperature, entropy, magnetization, etc.),

and

Statistical physics =⇒ (microscopic world to macroscopic world).

We’ll also spend time on two “diversions:” quantum mechanic will help us construct the important states that we

will end up “counting” in statistical physics, and basic probability theory will give us a statistical description of the

properties we’re trying to describe (since entropy itself is an information theory metric)! To fully discuss these topics,

we’re going to need some mathematics, particularly multivariable calculus.

1.4 Definitions
We’ll start by talking about the basic concepts of heat, internal energy, thermal energy, and temperature.

Definition 3 (Tentative)

Thermal energy is the collective energy contained in the relative motion of a large number of particles that

compose a macroscopic system. Heat is the transfer of that thermal energy.

(We’ll try to be careful in distinguishing between energy and the transfer of that energy throughout this class.)

Definition 4

Internal energy, often denoted U, is the sum of all contributions to the energy of a system as an isolated whole.

This internal energy U is usually made up of a sum of different contributions:

• Kinetic energy of molecular motion, including translational, vibrational, and rotational motion,

• Potential energy due to interactions between particles in the system, and

• Molecular, atomic, and nuclear binding energies.

Notably, this does not include the energy of an external field or the kinetic and potential energy of the system as

a whole, because we care about behavior that is internal to our system of study.

Example 5

Consider a glass of water on a table, and compare it to the same glass at a higher height. This doesn’t change

the internal energy, even though the glass has gained some overall gravitational potential energy.

Definition 6 (Tentative)

Temperature is what we measure on a thermometer.
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As a general rule, if we remove some internal energy from a system, the temperature will decrease. But there

are cases where it will plateau as well! For example, if we plot temperature as a function of the internal energy, it is

linear for each phase state (solid, liquid, vapor), but plateaus during phase changes, because it takes some energy to

transform ice to water to vapor. And now we’re ready to make some slightly more precise definitions:

Definition 7

Let U0 be the energy of a system at tempreature T = 0. Thermal energy is the part of the internal energy of a

system above U = U0.

Notice that with this definition, the binding energy does not contribute to thermal energy (because that’s present

even at T = 0, U = U0), but the other sources of internal energy (kinetic energy, potential energy) will still contribute.

Definition 8

Heat is the transfer of thermal energy from a system to another system.

This is not a property of the system: instead, it’s energy in motion! And heat transfer can occur as heat conduction

or radiation, a change in temperature, or other things that occur at the microscopic level.

1.5 States and state variables
The next discussion is a little bit more subtle – we want to know what it means for our system to be in a particular

state. In classical mechanics, a state is specified by the position and velocity of all objects at time t. So if we’re given

the two numbers {xi(t), ẋi(t)} for each i (that is, for every particle in our system), we have specified everything we

might want to know. Meanwhile, in quantum mechanics, the state of a system is specified by quantum numbers: for

example, |n1, · · · , nM〉 (for some nonnegative integers ni) is one way we might describe the system. But we have a

completely different definition of “state” now that we’re in a macroscopic system:

Definition 9

A system which has settled down is in a state of thermodynamic equilibrium or thermodynamic macrostate.

Here are some of the characteristics of a system at thermal equilibrium:

• The temperature of the system is uniform throughout the space.

• More generally, at the macroscopic scale, no perceptible changes are occurring, though there are still changes

at the microscopic level (like atomic or molecular movement).

• The system is dynamic (meaning that the system continues to evolve and change at the microscopic level).

It’s important to note that other properties of the system (that are not temperature) can be non-uniform at

equilibrium! For example, if we mix water and oil, there will obviously be some differences in different parts of the

system no matter how long we wait for the atoms to mix.

Definition 10

State functions and state variables are properties that we can use to characterize an equilibrium state.
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Some examples are pressure P , temperature T , volume T , the number of particles N, and the internal energy
U. Note that some quantities are only defined for systems at thermal equilibrium, such as pressure and temperature,

while others are defined for more general systems, such as volume.

Another big part of this class is coming up with equations that relate these state functions:

Example 11

The most famous equation of state, the ideal gas law (PV = NkBT ), dictates the behavior of an ideal gas.

Definition 12

A macrostate is a particular set of values for the state variables of a system. Meanwhile, a microstate tells us

more at the particle level, specifying the state of each individual particle.

For example, if we have a glass of water, we could (in principle) track each particle, writing down a microstate

and describing our system at the microscopic level. But there are many different configurations that give a specific

pressure and temperature, so a vast number of microstates can be consistent with a given macrostate.

Definition 13

A macrostate’s multiplicity is determined by the number of microstates consistent with that macrostate, an

ensemble is defined as the set of all possible microstates that are consistent with a given macrostate.

This class will develop methods for describing such ensembles corresponding to a specific macrostate, and in

particular one important consideration is that each microstate in the ensemble occurs with some probability. So

we’ll be developing some probability theory in the next few lectures, and that will help us approach the physics more

precisely.

2 February 6, 2019 (Recitation)

2.1 Introduction
Usually, Professor Ketterle introduces himself in the first class, and this time he notices some people from 8.03. We’ll

start today by giving a spiel for 8.044, and this class is particularly exciting to Professor Ketterle because he feels a

connection to his research! Professor Fakhri does statistical physics in the classical world (in cells in aqueous solution),

while Professor Ketterle examines systems at cold temperatures, which require quantum mechanics to describe. But

it doesn’t always matter whether the microscopic picture is quantum or classical! In this class, we’re going to learn a

framework for systems that have many degrees of freedom, but where we only know the macrostate (such as a liter

of water at a certain pressure and temperature).

Fact 14

Professor Ketterle’s research can be described as taking temperature T → 0.

His lab has gotten to temperatures of 450 picoKelvin, which is “pretty cold.” (In fact, according to Wikipedia, it’s

the coldest temperature ever achieved.) For comparison, the background temperature in interstellar space is about

2.5 Kelvin, which is more than a billion times warmer than what’s been achieved in labs.
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Low-temperature developments have opened up fields in physics today, because when we cool gas down to that

regime, quantum mechanics becomes more apparent. Basically, when atoms have higher energy (at higher tempera-

tures), they behave like classical particles that collide. But in reality, atoms should be thought of as de Broglie waves

– it’s just that in the classical situations, the de Broglie wavelength

λ =
h

mv

does not play any role in the collisions, because λ is shorter than the size of the nucleus. But when we have an

atom, which has low m, and cool it down so that v is small, the de Broglie wavelength can increase to the order of a

micron or millimeter, which is large at atomic scales. So if we have a bunch of gas particles, and each particle’s wave

is localized, new forms of matter can form with completely new properties, and that’s what makes low-temperature

physics interesting.

Remark 15. When Professor Ketterle was an undergraduate student, he found statistical mechanics fascinating. He

found it attractive that we can predict so much in physics given so few pieces of information: just using statistics and

ideas of “randomness” (so that we have isotopy of velocity), we can make many predictions: find limits on efficiency

of engines, derive gas laws, and so on. So we’ll get a taste of that through this class!

Professor Ketterle wants recitations to be interactive, so we should bring questions to the sessions. (He does not

want to copy to the blackboard what we can just read from solutions.) Concepts are important: it’s important to

address all of the important key points so that we can understand derivations. However, to become a physicist, we

do need to do problems as well. So in order to compensate for the focus on problems in lecture, usually we will not

have material “added.” So Professor Ketterle will prepare topics that help us get a deeper understanding or general

overview of concepts, but we can also bring questions about homework if we have any.

2.2 Review of lecture material
There were many buzzwords covered during the first lecture. We started thinking about what it means to have a state
(microstates and macrostates, both classical and quantum), ensemble, energy (thermal energy Q, internal energy U,

heat, and work), and temperature (which is particularly interesting in the limit T → 0 or T →∞). Basically, we have

introduced certain words, and it will take some practice to get fluent in those ideas.

Question 16. How do we explain to a non-physicist why there is an “absolute zero” lowest temperature? (This is a

good question to ask a physicist.) In fact, how is temperature actually defined?

We still don’t have a formal definition of temperature, but let’s look at an example of a real-life situation in which

temperature is very relevant: an ideal gas.

Fact 17

Here’s an important related fact: starting on May 20, 2019, the kilogram will be defined in terms of the fixed

constant ~, and along with that, the definition of a Kelvin will also change to depend on the Boltzmann constant

kB rather than the triple point of water.

So the Boltzmann constant will soon specify our units – it’s some constant that is approximately 1.38 · · ·×10−23J/K
(and will come up frequently in the rest of this class), and now temperature is related to a measure of energy:

kBT = [J].
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In an ideal gas (in which we neglect weak interactions between particles), we’ll make the definition

E =
1

2
mv2 ≡

3

2
kBT,

where v2 will be defined next lecture. If we take all of this for granted, the lowest possible temperature must occur

when there is no kinetic energy: if v2 → 0, T → 0. And this also explains why there is no negative temperature in the

ideal gas – we can’t have less than zero energy. So absolute zero is essentially created by definition: it’s a situation

in which there is no kinetic energy for any of our particles. For an analogous situation, we can measure the pressure

in a vacuum chamber, which is proportional to the density of particles. And thus the lowest pressure is zero, since we

can’t have negative particles.

On the other hand, what’s the highest temperature we can achieve? In principle, there is no upper limit: we can

make kinetic energy per particle arbitrarily large. We can add some entertainment to the situation as well: even though

the velocity v is upper bounded by c , we do have a divergent expression for relativistic energy which is not just 12mv
2:

KE =
1

2

m0c
2√

1− v2c2
.

In other words, we can keep adding energy to a particle, and it will just get heavier (without going over the speed of

light). And in the lab, the highest temperatures we’ve ever achieved are around 2× 1012 K in particle accelerators. In

general, if we take two nuclei and smash them together when moving near the speed of light, temperature changes

happen when during the actual collision. Then energy is converted into particles, and we have a piece of matter in

which we are almost at thermal equilibrium.

But what really happens at 1012 Kelvin is interesting on its own. As our temperature rises, a solid melts, a liquid

evaporates, molecules dissociate, atoms ionize into electrons and ions, and then ions lose more and more electrons until

they are bare nuclei. If we go hotter, the nuclei dissociate as well! All of this behavior does actually happen in white

dwarfs and neutron stars, but if we go even hotter, the protons and neutrons will dissociate into quarks, and we get

a soup of quarks and gluons. Overall, it’s interesting that we’ve actually achieved room temperature times 1010, and

we’ve also achieved room temperature divided by 1010, and there is physical behavior going on at both temperatures.

And now we can talk about what “negative temperature” actually means – we’ll have a more rigorous discussion

when we study spin systems, but it’s good for us to know that there are some magnetic systems that can reach infinite

temperatures at finite energies. What’s basically happening is that we’re traversing 1
T from ∞ to 0: when we cross

over 0, we can get into negative temperatures, and thus negative temperatures are in some way “even hotter” than

infinite temperatures! Expressions of the form e−E/(kBT ) are going to show up frequently in this class, so we will

actually get 1T reasonably often in our calculations. And we’ll understand why this happens as probability theory comes

into the picture!

3 February 7, 2019
The first lecture was a glossary of the terms we will see in this class; we’ll be slowly building up those concepts over

the semester. The first problem set will be posted today, and the deadline will generally be the following Friday at

9pm. Lecture notes have been uploaded, and they will generally be uploaded after each class (as will some recitation

materials) under the Materials tab of the LMOD website. For example, starting next Monday in recitation, there will

be a review of partial derivatives, and the notes for those are posted already.

Also, we have two graduate TAs this semester! Pearson (from last semester’s 8.03 team) will also be available to

7



help. General office hours will also be posted by tomorrow, but in general, we should use email instead of Piazza.

3.1 Overview
We will always begin lecture with a small overview of what will be covered. Statistical physics and thermodynamics

are for bringing together the macroscopic and microscopic world, and we’re going to start by defining state functions

like pressure and temperature using a tractable, simply-modeled system and working from first principles.

Essentially, we will use a monatomic ideal gas to define temperature and pressure, and then we will derive the ideal

gas law. From there, we’ll see how to make empirical corrections to have a more realistic understanding of a system

(for example, a van der Waals gas). We’ll also briefly talk about the equipartition theorem, which lets us connect

temperature to energy, as well as the first law of thermodynamics, which is basically a restatement of conservation

of energy.

3.2 The simplest model

Definition 18

A monatomic ideal gas is a system with N molecules, each of which is a single atom with no internal dynamics

(such as rotation or vibration). The molecules collide elastically as point particles (and take up no space), and

the only energy in the system is kinetic energy.

So putting in our definitions, the kinetic energy, thermal energy, and internal energy are all essentially the same

thing, and they are all equal to

U =

N∑
i=1

Ei =
m

2

N∑
i=1

v2ix + v
2
iy + v

2
iz

if all molecules have the same mass. Now assuming that we have an isotropic system, we can assume the three

coordinates have equal averages, and we can define an average (squared) velocity

v2 ≡ 〈v2ix 〉 = 〈v2iy 〉 = 〈v2iz 〉.

Plugging this in, the average internal energy is then

Uavg = N〈E〉 =
3

2
Nmv2.

Definition 19

The temperature is a measure of the thermal energy of the system, given by

mv2 ≡ kBT

where kB is a proportionality constant and T has units of Kelvin (in degrees above absolute zero).

The Boltzmann constant kB has units of energy per temperature, and it is experimentally about 1.381×10−23J/K.

Plugging this in, we find that the internal energy of an ideal gas is

U =
3

2
NkBT.
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Fact 20

Usually chemists write this slightly differently: N is defined to be NAn, where NA is Avogadro’s number ≈
6.023 × 1023mol−1, and n is the number of moles of the gas. Then the ideal gas constant is defined to be

R ≡ NAkB ≈ 8.314J/mol K, and our equation can be written as

U =
3

2
NkBT =

3

2
nRT.

The idea is that each of the three dimensions is contributing an equal amount to the energy in the system. We’ve

used the fact that particles have energy to define a temperature, and now we’ll similarly use the fact that particles

have momentum as well to define pressure. Consider a container shaped like a box with a piston as one of the walls

(in the x-direction). We know that by Newton’s law, the force can be described as

Fx =
dpx
dt

,

where p = mvx is the momentum in the x-direction for one of the particles. Since the piston will barely move, we can

just say that the particle will reverse x-momentum when it bounces off, but has no change in the other two directions:

∆px = 2mvx ,∆py = ∆pz = 0.

If we let the cross-sectional area of the piston-wall be A and the length of the box in the x-direction be `, then the

time between two collisions with the piston is

∆t =
2`

vx

(since it must hit the opposite wall and bounce back). So now plugging in our values, the average force from this one

molecule is

Fx =
∆px
∆t
=
mv2x
`
.

Assuming no internal molecular collisions (since we have an ideal gas), the total force on the piston for this system is

then

Fx =

N∑
i=1

Fxi =
Nm

`
v2 =

N

`
kbT

by our definition of temperature. So now the pressure on the piston, defined to be force per unit area, is

P =
Fx
A
=
NkBT

`A
=
NkBT

V

Now we’re making some assumptions: if we say that collisions and interactions with the wall don’t matter, and that

the shape of the container does not matter (an argument using small volume elements), we can rearrange this as

PV = NkBT ,

which is our first equation of state for the class. (As a sidenote, the shape of the container will matter if our system is

out of equilibrium, though.) So pressure, volume, and temperature are not independent: knowing two of them defines

the third in our ideal gas system, and we’re beginning to find a way to relate our state functions!
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3.3 An empirical correction
Let’s start modifying our equation of state now – we’re going to use the chemistry version of the ideal gas law, where

n is measured in moles. One key assumption that we have right now is that the particles have no volume: we have

to make some corrections if we don’t have point particles any more. So we change our volume: letting b be some

measure of how much volume is taken up by the particles, we replace

V → V − nb.

Also, some particles may have attractive intermolecular forces, and to introduce this, we claim the pressure will change

as

P =
nRT

V
− a

( n
V

)2
.

The constants a and b are empirically measured in a lab, but the point is that these modifications give us the van der
Waals equation (

P + a
n2

V 2

)
(V − nb) = nRT.

This means the effective volume for a real gas is smaller than an ideal gas, but the pressure can be larger or smaller

than an ideal gas because we could have attractive or repulsive molecular interactions.

3.4 The equipartition theorem
If we take another look at the equation for internal energy

U =
3

2
NkBT = 3N

(
1

2
kBT

)
,

notice that our system has 3N degrees of freedom: one in each of the x , y , and z coordinates for each of the particles.

Proposition 21 (Classical equipartition theorem)

At thermal equilibrium at temperature T , each quadratic degree of freedom contributes 12kBT to the total internal

energy U of the system.

This is important for being able to consistently define temperature! Unfortunately, this is only true in classical

limits at high temperatures. And we should make sure we’re precise with our language:

Definition 22

A degree of freedom is a quadratic term in a single particle’s energy (or Hamiltonian). Examples include:

• translational (in each coordinate) about the center of mass: 12m
(
v2x + v

2
y + v

2
z

)
,

• rotational (in each axis): 12
`2x
Ix

and so on, and

• vibrational: 12mẋ
2 + 12kx

2, imagining a molecule with two atoms in simple harmonic oscillation.

Example 23

Let’s try writing down the different degrees of freedom for molecules of a diatomic gas.
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In such a system, we have 3 translational degrees of freedom (looking at the center of mass), 2 rotational degrees

of freedom (we don’t have the third because there’s no moment of inertia about the axis connecting the two atoms),

and 2 vibrational degrees of freedom (coming from the simple harmonic oscillator of the two atoms stretching). Thus,

by the equipartition theorem, we already know that we’ll have

U = 7N

(
1

2
kBT

)
,

and that’s the power of the equipartition theorem: it allows us to have a general method for relating energy and

temperature. And as an exercise, we should try to figure out why a simple crystalline solid has internal energy

U = 3NkBT , using the same kinds of argument.

3.5 The first law of thermodynamics
We now have a relationship between thermal energy and temperature, and our next step is to think about how the

energy of a system can change. We’ll start by trying to define a relationship between work and pressure. Let’s go

back to the piston wall that we used to derive the ideal gas law: the differential work being done on the piston by a

particle is

dW = F dx = PAdx = P dV.

We will use the convention in this class where whenever dV < 0, work is being done on the system. So the change

in the internal energy of the system is the mechanical work done, and dU = −P dV (with the negative sign because

work is being done by, rather than on, the system.)

But there are also other ways to transfer energy, particularly through heat (which we denote with the letter Q).

We’ll use the convention is that heat flow into the system is positive, so dU = dQ . So we can write these together

to get a total change in internal energy

dU = dQ+ dW.

In other words, the internal energy of the system changes if we add infinitesimal heat to it, or if the system does

work externally. We can also add particles to the system to further modify this first law: we’ll see later on that we

sometimes also get a contribution of the form dU = µdN where µ is the chemical potential, then

dU = dQ+ dW + µdN.

Explicitly, the whole point of this kind of statement is to have an energy conservation law, but implicitly, we also have

that U, the internal energy of the system, is also a state function. But we should keep in mind that work and heat

are path-dependent quantities, so the expressions dQ and dW are inexact differentials. And in particular, W,Q are

not state functions!

Example 24

Consider an evolution of a system as follows. Start in state 1, with N1 particles, a temperature of T1, and a

volume of V1. This tells us that we have some internal energy U(N1, T1, V1). We can take this to state 2 by

adding some heat, so now we have N2 particles, a temperature of T2, and a volume of V2, giving us a new internal

energy. Finally, perform some work on the system to take us back to state 1.

The idea is that U is an exact differential, so the internal energy doesn’t depend on the path taken. But dW and

dQ are both inexact and path-dependent quantities – the example above showed us that dU = 0, but the work and
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heat done depend on what state 2 is. So from here on out, we will use the notation d̄W and d̄Q, and now we write

the first law as

dU = d̄Q+ d̄W .

So calculus tells us that dU can be obtained from differentiation (of some other function), while d̄Q and d̄W cannot.

In general, state functions can be divided into generalized displacements and generalized forces, which will be

denoted {x} and {j}, respectively. These xis and jis are conjugate variables, and the idea is to write our differential

work as

d̄W =
∑
i

ji dxi .

Here are some sample state functions that we’ll be working with throughout this class

Forces (ji) Displacements (xi)

Pressure P Volume V

Tension F Length L

Surface tension σ Area A

Magnetic field H Magnetization M

Chemical potential µ Number of particles N

The quantities under “displacements” are generally extensive, while the quantities under “force” are intensive.

We’ll use these words more as the class progresses, but the basic point is that scaling the system up changes our

generalized displacements, but not the generalized forces.

4 February 11, 2019 (Recitation)

4.1 Questions and review
We’ll begin with a few ideas from the homework. If we want to calculate the work done by moving from one state to

another, we can integrate along the path taken and compute

W =

∮ final

initial
P dV.

Many such problems are solved using PV diagrams, which plot each state based on their pressure (on the y -axis) and

volume (on the x-axis), and knowing P and V tells us the temperature T (through the equation of state) as well. And

if we have an ideal gas, lines PV = NkBT on the PV diagram are where the temperature is constant. For example, if

we have an isothermal expansion along one of these lines, we find that∫
P dV =

∫
NkBT

V
dV = NkBT (ln Vf − ln Vi).

There are other kinds of work that can be specified: for instance, isobaric compression is done under constant pressure,

so the work is just P∆V . But we’ll come back to all of this later!

Remark 25. State functions are all the parameters that characterize a system. So for an ideal gas, pressure, volume,

and temperature are enough – if we are asked to find the final state, we just need to find the values of those parameters.
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Fact 26

The word adiabatic (referring to a process in which a system evolves) has two different definitions in statistical

physics. In one definition, no heat is exchanged, meaning that d̄Q = 0 throughout the process. (This can happen

if our system has insulating walls, so no heat is transferred in or out of the system, or if a process proceeds quickly

enough so that heat can’t move.) But in the other definition, our process is slow enough so that the system is

always in equilibrium. And the main feature of this definition (which isn’t true in the other) is that entropy is

conserved.

Adiabaticity in quantum mechanics means that a particle doesn’t deviate from its quantum state, because the

process happens very gradually. (If we try to evolve too slowly, though, we will get noise that also interferes with the

system.) The bottom line is that adiabaticity forces our system to act “not too slow and not too fast,” so that we get

the desired constraints.

4.2 Energy
Let’s start from the first law of thermodynamics, stated as

dU = d̄W + d̄Q.

As physicists, we don’t have access to absolute truth: we do our best to find better and better approximations. So

Professor Ketterle doesn’t always like it when we call things “laws:” for example, why are we trying to test Coulomb’s

law to the tenth decimal place, and why do we do it for two electrons that are very close? Regardless, the “law” above

is a statement about energy.

Question 27. What’s a form of energy that is internal energy but not thermal energy?

Two possible answer are “the binding energy of the nucleus” or “the mass energy,” but these aren’t exactly correct.

Thermal energy is supposed to “come and go” as our system heats up, so let’s think about a system of water molecules

at increasing temperature. At first, our molecules gain kinetic energy, and then after we continue to heat, chemical

energy will change through dissociation. So in this system, the binding energy of hydrogen is “reaction enthalpy,” which

is indeed considered in thermal energy.

And similarly, if we increase temperature so that the kinetic energy is comparable to rest mass energy, we get issues

with relativity. If two such particles collide, they can create a particle-antiparticle pair, and in this regime, even the

rest mass becomes part of a dynamic process. Therefore, that rest mass can become thermal energy as well. One

takeaway we can have is that

U = Ethermal + U0

for some constant U0, and we basically always only care about differences in energy anyway. So this distinction between

“thermal energy” and “internal energy” isn’t really that important in Professor Ketterle’s eyes.

4.3 Scale of systems
Question 28. Can a single particle have a temperature? That is, can we have an ensemble consisting of one particle?

Normally, we are given some constant P, V, T, U, and a microstate is specified by a set of positions and momenta

{xi , pi : 1 ≤ i ≤ N}, where N is a large number of particles. It turns out, though, that even single particles can be
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thermal ensembles! For example, if we connect a particle in a box to a certain thermal reservoir at temperature T ,

we can find a “Boltzmann probability distribution” ∝ e−E/(kBT ) for being at state E (this is a point which we’ll study

later). So having an ensemble just means we have many copies of a system that are equally prepared macroscopically,

regardless of how many particles this system has, as long as we follow all of the important laws.

And in particular, remember that in an ideal gas, we’ve assumed the particles are not interacting! So it’s perfectly

fine to take N → 1 for an ideal gas; rephrased, an ideal gas is just N copies of a single-particle system.

Remark 29. Schrodinger once said that the Schrodinger equation only describes ensembles when measurements are

applied many times. He made the claim that the equation would not apply to just one particle, but recently, single

photons, atoms, and ions were observed repeatedly, and it was shown that the quantum mechanical ideas applied there

too.

So we may think it’s nonsense that statistics can apply to a single particle, but we can often study a complicated

system by simplifying it into multiple copies of a simple one.

4.4 Partial derivatives
Consider the two equations

dz

dx
=
dz

dy

dy

dx
,

dz

dx
= −

dz

dy

dy

dx
.

We can ask ourselves “which one is correct?”. One general rule to keep in mind is that in each field of physics, we
need to learn some mathematics. In particular, two tools we’ll need to learn for this class are partial derivatives
and statistics. In the handout posted online, we’ll see the second statement, but of course we need to ask ourselves

why we don’t cancel the dys like we have done in ordinary calculus.

The key point is that we use the two equations in different situations. The first equation is valid when z is a

function of x , but we have it written as an implicit function y . Rephrased, if we have a function z(y(x)), such as

exp(sin x), then indeed the chain rule indeed tells us that

dz

dx
=
dz

dy

dy

dx
.

This is true for a function that depends on a single independent parameter. But on the other hand, suppose we have

a function where x and y are independent variables: that is, we have z(x, y)? (For example, pressure is a function of

volume and temperature.) Now z can change by the multivariable chain rule, and we can say that

dz =
∂z

∂x

∣∣∣∣
y

dx +
∂z

∂y

∣∣∣∣
x

dy.

Often we’ll have a situation where we want to keep z constant: for example, we might be keeping the pressure constant

as we heat up our system, and we’re thinking about pressure as a function of other state variables. In a situation like

that, we have

0 =
∂z

∂x

∣∣∣∣
y

dx +
∂z

∂y

∣∣∣∣
x

dy,

so now x and y must be changed in a certain ratio:

dy

dx
= −

∂z
∂x

∣∣
y

∂z
∂y

∣∣∣
x

14



And the left hand side of this equation, in more rigorous language, is just ∂y∂x as we keep z fixed. So the second

equation is now true, and the moral of the story is that we need to be very careful about what variables are being kept

constant. We’ll do much more study of this in the following weeks!

5 February 12, 2019
We’ll start with some housekeeping: our first problem set is due on Friday, and there will be office hours for any

questions we have. If we click on the instructor names on the course website, we can see what times office hours are

being held. (Hopefully we all have access to the online class materials: if there are any problems, we should send an

email to the staff.)

Last lecture, we introduced thermodynamics with a simple and tractable model (the ideal gas). Once we defined

pressure and temperature, we derived an equation of state, and we learned that we can empirically modify the ideal

gas law to capture real-life situations more accurately. Next, we introduced the first law of thermodynamics, which is

essentially conservation of energy. We learned that there are many ways to do work, and we can write the infinitesimal

work as the product of a “force” and its corresponding “conjugated variable.” This led us to the generalized first law

dU = d̄Q+ d̄W, d̄W =
∑
i

ji dxi ,

where each ji is a generalized force and xi is its conjugated generalized displacement.

In recitation, we reviewed some material about partial derivatives, and there will be a “zoo” of them in this class.

Any macroscopic quantity can be found by taking derivatives of “free energy” (which will be defined later as well). For

example, we can take derivatives of energy to find temperature and pressure, which will be helpful since we can use

statistical physics to find general quantities like the free energy or entropy. But again, this is all a preview for what

will become more rigorous later.

5.1 Experimental properties

Definition 30

A response functions are quantities that change when parameters of a system are adjusted, and they are used

to characterize the macroscopic properties of that system.

Basically, we introduce a perturbation to a system, and we can then observe the response in our measurements.

Example 31 (Heat capacity)

Suppose we add some heat to a system, and we want to keep track of what happens to the temperature.

We need to be careful, because the system can change while keeping pressure or volume constant? Both are useful

quantities, and we’ll define the heat capacities

CV ≡
d̄Q

dT

∣∣∣∣
V

, CP ≡
d̄Q

dT

∣∣∣∣
P

.

(These can be thought of as variables for a gas on which we perform experiments.)
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Example 32 (Force constant)

Suppose we apply a force F on our system, and we want to see the displacement x that results from this external

force. (This is a generalization of a spring constant.)

We can therefore define an effective force constant via the equation

dx

dF
≡
1

k
.

For example, we can define the isothermal compressibility of a gas via

KT ≡ −
1

V

∂V

∂P

∣∣∣∣
T

.

This is, again, something we can measure experimentally.

Example 33 (Thermal responses)

The expansivity of a system is defined as

αP =
1

V

∂V

∂T

∣∣∣∣
P

.

And finally, if we have an equation of the form

dU = d̄Q+
∑
i

ji dxi ,

it makes sense to try to write d̄Q in a similar way as well. And it turns out that if we treat T , the temperature, as a

force, we can find a conjugate displacement variable S (called the entropy)! So for a reversible process (which we will

discuss later), we can write

d̄Q = T dS,

and now all of our contributions to the internal energy are in the same form.

5.2 Experimental techniques
Now that we’ve discussed the abstract quantities that we care about measuring, we should ask how we actually measure

pressure, volume, and temperature for a given system. We generally deal with quasi-equilibrium processes, in which

the process is performed sufficiently slowly that the system is always (basically) at equilibrium at any given time. This

means that thermodynamic state functions do actually exist throughout our evolution, so we can always calculate

well-defined values of P, V, T , and other state functions. And the work done on the system (which is the negative of

the work done by the system) is related to changes in thermodynamic quantities, as we wrote above.

Example 34

Let’s say we want to measure the potential energy of a rubber band experimentally, and we do this by stretching

the rubber band and applying a force.

The idea is that if we are performing the stretching slowly enough, at any point, the force that we apply is basically

the same as the internal force experienced by the system. That means that we can indeed take the force we’re applying

to the rubber band, and we will find that U =
∫
F d`.
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5.3 PV diagrams
Since our state functions are only defined in equilibrium states, all derivatives are also only described in the space of

equilibrium states.

Definition 35

In a PV diagram, the pressure P is plotted on the y -axis, the volume V is plotted on the x-axis, and every

equilibrium state lies somewhere on the graph. The work done by or on the system as it transitions from a state

I to a state II is defined via

Wby = −Won =
∫ II
I

P dV.

The idea here is that (as we discussed with the ideal gas) pressure is force per area, and volume is length times

area, so this integral is basically computing
∫
F dx . There are ways to go from one state to another without being

in equilibrium states along the way as well: for example, if we have sudden free expansion, there is no heat being

exchanged and no work done on or by the system, so

∆Q = ∆W = 0 =⇒ UA = UB.

This tells us that U is a function of only the temperature of the gas (because it doesn’t change even when we change

our pressure and volume).

Example 36 (Isothermal expansion)

Consider a situation in which a gas moves along an isotherm in the PV diagram: for an ideal gas, the equation

of this isotherm is just PV = NkBT .

As the name suggests, we’re keeping the temperature of the system constant while we compress the ideal gas. If

we start with a volume V1 and pressure P1, and we end up at volume V2 and pressure P2, then the work done on the

system is

−
∫ V2
V1

P dV =

∫ V1
V2

NkBT

V
dV = NkBT (ln V2 − ln V1) = NkBT ln

V1
V2
,

since N, kB, and V are all constants independent of T . If we define r = V1
V2

, and we want to know how much heat is

required for this process, we must have

0 = dU =⇒ Q = −W = −NkBT ln r ,

because the internal energy U(T ) does not change if T is fixed.

Example 37 (Adiabatic compression)

In an adiabatic process, there is no heat added or removed from the system (for example, this happens if we have

an isolated container).

Since d̄Q = 0, the first law of thermodynamics tells us that

dU = d̄W = −P dV.
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Since we have an ideal gas, we also know that

PV = NkBT, U =
f

2
NkBT,

where f is the number of active degrees of freedom for the molecules of the gas. We’ll now manipulate these equations

a bit: in differential form, we have (using the product rule) that

P dV + V dP = NkBdT, dU =
f

2
NkBdT.

Combining these equations, we have a relation between changes in internal energy and the state variables:

dU =
f

2
(P dV + V dP ).

So now since dU = −PdV from above,

−P dV =
f

2
(P dV + V dP ) =⇒ (f + 2)P dV + f V dP = 0.

Definition 38

The adiabatic index for a gas with f degrees of freedom is given by

γ =
f + 2

f
.

Now if we rearrange the equation and integrate,

0 = γP dV + V dP =⇒
dP

P
= −γ

dV

V
=⇒

P

P1
=

(
V1
V

)γ
.

This tells us that PV γ is constant, and equivalently that TV γ−1 and T γP 1−γ are constant as well. So now the rest is

just integration: the work done on the system is

W = −
∫ V2
V1

P dV = −P1V γ1
∫ V2
V1

dV

V γ
= −P1V γ1 (V

1−γ
2 − V 1−γ1 ) .

Plugging in our definition of r ,

W =
NkBT1
γ − 1 (r

γ−1 − 1).

This quantity depends on the number of degrees of freedom in the system, but we can see that in general, the work

done for an isothermal process is less than for an adiabatic process! (This is true because the PV curves for PV γ = c

are “steeper” in a PV diagram than those for PV = c , so we are also increasing the temperature, meaning more work

is required for us to get the same change in volume.)

Fact 39

It’s hard to design an adiabatic experiment, since it’s hard to insulate a system completely from its surroundings.

Example 40 (Isometric heating)

In an isometric heating, we keep the volume of a system constant while we increase the heat (temperature goes

up).
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In a PV diagram, this corresponds to moving vertically up. Since there is no change in volume, there is no work

done on the system, and thus dU = d̄Q: any internal energy change is due to addition of heat. But this is a measurable

quantity: we can write
d̄Q

dT

∣∣∣∣
V

=
∂U

∂T

∣∣∣∣
V

= CV ,

and we can measure the change in internal energy to find the specific heat capacity CV experimentally. Since the

energy is dependent only on temperature, for an ideal gas,

U =
f

2
NkBT =⇒ CV =

f

2
NkB .

We can also define ĉV (per molecule) as CVN =
f
2kB.

Finally, we have one more important process of change along PV diagrams:

Example 41 (Isobaric heating)

This time, we keep the pressure constant and move horizonally in our PV diagram.

Let’s differentiate the first law of thermodynamics with respect to T : since d̄W = −PdV ,

d̄Q = dU − d̄W =⇒
d̄Q

dT

∣∣∣∣
P

=
∂U

∂T

∣∣∣∣
P

+ P
∂V

∂T

∣∣∣∣
P

.

Since pressure is constant, our internal energy U is a function of T and V , and taking differentials,

dU =
∂U

∂T

∣∣∣∣
V

dT +
∂U

∂V

∣∣∣∣
T

dV.

Dividing through by a temperature differential to make this look more like the equation we had above,

∂U

∂T

∣∣∣∣
P

=
∂U

∂T

∣∣∣∣
V

+
∂U

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
P

.

Combining our equations by substituting the second equation into the first,

d̄Q

dT

∣∣∣∣
P

= CV +

(
P +

∂U

∂V

∣∣∣∣
T

)
∂V

∂T

∣∣∣∣
P

.

But the left side is CP , so we now have our general relation between CP and CV

CP = CV +

(
P +

∂U

∂V

∣∣∣∣
T

)
∂V

∂T

∣∣∣∣
P

.

Example 42

Let’s consider this equation when we have an ideal gas.

Then U is only a function of T , so ∂U
∂V while keeping T constant is zero. This leaves

CP + CV + P
∂V

∂T

∣∣∣∣
P
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and since we have an ideal gas where PV = NkBT , ∂V∂T at constant P is just NkBP , and we have

CP = CV + NkB.

Example 43

What if we have an incompressible system, like in solids or liquids?

Then the volume does not change with respect to temperature noticeably, so

CP = CV + P
∂V

∂T

∣∣∣∣
P

.

Defining αP = 1
V
∂V
∂T

∣∣
P
,

CP = CV + PV αP .

For ideal gasses, αP = 1
T , and at room temperature this is about 1

300K
−1. For solids and liquids, the numbers are

smaller: αP = 10−6K−1 for quartz and αP = 2× 10−4K−1 for water. This essentially means CP ≈ CV for solids and

liquids!

Let’s look back again at isometric heating. We found that we had a state function U, which is exactly the amount

of heat we added to the system. So in this case, we can directly measure dU = d̄Q. Are there any new state functions

such that the change in heat for isobaric heating is the same as the change in that state function? That is, is there

some quantity H such that d̄Q = dH? The answer is yes, and we’ll discuss this next time! It’s enthalpy, and it is

H ≡ U + PV .

6 February 13, 2019 (Recitation)
Today, we have a few interesting questions, and we’ll be using clickers! We can see how we will respond to seemingly

simple questions, because professor Ketterle likes to give us twists.

6.1 Questions
Let’s start by filling in the details of “adiabatic” processes. In thermodynamics, there are two definitions of “adiabatic”

in different contexts.

Fact 44

“dia” in the word means “to pass through,” much like “diamagnetic.” In fact, in Germany, slide transparencies are

called “dia”s as well.

So “adia” means nothing passes through: a system in a perfectly insulated container does not allow transfer of

heat. Adiabatic will mean thermally isolated in general!

On the other hand, we have adiabatic compression (which we discussed in class), in which we have an equation of

the form PV γ = c . But what is adiabatic expansion? It sounds like it should just be a decompression: perhaps it is

just a reverse of the adiabatic compression process. But this isn’t quite right.

In compression, we do the compression slowly: we assume the equation of state for the ideal gas is always valid,

so we are always at equilibrium. Indeed, there also exists an adiabatic expansion that is very slow. But in problems
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like the pset, we can have sudden changes: a sudden, free expansion is not in equilibrium all the time, and it is not

reversible!

Fact 45

Adiabatic compression increases the temperature, and slow adiabatic expansion does the opposite. But in sudden

free expansion, the internal energy of the system is 0 (as d̄W = d̄Q = 0). So the temperature is constant in free

expansion.

All three processes have d̄Q = 0, since there is no heat transfer. The point is to be careful about whether we have

reversible processes, since different textbooks may have different interpretations! We’ll talk about entropy later, but

the key idea is that the slow adiabatic compression and expansion are isentropic: dS = 0.

Fact 46

For example, if we change the frequency of our harmonic oscillator in quantum mechanics slowly, so that the

energy levels of our system does not jump, that’s an adiabatic process in quantum mechanics.

Example 47

Given a PV diagram, what is the graph of sudden, free expansion?

We start and end on the same isotherm, since the temperature is the same throughout the process. But we can’t

describe the gas as a simple equation of state! In fact, we’re not at equilibrium throughout the process, so there is no

curve on the PV diagram. After all, the work done W =
∫
PdV has to be zero. In other words, be careful!

6.2 Clickers
Let’s talk about the idea of “degrees of freedom.” Molecules can look very different: they can be monatomic, diatomic,

or much larger. The degrees of freedom can be broken up into

• center of mass motion

• rotational motion

• vibrational motion.

There are always 3 center of mass degrees of freedom, and let’s try to fill in the rest of the table! (We did this

using clickers.)

COM ROT VIB total

atom 3 0 0 3

diatomic 3 2 1 6

CO2 3 2 4 9

H2O 3 3 3 9

polyatomic 3 3 3N − 6 3N

Some important notes that come out of this:

• There are 2 rotational degrees of freedom for diatomic and straight triatomic molecules: both axes that are not

along the line connecting the atoms work. As long as we can distinguish the three directions, though, there are

3 rotational degrees of freedom.
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• Here, we count degrees of freedom as normal modes (which is different from 8.223). Recall that in 8.03, we

distinguished translational from oscillatory normal modes.

• Water is a triatomic molecule with three modes: the “bending” mode, the “symmetric” stretch, and the “anti-

symmetric” stretch.

• Carbon dioxide has 4 modes: the symmetric stretch, the asymmetric stretch, and two bending modes (in both

perpendicular axes).

In classical mechanics, if we’re given one particle, we can write 3 differential equations for it: each coordinate gets

a Newton’s second law. That’s why we have 3 total degrees of freedom. Similarly, with two particles, we have 6 total

degrees of freedom, and the numbers should add up to 3N in general. This lets us make sure we don’t forget any

vibrational modes!

6.3 Wait a second...
Notice that this definition of “degrees of freedom” is different from what is mentioned in lecture. Thermodynamic

degrees of freedom are a whole different story! Now let’s change to using f , the thermodynamic degrees of freedom.

Recall that we define γ = f+2
f .

f measures the number of quadratic terms in the Hamiltonian, and as we will later rigorously derive, if the modes

are thermally populated, the energy of each degree of freedom is kBT2 . But the vibrations count twice, since they have

both kinetic and potential energy! We’ll also rigorously show this later.

So it’s time to add another column to our table:

COM ROT VIB total thermodynamic

atom 3 0 0 3 3

diatomic 3 2 1 6 7

CO2 3 2 4 9 13

H2O 3 3 3 9 12

polyatomic 3 3 3N − 6 3N 6N − 6

and as we derived in lecture,

E = f
kBT

2
, CV = f

kB
2
N.

However, keep in mind that this concept breaks down when we add too much energy and stop having well-defined

molecular structure.

Finally, let’s talk a bit about adiabatic and isothermal compression.

Example 48

Let’s say we do an isothermal compression at T1, versus doing an adiabatic compression to temperature T2.

We measure the work it takes to go from an initial volume V1 to a final volume V2 under both compressions. The

total work is larger for the adiabatic process, since the “area under the curve is larger,” but why is this true intuitively?

One way to phrase this is that we press harder, and that means there is more resistance against the work done.

So now let’s prepare a box and do the experiment. We find that there is now no difference: why? (Eliminate the

answer of bad isolation.)

• The gas was monatomic with no rotational or vibrational degrees of freedom.

22



• Large molecules were put in with many degrees of freedom.

• The gas of particles had a huge mass.

• This is impossible.

This is because γ = f+2
f ≈ 1 if f is large! Intuitively, the gas is absorbing all the work in its vibrational degrees of

freedom instead of actually heating up.

7 February 14, 2019
Remember the pset is due tomorrow night at 9pm. As a reminder, the instructors are only accepting psets on the

website: make a pdf file and submit them on LMOD. This minimizes psets getting lost, and it lets TAs and graders

make comments directly.

Fact 49

Don’t use the pset boxes. I’m not really sure who put them there.

The solutions will become available soon after.

Today, we’re starting probability theory. The professor uploaded a file with some relevant information, and delta

functions (a mathematical tool) will be covered later on as well.

Also, go to the TA’s office hours!

7.1 Review from last lecture
We’ve been studying thermodynamic systems: we derived an ideal gas law by defining a pressure, temperature, and

internal energy of a system. We looked at different processes that allow us to move from one point in phase space (in

terms of P, V ) to another point.

Thermodynamics came about by combining such motions to form engines, and the question was about efficiency!

First of all, let’s review the ideas of specific heat for volume and pressure:

• Remember that we discussed an isometric heating idea, where the volume stays constant. We could show that

dV = 0 =⇒ d̄W = 0 =⇒ dU = d̄Q, which means we can actually get access to the change in internal energy

(which we normally cannot do). We also found that

d̄Q

dT

∣∣∣∣
V

=
dU

dT

∣∣∣∣
V

= CV .

• When we have constant pressure (an isobaric process), we don’t quite have dU = d̄Q, but we wanted to ask

the question of whether there exists a quantity H such that dH = d̄Q|P . The idea is that

d(PV ) = V dP + PdV,d̄Q|P = dU|P + PdV |P

and this last expression is just dU|P + d(PV )p since P is constant. So combining all of these,

d(U + PV )|P = d̄Q|P =⇒ H ≡ U + PV.
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Definition 50

H is known as the enthalpy.

It is useful in the sense that
d̄Q

dT

∣∣∣∣
P

=
∂H

∂T

∣∣∣∣
P

= CP .

This is seen a lot in chemistry, since many experiments are done at constant pressure!

We can write a general expression that combines those two:

CP = CV +

(
P +

∂U

∂V

∣∣∣∣
T

)
∂V

∂T

∣∣∣∣
P

and for an ideal gas, this simplifies nicely to CP = CV + NkB.

Last lecture, we also found that
CP
CV
=
f + 2

f
≡ γ,

which is the adiabatic index. For a monatomic ideal gas, f = 3 =⇒ γ = 5
3 , and for a diatomic ideal gas,

f = 7 =⇒ γ = 9
7 .

7.2 Moving on

Fact 51

If you plot heat capacity CV per molecule as a function of temperature, low temperatures have CV ≈ 3
2 (only

translational modes), corresponding to γ = 5
3 , but this jumps to CV ≈ 5

2 =⇒ γ = 7
5 for temperatures between

200 to 1000 Kelvin. Hotter than that, vibrational modes start to come in, and CV increases while γ approaches

1.

In a Carnot engine, we trace out a path along the PV diagram. How can we increase the efficiency?

There are two important principles here: energy is conserved, but entropy is always increasing.

Definition 52 (Unclear)

Define the entropy as

∆S =
Q

T
.

But this doesn’t give very much physical intuition of what entropy really is: it’s supposed to be some measure of

an “ignorance” of our system. Statistical physics is going to help us give an information theoretic definition later:

S = −kB〈lnPi 〉,

which will make sense as we learn about probability theory in the next three or four lectures!

7.3 Why do we need probability?
Almost all laws of thermodynamics are based on observations of macroscopic systems: we’re measuring thermal

properties like pressure and temperature, but any system is still inherently made up of atoms and molecules, so the

motion is described by more fundamental laws, either classical or quantum.
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So we care about likelihoods: how likely is it that particles will be in a particular microscopic state?

7.4 Fundamentals

Definition 53

A random variable x has a set of possible outcomes

S = {x1, x2, · · · , }.

(This set is not necessarily countable, but I think this is clear from the later discussion.)

This random variable can be either discrete or continuous.

Example 54 (Discrete)

When we toss a coin, there are two possible outcomes: Scoin = {H,T}. When we throw a die, Sdie =

{1, 2, 3, 4, 5, 6}.

Example 55 (Continuous)

We can have some velocity of a particle in a gas dictated by

S = {−∞ < vx , vy , vz <∞}.

Definition 56

An event is a subset of some outcomes, and every event is assigned a probability.

Example 57

When we roll a die, here are some probabilities:

Pdie({1}) =
1

6
, Pdie({1, 3}) =

1

3
.

Probabilities satisfy three important conditions:

• positivity: any event has a nonnegative real probability P (E) ≥ 0.

• additivity: Given two events A and B,

P (A ∪ B) = P (A) + P (B)− P (A ∩ B)

where A ∪ B means “A or B” and A ∩ B means “A and B”.

• normalization: P (S) = 1, where S is the set of all outcomes. In other words, all random variables have some

outcome.

There are two ways to find probabilities:
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• Objective approach: given a random variable, do many trials and measure the result each time. After N of

them, we have probabilities NA for each event A: this is just the number of times A occurs, divided by N. In

particular, as we repeat this sufficiently many times,

P (A) = lim
N→∞

NA
N
.

• Subjective approach: We assign probabilities due to our uncertainty of knowledge about the system. For

example, with a die, we know all six outcomes are possible, and in the absence of any prior knowledge, they

should all be equally probable. Thus, P ({1}) = 1
6 .

We’ll basically do the latter: we’ll start with very little knowledge and add constraints like “knowledge of the internal

energy of the system.”

7.5 Continuous random variables

Fact 58

We’ll mostly be dealing with these from now on, since they’re are what we’ll mostly encounter in models.

Let’s say we have a random variable x which is real-valued: in other words,

SX = {−∞ < x <∞}.

Definition 59

The cumulative probability function for a random variable X, denoted FX(x), is defined as the probability that

the outcome is less than or equal to x :

FX(x) = Pr[E ⊂ [−∞, x ]].

Note that FX(−∞) = 0 and FX(∞) = 1, since x is always between −∞ and ∞.

Definition 60

The probability density function for a random variable X is defined by

pX(x) ≡
dFX
dx

In particular,

pX(x)dx = Pr [E ⊂ [x, x + dx ]] .

It’s important to understand that ∫ ∞
−∞

pX(x)dx = 1,

since this is essentially the probability over all x .

Fact 61

The units or dimension of pX(X) is the reciprocal of the units of X.

26



Note that there is no upper bound on pX ; it can even be infinity as long as p is still integrable.

Definition 62

Let the expected value of any function f (x) of a random variable x be

〈F (x)〉 =
∫ ∞
−∞

F (x)p(x)dx.

As a motivating example, the expected value of a discrete event is just

〈X〉 =
∑
i

pixi ,

so this integral is just an “infinite sum” in that sent.

7.6 More statistics

Definition 63

Define the mean of a random variable x to be

〈x〉 =
∫ ∞
−∞

xp(x)dx.

For example, note that

〈x − 〈x〉〉 = 0.

In other words, the difference from the average is 0 on average, which should make sense. But we can make this

concept into something useful:

Definition 64

Define the variance of a random variable x to be

var(x) = 〈(x − 〈x〉)2〉.

This tells something about the spread of the variable: basically, how far away from the mean are we? Note that

we can expand the variance as

var(x) = 〈x2 − 2x〈x〉+ 〈x〉2〉 = 〈x2〉 − 〈x〉2.

Fact 65 (Sidenote)

The reason we square instead of using an absolute value is that the mean is actually the value that minimizes the

sum of the squares, while the median minimizes the sum of the absolute values. The absolute value version is

called “mean absolute deviation” and is less useful in general.

We’re going to use this idea of variance to define other physical quantities like diffusion later!
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Definition 66

Define the standard deviation as

σ(x) =
√
var(x).

With this, define the skewness as a dimensionless metric of asymmetry:〈
(x − 〈x〉)3

σ3

〉
,

and define the kurtosis as a dimensionless measure of shape (for a given variance).〈
(x − 〈x〉)4

σ4

〉
,

Let’s look at a particle physics experiemnt to get an idea of what’s going on:

e+e− → µ+µ−.

Due to quantum mechanical effects, there is some probability distribution for θ, the angle of deflection:

p(θ) = c sin θ(1 + cos2 θ), 0 ≤ θ ≤ π.

To find the constant, we normalize with an integral over the range of θ:

1 = c

∫ π
0

sin θ(1 + cos2 θ)dθ.

We will solve this with a u-substitution: letting x = cos θ,

1 = c

∫ 1
−1
(1 + x2)dx =⇒ 1 =

8

3
c =⇒ c =

3

8

So our probability density function is

p(θ) =
3

8
sin θ(1 + cos2 θ)

Fact 67

This has two peaks and is symmetric around π2 . Thus, the mean value of θ is 〈θ〉 = π
2 , and σ is approximately the

distance to the peak.

We can calculate the standard deviation exactly:

〈 θ2 〉 =
3

8

∫ π
0

(1 + cos2 θ) sin θ · θ2 dθ =
π2

4
−
17

9
,

and therefore

var(θ) = 〈θ2〉 − 〈θ〉2 ≈ 0.579 =⇒ σ ≈ 0.76.

Finally, let’s compute the cumulative probability function:

F (θ) =

∫ θ
0

3

8
sin θ(1 + cos2 θ)dθ =

1

8
(4− 3 cos θ − cos3 θ).

This has value 0 at θ = 0, 12 at θ = π
2 , and 1 at θ = π.
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Next time, we will talk about discrete examples and start combining discrete and continuous probability. We’ll also

start seeing Gaussian, Poisson, and binomial distributions!

8 February 19, 2019 (Recitation)
A guest professor is teaching this recitation. We’re going to discuss delta functions as a mathematical tool, following

the supplementary notes on the website.

There are multiple different ways we can represent delta functions, but let’s start by considering the following:

Definition 68

Define

δε(x) =
1√
2πε
exp

[
−
x2

2ε2

]
.

This is a Gaussian (bell curve) distribution with a peak at x = 0 and an inflection point at ±ε. It also has the

important property ∫ ∞
−∞

δε(x) = 1,

so it is already normalized. This can be shown by using the fact that

I =

∫ ∞
−∞

dxe−αx
2

=⇒ I2 =

∫ ∞
−∞

∫ ∞
−∞

dxdye−α(x
2+y2)

and now switch to polar coordinates: since dxdy = rdrdθ,

I2 =

∫ ∞
0

drr

∫ 2π
0

e−αr
2

=
π

α

using a u-substitution. So δε is a function with area 1 regardless of the choice of ε. However, ε controls the width of

our function! So if ε goes down, the peak at x = 0 will get larger and larger: in particular, δε(0) = 1√
2πε

goes to ∞
as ε→ 0.

So we have a family of such functions, and our real question is now what we can do with integration? What’s∫ ∞
−∞

dxδε(x)f (x)?

For a specific function and value of ε, this may not be a question you can answer easily. But the point is that if we

put an arbitrary function in for f , we don’t necessarily know how to do the integration. What can we do?

Well, let’s think about taking ε→ 0. Far away from x = 0, δε(x)f (x) is essentially zero. If we make δε extremely

narrow, we get a sharp peak at x = 0: zooming in, f is essentially constant on that peak, so we’re basically dealing

with ∫ ε
−ε
dxf (0)e−

x2

2ε2
1√
2πε

= f (0) · 1 = f (0).

So the idea is that we start with a particular family of functions and take ε→ 0, and this means that δε is a pretty

good first attempt of a “sharp peak.”
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Definition 69

Let the Dirac delta function δ satisfy the conditions

• δ(x − x0) = 0 for all x 6= x0.

•
∫∞
−∞ dxδ(x − x0) = 1, where the integral can be over any range containing x0.

•
∫
dxδ(x − x0)f (x) = f (x0), again as an integral over any range containing x0.

This seems pretty silly: if we already know f (x), why do we need its evaluation at a specific point by integrating?

We’re just evaluating the function at x = 0. It’s not at all clear why this is even useful. Well, the idea is that it’s

often easier to write down integrals in terms of the delta function, and we’ll see examples of how it’s useful later on.

For now, let’s keep looking at some more complicated applications of the delta function. What if we have something

like ∫
dxδ(g(x))f (x)?

We know formally what it means to replace δ(x) with δ(x − x0), but if we have a function g with multiple zeros, we

could have many peaks: what does that really mean, and how tall are the peaks here? This is useful because we could

find the probability that g(x, y , z) = c by integrating∫
p(x, y , z)δ(g(x, y , z)− c)dxdydz

and this answer is not quite obvious yet. So we’re going to have to build this up step by step.

Let’s start in a simpler case. What’s ∫
dxf (x)δ(cx)?

We can do a change of variables, but let’s not rush to that. Note that δε(−x) = δε(x), and similarly δ(x) = δ(−x):
this is an even function. So replacing y = cx ,

=

∫
dy
1

|c | f
(y
c

)
δ(y) =

1

|c | f (0).

So we get back f (0), just with some extra constant factor. Be careful with the changing integration limits, both in

this example and in general: that’s why we have the absolute value in the denominator. In general, the delta function

“counts” things, so we have to make sure we don’t make bad mistakes with the sign!

Similar to the above, we can deduce that linear functions give nice results of the form∫
dxδ(cx − a)f (x) =

1

|c | f
(a
c

)
.

But this is all we need! Remember that we only care about δ when the value is very close to 0. So often, we can

just make a linear approximation! f (x) looks linear in the vicinity of x0, and there’s a δ peak at x0. So if we make the

Taylor expansion f (x) ≈ f (x0) + f ′(x0)(x − x0), we have found everything relevant to the function that we need.

Note that by definition, δ(g(x)) = 0 whenever g(x) 6= 0. Meanwhile, if g(xi) = 0,

g(x) ≈ g(xi) + g′(xi)(x − xi) = g′(xi)(x − xi).

So that means we can treat

δ(g(x)) =
∑
i

δ(g′(xi)(x − xi))

where we are summing over all zeros of the function!
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Fact 70

Remember that δ is an everywhere-positive function, so δ(g(x)) cannot be negative either.

Well, we just figured out how to deal with δ(g(x)) where g is linear! So∫
dxf (x)δ(g(x)) =

∑
i

1

|g′(xi)|
f (xi).

So at each point xi where g is 0, we just take f (xi) and modify it by a constant. Now this function is starting to look

a lot less nontrivial, and we’ll use it to do a lot of calculations over the next few weeks.

Example 71

Let’s say you want to do a “semi-classical density of states calculation” to find the number of ways to have a

particle at a certain energy level. Normally, we’d do a discrete summation, but what if we’re lazy?

Then in the classical case, if u is the velocity, we have an expression of the form

f (E) =

∫
p(u)δ

(
E −

mu2

2

)
du.

To evaluate this, note that the δ function is zero at u = ±
√
2E
m , and the derivative

g′(u) = −mu =⇒ |g′(u±)| =
√
2mE,

so the expression is just equal to

f (E) =
1√
2mE

(p(u+) + p(u−)).

This is currently a one-dimensional problem, so there’s only two values of u. In highest dimensions, we might be

looking at something like ∫
d3~up(~u)δ

(
E −m

u2x + u
2
y + u

2
z

2

)
.

Now the zeroes lie on a sphere, and now we have to integrate over a whole surface!

By the way, there are different ways to formulate the delta function. There also exists a Fourier representation

δ(x) =

∫ ∞
−∞

dke ikx .

It’s not obvious why this behaves like the delta function, but remember e ikx is a complex number of unit magnitude.

Really, we care about ∫
δ(x)f (x)dx,

and the point is that for any choice of x other than 0, we just get a spinning unit arrow that gives net zero contribution.

But if x = 0, e ikx is just 1, so this starts to blow up just like the δε function.

There also exist a Lorentzian representation

δε =
1

π

ε

x2 + ε2

and an exponential representation

δε =
1

2ε
e |x |/ε.
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The point is that there are many different families of functions to capture the intended effect (integrates to 1), but

as all of them get sharper, they end up having very similar properties for the important purposes of the delta function.

9 February 20, 2019 (Recitation)
It is a good idea to talk about the concept of an exact differential again, and also to look over delta functions.

9.1 Questions
We often specify a system (like a box) with a temperature, volume, and pressure. We do work on the system when

the volume is reduced, so dW = −PdV .

When we have a dielectric with separated charges, we can orient the dipoles and get a dipole energy

∝ ~E · ~p,

where ~p is the dipole moment. We now have to be careful if we want to call this potential energy: are we talking

about the energy of the whole system, the external field, or something else?

Well, the differential energy can be written as dW = EdP : how can we interpret this? Much like with −PdV ,

when the polarization of the material changes, the electrostatic potential energy changes as well.

So now, what’s the equation of state for an electrostatic system? Can we find an equation like PV = nRT to

have E(T, P )? Importantly, note that some analogies to break down: the electric field E is sort of necessary (from

the outside) to get a polarization P .

So if we consider an exact differential, and we’re given

∂E

∂P

∣∣∣∣
T

=
T

AT + B
,
∂E

∂T

∣∣∣∣
P

=
BP

(AT + B)2
,

we know everything we could want to know about the system. First, we should show that these do define an equation

of state: is

dE =
T

AT + B
dP +

BP

(AT + B)2
dT

an exact differential? Well, we just check whether

∂

∂T

T

AT + B
=

∂

∂P

BP

(AT + B)2
.

Once we do this, we can integrate ∂E∂P with respect to P to get E up to a function of T , and then differentiate with

respect to T to find that unknown function T .

Next, let’s talk a bit more about mean and variance. We can either have a set of possible (enumerable, discrete)

events {pi}, or we could have a probability density p(x). The idea with the density function is that

p(x)dx = Pr[in the range [x, x + dx ]].

Remember that probabilities must follow a normalization, which means that∑
pn = 1 or

∫
p(x)dx = 1.
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What does it mean to have an average value? In the discrete case, we find the average as

〈n〉 =
∑
i

ipi ,

since an outcome of i with probability pi should be counted pi of the time. Similarly, the continuous case just uses an

integral:

〈x〉 =
∫
xp(x)dx.

Note that we can replace n and x with any arbitrary functions of n and x . Powers of n and x are called moments, so

the mean value is the “first moment.” (This is a lot like taking the second “moment of inertia”
∫
r2ρ(r)dr .) Then the

variance is an average value of

〈(n − 〈n〉)2〉 = 〈n2 − 2n〈n〉+ 〈n〉2〉 = 〈n2〉 − 〈n〉2.

Let’s look at another situation where we have a probability density

dP

dw
= p(w).

9.2 Delta functions
Here’s a question: what is the derivative

δ′(x)?

Well, let’s start with some related ideas:

δ(10x) =
1

10
δ(x),

and this might make us cringe a bit since δ is mostly infinite, but it works for all purposes that we are using it. The

important idea is to not always think about infinity: we could consider the delta function to be a rectangle of width ε

and height 1ε . This makes it seem more like a real function.

So now, if we take any function f (x), f (10x) is just a function that keeps the maximum constant but shrinks the

width by a factor of 10. Well, if we integrate over f (10x), we’ll get a factor of 1
10 less, and that’s how we should

understand δ(10x).

Is δ′(x) defined, then? Let’s say we have a triangle function with peak 1ε and width from −ε to ε. The derivative

of this function is not defined at x = 0! So δ′(x) doesn’t necessarily need to be defined. The idea is that we can

take ε → 0 using any representation of a real function, and a derivative would have to be well-defined across all

representations: that just doesn’t happen here.

Curiously, though, if we used the triangle function, we can actually represent the derivative as a delta function

itself, because the derivative is a large number from −ε to 0 and from 0 to ε:

δ′(x) =
1

ε
δ
(
−
ε

2

)
−
1

ε
δ
(ε
2

)
,

where the 1ε factor is just for normalization, since the area of the rectangle for the derivative is ε · 1ε2 . So it seems that

δ′(x) = −
1

ε

(
δ
(ε
2

)
− δ

(
−
ε

2

))
.

It’s okay, though: delta functions always appear under an integral. (So continuity is important, but not necessarily
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differentiability.) This means that if we’re integrating this with a function f (x),∫
f (x)δ′(x)dx = −

1

ε

∫ (
δ
(ε
2

)
− δ

(
−
ε

2

))
f (x)dx = −

1

ε
f
(ε
2

)
− f

(
−
ε

2

)
= −f ′(0).

But the idea is that we want to be faster at manipulating such things. What if we integrated by parts? Then∫
f (x)δ′(x) = −

∫
f ′(x)δ(x)dx + f (x)δ(x)|∞−∞.

The delta function is mathematically zero, so the boundary term disappears (unless we have a bad Lorentzian or other

description of the delta function). But now this just gives

−
∫
f ′(x)δ(x)dx = −f ′(0).

This is maybe how we should use delta functions, but it’s still important to have confidence that what we’re doing is

correct!

Finally, let’s ask one more question. We can store energy by pressing air into an underground cave, and we can do

that in two ways: adiabatic and isothermal. If we compare the two situations, where does the energy go?

In the isothermal case, the internal energy is the same. So isothermal compression is just transferring the energy

as heat to the surrounding ground! Is there a way to retrieve it? (Hint: the process may be reversible if we do it slow

enough!)

10 February 21, 2019
Today we’re going to continue learning about probability. As a reminder, we’re learning probability because there’s a

bottom-up and top-down approach to statistical physics: thermodynamics gives us state functions that tell us physical

properties of the world around us, and we can connect those with microscopic atoms and molecules that actually form

the system. Probability allows us to not just follow every particle: we can just think about general distributions instead!

We’ll discuss some important distributions today and start our connections between probability distributions and

physical quantities. We’ll eventually get to the Central Limit Theorem!

10.1 A discrete random variable
Consider a weighted coin such that

P (H) =
5

8
, P (T ) =

3

8
.

This is a “biased distribution.” Let’s say that every time we get a head, we gain $1, and every time we get a tail, we

lose $1. Letting x be our net money, our discrete probability distribution P (x) satisfies

P (1) =
5

8
, P (−1) =

3

8
.

Here are some important statistics:

• P (1) + P (−1) = 1.

• 〈x〉 = P (1) · 1 + P (−1) · (−1) = 5
8 −

3
8 =

1
4 .

• 〈x2〉 = P (1)12 + P (−1)12 = 1, so the variance of this distribution is

var(x) = 〈x2〉 − 〈x〉2 =
15

16
.
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This is a large variance, since most events are far away from the mean!

• To find the probability density function p(x), we can use delta functions:

p(x) =
5

8
δ(x − 1) +

3

8
δ(x + 1)

Note that if we integrate p(x)dx over any interval containing 1 but not −1, we get a probability of 58 , which is

what we want.

In general, if we have a probability density function that has both discrete and continuous parts, we can write it as

p(x) = f (x) +

M∑
j=1

piδ(x − xj).

See the Weibull distribution, as well as the Xenon lamp spectrum!

10.2 Important probability distributions
We’re going to discuss the Gaussian, Poisson, and Binomial distributions. The idea is that the limit of a Binomial

distribution will converge to a Poisson distribution, which will then converge to a Gaussian. We’ll see the second part

today as part of the Central Limit Theorem!

10.3 Gaussian distribution

Definition 72

The probability density function for a Gaussian with standard deviation σ is

p(x) =
1√
2πσ

exp

[
−
(x − a)2

2σ2

]
.

This distribution has mean a and variance σ2; let’s check for normalization to make sure this is indeed a valid

distribution. So ∫ ∞
−∞

p(x)dx =
1√
2πσ

∫ ∞
−∞
exp

[
−
(x − a)2

2σ2

]
,

and now defining

y ≡
x − a√
2σ
=⇒ dy =

1√
2σ
dx.

Substituting in, we end up with
1√
2πσ

·
√
2σ

∫ ∞
−∞

e−y
2

dy.

But the integral is known to be
√
π (by the polar substitution trick), and therefore our integral of p(x) is 1, and indeed

we have a normalized distribution.

So the cumulative distribution function is

F (x) =

∫ x
−∞

dξ
1√
2πσ

exp

[
−
(ξ − a)2

2σ2

]
.
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Denoting ξ−a√
2σ
= z as before, we can substitute again to find

F (x) =
1√
π

∫ (x−a)/(√2σ)
−∞

dze−z
2

.

Since our probability function is normalized, we can also write this as

F (x) = 1−
1√
π

∫ ∞
(x−a)/(

√
2σ)

dze−z
2

Let erfc, the complementary error function, be defined as

erfc(η) =
2√
π

∫ ∞
η

dze−z
2

.

So that means our cumulative distribution can be written as

F (x) = 1−
1

2
erfc

(
x − a√
2σ

)
.

It’s important to note that the shape of p(x) is the familiar “bell curve” shape. When a = 0 (so the curve is centered

at x = 0),

p(0) =
1√
2πσ

and we can also compute that P (σ) ≈ 0.61P (0), P (2σ) ≈ 0.135P (0).
What exactly is the significance of σ? Well, for any a and σ in the Gaussian,∫ a+σ

a−σ
p(x)dx ≈ 0.68,

meaning that about 68% of the time, a random sample from the Gaussian distribution will be within σ of the mean.

Similarly, ∫ a+2σ
a−2σ

p(x)dx ≈ 0.95,

and that means that 95 percent of all measurements are within 2σ of the mean.

Example 73

Consider a measurement of the magnetic moment of a muon

m =
ge~
2Mµc

.

At first, we expect that g ≈ 2 theoretically. However, after many measurements, we get a Gaussian distribution

for (g − 2)µ:
(g − 2)µ = (116591802± 49)× 10−11,

where the first term is the mean and the part after the ± is σ. Theoretical calculations actually end up giving

(g − 2)µ = (116592089± 63)× 10−11,

and these distributions are actually significantly different: the discrepancy is still a point of ongoing research! The idea

is that this measurement of σ allows us to compare two different distributions.

36



10.4 Poisson distribution
For random variables X and Y , if they have probability distributions p(x) and p(y), then

X, Y statistically independent =⇒ p(x, y) = p(x)p(y).

Let’s start with an example. Given a random student, the probability that a student is born in May is 31
365.25 ≈ 0.0849.

Meanwhile, the probability of being born between 9 and 10 in the morning is 1
24 ≈ 0.0417. So the probability of being

born between 9 and 10 in the morning in May is

0.0849× 0.0417 = 3.54× 10−3.

We need this to introduce the idea of a Poisson distribution! This is important for rare events with low probability.

Here are two important ideas:

• The probability of an event happening exactly once in the interval [t, t + dt] is proportional to dt as dt → 0:
dp = λdt for some λ.

• The probability of events in different events are independent of each other.

If we have these two conditions satisfied, the idea is that we can subdivide a time interval of length T into small

intervals of length dt. In each interval, the probability that we observe an event is equal and independent to all the

other ones!

Definition 74

Then the probability that we observe a total of exactly n events in an interval time T is given by the Poisson
distribution Pn(T ).

Let’s try to compute pn. We break T into N bins of length dt, so dt = T
N , in such a way that the probability of

getting two events in the same bin (small time interval) is negligible. Then

dP = λdt =
λT

N
� 1.

To compute the probability of finding n events, first we find the probability of computing no events, then 1 event, and

so on. Note that the probability of observing no event in an interval dt is 1 − λT
N , so the probability of observing no

events overall is

lim
N→∞

(
1−

λT

N

)N
since we must have no event observed in all N intervals. By definition of an exponential, this is just

P0(T ) = e
−λT .

Next, find the probability of observing exactly 1 event in time interval T . There are N different places in which this

one event can happen, and the probability that it happens is λTN . Then the other N − 1 intervals must have no event

happen, so this is

P1(T ) = lim
N→∞

N ·
λT

N

(
1−

λT

N

)N−1
= λT lim

N→∞

(
1−

λT

N

)N−1
.

This gives, again by the definition of an exponential,

P1(T ) = λTe
−λT .
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Let’s do another example: what about two events? We pick which two intervals are chosen, and then

Pk(T ) = lim
N→∞

(
N

2

)
·
(
λT

N

)2(
1−

λT

N

)N−2
=
(λT )2

2
e−λT .

In general, the probability of k events happening is going to be

Pk(T ) = lim
N→∞

(
N

k

)
·
(
λT

N

)k (
1−

λT

N

)N−k
=⇒ Pk(t) =

(λT )k

k!
e−λT .

It’s important to note that this is a discrete distribution!

Let’s check some statistics for our probability distribution function. First of all, is it normalized? Well,

∞∑
n=0

pn(T ) = e
−λT

∞∑
n=0

(λT )n

n!
= e−λT eλT = 1,

so the Poisson distribution is indeed normalized.

Next, let’s find the mean:

〈n〉 =
∞∑
n=0

npn(T ) = e
−λT

∞∑
n=0

n(λT )n

n!

Denoting Z ≡ λT , this expression can be written as

〈n〉 = e−Z
∞∑
n=0

nZn

n!
= Ze−Z

∞∑
n=1

zn−1

(n − 1)! = e
−ZZ · eZ = Z.

So the mean of the Poisson distribution is 〈n〉 = λT , which shouldn’t be that surprising: it’s saying that if events have

a probability 1
N of happening, they happen on average once per N.

Finally, let’s find the variance: we’ll leave this as an exercise, but the idea is to start by computing

〈n(n − 1)〉 = 〈n2 − n〉.

It turns out the variance is also λT , and this is an interesting relationship between the mean and variance! We’ll

introduce a dimensionless quantity
σ(n)

〈n〉
which meausures the width of the distribution. Well, note that as T → ∞ for the Poisson distribution, this goes

to 0, so the distribution becomes more and more spiked around λT . It turns out that this approaches a Gaussian

distribution! How can we check that?

Taking T →∞,

λT � 1 =⇒ n � 1,

and we want to find the probability Pn(λT ). Denoting λT ≡ Z, we expand around the maximum, and we’re going to

look at the log of the function. By Stirling’s approximation, ln n! ∼ n ln n − n + ln(2πn) as n →∞, so

Pn(Z) =
Zn

n!
e−Z =⇒ lnPn(Z) = n lnZ − Z − ln n! ≈ n lnZ − Z − n ln n + n −

1

2
ln 2πn.

The maximum of this function can be found by taking the derivative,

∂

∂n
lnPn = lnZ − ln n −

1

2n
,
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and ignoring the 1
2n term, we can say that n0 = Z at the maximum. Doing a Taylor expansion about n0,

lnPn(Z) = ln pn0(z) +
(n − n0)2

2

∂2

∂n2
Pn(z)

∣∣∣∣
n=n0

,

and taking the exponential of both sides, we find that

Pn(z) =
1√
2πz

exp

[
−
(n − z)2

2z

]
which is a Gaussian with standard deviation

√
z and mean z , as desired! This is our first instance of the Central Limit

Theorem, a powerful tool to deal with large numbers.

11 February 25, 2019 (Recitation)
Professor Ketterle was writing a paper on the new definition of the kilogram. Let’s spend a few minutes talking about

that!

11.1 The kilogram
There’s a law that is taking effect in May. Currently, the kilogram is a physical object in France: it’s what weighs as

much as the “original Paris kilogram.” There are copies around the world.

But artifacts like this have discrepancies! There might be diffusion of atoms or fingerprints, so at the microgram

level, there are still deviations. This wasn’t a problem, but now people have determined Planck’s constant with an

error of
∆h

h
≈ 10−8,

and the error is limited from the mass deviation! So this is pretty inconvenient.

Fact 75

So instead, why not define h to be 6.62 · · · × 10−34 Joule-seconds?

Now we’ve turned it around: mass is now determined in terms of h, instead of the other way around!

Question 76. Why exactly does h determine mass?

Since E = hν, and we can consider the frequency of transition in Cesium = 9.1 · · · × 109 Hertz (which actually

now defines units of time and frequency). With this, now we can measure energy (as either kinetic or rest energy).

The idea is that all constants are now defined in terms of c , the speed of light, and h, Planck’s constant!

So more precisely, we start with the frequency of Cesium, and we define a second to be 9.1 · · · GHz. But this

means that if we take our value h, the mass of a photon will be

m =
hνCS
c2

.

How do we measure the mass of a photon? Well, a Cesium atom in the upper state is slightly heavier than a Cesium

atom in the lower state! That gives us the change in mass ∆m, which is on the order of 10−40 kilograms.

Fact 77

When a system loses energy, it often loses mass!
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It’s a tiny effect, but it’s important for special relativity. So we can now set up a balance, where 1040 Cesium

atoms are set up with spins in the “upper state.” On the other side, we have the same number of Cesium atoms, but

the spins are in the ground state. Then any substance that balances the scale is exactly one kilogram!

11.2 Poisson distribution
Think of the Poisson distribution as modeling a bunch of atoms radiating with some decay rate. If N is the number of

particles, λ is the decay rate, and we observe for some rate dt, we have an expectation

〈n〉 = Nλdt

for the number of observed events in time dt. We can do combinatorics to find that

pn =
〈n〉n

n!
e−〈n〉

This is a prettier way to write the Poisson distribution, and it shows that the whole distribution is based entirely on

the value of 〈n〉.
Based on this, let’s consider the concept of shot noise, which comes from us trying to count something that is

random.

When we have a random event like raindrops falling on a roof, you hear a random noise with fluctuations. This

is because rain doesn’t come as a stream: it’s big droplets. So the shot noise comes from the fact that we have a

stream of mass (or radioactively decaying particles) that are quantized. So sometimes we have a few more or a few

less than expected.

So if we are trying to observe 100 events, the expectation value is 100 ± 10. This is because the variance

var(n) = 〈n〉, and therefore σ, the standard deviation, is
√
〈n〉. So it’s important to remember that ±

√
n idea!

Basically, the Poisson distribution looks almost normal, and the inflection point occurs around
√
〈n〉 from the mean.

This leads to the next question: as you observe larger expectations, is the shot noise larger or smaller? Well, if

we’re doing repeated measurements to determine some quantity, our precision goes as

σ(n)

〈n〉 ∝
1√
n
.

So if we measure 10 times longer, we are
√
10 times more accurate. But this is often the best we can do! Much along

the same line, we want to do experiments with large counting rate to get higher expectations.

So if we measure the noise in an electric current, the number of electrons that pass through gives shot noise as

well. We’ll find that

iδt = nee,

where ne is the number of electrons and e is the charge of electron. Well, ne fluctuates by a factor of
√
ne , and we

can then experimentally measure the charge of an electron! But people did experiments with superconductors, which

can also carry current. This has no dissipation, and then the noise for ne was different. This is because q is now 2e

(superconductivity happens when electrons combine into pairs). So when the current carriers are Cooper pairs instead

of electrons, we only need half the number to get the same current, and this means our fluctuation is larger! This was

the first proof that superconductors did not have electron charge carriers.

But here’s a real life MIT example for shot noise and how to measure it. Let’s say we have 106 people on Killian

Court, and let’s say there are a few exits that people randomly leave through. Through one exit, there’s 104 people

who leave per unit time, and by shot noise, there’s a fluctuation of ±100 people.
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But now let’s say that people leave in groups of 100 instead: now there’s 102 groups that leave per unit time, so

the shot noise is just 10 groups. This means the actual absolute fluctuation is 103, which is larger than the original!

So if the carrier of charge, or the unit size of people, is increased by a factor of N, the shot noise is increased by a

factor of
√
N.

11.3 Stirling’s formula
How do you memorize the formula? If you do

n! = n · (n − 1) · · · · 2 · 1,

we know nn is a bad estimate, and
(
n
2

)n
would be a bit closer. And also because we have logarithms, e is a pretty

good number to use. So instead

n! ≈
(n
e

)n
.

This gives

log n! ≈ n(log n − log e) ≈ n ln n − n.

There’s another term of ln
√
2πn, but when n is large (as it is in this class), that’s several orders of magnitude smaller

than n! So we can neglect it.

12 February 26, 2019
Remember that we have been introducing probability distributions. We found that the Poisson distribution converges

to a Gaussian as the frequency of events becomes larger, and this was an important example of the Central Limit

Theorem.

Today, we’ll talk about the binomial distribution and connect it to the idea of diffusion. Finally, we’ll discuss

conditional probability and figure out ideas like “energy given some other knowledge about the system.”

12.1 Binomial distribution
Consider a random variable with two possible outcomes A and B, occurring with probability pA and pB = 1− pA. Our

goal is to find out how many times A occurs if we repeat the random variable N times. Then this can be calculated as

PN(NA) =

(
N

NA

)
pNAA (1− pA)

N−NA

The first factor of (
N

NA

)
=

N!

NA!(N − NA)!
comes from the number of ways in which we can choose which of the events are A, and the rest is just the probabilities

of A and B multiplied the relevant number of times.

Is this normalized? By the Binomial theorem,

N∑
NA=0

PN(NA) =

N∑
NA=0

(
N

NA

)
pNAA (1− pA)

N−NA = (pA + (1− pA))N = 1,
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as desired. We can also find some other statistics by doing mathematical manipulation:

〈NA〉 = N · pA, var(NA) = NpApB.

Then, the ratio of the standard deviation to the mean of NA is

σ(NA)

〈NA〉
=

√
NpA(1− pA)
NpA

=
1√
N

√
1− pA
pA

,

so as N →∞, the distribution becomes narrower and narrower.

One question we should be asking ourselves: how is it possible for physics to have simple equations that explain

the complexity of the world? This shows the beauty of statistical mechanics: we can explain the world by just using

probability.

12.2 An application

Fact 78

We’re going to use the binomial distribution to derive a diffusion equation. A random process is sometimes a

random walk, and we can use the diffusion equation to understand that random walk!

Definition 79

A random walk is a path of successive steps in random directions in some space.

These describe many physical phenomena, like collisions of particles, shapes of polymers, and so on. For example,

DNA is often curled up in a coil, and its shape is usually described by a random variable with mean zero!

There are two kinds of emergent behavior for random walks.

• Given any individual random walk, after a large number of steps, it becomes a fractal (scale invariant). We won’t

be talking much about this in class though.

• The endpoint of a random walk has a probability distribution that obeys a simple continuum law, which leads to

the diffusion equation!

The idea is that these phenomena are global, so they are independent of the microscopic details of the system.

Example 80

Consider a random walk in one dimension: this is also known as Brownian motion. Let’s say that it moves left

or right along a line with step size `, and the probability is P (+`) = P (−`) = 1
2 .

First of all, we want to find the average displacement after N steps. Well,

〈∆xi 〉 =
1

2
(`) +

1

2
(−`) = 0,

so the average is always 0 after N steps. On the other hand, we can consider the mean squared displacement: Then

〈∆x2i 〉 =
1

2
(+`)2 +

1

2
(−`)2 = `2,
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and the mean square displacement after N steps is

〈∆x2〉 =
N∑
i=1

N∑
j=1

〈∆xi∆xj〉

and now all cross terms ∆xi∆xj with i 6= j contribute 0 by independence. This means that

〈∆x2〉 =
N∑
i=1

〈∆x2i 〉 = N`2.

Fact 81

We could also use the fact that variances of independent variables add! So since each step has variance `2, the

total sum has variance N`2.

So if successive jumps happen every δt, the number of jumps in a time t is

N =
t

δt
=⇒ 〈∆x2〉 =

`2

δt
t.

This is important: the variance scales linearly with time! In comparison, if our random walk has some average velocity

∆x(t) = vt =⇒ 〈∆x2〉 = 〈v2〉t2,

which is called ballistic motion. In more advanced statistics, this is the setup for the fluctuation-dissipation theorem!

But what’s the main physics of what we’re working on: where is the randomness of our process coming from?

• The existence of a randomly fluctuating force will push a particle in random directions.

• There is some inertia of the system, as well as a viscous drag.

Our goal is to compute the probability distribution of finding a particle x away from the original position after N

steps. If we denote NL to be the number of steps to the left and NR the number of steps to the right (so N = NL+NR),

then the net displacement of the walk is x = `(NR − NL).

Question 82. How many distinct walks are possible if we give ourselves N steps, NL of which are to the left and NR
of which are to the right?

This is just (
N

NL

)
=

N!

NL!NR!
.

In total, since each move can be to the left or to the right, there are 2N distinct ways to form a walk of N steps, and

the probability of any sequence is 1
2N

.

Fact 83

It’s important to note that sequences each have equal probability, but x , the net distance, is not uniformly

distributed.

So the probability of having a walk of net length x is

p(x, N) =
N!

NR!NL!

(
1

2

)N
,

which is the number of sequences times the probability of any given sequence.

43



12.3 In the limiting case
We claim that this becomes a Gaussian as N becomes large. Indeed, note that we’ve define x = `(NR − NL), so

NL =
N − x/`
2

, NR =
N + x/`

2
.

Substituting these in, we can then use Stirling’s approximation ln n! ≈ n ln n − n + 12 ln(2πn). This yields

p(x, N) ∝
√
2

πN
exp

(
−

x2

2N`2

)
This is a Gaussian symmetric about its mean 0, which tells us that we’re mostly likely to have a net displacement of

x = 0.

Fact 84

This explains why in polymers, most of the time there are blobs rather than straighter lines! It’s much more

probable to be close to the mean.

If we compute the variance,

〈x2〉 = N`2

as expected, and if we say that our events are equally spaced by some time δt, the variance is again

〈x2〉 =
`2

δt
t ∝ t.

Definition 85

Define the diffusion constant D such that

〈x2〉 = 2Dt.

This has various applications!

12.4 Multiple random variables
Let’s say we have two variables x and y .

Definition 86

The joint probability distribution function

p(x0, y0) =
d2F

dxdy

∣∣∣∣
x=x0,y=y0

=⇒ d2F = p(x, y)dxdy

is the probability of x occurring between x0 and x0 + dx and y between y0 and y0 + dy .

Then

F (x, y) =

∫ x
−∞

dξ

∫ y
−∞

dηp(ξ, η).

We can also define some other quantities like we did in the one-dimensional case:
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Definition 87

The expectation value of a function f (x, y) is∫ ∞
−∞

dx

∫ ∞
−∞

dyp(x, y)f (x, y).

We can also integrate one variable out of the equation to find the probability distribution for the other variable:

for example,

p(x) =

∫ ∞
−∞

dyp(x, y).

With this in mind, let’s try to relate our variables. Can we answer questions like

Question 88. What is the probability that X lies between x and x + dx given that Y is certain, denoted P (X|Y )?

Note that p(x |y) should be proportional to p(x, y): we’ll talk more about this next time!

13 February 27, 2019 (Recitation)
Some of Professor Ketterle’s colleagues said that photons don’t have mass, which is true in the basic sense. But

there’s a relativistic mass-energy equivalence, so writing the equation for a photon

E = m0c
2

does actually make sense and has a nonzero m0 for photons. But there’s a question beyond semantics of “real mass”

versus “relativistic mass” here:

Question 89. If we take a cavity and put many photons inside bouncing back and forth, does the mass increase? Does

it have more inertia?

The answer is yes, since we have the photons “basically at a standstill!” But the whole point is to be careful what

we mean by “mass.”

13.1 Small aside for surface tension
Given a water droplet on a surface, there’s three different surface tensions, corresponding to the three pairs out of

{surface, air, water}. The concept of surface tension is that surfaces want to shrink, and this creates net forces at

interfaces.

Water droplets stop existing when the forces cannot be balanced anymore, so an equilibrium state cannot exist.

This point is called critical wetting, and anything beyond that point results in water coating the whole surface!

13.2 Delta functions and probability distributions

Example 90

Let’s say we have a harmonic oscillator in a dark room, and there is a lightbulb on the oscillator. If we take a

long-exposure photo, what does the light distribution look like?
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If we let x = sinωt, all phases φ are equally probable, since φ is proportional to time. So we want to go from a

probability distribution of φ to one of x : how could we do that?

Well, we know that the velocity is slower at the ends, so we expect more values of x on the ends than the middle.

(This is explained more rigorously in the problem set.) The punchline is that the probability distribution is going to be

proportional to 1
v(x) , and now we can proceed with mathematics.

So in this case, we have time as our random variable, and we need

1 =

∫ T
0

p(t)dt

for a period of length T . So our starting distribution p(t) = 1
T , and now we want to turn this into a distribution p(x).

Well,

p(x) =

∫ T
0

p(t)δ(x − x(t))dt.

since we ask for the moments in time where x(t) = x . In this case, p(t) is constant, so this is

1

T

∑
i

1

|f ′(ti)|
=
1

T

1

|v(t)|

where f (t) = x − x(t) and ti are the roots. (Notice that this gives us our probability normalization for free!) So now
dx
dt = ω cosωt = ω

√
1− sin2 ωt, which we can write in terms of x as∣∣∣∣dxdt

∣∣∣∣ = ω√1− x2 =⇒ p(x) =
1

ωT

1√
1− x2

.

But wait! We haven’t been careful enough, because there’s two different points where x(t) = x . The slopes are

negative of each other, so even though
∣∣ dx
dt

∣∣ are the same, we need to count the two roots separately. Thus the actual

number we want is
2

ωT

1√
1− x2

=
1

π
√
1− x2

.

The idea in general is that if we have a probability distribution p(x), and x = f (y) =⇒ y = g(x) is some function,

we can find the probability distribution p(y) by

p(y) =

∫
p(x)δ(y − g(x))dx.

Basically, we want to take all values where g(x) = y . But here’s another way to see it: the probability differential

p(x)dx should correspond to another probability differential p(y)dy , so

p(y) = p(x)
dx

dy
.

We’d just have to be careful about multiple roots, which the delta function does a good job of.

13.3 Poisson radioactive decay
When sampling decay, scientists often take a small time interval ∆t such that λ∆t = 〈n〉 is very small. This is the

limit 〈n〉 � 1: the distribution is also correct in this limit.

In general, the probability to get one count is 〈n〉 = p: our question is to find the probability of two counts in that

small interval. Is it p2?
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Example 91

Consider a die with N faces. We throw the dice twice (n = 2): what is the probability we get two 1s? It’s 1
N2 .

On the other hand, what’s the probability we get exactly one 1? It’ll be 2N−2N2 ; as N →∞, this goes to 2
N .

So notice that the probability of two 1s is actually not the square of the probability of one 1! In fact, it’s p
2

4 .

But back to the radioactive decay case. Does the same argument work here? Well, the Poisson distribution is

pn =
〈n〉n

n!
e−〈n〉.

Taking this to the limit where 〈n〉 � 1, we can neglect the exponential term, and

pn =
pn

n!
.

This isn’t the same as the p
2

4 , because throwing a die is not Poisson - it’s binomial! To modify the distribution into one

that’s more Poisson, we have to make N, the number of sides, go to infinity, but we also need to take n, the number

of throws, to infinity. We’ll do this more formally next time, but if we take n,N → ∞ while keeping the expected

number of events the same, then n
N should be constant. This will indeed get us the desired Poisson distribution!

Question 92. Let’s say we have a count of N for radioactive decay: what is σ?

This is shot noise: it’s just
√
N.

Question 93. Let’s say we do a coin toss and flip it some number of times, getting N heads. What’s σ for the number

of heads that appear?

Binomial variance works differently: since σ2 = np(1− p), σ =
√
N/2!

Question 94. What if the probability for a head is 0.999?

In this case, σ2 is much less than N, and we’ll have basically no fluctuation relative to
√
N. So binomial distributions

work in the opposite direction! On the other hand, taking probability of a head to be 0.001 will give basically
√
N. So

that’s the idea of taking the binomial distribution

an(1− a)N−n
(
N

n

)
with mean Na and variance Na(1− a). If 1− a is very small, this yields similar statistics to the Poisson distribution!

14 February 28, 2019

There is an exam on March 12th, so here is some information on it! It will be at 11-12:30 (during regular class hours),

and there will be four questions on the exam. This year, Professor Fakhri will post the past five years’ worth of exams,

and three of the four problems will be from the past five years. They will be posted in the next few days, and we’ll

have about 10 days to work through those. (One question will be new.)

The material will cover things up to next Thursday. The next two lectures will talk about Shannon entropy, and

those are the last lectures that will be on the exam.

There will also be an optional review session held by the TAs next Thursday.

Next week, the American Physical Society meeting will be taking place, so if we want extra office hours, we should

send over an email!
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14.1 Overview
We started talking about conditional probability last time, which will be helpful in talking about canonical ensemble

properties. We thought about the probability distribution of a sum of random variables, particularly thinking about

doing repeated measurements of some quantity. The idea is that we’ll get closer and closer on average to the actual

quantity.

The idea was that we started with a two-variable probability distribution, and we wanted to find the probability

that X lies between x and x + dx given a fixed value of y . This is denoted p(X|Y ).

14.2 Conditional probability
Claim 95. p(x, y) is proportional to p(x |y).

We know that ∫
p(x |y)dx = 1,

since with y held fixed, we expect to find x somewhere (we’re just limiting ourselves to a one-dimensional probability

distribution). In addition, ∫
p(x, y)dx = p(y),

since this is “all possible values of x ” for a given y . Thus, we can see that (essentially removing the integrals),

p(x |y) =
p(x, y)

p(y)
.

This is the Bayesian conditional probability formula!

Fact 96

We plot p(x |y) using “contour plots.”

Example 97

Let’s say that the probability of an event happening is uniform inside a circle of radius 1 and 0 everywhere else.

We can write this mathematically using the Heaviside step function:

Definition 98

Define the Heaviside step function

θ(x) =

∫ 0
−∞

δ(s)ds.

This can be written as

θ(x) =

1 x > 0

0 x < 0

and it is unclear what θ(0) is.

Then the example above has a probability distribution of

p(x, y) =
1

π
θ(1− x2 − y2),
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since we only count the points with 1 − x2 − y2 ≥ 0 and the normalization factor comes from the area of the circle

(π). Then if we want to find the probabilities p(x), p(y), p(y |x), we can do some integration:

• To find p(x), integrate out the ys:

p(x) =

∫
dy
1

π
θ(1− x2 − y2) =

1

π

∫ √1−x2
√
1−x2

dy =
2

π

√
1− x2

since we take the limits to be the zeros of the argument of θ. This holds for all |x | < 1 (the probability is 0

otherwise).

• Similarly, we find p(y) = 2
π

√
1− y2 for |y | < 1.

• Finally, to find the conditional probability,

p(y |x) =
p(x, y)

p(x)
=
1
π θ(1− x

2 − y2)
2
π

√
1− x2

=
θ(1− x2 − y2)
2
√
1− x2

,

which is 1
2
√
1−x2 for |y | <

√
1− x2 and 0 everywhere else. The idea is that we were initially choosing points

randomly in the circle, so the distribution for a given x should also be uniform in y .

Definition 99

Given two random variables X and Y , define them to be statistically independent if and only if

p(x, y) = p(x)p(y)

This means knowing y tells us nothing about x and vice versa: in other words, it’s a corollary that

p(x |y) = p(x), p(y |x) = p(y).

Data analysis uses Bayes’ Theorem often, so we should read up on it if we’re curious! Also, see Greytak’s probability

notes page 27 to 34 on jointly Gaussian random variables.

14.3 Functions of random variables

Suppose x is a random variable with probability distribution dFxdx = p(x) [recall F is the cumulative distribution function].

Let y = f (x) be a function of a random variable x : what is the probability distribution dFy
dx = p(y)?

Example 100

Consider a one-dimensional velocity distribution

pV (v) =
dFV
dv
= ce−mv

2/(2kBT ).

Given that E = mv2

2 , is there any way we can find the probability distribution p(E)?

The naive approach is to use the chain rule: just say

dFE
dE
=
dFE
dv

dv

dE
.

But if we compute this,
dE

dv
= mv =

√
2mE,
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and we can plug this in to find

p(E) = ce−E/kt
1√
2mE

.

Unfortunately, this is not normalized: instead, let’s use delta functions to try to get to the right answer! We can write

dFx
dx
= p(x) =

∫ ∞
−∞

dξp(ξ)δ(x − ξ)

where the delta function only plucks out the term where x = ξ. So

dFy
dy
=

∫ ∞
−∞

dξp(ξ)δ(y − f (ξ))

(basically, we only select the values of ξ where f (ξ) = y). Using the important property of delta functions, this is

dFy
dy
=
∑
ξi

p(ξi)∣∣∣ dfdξ ∣∣∣
ξi

.

So now if we have
dFv
dv
= p(v) = ce−mv

2/(2kBT )

as before, we can write
dFE
dE
=

∫ ∞
−∞

p(u)δ

(
E −

mu2

2

)
du

since we want all values of E equal to mu2

2 . Notice this happens at ui = ±
√
2E
m : there’s two roots, so that results in

dFE
dE
=

2√
2mE

ce−E/kBT

which (can be checked) is normalized in the same way. The chain rule method misses the multiple roots!

14.4 Sums of random variables
Let’s say we have x1, · · · , xn random variables with probability density functions pj(xj) for all 1 ≤ j ≤ n.

Assume xjs are all statistically independent: then

p(x1, x2, · · · , xn) =
n∏
i=1

pj(xj).

For simplicity, let’s say that all probability distributions pj are the same function p(x). Then we can also write this as

p(x1, · · · , xn) =
n∏
i=1

dyjp(yj)δ(xj − yj)

(the delta function notation will make our lives easier later on). Our goal is to find the mean, average, variance, and

other statistics for x1 + · · ·+ xn.

Fact 101

This is applicable for experiments that repeatedly try to measure a quantity x . The average measured value x

should have a probability distribution that grows narrower and narrower!
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Using the notation

Sn =

n∑
j=1

xj , xn =
Sn
n
,

our goal is to find the uncertain in our measurement after n trials. More specifically, we want to find the probability

distribution of x .

Proposition 102

The variance of the average is proportional to 1
n , and as n →∞, this becomes a Gaussian.

Why is this? The probability distribution for xn, much like the examples above, is

p(xn) =

n∏
j=1

∫
p(yj)δ

(
xn −

1

n

n∑
k=1

yk

)
dyj

and the mean of xn is ∫
p(xn)xndxn

=

n∏
i=1

∫
dyjp(yj)

1

n

n∑
k=1

yk .

Switching the sum and product, this is

1

n

n∑
k=1

n∏
j=1

∫
p(yj)ykdyj =

1

n
n〈x〉 = 〈x〉,

and this is just a convoluted way of saying that the average expected measurement is just the average of x .

Next, let’s find the variance of the averages: we can first compute

〈xn2〉 =
∫
xn
2p(xn)dxn,

which expands out to ∫
dxnxn

2
n∏
j=1

∫
dyjp(yj)δ

(
xn −

1

n

n∑
k=1

yk

)
and simplifying this by evaluating the delta functions, this becomes

1

n2

n∏
j=1

∫
p(yj)dyj

(
n∑
k=1

yk

)2
=
1

n2

n∏
j=1

∫
p(yj)dyj

(
n∑
k=1

y2k + 2
∑
k>`

yky`

)

So this yields
1

n2
(
n〈x2〉+ n(n − 1)〈x〉2

)
,

so since we are trying to find the variance,

var(xn) = 〈xn2〉 − 〈xn〉2 =
1

n
〈x2〉 −

1

n
〈x〉2 =

var(x)

n
,

as desired. So

σ(xn) =
1√
n
σ(x),

and this means that the standard deviation of the average gets smaller relative to the standard deviation of x as we

make more measurements!

51



Proposition 103

So the distribution of the sum of random variables is

dFSn
dSn

= pSn(Sn) =

n∏
j=1

∫
dyjp(yj)δ

(
Sn −

n∑
k=1

yk

)
.

For example, if we have two random variables,

p(S2) =

∫∫
dxdyp1(x)p2(y)δ(s2 − x − y) =

∫
dxp1(x)p2(s − x)

which is the convolution of p1 and p2, denoted P1 ⊗ P2.

Fact 104

The sum of Gaussian random variables is another Gaussian with mean and variance equal to the sums of the

means and variances of the two original Gaussians. Similarly, the sum of Poissons

(λT )n

n!
e−λT

is a Poisson distribution with 〈SN〉 = N〈n〉 and variance var(SN) = N var n = NλT.

15 March 4, 2019 (Recitation)
We’ll go through some ideas from the problem set.

15.1 Probability distributions and brightness
We can basically think of this problem as a sphere with fireflies emitting light. What do we see? Well, we know that

the light intensity depends on ρ, where ρ =
√
x2 + y2. So we basically want to integrate out the z-direction.

The idea is that we should go from p(x, y , z) to different coordinates. Any probability distribution always integrates

to 1, so we are interested in only picking out the values

p(ρ) =

∫
p(x, y , z)δ(ρ−

√
x2 + y2)dxdydz

where ρ2 = x2 + y2.

Question 105. Is p(ρ) the brightness?

Not quite! p(ρ)dρ gives the “probability” or number of stars in a narrow strip from ρ to ρ + dρ. So to find the

brightness, we need to divide through by 2πρ, since we need to divide by the area. This means

B(ρ) =
p(ρ)dρ

2πρdρ
=
p(ρ)

2πρ
.

When we calculate this and plot it, p(ρ) looks linear for small ρ, so B(ρ) starts off approximately constant close to

the center! This makes sense: the “thickness” at each point is about the same near the center.
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15.2 Change of random variables
Let’s say we have some function (think potential energy) E = f (x) with inverse function x = g(E). Let’s say we’re

given some spatial distribution p(x), but there is an energy E at each point: how can we find the probability density

function p(E)?

We can use the cumulative function F (x), defined by d
dEF (E) = p(E). By the chain rule, we can regard E = f (x),

so
dF

dx
=

dF

df (x)

df (x)

dx
=⇒ p(x) = p(E)

df

dx
.

But it is possible that our function is multi-valued: for example, what if E = f (x) = x2 is quadratic? Then the function

is not one-to-one: in this case, our cumulative distribution should not look like

F (E) =

∫ g(E)=√E
−∞

p(x)dx,

but rather

F (E) =

∫ √E
−
√
E

p(x)dx

so that we get all values x such that x2 ≤ E.

Another example of this is that if we have E = x3, we just have

F (E) =

∫ 3√
E

−∞
p(x)dx,

since again we want all values of x that make x3 ≤ E. The idea is that being “cumulative” in x doesn’t necessarily

mean the corresponding values are any kind of “cumulative” function in f (x), so we need to be careful! This is part

of the reason why we like to use delta functions instead: the central idea is that we need to look at all the roots of

E = p(x).

So the rest is now a differentiation:

p(E) =
d

dE
F (E) =

d

dE

∫ g(E)
−∞

p(x)dx,

where g is a root of the equation f (x) = E =⇒ x = f −1(E) (there could be multiple such roots, which means we’d

have to split into multiple integrals). So by the first fundamental theorem of calculus, this is

p(E) = p(g(E))
dg

dE
=⇒ p(E) = p(x)

1

df /dx

as before! In general, if our expression looks like

p(E) =
d

dE

(∫ xi+1
xi

p(x)dx +

∫ xi+3
xi+2

p(x)dx + · · ·
)

and this gives the sum ∑
i

p(xi)

∣∣∣∣ dgdE
∣∣∣∣
f (xi )=E

,

where the absolute value comes from the fact that the lower limits have a different sign of slope from the upper limits,

which cancels out with the negative sign from the first fundamental theorem.

Here’s one more method that we will all like! Add a theta function θ(E − f (x)): we want to integrate over all
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values f (x) ≤ E, where θ is the step function, and this is just

F (E) =

∫
p(x)dxθ(E − f (x))

(think of this as “including” the parts that have a small enough value of f (x)). But now taking the derivative,

p(E) =
d

dE
F (E) =

∫
p(x)θ′(E − f (x))dx

and the derivative of the theta function is the delta function

p(E) =

∫
p(x)δ(E − f (x))dx.

We’ve done this before! We just care about all roots where f (x) = E, and this is∑
i

p(xi)
1

|f ′(xi)|
,

and indeed this is the same result as we’ve gotten through other methods.

Fact 106

Key takeaway: sum over roots and correct with a factor of the derivative!

Now if we have a function E as a function of multiple variables f (x, y , z), we can just pick out the “correct values”

via

p(E) =

∫∫∫
p(x, y , z)δ(E − f (x, y , z))dxdydz.

How do we evaluate the derivatives here? It’s possible that δ in general could be a product of three delta functions:

for example, think of a point charge in electrostatics. But in this case, we’re dealing with a one-dimensional delta

function. We need to solve the equation E = f (xi , y , z) = 0: we may have two roots x1, x2, so now we have

p(E) =

∫∫ 2∑
i=1

p(xi , y , z) ·
1∣∣ ∂P

∂x (x, y , z)
∣∣
i

dydz

The point is that the delta function eliminates one variable, so integrate one variable at a time! Alternatively, there

may be some condition on y and z (for example, if E = x2 + y2 + z2, then y2 + z2 are forced to be within some

range), and that just means we have to add an additional condition: either an integration or a theta function.

16 March 5, 2019

Fact 107

The optical trap, a focused beam of light, can trap particles of size approximately 1 micron. People can play

Tetris with those particles! Once the optical traps are turned off, though, particles begin to diffuse, and this can

be explained by statistical physics.

The American Physical Society meeting was held this week: 90 percent of the awards this year were given to

statistical physics applied to different fields. The material covered was a bit more challenging than areas we’ve

explored so far, but there are many applications of what we’ve discussed!
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16.1 Entropy and information: an overview
Let’s start by reviewing why we’ve been talking about all the topics of this class so far. We used the first law

dU = d̄Q+ d̄W,

where d̄W is a product of an intensive and extensive quantity such as −PdV (generalized force and displacement).

We found that d̄Q is not a state function: it does depend on the path we take to get to a specific state. Entropy is

an old idea, and it comes from thermodynamics as a way to keep track of heat flow! It turns out that this S is indeed

a state function, and it can characterize a macroscopic state.

We’re going to use the ideas from probability theory to write down an “entropy of a probability distribution” and

measure how much “space” is needed to write down a description of the states. One definition we’ll see later is the

probabilistic

S = −
∑

pj log pj .

Consider the following thought experiment: let’s say we have some particles of gas in a box, and we have the

experimental tools to measure all of those positions and velocities. We write them down in a file, and we want to

compress the files to the smallest possible length.

If we compress efficiently, the length of the file tells us something about the entropy of the distribution. For

example, if all of the particles behave “simply,” it will be easy to efficiently compress the data, but if the system looks

more “random” or “variable,” the compression will be less effective.

Fact 108

In general, if we heat up the room by 10 degrees and repeat this process, the compressed file will have a longer

length. Generally, we want to see the change in length of the file per temperature or heat added!

This is a connection between two different ideas: an abstract length of a computer program and a tangible heat.

16.2 Shannon entropy and probability
Let’s say we have a set S = {s1, · · · , sN} whose outcomes have probability p1, · · · , pN . An example of a “well-peaked”

distribution is

p1 = 1, pj = 0 ∀j 6= 1.

If we see an event from this probability, we are “not surprised,” since we knew everything about the system from the

beginning. On the other hand, if we have all pj approximately equal,

pj =
1

N
∀j.

The amount of surprise for any particular event is about as high as it can be in this case! So we’re really looking at the

amount of randomness we have. Claude Shannon published a paper that was basically the birth of information theory:
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Proposition 109 (Shannon, 1948)

What is the minimum number of binary bits σ needed on average to reproduce the precise value of a symbol from

the given bits? This turns out to be

σ = −
N∑
j=1

pj log2 pj .

Example 110

Let’s say we have a fair coin that can come up heads or tails with PH = PT = 1
2 . If we have a string of events

like HTHHTHTTHTTT , we can represent this in a binary string by H → 1, T → 0.

Clearly, we do need 1 bit to represent each coin flip. Our “symbol” here is an individual “head” or “tail” event, and

the minimum number of bits needed is

−
(
1

2
log2
1

2
+
1

2
log2
1

2

)
= 1.

So our “coding scheme” sending heads and tails to 0 and 1 is “maximally efficient.”

Example 111

Let’s say we have four symbols A,B, C,D, all equally likely to come up with probability 14 . We can represent this

via

A→ 00, B → 01, C → 10, D → 11.

The Shannon entropy of this system is indeed

−
4∑
1

1

4
log2
1

4
= 2,

so we need at least 2 bits to encode each symbol.

Example 112

Let’s say we have three symbols with probability

PA =
1

2
, PB =

1

4
, PC =

1

4
.

Naively, we can represent A = 00, B = 01, C = 10, so we need 2 bits per symbol. But there is a better code? Yes,

because the Shannon entropy

−
(
1

2
log2
1

2
+
1

4
log2
1

4
+
1

4
log2
1

4

)
=
3

2
,

so there should be a way to code each symbol in 1.5 bits on average! Here’s a better coding scheme: use A = 0, B =

10, C = 11, which gives an average of
1

2
· 1 +

1

4
· 2 +

1

4
· 2 =

3

2

Now given a string

00101000111101001010,
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we can reconstruct the original symbol: if we see a 0, then pull it out as an A, if we see a 1, pull it and the next

number out to form a B or C, and rinse and repeat until we reach the end!

In general, the idea is to group symbols to form composites, and associate high probability with shortest bit
strings. In the case above, we had a high chance of having A, so we made sure it didn’t require too many bits whenever

it appeared.

Example 113

If we have a biased coin with probability 34 of heads (A) and 1
4 of tails (B), the Shannon entropy is

−
(
1

4
log2
1

4
+
3

4
log2
3

4

)
≈ 0.811.

So there should be a way to represent the heads-tails method in less than 1 character per flip!

We can group symbols into composites with probabilities

AA : 9
16

AB : 3
16

BA : 3
16

BB : 1
16

.

These are all fairly close to powers of 2, so let’s represent A as 0, AB as 10, BA as 110, and BB as 111 (this is not

perfect, but it works pretty well). Then on average, we need

9

16
· 1 +

3

16
· 2 +

3

16
· 3 +

1

16
· 3 ≈ 1.688

bits to represent two symbols, for an average of less than 1 bit per symbol! This is better than the version where we

just use 1 for heads and 0 for tails.

Fact 114

If we instead group 3 symbols, we may be able to get an even better coding scheme! We do have to make sure

we can umambiguously decode, though.

By the way, for our purposes from now on, we’ll be using natural log instead of base 2 log, since we have continuous

systems instead. Note that

log2X =
lnX

ln 2
,

so the Shannon entropy is

σ = −
1

ln 2

∑
n

pn log pn,

and if we instead have a continuous probability distribution, we can integrate instead:

σ = −
∫
p(n) log2 p(n)dn,

where we normalize such that
∫
p(n)dn = 1.

57



16.3 Entropy of a physical system
Now that we have some intuition for “representing” a system, let’s shift to some different examples.

Consider the physical quantity

S = −kB
∑
i

pi ln pi .

Note that all terms here are nonnegative, so the minimum possible value is S = 0: this occurs when there is only one

event with probability 1 and no other possibility. This is called a delta function distribution. On the other hand, the

maximum possible value occurs with a uniform distribution: where all pis are the same. If there are M events each

with probability 1
M , this evaluates to

−kB
∑
i

1

M
lnM = kB lnM.

(By the way, the kB is a way of converting from Joules to Kelvin for our measure of temperature.)

Proposition 115

This means S is a measure of “dispersion” or “disorder” of the distribution! So this gives an estimate of our

probability distribution, or at least its general shape.

For example, if we have no information about our system, we expect it to be uniform. This yields the maximum

possible value of S (or entropy), and this is the best unbiased estimate of our distribution. Once we obtain additional

information, our unbiased estimate is obtained by maximizing the entropy given our new constraints.

Fact 116

This is done using Lagrange multipliers!

If we have some new information 〈F (x)〉 = f (we measure the value of some function F (x)), we want to maximize

S(α, β, {pj}) = −
∑
i

pi ln pi − α(
∑
(pi)− 1)− β(

∑
(piF (xi))− f )

Our constraints are that our distribution must be normalized and that we want 〈F (x)〉 − f to be close to 0 as well. It

turns out this gives a Boltzmann distribution

pi = α exp(−βF (xi)).

Here β is fixed by our constraints, and α is our normalization factor! For example, we could find β by knowing the

average energy of particles. We’ll see this a bit later on in the course.

16.4 Entropy in statistical physics
Recall that we specify a system by stating a thermodynamic equilibrium macrostate: for example, we give the internal

energy, pressure, temperature, and volume of a system. This is specifying an ensemble.
On the other hand, we can look at the microstates of our system: they can be specified in quantum systems by

numbers {nj , 1 ≤ j ≤ N} or in the classical systems by positions and velocities {xi , vi , 1 ≤ i ≤ N}.
We can set up a distinction here between information theory and statistical mechanics. In information theory, our

ensembles look very simple: we have usually a small number of possible outcomes, but the probability distributions

can look very complicated. On the other hand, ensembles in statistical mechanics are often much more complicated
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(lots of different possible microstates), but our probability distributions are much more simple. The idea is that S, our

entropy, will be the maximum value of

S = −kB
∑

pi ln pi

across all probability distributions {pi}.
But what are the distributions given our constraints? That’s what we’ll be looking at in the rest of this class!

17 March 6, 2019 (Recitation)
Let’s start with a concrete example of the discussion from last recitation. Let’s say we have a probability distribution

that is uniform inside a circle of radius R: p(x, y) = 1
πR2 for x2 + y2 ≤ R2 and 0 outside. We’re going to find the

probability distribution p(r) in three different ways.

17.1 The messy way
First of all, if we use Cartesian coordinates, we can directly write this in terms of a delta function

p(r) =

∫ R
−R

∫ √
R2−y2

−
√
R2−y2

p(x, y)δ(r −
√
x2 + y2)dxdy

Let’s take care of the delta function as a function of x . We know the delta function δ(f (x)) is δ(x), divided by f ′(x)

at a zero of the function, so let’s compute the roots!

f (x) = r −
√
x2 + y2 =⇒ x± = ±

√
r2 − y2.

The absolute value of the derivative is equal at both roots:

f ′(x) = −
x√

x2 + y2
=⇒ |f ′(x±)| =

√
r2 − y2
r

=

√
1−

(y
r

)2
.

So now, we can evaluate our boxed expression above. The delta function is integrated out (except that we gain a

factor of |f ′| in the denominator, and we replace x with the root xi wherever it appears. But here the probability

distribution is uniform (does not depend on x explicitly), and the two roots have equal |f ′(xi)|, so we get a factor of

2. This simplifies to

=
∑
xi roots

∫ R
−R

∫ √
R2−y2

−
√
R2−y2

δ(x − xi)
πR2

·
1√

1−
(
y
r

)2 dx dy =
∫ R
−R

1

πR2
·

2√
1−

(
y
r

)2 dy(?)
where the boxed terms integrate out to 1, since xi = ±

√
r2 − y2 is always in the range

[
−
√
R2 − y2,

√
R2 − y2

]
.

But we must be careful: if |y | > |r |, or if |r | > R, we don’t actually have these two roots! So we put in some

constraints in the form of theta (step) functions: they force R > r and r2 > y2:

= θ(R − r)
2

πR2

∫ R
−R

θ(r2 − y2)√
1−

(
y
r

)2 dy
(where we have r2 and y2 in the second theta function to deal with potentially negative values of y). What does that
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θ function mean? The inner one just means we integrate across a different range of y :

θ(R − r)
2

πR2

∫ r
−r

1√
1−

(
y
r

)2 dy
and now we can integrate this: substituting u = y

r , this is

θ(R − r)
2r

πR2

∫ 1
−1

1√
1− u2

du

and the integral is sin−1(u)|1−1 = π, resulting in a final answer of

p(r) = θ(R − r)
2r

R2
=


2r
R2 r < R

0 r ≥ R

It’s stupid to use Cartesian coordinates here, but this shows many of the steps needed!

17.2 Polar coordinates
Here’s a faster way: the probability distribution

x = ρ cos θ, y = ρ sin θ

becomes p(x, y) = 1
πR2 for ρ < R. So now we can write our boxed double integral above in our new coordinates:∫ R

0

∫ 2π
0

p(x, y)δ(r − ρ)ρdθdρ.

The integration over dθ gives a factor of 2π, and p is uniform, which simplifies this to

2π

πR2

∫ R
0

δ(r − ρ)ρdρ.

The delta function has only the root ρ = r : since we’re integrating over [0, R], this is

p(r) =
2π

πR2
r · θ(R − r) =

2r

R2
θ(R − r),

which is identical to what we had before.

17.3 Without delta functions
We can use cumulative density distributions instead! What is the cumulative probability

F (r) =

∫ r
0

∫ √
r2−y2

−
√
r2−y2

p(x, y)dxdy?

This is the probability over all x2 + y2 ≤ r2. This integral is just p(x, y) (which is constant) times the area of a circle

with radius r , which is
πr2

πR2
=
r2

R2
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as long as r < R. So p(r) is just the derivative of F (r):

p(r) =
dF (r)

dr
=
2r

R2
,

and we’re done! We could have fixed up the edge case of r > R by adding a theta function θ(r − ρ) inside the original

integrand. Then the derivative of the theta function is the delta function, which gives the same delta function as in

our first method.

To summarize, we can generally avoid delta functions with cumulative densities.

17.4 Parity violation
We once assumed that if we flip our coordinates x → −x, y → −y , and so on, there is no difference in our laws.

Basically, everything in a mirror would also obey the laws of physics. But the Wu experiment proved this to be false!

This is called parity (P) violation. But there’s something more interesting: people managed to include charge (C)

conjugation, changing matter and antimatter, and then CP conservation seemed to be true. But it was found that

even this is violated!

Fact 117

So if you want to tell your friends in the alien world what the right side is, you can say to run a current through a

coil of wire. Put in Cobalt-60, and the magnetic field from the coil will have more electrons coming out from the

top than the bottom if our coil is counterclockwise. This is a right-handed current!
But if we want to explain that our heart is on the left-hand side, we can put ourselves in a solenoid. Run a

current through the solenoid, and you can say that the Cobalt-60 emission goes up. Then the current now flows

across our chest from the right to the left!

But they’ll be made of antimatter, so they might hold out the wrong hand when they shake hands.

18 March 7, 2019

Just a reminder: there is an exam on Tuesday in this classroom. It will go from 11 to 12:30 (usual class time). The

past exams have been uploaded: note that three of the four problems on this year’s exam will be reused from previous

exams posted on Stellar. If we are able to do the problem sets and past exams, we have a good mastery of what’s

going on.

By the way, the concept of density of states has been moved: it will come later, and it will not come up on the

exam.

There will be an optional review session from 5 to 7 today, and Professor Fakhri will also hold additional office hours.

Material is everything from class until today, though entropy will be more about concepts than specific examples.

The next problem set will not be due on Friday.

18.1 Quick review and overview
We’ve been learning about macroscopic quantities and connecting them to microscopic systems, and this led us to the

idea of entropy. This was a concept that Boltzmann introduced before information theory: basically, we care about

how “confused” we are about a system.
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Today, we’re going to expand on the concept of thermodynamic entropy and introduce the second law of thermo-

dynamics, which claims that entropy is nondecreasing with time. This is an emergent phenomenon!

Remember that for a thermodynamic ensemble, we defined our entropy to be

S = kB
∑
j

pj ln pj ,

where we’re summing over all possible microstates j that occur with a probability of pj . Note that this is also

≡ (kB ln 2)σ,

where σ is the Shannon entropy.

18.2 Looking more at entropy

Proposition 118

Thermodynamic equilibrium occurs at the (unbiased) probability distribution which maximizes entropy:

S = max
pj
−kb

∑
j

pj ln pj .

Recall from last time that an example of such an unbiased probability distribution is the uniform distribution: all

states occur with equal probability. If we have no prior information, this is the best “guess” we can have for what our

system looks like. In this case, the distribution looks like

pj =
1

Γ
,

where Γ is the total number of consistent microstates. (Γ is known as the multiplicity.) Plugging this in,

S = −kb
Γ∑
j=1

1

Γ
ln
1

Γ
= kb ln Γ .

Fact 119

On Boltzmann’s tombstone in Vienna, S = k logW is written. This equation is kind of the foundation of statistical

physics!

Note that S is a measure of the macroworld, while W or Γ is a measure of the microworld, so this is a good

relationship between the two.

Here’s some additional facts about our entropy S.

• S is a state function of P and V . In other words, it is independent of the path we took, so we can compute

S from other macrostates. For example, we can write the entropy S of a gas in a box in terms of the volume,

number of molecules, and internal energy

S = S(U, V, N).

On the other hand, if we have a magnet, the state function depends on the magnetization ~M.
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• The proportionality constant of kB arises because we chose to use units of temperature. In particular, we could

have units of temperature in Joules if we just let kB = 1.

18.3 The second law
Recall the first law of thermodynamics, which tells us about conservation of energy:

dU = d̄Q− PdV.

Proposition 120 (Second Law of Thermodynamics)

Entropy of an isolated system cannot decrease.

From an information theory perspective, this is saying that our ignorance of a system only increases with time.

Let’s look at an example by time-evolving a system!

Proposition 121

In both classical and quantum systems, the time-evolution of a microstate is both causal and time-reversal
invariant.

What do those words mean? Causality says that each microstate at some time t1 evolves into a unique, specific

microstate at time t2 > t1. So causality says that we can’t have two different microstates at t2 that both originated

from t1: if we had 100 microstates at time t1, we can’t have more than that at a later time t2.

Meanwhile, the concept of time-reversal invariance is that both laws of classical and quantum physics are reversible

if we switch t → −t. For instance, any wavefunction |ψ(t)〉 or classical ~x(t), ~v(t) that is a valid also gives a valid

|ψ(−t)〉 and ~x(−t), ~v(−t).
So if we think about this, it means we cannot have two microstates at time t1 that converge into one at a later

time t2 either. So our ignorance about the system cannot decrease!

But can the entropy increase?

18.4 A thought experiment

Example 122

Consider a box with a partition, and one half of the box is filled with a gass with a known U, V, N at some time

t < 0. (The other part is filled with a vacuum.) At time t = 0, the partition is removed.

Now the gas fills a volume of 2V , and U and N are still the same, so there are many more microstates that are

possible. This increases our entropy! The kinetic energy of the particles has not changed, but our ignorance of the

system has increased. There are many more possible values for the initial position and momentum of every particle.

What’s the change in the number of microstates Γ? If we assign a binary variable to each particle, which tells us

whether the particle is on the left or right side of the box, after t > 0, we now need an extra binary bit to tell us about

the system. Thus, with N particles, our change in Shannon entropy is ∆σ = N. Thus

∆S = kb ln 2∆σ =⇒ ∆S = Nkb ln 2

and since S ∼ log Γ, we get a factor of 2N more possible microstates!
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Fact 123

This doesn’t break causality or time-reversal. The idea is that every microstate before t < 0 goes to exactly one

microstate at t > 0, but we don’t know which one it is: the probability distribution is still uniform, just with a

larger range of possibilities.

Notice that there is some time from our initial state (U, V, N) to our final state (U, 2V,N) to reach equilibrium

again (so that we can define our state functions). We can think of this as “mixing” states and making the probability

distribution more uniform! There is a whole different field called ergodicity.

Fact 124

In any (real) macroscopic system, regardless of the initial configuration, over a long time, the system will uniformly

sample over all microstates.

Basically, over a long time, the sampling of a probability distribution will yield all microstates with equal probability.

For example, instead of preparing many initial configurations, we can prepare one particle and sample it many times.

Fact 125 (Ergodic hypothesis)

We can compute the properties of an equilibrium macrostate by averaging over the ensemble.

If there are microstates Si that occur with probability pi , and we have some function f (Si) of microstates, we can

compute a property

〈f 〉 =
∑
si

f (si)p(si).

But instead, we can sample our system and average:

〈f 〉 =
1

T

∫ T
0

f (t)dt.

This time T may be large though!

Fact 126 (Systems out of equilibrium)

There are some systems that have a slow relaxation time, so they’ll never reach equilibrium within a reasonable

amount of time! An example is the universe.

In the rest of this class, we’ll come up with ensembles, and find unbiased probability distributions consistent with

a macrostate. We’ll try to see what conditions we can impose to define thermodynamic quantities!

18.5 Moving on
We’ll be talking about different kinds of ensembles (collections of microstates) in this class. A microcanonical
ensemble is mechanically and adiabatically isolated, so its volume V and number of particles N is constant. In such

a system, we can define a temperature! After that, we will discuss the canonical ensemble, which trades fixed U for

fixed T . We can then look at grand canonical ensembles, which are systems at fixed chemical potential.

Recall that S = S(U, V, N) is a state function on equilibrium states, and ∆S > 0 for isolated systems. We also

know that it is an extensive quantity (it is additive) like N, V , and U: it turns out the conjugated quantity (generalized

force) here is temperature T .
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How can we show additivity of entropy?

Lemma 127

Given two independent non-interacting systems A and B, the entropy SAB = SA + SB.

Proof. A has NA possible microstates with probability Pα,A, so

SA = −kB
∑
α

Pα,A lnPα,A

and similar for B. By statistical independence,

PA,B = PA · PB,

so (here Pα,β refers to the probability Pα,APβ,B for brevity)

SAB = −kB
∑
α,β

Pα,β lnPα,β = −kB
∑
α,β

Pα,APβ,B ln(Pα,APβ,B) = −kB
∑
α,β

Pα,APβ,B (lnPα + lnPβ))

which can be written as

SAB − kB
∑
β

Pβ,B
∑
α

Pα,A lnPα,A − kB
∑
α

pα,A
∑
β

Pβ,B lnPβ,B

and as the boxed terms are 1, this is just SA + SB as desired.

19 March 11, 2019 (Recitation)
We’ll cover some short questions and then relate Poisson, Binomial, and Gaussian distributions to each other.

As a quick refresher, if we have a probability distribution p(x, y) and we want to find it in terms of another variable

z = f (x, y), then

p(z) =

∫
p(x, y)δ(z − f (x, y))dxdy

will pick out the correct values of z . The rest is mathematics: find the roots, magnitudes of derivatives, and make

the relevant substitutions.

19.1 Different probability distributions
Question 128. What is the counting distribution for radioactive decay? Basically, measure the number of particles

that decay / do something else in some interval T : if we do this multiple times, what’s the distribution going to look

like?

Remember that we’ve discussed three kinds of probability distributions here: binomial, Poisson, and Gaussian.

We’re always looking for a count rate: can we distinguish anything between these three kinds?

Well, in a binomial distribution, we have some finite number of trials N, so the possible range of n, our count, is

always between 0 and N. But for the Poisson distribution, n is any nonnegative integer, and the Gaussian can be any

real.

The idea is that if our binomial distribution’s tail is sufficiently flat on the positive end, because our probability

p is small or our number of trials N is large enough, then we can extend it to ∞ and treat it similar to a Poisson
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distribution. But on the other hand, if our tail is sufficiently flat on the negative end, we can also extend it to −∞
and treat it like a Gaussian distribution!

So the answer to the question is “yes, Poisson is correct,” but not quite! There is indeed a maximum count rate:

N, the number of total atoms in our radioactive material. So this is sort of binomial, but those events are so unlikely

that we can neglect them completely.

How do we rigorize this? Remember that our binomial distribution for N trials of an event of probability a is

p(n,N) = an(1− a)N−n
(
N

n

)
.

If we let N →∞, but we keep our mean Na = 〈n〉 constant, then a = 〈n〉
N , and our distribution becomes

p(n,N) =
〈n〉n

Nn

(
1−
〈n〉n

Nn

)(
N

n

)
.

We can neglect the −n in the second exponent, since n � N, and this middle term now approaches e−〈n〉. What’s

more,
(
N
n

)
= N(N−1)···(N−n+1)

n! is essentially N
n

n! , and now we’re left with

p(n,N) ≈
〈n〉n

Nn
e−〈n〉

Nn

n!
=
〈n〉n

n!
e−〈n〉

which is the Poisson distribution as we wanted!

Fact 129

So letting N go to infinity but adjusting the probability accordingly, we get a Poisson distribution. On the other

hand (or as a subsequent step), if we make 〈n〉 larger and larger, this gives us a Gaussian distribution by using

Stirling’s approximation and using a Taylor expansion. This will yield

C exp

[
−
(n − 〈n〉)2

2〈n〉

]
.

The idea is that all that matters is the values of n and 〈n〉. But here’s an alternative way to go from binomial to

Gaussian: keep a constant, and let N get larger. This now yields

C′ exp

[
−
(n − 〈n〉)2

2〈n〉

]
· (1− a).

So in this case, the variance is not 〈n〉 = Na but Na(1− a) = 〈n〉(1− a). The reason this is different is because when

we went to the Poisson as an intermediate step, we forced a to be small, which meant we could neglect the 1 − a
term!

So now let’s look at a = 1
2 , which is the case of a random walk. So our variance is 〈n〉2 , and let’s say the step size

of our random walk is 1 (so we move to the right or to the left by 1 unit each time).

Fact 130

Notice that, for example, if we have 10 steps, we expect to move to the right 5 times. But if we move to the

right 6 times instead, our net walk is 6−4 = 2: in general, if our number of right moves is k more than the mean,

the net walk is 2k .

So if we substitute in for a step size of our random walk x , n− 〈n〉 = x
2 , and 〈n〉 = N

2 . Rewriting our Gaussian, we

will just get Brownian motion

p(x) ∝ e−x2/2N .
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In general, measuring N atoms at a rate of λ for time t just yields

〈n〉 = Nλt.

But the concept behind all the counting is to track n, the number of counts, relative to 〈n〉, the average number of

counts.

Fact 131

If we have a probability distribution pn, the values of 〈n〉 and var(n) are telling us data about one trial or sample

from the distribution. But if we want to calculate n, which is the average of N measurements, the variance

changes by a factor of 1N (since variances add, so the variance of our sum is N var(n), and then we divide our sum

by N, which divides our variance by N2).

By the way, the formula for a normalized Gaussian distribution is on the equation sheet, so we don’t have to worry

about it too much.

Let’s think about the stars problem from a past exam: we have stars distributed with density ρ stars per light-year

cubed. What is the probability that there are no stars within r of a given star?

Basically, we take a volume V , and we want the probability no other star is in that given volume. We can think of

this as taking small pieces of volume, where each one is independent, and where there is a finite, consistent value of

〈n〉: average number of stars in each piece of volume. This is a Poisson distribution! So our expectation value is

〈n〉 = ρ · V =
4πρ

3
r3,

and

p(n,N) =
〈n〉n

n!
e−〈n〉.

But why do we take n = 0 instead of n = 1? The first star just gives us a volume to look at, so we can completely

ignore it.

Fact 132 (Clearly false)

If we go on an airplane, we should bring an explosive to be safe, because the probability of there being two

explosives on the plane is almost zero.

The central idea here is independence! If we guarantee that we have one star, the other stars don’t care that the

first star is there.

20 March 13, 2019 (Recitation)

20.1 Geometric versus binomial distribution
Let’s quickly look at the tunneling problem from the quiz: we can think of having an alpha particle inside a nucleus

that eventually escapes.

We know the probability that it does exactly n bounces is

pn = a
n(1− a).
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This is a geometric distribution!

On a related note, if we have n+ 1 atoms, what is the probability that exactly 1 of them decays? Well, this looks

very similar to what we have above, but we get an extra combinatorial factor (because any of the atoms can decay):

P1 = p(1− p)n
(
n + 1

1

)
,

and this turns the geometric distribution into a binomial one!

Fact 133

Here’s another example of a geometric distribution: let’s say a patient needs a kidney transplant, but we need to

screen donors to see if there is a match. Given a random blood test, the probability of a match is p: then the

number of people we need to screen is

pn = p(1− p)n−1.

and we can replace a = 1− p to get something similar to the tunneling problem.

So the distinction is that you try again and again until success in a geometric distribution, but there’s a finite

number of trials in a binomial one.

20.2 Entropy of a probability distribution
Let’s say we have an average count rate of 〈n〉 in a Poisson distribution, meaning the variance is 〈n〉 as well. (Think

of the standard deviation as being about at 0.6 times the maximum value in a distribution that is about Gaussian.)

So what does it mean to have an entropy of a distribution?

Example 134

Consider a coin toss or letters in a book: can we measure the entropy of that somehow?

The idea is to have N random events pulled from our probability distribution: what is the number of bits needed

to represent that information on average? It’s kind of like image compression: using much less space to display the

same data, but we don’t want any loss of resolution.

In a coin toss, we need a 1 or 0 for each toss, since all events are randomly likely. So N random events must come

from N bits, and indeed, the Shannon entropy for one event

S = −
∑

pi log2 pi = 1,

Let’s go to the extreme: let’s assume we have a coin which comes up heads 99 percent of the time. How many bits

of information do we need to communicate the random series 0000 · · · 010 · · · 01?

Fact 135

We can just send a number that counts the number of 0s between 1s! So instead of needing about 100 bits to

represent each group between 1s, we can use on average ≈ log2(100) bits.

More rigorously, let’s say the probability of having a 1 (corresponding to a tail) is small: ε ≈ 1
100 . If we have N

coin tosses, we will need an expected N · ε differences between the 1s. Each difference is about 1ε , and we need log2
1
ε
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bits for each one. So the expected entropy here is

Nε log
1

ε
= −Nε log ε,

while the theoretical Shannon entropy yields

S = −N (ε log ε+ (1− ε) log(1− ε))

and as ε→ 0, the second term dies out to first order! This confirms the result we had before.

Fact 136

One way to think of this is that the entropy gets smaller (we need less bits) as our sequence becomes less random

and more predictable.

20.3 Entropy of a Poisson distribution
If we think in terms of information, we are looking at a random sequence: we want to think of coding the resulting

data. Well, what’s the data that we’re trying to code?

If we set up our system and repeatedly count, we’ll get a series of numbers pulled from the distribution. So our

question is how we can code this? How concisely can we represent the stream of random numbers?

Example 137

First of all, let’s say we have a uniform distribution from 91 to 110, so there are 20 equally likely outcomes.

What’s the entropy of this system?

Well, we need log2(20) bits on average to represent the data! As a sanity check, if we go to the formula

S = −
∑

pi log pi

and we have W equally probable options, then this Shannon entropy is just

S = −W
1

W
log
1

W
= logW.

Fact 138

Ludwig Boltzmann has S = kB lnW written on his tombstone - notice that this is just kB ln 2 times the quantity

we’ve been thinking about! The multiplicative factor is just a convention to connect different fields and stick to

historical reasons.

So back to the probability distributions. We can perform N measurements, each of which can be one of W

possibilities (for example, lottery numbers or pieces of colored paper). How many bits do we need to convey the

random series that comes up? Again, we need log2W bits for each number.

But how would we encode these large numbers? In general, we want to index them: if there are 20 possible

numbers, we should send them out as 0, 1, · · · , 19, not as their actual values.

So looking at a Poisson distribution, we care much more about the events that occur more frequently. Looking at

the p log p term, as p → 0, this number approaches 0. So the improbable wings of the Poisson distribution are not

important: we really care about those values within a few standard deviations!
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So the number of numbers that dominate the sequence is around
√
〈n〉 for the Poisson distribution, and thus we

estimate the entropy to be

log
(
c
√
〈n〉
)
∼ log2 c +

1

2
log2(〈n〉)

where c is some order 1 number (from 1 to 10). Converting this to statistical mechanics, this gives us a 1
2 ln 2 term in

leading order! Indeed, if we actually plug in

S = −
∑

pi log pi

for the Poisson distribution (as we do in our homework), and in fact the actual number looks like (with x = 〈n〉)

S(x) =
1

2 ln 2
(1 + ln 2πx) =

1

2 ln 2
ln x +

1

2 ln 2
(1 + ln 2π).

So our handwaving gave us the correct result asymptotically by replacing the Poisson with a Gaussian. That second

factor is approximately 4.1, so indeed we have our order 1 number.

21 March 14, 2019
Happy Pi Day! Read the paper posted on the course website.

We did well on the exam; some of them haven’t been graded and will be done by the end of today. They will

be brought to class on Tuesday; we can also email Professor Fakhri. If we feel like our score doesn’t reflect our

understanding, also send an email.

There is a problem set due on Monday (instead of Friday) at 7pm. There will be another pset for the Friday before

break, but it is short (only 2 problems). Finally, there will be an interesting problem in the problem set after that about

statistics of the Supreme Court.

Last time, we introduced Shannon and thermodynamic entropy. Near the end of class, we found that the total

entropy of a system is the sum of its independent parts, so entropy is an extensive quantity. Now we’ll relax this

assumption and allow heat and work to be exchanged as well, and we’ll see what the new entropy becomes! This

allows us to define temperature, and then we can connect those microscopic pictures to the macroscopic world. After

that, we’ll talk about reversibility and quasi-equilibrium and how we can compute changes in entropy based on the

initial and final state.

21.1 Entropy and thermal equilibrium
Recall from last time that if we have independent, non-interacting systems A and B, then SAB = SA + SB.

This time, let’s say that we still have A and B isolated from the outside, but there is a partition between A and

B. This means that NA, NB are fixed, and so are VA, VB, but heat can flow between the two systems. Our goal is to

somehow define a temperature based on SAB.

We’ll let the system go to equilibrium: at that point, our entropy is maximized. Then if A has some entropy SA
and internal energy UA, and B has some entropy SB and internal energy UB, we claim that

SAB = SA(UA) + SB(UB)

for functions SA and SB that depend on UA and UB, respectively. This is a good assumption even if we have small

fluctuations.

Now let’s say some infinitesimal heat d̄Q passes from A to B. Then dUA = −d̄Q and dUB = d̄Q. But the change
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in SAB should be zero, since we have a maximum entropy at this point! Expanding out the differential,

dSAB =
∂SA
∂UA

∣∣∣∣
VA,NA

dUA +
∂SB
∂UB

∣∣∣∣
VB ,NB

dUB.

Now plugging in dSAB = 0 and using the fact that dUA = −dUB, we have at thermal equilibrium that

∂SA
∂UA

∣∣∣∣
VA,NA

=
∂SB
∂UB

∣∣∣∣
VB ,NB

.

So we want to define a state function that is equal at these two different points (in two systems in thermal equilibrium)!

When we bring two systems together, the temperatures should become equal, which motivates the following definition:

Definition 139

Define the temperature T of a system via
∂S

∂U

∣∣∣∣
V,N

=
1

T
.

There’s no constant of proportionality here, because we used kB in our definition of entropy.

Here are some important facts:

• ∂S
∂U

∣∣
V,N

only applies to systems at thermal equilibrium, but it’s a “hot” area of research to think about non-

equilibrium states as well.

• Temperature is transitive: if A and B are at thermal equilibrium, and so are B and C, then A and C are at

thermal equilibrium. This is the zeroth law of thermodynamics.

• There are other notions of equilibrium (e.g. mechanical) as well, but for now we’re ignoring ideas like partitions

being able to move due to pressure.

21.2 Particles in binary states
Let’s put together everything we’ve learned so far with an example!

Example 140

Let’s say we have N particles, each of which can have 2 states (for example, a bit taking on values 0 or 1, or

a particle with spins in a magnetic field). One way to represent this is by placing them along a number line and

representing each one with an up or down arrow. Spin up gives an energy of ε0 and spin down gives an energy of

ε1: let’s say n0 is the number of particles in the lower energy state ε0; without loss of generality we let ε0 = 0.

Similarly, define n1 to be the number of particles in the upper energy state ε1 = ε.

Note that n0 + n1 = N, and we can write this as a frequency:

n1 = f N =⇒ n0 = (1− f )N.

The total internal energy of this system is

ε0 · n0 + ε1 · n1 = f εN.

Let’s compute the entropy of this system. If we can count the number of microstates Γ (also called the multiplicity),

all such states should be equally probable, and then we can compute the entropy from there:

S = kB ln Γ.
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If we have f N particles in the upper energy state, and we have (1− f )N particles in the lower energy state,

Γ =
N!

n0!n1!
.

Now by the Stirling approximation (since N is large),

S = kb ln Γ = kb(N lnN − N − (n0 ln n0 − n0)− (n1 ln n1 − n1))

and since N = n0 + n1, this simplifies to

S = kB(N ln n − n0 ln n0 − n1 ln n1) = kB(n0(ln n − ln n0) + n1(ln n − ln n1)) = −NkB(f ln f + (1− f ) ln(1− f )).

Notice that S is indeed extensive: it depends on N, the number of particles that we have. We can also find our

temperature:
1

T
=
∂S

∂U

∣∣∣∣
N

=
∂S

∂f

∂f

∂U
= (−N ln f + N ln(1− f ))

kB
εN

(here volume is not well-defined and not relevant). Moving terms around,

ε

kBT
= ln(1− f )− ln f

and this can be represented as comparing two kinds of energy: the difference in energy ε between states and kBT , the

thermal energy. That’s the kind of comparison we’ll be doing a lot in this class, since the ratio tells us a lot about the

macroscopic quantities of the system! So now defining β = 1
kBT

, we can write

1− f
f
= eβε.

Then

f =
n1
N
=

1

1 + eβε
, 1− f =

n0
N
=

1

1 + e−βε
,

which also means we can rewrite

n1 =
Ne−βε

1 + e−βε
, n0 =

N

1 + e−βε
.

So now we can compute our internal energy:

U = f εN =
Nε

1 + eβε
.

If we plot n0N and n1
N as functions of kBT = 1

β , the number of excited particles in the upper state increases to an

asymptotic limit. Similarly, UεN approaches 12 as kBT →∞. Finally, let’s plot the heat capacity C = ∂U
∂T

∣∣
N
:

C =
Nε2

kBT 2
eε/(kBT )(

1 + eε/(kBT )
)2 .

We’ll often look at these when T → 0, T → ∞: as T → 0, C → 1
T 2 e

−ε/(kBT ), and as T → ∞, C → 0. There will be

physical explanations for each of these behaviors as well!

Finally, remember that we computed the entropy: we’re going to change our variables:

S = S(U,N) = S(T,N) =⇒ S = −NkB(f ln f + (1− f ) ln f )
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Using the fact that f = 1
1+eεβ

, we now have

S(N, T ) = Nkb ln(1 + e
−βε) +

Nε

T

(
1

1 + eβε

)
and notice that we can split this up in a familiar way:

=
U(N, T )

T
+ Nkb ln(1 + e

−βε).

As T → 0, S → 0, and T → ∞, S → Nkb ln 2. This gives us a good interpretation of information entropy: high

temperature gives high uncertainty!

21.3 Back to macroscopic systems
Let’s look back at our equation

1

T
=
∂S

∂U

∣∣∣∣
V

.

This is important because S is computed from the number of microstates in our system! So let’s go back to our

system with two parts and an immovable thermal partition (so again, we have fixed volume). Let a small amount of

heat be transferred from one part to the other.

No work is done, so d̄Q = dU, which means that dS = ∂S
∂U

∣∣
V,N

dU = 1
T dU.

Here dU is our thermal energy, and since we add a small amount of heat, our systems remain close to thermal

equilibrium: thus U and S remain well-defined. Finally, it’s important to note that this can be reversed without any

effect on our system, since dU is infinitesimal.

Fact 141

Those three conditions are what dictate a reversible heat transfer: dU = d̄Q, so dS = dQrev
T . However, this is

only an equality when we have reversible quantities: in general, we have the inequality

dS ≥
d̄Q

T
.

This is the first time we write our heat as the product of an extensive and intensive quantity. It’s important that

S is a state function, so we can compute the change dS by looking at any path!

Example 142

Consider a system with a partition: the left half has volume V , temperature TA, and pressure PA, and the right

half is empty. At time t = 0, we remove the partition, and now we have a new volume 2V , TB, PB.

Since the system is isolated, TB = TA (as no heat is transferred, and an ideal gas’s energy only depends on

temperature). By the ideal gas law, then, PB = PA
2 . This is an irreducible process, so we can’t follow a specific path

on the PV diagram. But S is a state function, so we can pick any path!

Let’s say we go from A to C (reversibly add heat at constant pressure P until volume 2V ), and then from C to

B (reversibly remove heat at constant volume until the pressure drops to P
2 ). Then dQrev along the first part of our

path is CP (T )dT , and dQrev along the second part is CV (T )dT , so our total change in entropy is

SB = SA =

∫ TC
TA

dT ′

T ′
CP (T

′)−
∫ TC
T

dT

T ′
CV (T

′)
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and these integrals can be combined to∫ TC
T

dT ′

T ′
(CP (T

′)− CV (T ′)) = NkB ln
TC
T

Since we have an ideal gas, TC = 2T , and therefore

∆S = SB − SA = NkB ln 2,

as we expect!

22 March 18, 2019 (Recitation)

22.1 Questions
Let’s discuss the entropy of a Poisson ensemble from the problem set. We’ve been given a Poisson distribution with

mean 〈n〉: then

pn =
〈n〉n

n!
e−〈n〉.

By definition, the Shannon entropy is

−
∑
n

pn log2 pn.

Mathematically, this is pretty straightforward, and we discussed last Wednesday what an entropy of a distribution

actually means. For example, if 〈n〉 ≈ 100, the entropy lets us know how many bits we generally need to represent the

random samples.

In particular, if we measure 100, 90, 105, 98, and so on, then we can encode this by taking differences from the

mean. We expect σ ≈
√
n, so we can find a coding that only uses about log2(c

√
n) bits! Entropy, then, is the number

of bits needed for an optimal encoding.

Fact 143

In most cases, the entropy is basically log2 of a few times the standard deviation. This means that we expect

S =
1

2
log2 n + log2 c

for some constant c .

Next, let’s take a look again at a biased coin: the information-theory entropy is

S = −p log2 p − (1− p) log2(1− p).

This makes sense to be maximized at 12 : near 0 and 1, it’s easy to expect or predict the outcome of the coin flip. So

the information-theoretic limit is the Shannon entropy.

How do we construct a better coding scheme than 1 bit each? We can block our flips into larger groups and encode

them one by one. We’ll find that often, we do better than 1 bit each, but not better than the Shannon theoretical

limit!
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22.2 Entropy
We know that the entropy of a macrostate is

S = kb ln Γ,

where Γ is the number of microstates. It’s a powerful concept, but it can also be confusing.

The key concept is that entropy must always get larger. We can only lose information by not carefully controlling

our experiment! The second law of thermodynamics can be formulated in many ways: dSdt > 0 is one example, but

we need to be careful with that.

If we have a particle in a box, the particle can be anywhere, and we can describe the entropy of the particle. (We’ll

look at this more in the future.) If the particle is in the left part of the box only, though, its entropy will decrease.

Since the number of microstates is a factor of 12 smaller due to entropy, we lose a factor of kb ln 2.

What if we have a delocalized particle that is then measured? We can “catch” the particle in a box of smaller

volume. But this is done through a measurement, and through the process, the observer increases the entropy! So

the second law applied to isolated systems, not subsystems.

Let’s say we have a reservoir that is connected to a system, and we cool down the system (for example, if we put

an object in a refrigerator). The entropy flows in the same direction as the heat: the object that cools down will lose

entropy as well.

Essentially, our question is “what happens to a system when we add energy?” It will have more microstates, unless

we have a pathological system. Intuitively, a system (like a harmonic oscillator) has more energy for larger velocities,

because we have a larger sphere of possibilities. This has to do with density of states!

Fact 144

So a system that is cold and heats up will gain entropy: entropy flows in the same direction as heat.

But maybe there are 1010 microstates in the reservoir and only 20 microstates in the small system. Let’s say we

heat up the small system so it now has 100 microstates, and at the same time, the reservoir reduces its microstates

to 5× 109. Is this possible?

Let’s look at the total entropy of the reservoir plus the system! Remember that the second law of thermodynamics

applies to complete systems: we should consider S = log2 Γ, where Γ is the total number of microstates.

Fact 145

So what we really care about is the product of the number of microstates, because we have multiplicity!

Since 20 · 1010 < 100 · 5× 109, this process is indeed allowed in nature.

Entropy extends beyond energy conservation, though: it also tells us when energetically allowed processes will

not happen in nature. For example, is it possible for us to take a reservoir of heat, extract work, with only the

consequence that the temperature cools down? Also, is it possible for two objects at the same temperature T to

develop a temperature differential?

No, because these things violate entropy! Reversibility is an important concept here: free expansion of a gas

greatly increases the number of microstates. On the other hand, we know the time-reversibility of the system means

the actual number of microstates must be constant, so what does it mean for entropy to increase? How can we go

from a small number of microstates to a large number?

People have done many studies of various systems and how they behave in time. These are called billiard problems:
have particles bouncing off a wall, and if we have a spherical system, it’s possible that we may never fill the full region
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of microstates! On the other hand, more irregular systems may allow much more randomness in phase space. So the

important assumption in entropy is that all microstates are equally likely. We don’t have particles kept on certain

trajectories, mostly due to our inability to measure perfectly. Loss of knowledge when going from highly deterministic

systems to complete randomness is the central idea of entropy increase. It is in principle possible for small deviations

at the microscopic level to happen (fluctuation), but it’s often immeasurably small.

23 March 19, 2019
Class is very quiet - maybe everyone is ready for spring break. Our exams are at the front of the room; the problems

and solutions will be uploaded tomorrow, because there are two people still taking the exam.

There is a problem set (2 problems) due on Friday.

23.1 Overview and review
As a quick review, we started by reviewing Shannon entropy and thinking of entropy as a thermodynamic quantity

connecting the microscopic world with macroscopic problems. Last time, we looked at a two-level system, going from

counting states to computing entropy, temperature, and heat capacity. It’s interesting, because it’s the first system

where quantum effects manifest themselves in the macroscopic world. One thing to think about is the unimodal heat

capacity - there are important quantum effects there!

We’ll define some terms that are useful for describing systems, and we’re going to keep thinking about changes in

entropy in the PV plane. We have all the tools necessary into understanding fundamental systems! Next lecture, we’ll

also look at some more quantum systems.

Fact 146

Recall that a two-level system has N particles, each of which can be in a lower or higher energy level. If we plot
n
N versus kBT , which is the number of particles in the higher energy state versus energy, the number of particles in

the higher energy state increases to 1
2 . If we plot U/(εN), where ε is the energy level of the higher energy state,

this also saturates at 12 . Finally, heat capacity c/(NkB) increases and then decreases.

Remember that we found the entropy of this system: as T → 0, S → 0 [this will be the third law of thermodynamics],

and as T →∞, S → NkB ln 2. Let’s try to justify what we see and physically explain each of these graphs!

• At lower temperatures / energies, all energy is in the lower level. But if we add energy to our system, we have

particles evenly distributed among all states.

• This is also why internal energy saturates at 12εN: half of the particles will be in the ε energy state. (We take

groud state to be 0.)

• The heat capacity is harder to explain. At high temperatures, we expect entropy to read its maximum value of

NkB ln 2, and we have evenly distributed particles. So changing the temperature a little bit does not change the

configuration very much, so the heat capacity is very low. This is a saturation phenomenon! Meanwhile, at

very low temperatures, we have to overcome the gap of energy ε to actually change the state of the system.

This gapped behavior is also an important characteristic: we should have a vanishing of order exp
[
− ε
kBT

]
.
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• The maximum value of C (heat capacity) is coming from the scale temperature

Tε =
ε

kB
.

This is where we start exciting more and more particles. This is where we have the highest disorder.

By the way, the saturation effect means that we can’t have a system where most particles are at the higher energy

level. However, we can prepare our system in a way that gives more particles than we normally have at the high energy

level! It’s called a metastable state, and it’s interesting for “negative temperature.”

23.2 A closer look at the First Law
Remember the First Law of Thermodynamics, which relates an exact differential to inexact differentials:

dU = d̄Q+ d̄W.

We know that if work is done in a quasi-equilibrium process (so that we’re pretty close to being in an equilibrium

state), then pressure is defined throughout the process, so we can write d̄W = −PdV . Meanwhile, if heat is added in

a quasi-equilibrum process, temperature is defined throughout, so we can write d̄Q = TdS.

This means we can write the First Law in a bit more detail:

dU = TdS − PdV + µdN + σdA+ · · · .

Recall that we defined (for a system at thermal equilibrium)

∂S

∂U

∣∣∣∣
V,N

=
1

T
.

This also tells us
∂U

∂V

∣∣∣∣
S,N

= −P

(if we plug into dU = TdS − PdV , the TdS term goes away), and similarly

∂S

∂V

∣∣∣∣
U,N

=
P

T

which is “volume equilibrium.” Remember that we had a fixed partition that only allowed heat transfer between two

parts of a system: now, let’s see what happens with a movable partition!

23.3 Deriving some important cases
Let’s say we have a system with A and B separated by a partition. Now, let’s say that A and B can exchange volume

V , but they cannot exchange N, the number of particles, or U, the internal energy.

If A and B are at thermal equilibrium, then the entropy is maximized. What changes when we move the partition

a bit? volume is being exchanged, so

dV = dVA = −dVB.

Writing out changes in entropy in terms of partial derivatives like we did last time, since we’re at a maximum entropy,

∂SA
∂VA

∣∣∣∣
UA,NA

dVA +
∂SB
∂VB

∣∣∣∣
UB ,NB

dVB = 0,
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and this means we want ∂SA
∂VA

∣∣∣
UA,NA

= ∂SB
∂VB

∣∣∣
UB ,NB

. Plugging in, this means
PA
TA
=
PB
TB

=⇒ PA = PB (since we’re at

thermal equilibrium). So this means that pressures are equal at equilibrium! Similarly, if we have a partition where

we can exchange only particles but not internal energy or volume, we find that

∂S

∂N

∣∣∣∣
U,V

= −
µ

T

is constant.

23.4 Entropy’s role in thermodynamic processes
Remember that an adiabatic process has no heat transfer (because it moves too quickly, for example): dQ = 0.

Definition 147

An isoentropic process has no change in entropy: ∆S = 0.

These two are not interchangeable! It’s possible to have zero change in heat but a nonzero change in entropy. For

example, free expansion is adiabatic if it happens fast enough and is isolated, but the entropy does increase. Let’s also

be a bit more specific about some other words we’ve discussed:

Definition 148

A quasi-equilibrium process is one where the state is always near thermodynamic equilibrium, so that state

variables are defined throughout the process, meaning we can use the first law. A reversible process is a quasi-

equilibrium process in which the direction of heat flow and work can be changed by infinitesimal changes in external

parameters.

It’s not necessarily true that quasi-equilibrium processes are reversible though. For example, processes with friction

have some dissipation of energy, which means that we can’t do them in reverse and get back to our original state.

However, if we do them sufficiently slowly, state functions can be consistently defined.

23.5 Looking at change in entropy in the PV plane

Example 149

Consider the isometric heating of a gas: in other words, we hold the volume constant and dV = 0.

This means dU = d̄Q = TdS =⇒ dS = dU
T . Therefore,

∂U

∂T

∣∣∣∣
V

= T
∂S

∂T

∣∣∣∣
V

=⇒
∂S

∂T

∣∣∣∣
V

=
CV (T )

T
=⇒ S(T, V )− S(T0, V0) =

∫ T
T0

dT ′

T ′
CV (T

′)

where CV (T ) is some function of T . Looking at a simple system like the monatomic ideal gas, we have CV = 3
2NkB,

so

∆S =
3

2
NkB ln

T

T0
.
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Example 150

Now let’s look at the isobaric heating of a gas: keep pressure constant and dP = 0.

Remember from our problem set and other discussions that we can define the enthalpy

H = U + PV,

and in our system here, dH = dU + d(PV ) = TdS − PdV + PdV + V dP = TdS + V dP . Now, because we have an

isobaric process,

dH = TdS =⇒
∂H

∂T

∣∣∣∣
P

= T
∂S

∂T

∣∣∣∣
P

.

Rearranging this, we have that CP (T ) = T ∂S
∂T

∣∣
P
, so

S(T, P )− S(T0, P ) =
∫ T
T0

dT ′

T ′
CP (T

′),

so again for a monatomic ideal gas, CP = 5
2NkB, and we have

∆S =
5

2
NkB ln

T

T0
.

Example 151

Finally, let’s think about isothermal expansion (from a volume V0 to a final volume V ): dT = 0.

Let’s rewrite dU = TdS − PdV as

dS =
1

T
(dU + PdV ) =

1

T

(
∂U

∂T

∣∣∣∣
V

dT +
∂U

∂V

∣∣∣∣
T

dV + PdV

)
(since U is a function of V and T ), and this simplifies to

dS =
1

T

(
CV dT +

(
∂U

∂V

∣∣∣∣
T

+ P

)
dV

)
.

Since we have an isothermal expansion, the dT term goes away, and thus

dS =
1

T

(
P +

∂U

∂V

∣∣∣∣
T

)
dV.

To compute this more easily, we’ll expand by volume first:

S(T, V )− S(T, V0) =
∫ V
V0

dV ′

T

(
P +

∂U

∂V

∣∣∣∣
T

)
For an ideal gas, U is only a function of T , so ∂U

∂V

∣∣
T
= 0, and pressure P = NkBT

V , so

S(T, V )− S(T, V0) = NkB ln
V

V0
.
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Fact 152

Draw a cycle using all three of these processes:

• Start at pressure P0 and volume V0, and heat it isometrically to pressure P .

• Isothermally expand the gas from volume V0 to V .

• Finally, do an isobaric compression from volume V back to volume V0.

Notice that VV0 =
T
T0

in an ideal gas, and in this case, the change in entropy over the whole cycle is zero!

So as long as we have a well-defined pressure, temperature, and internal energy at all points in our process, we are

at thermal equilibrium, and our entropy is a state function. In general, this means we can use any path to calculate

our entropy!

24 March 20, 2019 (Recitation)
A lot of interesting new material was covered in class.

24.1 Reviewing the two-level system
Let’s look at the two-level system, where we have N particles that can either be at low energy (0) or high energy (ε).

The lowest possible energy of the system is 0, and the highest possible is Nε.

We’ve picked three special states: 0, Nε2 , Nε. Notice that 0 and Nε have minimum entropy, since there is only 1

possible microstate. In general, the number of microstates for having n0 objects in the lower state and n1 in the higher

state is

Γ(n0, n1) =
n!

n1!n0!
.

This is
(
N
n1

)
: we’re choosing n1 of the N states. This is consistent with the edge cases of 0 and Nε.

Well, what’s the entropy when the energy is half of the maximum? We know that if we have N fair coins, we have

entropy of N bits, which corresponds to Nkb ln 2. So we don’t need any mathematics to understand the entropy of

the system!

What about the temperature of the system? We can argue that it’s usually zero at the ground state, because

we’ve “taken out all of the energy.” We claim that the temperature at the middle state is ∞ and that the energy at

the high state is negative zero!

How do we argue this? We can plot entropy versus energy: it peaks at the middle and starts and ends at 0. So

now
1

T
=
∂S

∂U
.

so the temperature is infinite at Nε2 , because the slope of the S versus E graph is 0. It turns out we have the Boltzmann

factor
n1
n0
= e−(E1−E0)/(kbT );

the idea is that if two groups are equally populated, and the energy states are different, then the ratio on the left hand

side is 1, the exponent must be 0, and a finite energy different means T must be infinite. The idea is that at infinite

temperature, energy doesn’t matter, because it is free!
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Well, notice that the graph has positive slope for E < Nε
2 and negative slope for E > Nε

2 . So the temperature is

positive at first but then becomes negative!

So let’s start plotting other quantities versus temperature. Let’s plot only in the range from T = 0 to T =∞: this

means we only care about energies between 0 and Nε
2 . If we plot E versus T , we start at 0 and then asymptotically

approach Nε
2 .

Fact 153

By the way, note that T, U, E are all parametrized together, so ∂S
∂U keeps N constant, but there’s no other

dependencies to worry about.

So what’s the specific heat of the system? Specific heat measures how much energy we need to change the

temperature, and as T →∞, the energy is not changing anymore: it’s saturated to Nε
2 . So at high temperatures, the

energy saturates, and C → 0.

Fact 154

Here, we have a finite number of possible states and a bounded energy system. This is very different from a gas

that can have infinite kinetic energy! We’ll also find later that there are usually more energy states for ordinary

systems: the spin system is an exception.

What if T is very small? The system wants to be in the ground state, and for very low (infinitesimal) temperature,

we only care about the ground state or the first excited state: there’s only a possibility of one of the N particles

increasing its energy by ε. In the Boltzmann distribution, we have a factor

e−E/(kBT ),

so the probability of the first energy distribution is proportional to e−ε/(kBT ). This is something that characterizes any

system with a ground state and an excited state with an energy gap of ε!

Then we just use the physics of combinatorics: we’ll discuss this as partition functions later, but this exponential

factor is universal across all systems like this. So systems at low temperature show exponential behavior, and if we

plot energy versus temperature, we’ll start off with an exponential behavior. This is what we call gapped behavior.

Example 155

What’s an example of a system without gapped behavior? In other words, when can the excited state have

arbitrarily small energy?

We want to say a classical gas, where the kinetic energy 12mv
2: the velocity v can be arbitrarily small. But not

really: remember that a particle in a box has a smallest energy ~2
L2 , so we do need to take the classical limit or use a

very big box. Then we’ll see that the heat capacity does not have that exponential curve near T → 0.

24.2 Negative temperature?

Let’s look back at T being negative for high energy (in our system, where E > Nε
2 . We’ve always heard that we can’t

cool down and get to negative temperature: there’s an absolute zero. The idea is that there’s a lowest energy state,

and there’s no way to get less energy that that lowest state.
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So negative temperature doesn’t mean we can keep cooling to negative Kelvin. In fact, this system tells us that

negative temperatures appear in a different way! We increase the energy of the system, and the temperature increases

to ∞ and then goes negative. So somehow ∞ temperature and −∞ temperature are very close to each other! This

is because we inherently defined our temperature as a slope being equal to 1
T , and often, Boltzmann factors give 1

T as

well.

So if we get confused, think about 1
T instead! Plotting energy versus − 1T (so that we start off with positive

temperature on the left), we have our energy increasing from 0 to Nε
2 at − 1T = 0, and then it further increases from

Nε
2 to Nε! This is a continuous curve, and everything is smooth between positive and negative temperatures.

In other words, the connection between positive and negative temperatures does not happen at 0: it happens at

∞. This is only possible because we have a maximum energy state! If we were to do this with a system like a classical

gas, the energy would go to ∞ as T →∞. So there wouldn’t be a connection to negative temperature there.

25 March 21, 2019
Today’s physics colloquium is about turbulence, which is a very challenging problem. Part of Professor Fakhri’s group

is looking at biological signals, and it turns out the dynamics of the signaling molecules in the cell follow a class of

turbulence phenomena that is connected to quantum superfluid turbulence.

Remember there’s a problem set due tomorrow, and there will be another one posted soon.

25.1 Overview
Today, we’re going to start discussing some general systems where we can do counting of states. The idea is to

do thermodynamics and statistical physics in systems like a two-level system! We start by counting states to find

multiplicity, and from there we can compute entropy, temperature, and heat capacity.

In particular, we’ll look at a particle in a box, as well as the quantum harmonic oscillator. We’ll introduce an idea

called the density of states, which will tell us important information about the internal energy of the system! This is

not a lecture on quantum mechanics, but we’ll get some descriptions that are related.

By the way, there is a way to count a density of states in a classical system too, even though the states are

continuous! We’ll treat them in a semi-classical way.

25.2 Quantum mechanical systems: the qubit
Recall that in classical mechanics, the number of states is infinite: for example, a system of N particles depends on

the position and momentum (~xi , ~pi), and these quantities (which define states) are continuous variables.

However, in quantum mechanical systems, states are quantized and finite, so they are countable! We’ll learn how

to label and count some simple examples: the qubit, quantum harmonic oscillator, and the quantum particle in a
box.

A qubit is a system with only two states: |0〉 = |+〉 = |↑〉 and |1〉 = |−〉 = |↓〉. Here, |〉 refers to a set of states.

The higher energy state |+〉 has energy E+, and the lower energy state |−〉 has energy E−.

The simplest example of a qubit is a spin 12 particle: for example, an electron in a magnetic field. We know (or are

being told) that the magnetic moment

~µ = −g
( e

2mc

)
~s,
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where g ≈ 2 for an electron, e is the charge of the electron, m is the mass of the electron, and c is the speed of light.

Then when a particle is placed in a magnetic field ~H, the energy is

E = −~µ · ~H =
e

mc
~s · ~H.

In particular, the different energy states are

E+ =
e~
2mc

H,E− =
−e~
2mc

H,

where ~ is Planck’s constant h
2π ≈ 1.054× 10

−34J · s. There are many systems that behave like this at low energy!

Fact 156

These are interesting derivations, but for those of us who haven’t taken 8.04, we shouldn’t worry too much about

it.

In general, if we have a quantum particle with spin j in a magnetic field, the different possible energy states are

Em =
e~g
2Mc

mH,

where m = j, j − 1, · · · ,−j . This has to do with systems exhibiting paramagnetic properties!

25.3 Quantum harmonic oscillator
Let’s start by looking at a classical example. We have a harmonic oscillator with spring k and mass m, where the

potential energy V (x) = 1
2kx

2 = 1
2mω

2x2 (if the natural frequency is ω =
√
k
m .

This is used to explain vibrations of solids/liquids/gases, as well as other material properties. The energy (or

Hamiltonian) of this system can be written classically as

H =
p2

2m
+
1

2
kx2,

and we find that x(t) = A cos(ωt + φ), and the energy of this system is a continuous quantity mω2A2.

On the other hand, in the quantum version, we can label our quantum states as |n〉, for n = 0, 1, 2, · · · , and there’s

only a few allowed energies. They are equally spaced in units of ~ω:

En =

(
n +
1

2

)
~ω,

where the lower allowed energy 12~ω is the zero point energy. We can also have a bunch of non-interacting particles

in the same harmonic oscillator potential: then we just add the individual energies.

Fact 157

The energy of a set of non-interacting particles moving in a harmonic oscillator potential is (for example)

E(n1, n2, n3) = ~ω
(
n1 + n2 + n3 +

3

2

)
.

The states here are denoted as |n1, n2, n3〉, where each nj = 0, 1, 2, · · · . It’s pretty easy to see how this generalizes.

Well, there’s a one-to-one correspondence between a one-dimensional system with N particles and an N-dimensional
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harmonic oscillator for one particle: the energy states look the same!

EN(n1, · · · , nN) = ~ω
(
n1 + · · ·+ nN +

N

2

)
.

25.4 Particle in a box
This system has applications to an ideal gas in a box, as well as to black-body radiation and Fermi and Bose gases.

Basically, we care about the limit of a large box.

Consider a particle with mass M in a three-dimensional cubic box of length L. Quantum energy states can be

labeled |n1, n2, n3〉 by three integers! We can show that including boundary conditions,

E(n1, n2, n3) =
π2~2

2ML2
(n21 + n

2
2 + n

2
3).

These energy levels are very closely spaced! Let’s compute this for an oxygen molecule. If the box measures 1 mm on

a side,

E ≈
10× 10−68

2× (32× 1.67× 10−27) · 10−6 ≈ 10
−36J ≈ 6× 10−16eV.

These are very small numbers: compare this to kBT at room temperature

kBT =
1

40
eV.

So most of the time, we can assume the energy levels are almost smooth (since we often compare energy to kBT in

our calculations), which makes our work a lot easier!

25.5 Counting states and finding density
Let’s look at our particle in a box.

Fact 158

The math will be more complicated from this point on. We should review theta and delta functions!

Let’s say we want to find the number of energy states N(E) in a box of volume V with energy less than E. Once

we find N(E), the number of states, we can differentiate it to find dNdE , which will give the number of states between E

and E+dE (this is similar to how we differentiated a cumulative distribution to get a probability distribution function!).

Note that in our cumulative distribution N(E) will be stepwise (since we have some finite number of states for

each energy level), and we will normalize it by dividing by π2~2
2ML2 . But as we go to higher temperatures, the steps are

very small compared to kBT , so we can do a smooth interpolation! The idea is that dNdE is a sum of delta functions

(because N is a bunch of step functions), but we can approximate those with a smooth curve as well. This is called a

delta comb, by the way.

So now

N(E) =
∑
n1,n2,n3

θ

(
E −

π2~2

2ML2
(n21 + n

2
2 + n

2
3)

)
,

since we only count a state if the total energy is at most E. Doing our interpolation, the sum becomes an integral:

since n1, n2, n3 can take on positive values,

N(E) =

∫ ∞
0

dn1

∫ ∞
0

dn2

∫ ∞
0

dn3θ
(
c2 − n21 − n22 − n23

)
,
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where c2 = 2ML2E
π2~2 , just to make the calculations a bit easier. To evaluate this integral, let’s let nj = cyj :

N(E) = c3
∫ ∞
0

dy1

∫ ∞
0

dy2

∫ ∞
0

dy3θ(1− y21 − y22 − y23 ).

Notice that this is one-eighth of the volume of a unit sphere! This is because we want y1, y2, y3 to be positive and

y21 + y
2
2 + y

2
3 ≤ 1. So the volume is just π6 , and

N(E) =
π

6
c3 =

π

6

(
2ML2E

π2~2

)3/2
and since L3 = V , we get a factor of V out as well, and we can simplify further.

For any quantum system, if E = E(n1, · · · , nN), then

N(E) =
∑
{nj}

θ(E − E({nj})).

Then we can differentiate
dN

dE
=
∑
nj

δ (E − E({nj})) .

So in this case, since

N(E) =
π

6

(
2M

π2~2

)3/2
V E3/2,

we have
dN

dE
=
π

4

(
2M

π2~2

)3/2
V E1/2.

Fact 159

In general, if Ek occurs some gk number of times, this is called a degeneracy factor. Since we want to count all

the states, we get a gk factor in front of our theta function! This is better explained with examples, though.

Example 160

Let’s count the density of states in a quantum harmonic oscillator.

Then En =
(
n + 12

)
~ω, and the number of states N(E) is a step function that increases by 1 at 12~ω, 32~ω, and

so on. So

N(E) =

∞∑
n=0

θ

(
E − ~ω

(
n +
1

2

))
If E � ~ω, we can again make this into an integral:

N(E) =

∫ ∞
0

θ

(
E

hω
− n −

1

2

)
dn ≈

E

~ω
,

so we have dNdE =
1
~ω .

Next time, we’ll talk about how classical systems can still be counted! This is the idea of a semi-classical description.

26 April 1, 2019 (Recitation)
Today’s recitation is being taught by Professor England.
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Let’s go back to discussing the ideas of entropy! Remember that we started off by discussing information entropy,

but now we want to start developing entropy more as a thermodynamic and statistical quantity.

26.1 Rewriting the first law
Earlier in the class, we found that we could describe our energy dU as a product of the generalized force and generalized

displacement:

dU =
∑
i

(
∂U

∂xi

)
dxi .

Here, we referred to TdS as “heat” dQ, and PdV , as well as other terms, as “work” dW . But our dS = d̄QT could be

interpreted differently: if we define Ω as a function of state variables U, V, N, · · · as the number of different microstates

consistent with our data, we could also define

S = kB lnΩ.

There’s a lot of plausibility arguments that can support our theory working this way! For example, two objects in

contact have maximum entropy when they have the same temperature, and indeed we want entropy to increase as

time evolves.

So let’s run with this, and let’s see if we can rewrite the first law in a more sensible way. Since S is proportional

to lnΩ, we have dS = kBd(lnΩ): plugging this into the first law,

d(lnΩ) =
dU

kBT
+
PdV

kBT
−
µdN

kBT
· · ·

This gives us another way to think of how to “count” our states! We can ask questions like “how does a flow of heat

contribute to our entropy?” or “how does entropy change if I increase the volume?” So the right hand side is a bunch

of levers that we can pull: now we can see how our statistical quantity changes when I adjust my other terms!

26.2 Applications to other calculations
We can go back to our ideal gas model, and we’ll see that the calculations fall out pretty easily!

Let’s say we have N particles in a box of volume V , and we want to think about the number of microstates we can

have.

Fact 161

Scaling is very useful; we don’t have to be too exact with our calculations.

Microstates are dictated by two variables: the position and the momentum of the individual particles. It’s true that

if we tried to count the number of discrete “float numbers” that would work, we’d have infinitely many possibilities

for ~x . But there’s still a sense in which having twice as much volume gives twice as many possible positions, so

the number of states here is basically proportional to V ! Similarly, momentum, which is independently assigned to

particles of position, has some function a(U) in terms of the internal energy. Since we have N particles, the number

of microstates here is proportional to

Ω = (cV · a(U))N .
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Fact 162

One other way to patch this up is with the uncertainty principle: dpdx ∼ ~: we do need discrete states in that

case.

To get to entropy from here, we take a logarithm and multiply by kB (which is just a units conversion factor):

kB lnΩ = NkB(ln V + ln a(U) + c).

Notice that the constant term c comes from the fact that we only care about differentials and differences in the first

law! For example, pressure is really just
P

kBT
=

(
∂(lnΩ)

∂V

)
U,N,···

.

Let’s try plugging that into our expression for lnΩ: this yields

P

kBT
=
N

V
,

which rearranges to the ideal gas as desired!

Fact 163

We can always take a derivative (in principle) fixing all the other variables. It might be experimentally difficult to

do this, though.

So another way to say this is that the ideal gas is just related to the scaling of states with volume.

But there’s something wrong with the entropy we’re using: we wanted the change in entropy to be an extensive

quantity. U is extensive: putting two copies of the system next to each other doubles the energy. Since U and lnΩ

play similar roles in the first law, we want them to both be extensive. But lnΩ = N ln V , but doubling the size of the

system doubles both N and V , and this doesn’t give exact extensivity. What’s going on here?

Fact 164

This is called Gibbs’ paradox! The idea is that we treated our particles as different: if particles 1 and 2 are on the

boundary and 3 is in the middle, this is different from 1 and 3 on the boundary and 2 in the middle. But there’s

really no way for us to be able to distinguish our particles!

So it seems that there are N! permutations, and we want to divide through by N!. But this isn’t actually an exact

answer! Remember that we have quantized states, so we’re not overcounting particle states when many particles are

close to each other. So we’d run into problems where dividing by N! is artificially penalizing particles nearby - we’ll

return to those ideas for now.

But we’ll deal with dilute gases, since we’re doing ideal gas calculations anyway, and then it is exact to say that

Ω =
(V · a(U))N

N!
.

With Stirling’s approximation, this gives

lnΩ = N ln V − N lnN + N = N ln
V

N
+ N.

Now this is an extensive quantity! V
N is an intensive quantity: it’s related to the density, and now scaling the system

by a factor of 2 does scale lnΩ by a factor of 2 as well.
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Example 165

If we have two independent identical systems, they have the same number of possible microstates Ω, so the total

system has Ω2 possible states: this does yield twice the entropy. On the other hand, if we put the two systems

to together, what happens to the entropy? Doesn’t it increase again?

This is again an issue of Gibbs’ paradox! The particles in the two systems are indistinguishable, so we should

really think a bit more about those N!-type terms. Keep this in mind when we start thinking about quantum systems

(particularly Bose-Einstein condensates), though.

26.3 Relating this to temperature
Let’s think a bit more about our ideal gas system. The internal energy of this system is

U =

3N∑
i=1

p2i
2m

,

since each particle has 3 degrees of freedom. So if we have some given energy U, how many possible arrangements

Ω(U, V, N) are there? Basically, how does Ω scale with U?

Let’s do the cheap thing: we have a bunch of independent coordinates pi whose squares add to some constant,

which means that the momentum coordinates in phase space are on a hypersphere of radius
√
2mU. Really, we care

about scaling: how does the size of a sphereical shell change with volume? Because the volume of the whole sphere

goes as r3N , the boundary goes as r3N−1, but we can ignore the 1 if N is really big. So that means

Ω(U, V, N) ∼
V N

N!

√
2mU

3N
∼
V N

N!
U3N/2.

Going back to our first law equation, let’s look at the part

d(lnΩ) =
dU

kBT
+ · · ·

and differentiate with respect to U. This yields(
∂(lnΩ)

∂U

)
V,N

=
1

kBT
=

(
∂(lnU)

∂U

)
3N

2
=⇒ U =

3NkBT

2
.

This gives us the temperature definition out of our calculation of microstates as well!

26.4 Increasing entropy
Finally, let’s do another look at the second law of thermodynamics. This law is initially encountered empirically: given

a process that we design and take a system through, we can (for example) draw a loop in our PV diagram. In these

cases, the total entropy will always increase: ∆S of the environment plus ∆S of our system cannot get smaller.

So this is a very empirical law, but our new description gives us a way to think about this more clearly! (By the

way, it’s important to note that this is always an average law.) So suppose we have a surface of states in U, V, N

space, and we follow our system by doing dynamics with Hamilton’s equations. What does it really mean for entropy

to increase? There’s two notions here: one is to count the number of states on our surface and take the logarithm,

but that doesn’t really tell us anything in this case.
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Instead, we can think of some quantity R: maybe this is “the number of particles on the left side” or “some measure

of correlation with a 3-dimensional figure.” The point is that we can assign a value of R to all microstates, and now

we can group our microstates together by values of R: this is called “coarse-graining.”

So what’s Ω(R)? Much like with Ω, it’s the number of microstates consistent with some value of R, and we can

define an “entropy” kB lnΩ(R) along with it. The concept is that R will eventually stabilize to some quantity - for

example, particles are not likely to unfill a region.

That means S(R) will increase generally - it may fluctuate, just as R does, but S is an average quantity. One

way to think of this is that as we move in our state space, we’ll generally get stuck in the biggest volumes of R: it’s

much more likely that we’ll end up there on average! Analogously, two systems at thermal equilibrium can go out of

equilibrium, but they’re likely to return back into equilibrium (because it is thermodynamically favorable to do so). So

entropy can decrease, but that is usually nothing more than a statistical fluke.

27 April 2, 2019
The energy level of the class is higher after the break! There’s a problem set due this Friday; we should make sure we

understand the material from the required reading.

There will be an exam on April 17th, which is similar to last exam. We’ll start hearing announcements about it

soon.

Recall that we started by introducing information and thermodynamic entropy. We found that counting the number

of microstates consistent with a macrostate gives us a measure of entropy as well, and then we could calculate the

temperature, heat capacity, and many equations of state. This then led us to introducing a few different systems,

where we could actually count states.

We discussed a two-level qubit, particle in a box, and quantum harmonic oscillator, because these all have discrete

states. Today, we’ll talk about how to extend this to classical systems and give them this kind of treatment as well.

The idea is to count states to find the density of states as well, which gives us a probability distribution.

27.1 Returning to the particle in a box
As we calculated last time, the density of states depends on the energy E of the system:

dN

dE
=

1

4π2~3
(2M)3/2V E1/2.

Our goal is to find a connection here to a classical system: let’s say we have some volume dV that is infinitesimal

on the classical scale but large enough to contain many quantum states. Then for our box,

dV = dxdydz = d3x

(for simplicity). If we rewrite E in terms of momentum as p
2

2m , then dE = pdp
m ; substitute this into our equation above,

and we can pull out a factor of 4π:

dN =
4π

8π~3
p2dpd3x

Now notice that the 4πp2dp looks a lot like spherical coordinates: d3p = p2dp sin θdθdφ, and integrating out θ and

φ gives the result we want. So that means (because ~ = h
2π ),

dN =
1

h3
d3xd3p.
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This means that dx and dp, which are classical degrees of freedom, yield something about our states dN, just with a

normalization factor 1
h3 ! So looking back at

dN

dE
=

1

4π2~2
(2M)3/2V E1/2,

we can think of 1
h3 as a “volume” that contains one state. This means that we can go from classical systems to

semi-classical descriptions: our “volume” in phase space is

h3 = ∆x∆px∆y∆py∆z∆pz .

In other words, we can think of our volume h3 as contain 1 state in our phase space.

Example 166

Let’s go back to the density of states calculation for a quantum harmonic oscillator, but we’ll start with a

1-dimensional classical harmonic oscillator and do this trick - let’s see if we end up with the same result.

The number of states with an energy less than E is

N(E) =

∫
dxdp

2π~
θ

(
E −

p2

2m
−
1

2
kx2
)

(where h = 2π~ is the normalization factor as before). Writing 1
2kx

2 = ξ2, p
2

2m = η2, our number of states can be

written as

N(E) =
1

π~ω

∫
dηdξθ(E − η2 − ξ2)

and since the integral is the area of a circle with radius
√
E, this is just

N(E) =
πE

π~ω
=

E

~ω
,

which is the same result that we got with the quantum harmonic oscillator! Then we can find dN
dE , which will give the

number of states with energy between E and E + dE. We can think of our dxdp2π~ idea as a “volume normalization.”

27.2 A useful application
Now, we’re going to use this counting-states argument to look at thermodynamics of an ideal gas. Remember that

we could count our states in our two-level system if we were given the energy of our overall system, so let’s try to

think about a microcanonical ensemble: systems that are mechanically and adiabatically isolated with a fixed energy.

We’ll discuss Sackur-Tetrode entropy along the way as well.

First of all, our goal is to find the multiplicity: how many states Γ(U, V, N) are consistent with a given U, V, N?

Once we know this, we’ll write our entropy S(U) = kB ln Γ (at thermal equilibrium), and then we can calculate our

temperature with the familiar equation
∂S

∂U

∣∣∣∣
N,V

=
1

T

to find our energy U in terms of V, T,N (and by extension the heat capacity). Finally, we’ll find the equation of state

by taking some derivatives.

Let’s use the model where we have N molecules of a monatomic gas in a box of side length L. Then the energy
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of our system (as a particle in a box) is

E(nx , ny , nz) =
π2~2

2ML2
(n2x + n

2
y + n

2
z ).

To count the number of states, let’s assign a vector ~nj to each particle, where 1 ≤ j ≤ N. Every particle contributes

to the state, but since the particles are indistinguishable, we overcount by a factor of N!. (We’ll return to this idea

later.) So the multiplicity is

Γ(U, V, N) =
1

N!

∑
~n1

∑
~n2

· · ·
∑
~nN

δ

(
2ML2U

π2~2
−
∑

~nj
2

)
since we want to only pick out the states with a certain energy. We’ll find that we have very closely spaced states,

so we can approximate this sum as an integral from 0 to ∞. Let’s then replace this as half of the integral from −∞
to ∞ by symmetry: since each of N particles has 3 degrees of freedom, and there are 3 integrals, this means we now

have an integral over all degrees of freedom

Γ(U, V, N) =
1

23NN!

∫
d3n1 · · · d3nNδ(R2 −

N∑
j=1

~nj
2),

where R2 = 2ML2U
π2~2 . So we now have 3N variables (basically, we want the surface area of a 3N-dimensional sphere of

radius R): let’s replace our ~nis with the 3N variables ξ1, ξ2, · · · , ξ3N . Our integral is now

Γ =
1

23NN!

∫
d3Nξδ(R2 − ~ξ2)

and normalizing by letting ξj = Rzi , this becomes

Γ =
1

23NN!
R3N−2

∫
d3Nzδ(~z2 − 1).

(The 3N − 2 comes from δ(cx) = 1
c δ(x).) Since N is very large, we can approximate 3N − 2 as 3N, and so now we

want to deal with the integral ∫
d3Nzδ(~z2 − 1) =

1

2

∫
d3Nδ(|~z | − 1).

The integral is now the surface area of a 3N-dimensional sphere

S3N =
3N

2

π3N/2(
3N
2

)
!

so we can plug that in: this yields

Γ =
R3N

23N−1N!
S3N

and we’re done with our first step!

27.3 Calculating the entropy of the system
Now, let’s start calculating entropy and our other relevant quantities. Since S = kB ln Γ, we can plug in the values we

have: we’ll approximate 23N−1 as 23N , and by Stirling’s approximation,

S = kB

[
3N ln

R

2
− N lnN + N +

3N

2
lnπ −

3N

2
ln
3N

2
+
3N

2

]
.
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We’ll factor out an N and combine some other terms as well:

S = NkB

[
3 ln

R

2
− lnN +

3

2
lnπ −

3

2
ln
3N

2
+
5

2

]
.

We’ll now substitute in our value of R =
√
2mL2U
π~ :

S = NkB

(
3

2
lnU + 3 lnL+

3

2
ln

M

2π2~2
+
3

2
lnπ −

5

2
lnN −

3

2
ln
3

2
+
5

2

)
.

We’ll now combine the terms with a 32 in front: since 3 lnL = lnL3 = ln V ,

S = kBN

(
3

2
ln
U

N
+ ln

V

N
+
3

2
ln

M

3π~2
+
5

2

)
and now we’ve found our entropy in terms of the variables we care about! This is called the Sackur-Tetrode entropy.

27.4 A better analysis: looking at temperature
So let’s try to think about the consequences of having all of the different parts here. If we didn’t have the ~ term in

our entropy, imagine we take ~ to 0. Then our entropy S goes to infinity, and we know that this isn’t supposed to

happen. The idea then is that there is some length scale where quantum effects become obvious!

Also, entropy is an extensive quantity: we have the N in front of our other terms, and that’s why the N! correction

term was important for us to include. Notice that if we double our volume, ∆S = NkB ln 2 (exercise), so this is

consistent with what we want!

So now let’s calculate temperature:

∂S

∂U

∣∣∣∣
V,N

=
1

T
=
3NkB
2U

=⇒ U =
3

2
NkBT

which is the same result we had before: this is consistent with the equipartition theorem! Finally, since TdS = PdV +c

(where c is other terms that are not relevant to S and V ),

P

T
=
∂S

∂V

∣∣∣∣
U,N

=
NkB
V
=⇒ PV = NkBT,

which is the equation of state for an ideal gas! Similarly, we know that −µdN = TdS + c ′ (where c ′ is other terms

that aren’t relevant to N and S),

−
µ

T
=
S

N
−
5

2
kB =⇒

5

2
NkBT = TS + µN,

and this can be rewritten as
3

2
NkBT + NkBT = U + PV = TS + µN ,

which is known as Euler’s equation.

27.5 Microcanonical ensembles
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Definition 167

A microcanonical ensemble is a mechanically and adiabatically isolated system, so the total energy of the system

is specified.

This means that in phase space, all possible microstates - that is, all members of the ensemble - must be located

on the surface H(µ) = E. At thermal equilibrium, all states are equally likely, so the probability of any given state is

PE(µ) =


1
Γ(E) H(µ) = E

0 otherwise.

Next class, we’ll comment a bit more about uncertainty in this surface (to create volumes)!

28 April 3, 2019 (Recitation)

28.1 The diffusion equation
Let’s start with a concept from the problem set. We’ve always been discussing thermodynamic entropy as

S = −kB
∑

pi ln pi = kb ln Γ

(where Γ is the number of microstates) if all states are equally likely.

But now when we look at the diffusion equation, we’re given a slightly different equation for a gas in one dimension:

S = −kB
∫
ρ(x, t) ln ρ(x, t)dx.

What’s the connection between the two? If we take some small volume ∆V , then the probability that we find a

molecule in that volume at position x is

p(x) = ρ(x)∆V.

So this equation is just the probability distribution entropy, ignoring the normalization constant!

Next question: let’s look at the diffusion equation more carefully:

∂ρ

∂t
= D

∂2ρ

∂x2
.

Can we argue why this always increases the diffusion of the gas from general principles? If we spread our probability

over more possibilities, then entropy goes up: the larger Γ is, the more microstates we have, which means all individual

probabilities are small.

Well, diffusion makes our peaks in ρ go down! So the probability distribution is getting wider and flatter, and this

is a lot like making all of our probabilities go to 1
n : we’re moving toward “equilibrium.”

28.2 Black holes
There’s a lot of physics going on here! We have a relation between relativistic mass and energy from special relativity:

E = Mc2, and we have the Schwarzchild radius from general relativity; Rs = 2GM
c2 . Black holes are a good place

to do research, because they are a system where we can make new discoveries: there are big open questions about

combining quantum physics with general relativity.
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Here’s one interesting idea: if there’s nothing to say about a black hole other than its angular momentum and

mass, then matter with entropy sucked into that black hole has disappeared: doesn’t this mean entropy has decreased?

We can never combine two microstates into one, so what’s going on here?

Turns out black holes aren’t completely black! They are actually at a “temperature”

Th =
~c3

8πGkBM
.

This is called “Hawking radiation,” and this is a way for black holes to communicate with the outside world (using

electromagnetic radiation). This means that we can actually have an entropy for black holes, and the contradiction is

gone!

Fact 168 (Sort of handwavy)

This is a bit past standard explanations, but the idea is that the Schwarzchild radius is an “infinite potential:”

no particles can get past the event horizon. But adding quantum fluctuation (due to quantum field theory

“spontaneously” producing particle-antiparticle pairs), we can create virtual photons at the boundary: one with

positive energy can escape, and another with negative energy gets sucked into the black hole.

So we can think of this as having a black-body radiation spectrum, where there is a peak at the temperature

~ω = kBTBB.

So now you can integrate to find the entropy of a black hole: we can find that it is related to the surface area of a

sphere with Schwarzchild radius! This is relevant to understanding complicated materials: for example, the entropy

of most systems (like an ideal gas) is dependent on volume. Black holes tell us a different story: entropy doesn’t

necessarily scale with volume. After all, 1
M , so the derivative ∂S

∂E is proportional to E. So S is proportional to E2,

which is proportional to R2s !

So the fact is that we have a complicated system for which only the surface matters: this scales much slower than

volume. Thus, describing superconductors and other materials is motivated by this discussion of a black hole! This is

called the “holographic principle.”

28.3 Negative temperatures
Let’s start by talking about heat transfer: it’s about energy conservation and increase in entropy. Usually, we have

systems coupled to a reservoir: those reservoirs have a lot of energy, but we don’t want to go against what nature

wants! So then a “deal” is made: if the reservoir gives an energy ∆E = T∆S, then the entropy of the reservoir

decreases by ∆SR = ∆E
T . So the system just needs to make sure that the entropy created by the system is larger:

|∆SS| ≥ |∆SR|, and then all the energy in the world can be transferred. This has to do with free energy, which we’ll

talk about later!

So let’s say that we transfer the energy from our reservoir R to our system S, and this just heats up our system

S. Then the increase in entropy of the system is

∆Ss =
∆E

TS
:

then if we want total entropy to increase, clearly this only happens if TS ≤ TR. So it’s only thermodynamically favorable

to transfer heat ∆Q from higher temperature to lower temperature. But what happens when negative temperatures

are involved?
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Remember that when we drew our graph of S versus E for the two-level system: the temperature is 1
slope . The

slope goes from positive to 0 and then 0 to some negative value, which avoids the singularity of ∞ temperature! So

now we want 1
TS
> 1
TR

: regardless of whether we have two systems at positive temperature or two systems at negative

temperature, they will want to move “towards” each other. But if we look at the total entropy, the equation we care

about is that heat is transferred from R to S if and only if

1

TR
<
1

TS
.

But now the question: if we bring a temperature with negative temperature in contact with one of positive

temperature, what will happen? 1
T is continuous in this case, and two sysetms always want to equilibriate! So what

is going on here is that systems at negative temperature gain entropy when you lose energy! The reservoir pays for

both the energy and the entropy, so it will willingly transfer energy ∆E: then the entropy of both the reservoir and the

system both go up.

So what happens is that if a system with negative temperature is in contact with an ideal gas with some positive

temperature, then the gas will always gain more energy!

29 April 4, 2019
This is a reminder that the problem set is due tomorrow!

29.1 Brief overview
Last class, we used our knowledge of quantum systems (namely the particle in a box) to determine thermodynamics

of an ideal gas. The idea is that the internal energy of the system is fixed, so we can count the number of possible

states: then because at thermal equilibrium, all microstates are equally likely, we can just use the formula S = kB ln Γ

to find the entropy. From there, we could find the temperature of the system, as well as the general equation of state.

This then led us to the definition of a microcanonical ensemble.

Today, we’re going to go back to how thermodynamic started: using heat engines! We’ll see how to extract work

from those engines, and we’ll find a bound on the efficiency on such engines. From there, we’ll start looking beyond

having “isolated systems:” we’ll see how to do statistical physics with just parts of systems, which will lead us to the

idea of free energy.

By the way, the question of N! in our calculations from last week is an important idea: this will be a problem on

our next problem set.

29.2 The third law of thermodynamics
We’ve talked quite a bit about entropy as information and also in terms of heat transfer, but let’s start looking beyond

just those ideas!
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Theorem 169 (Third law of thermodynamics)

The following are equivalent statements:

• As temperature T → 0, the entropy of a perfect crystal goes to 0.

• As temperature T → 0, the heat capacity C(T )→ 0.

• It is impossible to cool a system to T = 0 in any finite number of steps.

Let’s go through each of these concepts one by one. The idea with the first statement is that a perfect crystal

should always be at the ground state (in quantum mechanics) when all thermal energy is taken away (T = 0), so there

should only be Γ = 1 microstate! Thus, S = kb ln Γ = 0. However, systems do have imperfections: for example, some

atoms in a piece of glass may not be in this perfect crystal shape. So it will take a very long time for the system to

“relax:” this is a kind of residual entropy, and there are interesting ways to deal with this.

Thinking about the second statement, let’s write entropy in terms of the heat capacity.

Lemma 170

Entropy for a given pressure and temperature is

S(T, P ) = S0 +

∫ T
0

dT

T
CP (T ).

where S0 is some “residual entropy” mentioned above.

Proof. We start from the first law and formula for enthalpy:

dU = TdS − PdV =⇒ dH = TdS + V dP.

At constant pressure,
∂H

∂T

∣∣∣∣
P

= T
∂S

∂T

∣∣∣∣
P

= CP (T ),

where the third term disappears due to dP = 0, and now integrating both sides of ∂S
∂T

∣∣
P
= CP (T )

T yields the result

above.

But now if we take T → 0, the integral will diverge unless CP (T ) goes to zero! So we must have CP (T )→ 0.
Finally, let’s think about the third statement: how can we think about cooling a system in this way?

29.3 Engines and efficiency

Definition 171

A heat engine is a machine that executes a closed path in the (phase) space of thermodynamic states by absorbing

heat and doing work.

Since internal energy is a state function, a closed loop will not change the internal energy of our system! We can

think of this alternatively as assigning a U to each point in our phase space. This can be written as

0 =

∮
dU =

∮
TdS −

∮
PdV.
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Note that
∮
PdV > 0 =⇒ our engine does work, and

∮
TdS > 0 =⇒ heat is added to the system. If we draw a

clockwise loop in PV -space, the engine will do work on the surroundings, and we can make an analogous statement

about TS-space.

So our goal is to construct such a closed loop and find the efficiency: how much work do we get for the amount

of heat we are putting in?

Definition 172

A Carnot engine is a special engine where all heat is absorbed at a fixed temperature T+ and expelled at a fixed

T−.

This is an ideal engine: in other words, we are assuming that this is a reversible process and that all heat exchange

only takes place between a source T+ and sink T−. We can think of this as having our system between a source and

sink, absorbing some heat Q+, expelling some heat Q−, and doing some work W .

By the first law, since ∆U = 0,

Q+ = Q− +W.

If we have a reversible transfer of energy between the system and the source, then the change in entropy

S+ =
Q+

T+
.

(If our system is not ideal, we may have additional entropy gain, since we lose additional knowledge about our system.

So in general, we’d have S+ ≥ Q+

T+ .) Similarly, we also have a reversible transfer of energy between the source and

sink, so the entropy expelled to the environment is

S−

=

Q−

T−
.

(In an irreversible process, some of the entropy remains as residual entropy inside our engine, so generally we have

S− ≤ Q−

T− .

Definition 173

Define the efficiency of an engine to be

η =
W

Q+
=
Q+ −Q−

Q+
= 1−

Q−

Q+

to be the ratio of work we can do with the engine to the heat that we put in.

We know that in our cycle, the entropy in and out of our system should also be a state function. So ∆S = 0, and

S+ = S− =⇒
Q+

T+
≤
Q−

T−
=⇒

Q−

Q+
≥
T−

T+
.

Plugging this in to our definition, we have the following:

Proposition 174 (Carnot’s bound on efficiency of a heat engine)

The maximum efficiency of a Carnot engine between a source of temperature T+ and sink of temperature T− is

η = 1−
T−

T+
.
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Example 175

The maximum efficiency of an engine between 327◦ Celsius and 27◦ Celsius is 600−300300 = 1
2 (convert to Kelvin).

This Carnot efficiency is an absolute thermodynamic bound, and it’s saturated when all heat is added at some

temperature T+ and expelled at some temperature T−.

If we plot this process in the TS plane, we trace out a rectangle and have to do the following steps:

• Isothermally compress the gas at temperature T−: this requires expelling Q− heat and doing an equal amount

of work.

• Put in work to adiabatically compress our gas from T− to T+.

• Isothermally expand the gas at temperature T+: this requires putting in Q+ heat and expelling that amount of

work.

• Let the gas adiabatically expand back to temperature T− (and get work out of it).

In the PV plane, the first and third steps (for an ideal gas) follow the isotherms PV = c , and the second and fourth

steps follow PV γ = c . The total work done here is the area enclosed by our curve in the PV plane! For an ideal gas,

we have the following: If we say that our steps lead us between states 1, 2, 3, 4, then we can make the following table:

Step Process Work by Heat

1→ 2 isothermal compression −nRT ln V1V2 −nRT− ln V1V2
2→ 3 adiabatic compression not needed 0

3→ 4 isothermal expansion nRT+ ln V4V3 nRT+ ln V4V3
4→ 1 adiabatic expansion not needed 0

where the “not needed” steps will cancel out.

So the total heat added is

Q+ = nRT+ ln
V4
V3
,

while the work done is

Q+ −Q− = nRT+ ln
V4
V3
− nRT− ln

V1
V2
.

We can show that V4V3 =
V1
V2

by using the fact that PV γ = c for adiabatic compression and expansion, and therefore we

indeed have indeed

η =
W

Q+
=
T+ − T−

T+

saturates the Carnot efficiency!

Does our system change when we deal with small numbers and more fluctuation? The question of “whether we

can beat the Carnot efficiency” is still a good question of research today at small scales!

Next session, we will introduce an interesting engine called Stirling’s engine, whose work per cycle is better than

the Carnot theoretical efficiency!

30 April 8, 2019 (Recitation)
This recitation was taught by Professor England.
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We often consider a situation where a piston is pushing on a gas. One assumption that is usually made is that we

have a “quasi-equilibrium” state: the system is compressed slowly, so that we’re always close to an equilibrium state

(for example on our PV diagram).

In this scenario, we do actually use exact differentials in a way that can be measured. Then if we apply some force

F over an infinitesimal distance dx , we have our first law

dU = d̄W + d̄Q = −PdV + TdS.

But in real life, we usually push our piston down quickly, and the compression is done rapidly. Now our question

is: what’s the amount of work we do if our gas isn’t in equilibrium? (Basically, our system is not given enough time

to relax.)

Example 176

Let’s say our gas is placed in a bath at temperature T .

When we compress an ideal gas very slowly, dU = 0 (since the temperature stays constant). This means

d̄Q = d̄W =⇒ PdV = TdS.

On the other hand, what’s the change in entropy for this process? The entropy change over the universe is

∆Suniverse = ∆Ssystem + ∆Sbath.

In a quasi-static process, ∆Suniverse = 0: we have a reversible process, because the change of entropy at a constant

temperature is

∆S =
d̄Q

T
;

since all heat transferred out of the system is transferred into the bath at the same rate! So the total change in a

quasi-static process is

∆S =
d̄Q

T
−
d̄Q

T
= 0.

Fact 177

Also, we can think about the fact that the entropy is proportional to −N ln ρ, where ρ is the density of our ideal

gas.

Indeed, this process is reversible: if we push the piston back out slowly enough, the heat will flow back into the

system, and we’ll again have equal and opposite changes in entropy.

But now let’s say we push the piston the same amount, but we do it fast enough that heat doesn’t transfer

as smoothly: for example, we can imagine doing an adiabatic process, and then (once that’s finished) let the heat

transfer with the bath happen. This is significantly different: in an isothermal process, PV is constant, while in an

adiabatic constant, PV γ is constant: these yield different amounts of work for the same compression ∆V , because

(mathematically) the integral of PdV is different or (physically) adiabatic compression means the particles will push

back more, so the work we have to do is larger! So

W >

∫
isothermal

PdV ;

and this argument works even when the process isn’t adiabatic. Ultimately, we are putting in some extra energy, and
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that energy will eventually exit into the heat bath, since U = 3
2NkBT only depends on the temperature of our gas.

Ultimately, then we know that the change in entropy of our system (ideal gas) doesn’t depend on our final state: it

will be

∆Ssystem = −kB∆(N ln ρ) ,

which is the same as what we had before in the slow case. But the difference comes from the change ∆S in the

environment: because the fast work we did is larger than the isothermal work, some heat is pushed into the heat bath!

So ∆Q
T , entropy change in the surrounding bath, is greater than the original

∫
d̄Q
T in the isothermal case, which means

our process is now irreversible: ∆S > 0.

Fact 178

So in summary, a fast process means we do work that is larger than the slow work we needed to do, which increases

heat flow and therefore generates entropy. That’s where the second law of thermodynamics is coming from:

∆Sfast = 0.

But it would also be nice to understand this in a microscopic scale as well. Let’s say we have a bunch of particles in

our ideal gas that are flying around in this case: there will be times where (by chance) there’s some vacuum near the

piston, so we can get lucky and compress the gas without doing any work (as fast as we want)! So we’ve then decreased

the entropy of the gas without doing any work at all, and that seems to violate the second law of thermodynamics:

how do we deal with this?

This gets us into a more current topic: let’s say we have our system and we follow some path from the initial to

final state (for example, we have some fast compression h(t) which dictates the height of our piston). Now we can

define a state function

F = U − TS,

the Helmholtz free energy. We know that dU = −PdV + µdN + · · ·+ TdS, so taking differentials of the free energy

(by the product rule), the TdS cancels out:

dF = −SdT + d̄W

So at constant temperature, dF = d̄W . That means that holding the temperature constant will give a total change

in free energy equal to the work that we’ve done! So it’s important to build here because a first law that holds for

quasi-static processes is deeply connected to it.

To deal with the second law violation, we have to start thinking about the statistical properties of the microstates.

A slow process always averages over all possibilities: a bunch of states are getting visited. But a really fast piston will

visit the system in some microstate, which explains why our work is statistically varying. So we get some distribution

p(W ), and this will lead us to a fact:

Proposition 179 (Jarzynski, 1997)

We have ∫
dWp(W )e−W/(kBT ) = e−∆F/(kBT )

We’ll be able to prove this later on! What does this tell us? Inherently, the right hand side is a change in a

state function, and the left hand side measures our statistical fluctuations: this is a limitation on the shape of our

distribution. For example, p(W ) = δ(W −∆F ) in a quasi-static process, and indeed this checks out with our integral.
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This can alternatively be written as a statement about expectations:〈
e−W/(kBT )

〉
= e−∆F/(kBT ).

So now we can define a quantity

Wd = W − ∆F

which tells us how much work is dissipated. A quasi-static process has ∆F = W , but in general we can have some

difference based on statistical variance. But dividing our statement above by e−∆F/(kBT ), we have〈
e−(W−∆F )/(kBT )

〉
=
〈
e−Wd/(kBT )

〉
= 1.

Now recall that the second law is about doing extra work that we didn’t need to! Dividing our ∆F definition through

by T ,
∆F

T
=
∆U

T
− ∆S

we can think of the right side as −∆Senv−∆Ssys, which is −∆Stotal. But by convexity (specifically, Jensen’s inequality),

〈ex 〉 ≥ e〈x〉

So plugging that in, 〈Wd〉 ≥ 0, so we always expect to do a nonnegative amount of dissipated work!

31 April 9, 2019
Some announcements about the exam: it will take place next Thursday, April 18. It’ll cover material after quiz 1 -

it won’t have any problems on probability theory, but we will need to understand those concepts to do (for example)

problems on a microcanonical ensemble!

Again, previous exams will be posted online, and 3 of the 4 problems will be from previous years’ exams. There will

be an optional review session as well.

Notice that there won’t be any classes next week: Tuesday has no classes, and Thursday will be the exam.

31.1 A quick overview
Last time, we talked about extracting work from heat engines, and we found ways to combine different processes in

the PV plane to make a cycle and extract work. We found a theoretical bound, called the Carnot efficiency, and we

constructed an example that saturates that efficiency.

Fact 180

Note that it’s not possible to actually achieve this efficiency in real life because of dissipation and other processes!

Now we’re going to try to introduce some other cycles as well, such as the Stirling engine. We’ll also discuss

statistical physics for systems that are actually connected to the outside world using free energy!
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31.2 A new heat engine
Recall that in a Carnot cycle, we trace a clockwise cycle in our PV plane bounded by curves of the form PV = c and

PV γ = C. We derived that the efficiency here is the theoretical bound

η =
W

Q+
=
T+ − T−

T+
.

But if we replace our adiabatic processes with isometric properties, this allows us to do more work in a single cycle!

This is called a Stirling engine. In the TS diagram, we now no longer trace out a rectangle, since we no longer have

adiabatic steps that keep entropy constant. Instead, for a monoatomic ideal gas, the entropy change is

S = NkB

(
3

2
lnT + · · ·

)
.

So in the TS-plane, our process is now bounded by horizontal lines (at constant temperature) and exponential curves

(T ∝ exp( 23
S
NkB
)). So our question now is how we construct such an engine? Again, let’s say our process takes us

between states 1, 2, 3, 4.

Step Process Work by engine Heat added

1→ 2 Isothermal compression −nRT− ln V1V2 −nRT− ln V1V2
2→ 3 Isometric heating 0 CV (T

+ − T−)
3→ 4 Isothermal expansion nRT+ ln V1V2 nRT+ ln V1V2
4→ 1 Isometric cooling 0 −CV (T+ − T−)

So the efficiency here is

η =
W

Q+
=

nR(T+ − T− ln(V1/V2)
nRT+ ln(V1/V2) + CV (T+ − T−)

.

So the idea here is that the CV (T+−T−) is what limits us from reaching the Carnot efficiency - how do we get around

this?

Proposition 181

Consider a chamber with two pistons: the left piston is for “expansion” and the right piston is for “compression.”

Keep the portion of the system to the left of the chamber at temperature T+, and keep the portion of the system

to the right at temperature T−. In between, we have an ideal gas (equivalently a fluid), but put a material with

high heat capacity in the middle as well (called the regenerator).

So that amount of heat can be reused: it is stored and then reused in the next cycle! So now this effectively

eliminates the CV (T+ − T−) term, and we do indeed reach the Carnot efficiency T
+−T−
T+ as desired.

How much work do we get for each cycle? We can find that

WStirling

WCarnot
=

1

1− ln(T+/T−)(γ−1) ln r

where r is the ratio of volumes. Plugging in T+

T− = 2, r = 10, γ = 1.4, we find that a Stirling engine gives 4 times as

much work as a Carnot engine for the same ratio of volumes and temperatures!

31.3 Brief aside about the third law
Remember that one of our statements of the third law was that it is impossible to cool any system to absolute
zero in a finite amount of time. One example of this is by switching between two different pressures: low to high
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with an adiabatic process and high to low with an isothermal process. This can be done using nuclear magnetization!

But both P curves end at (0, 0): that’s the main point of the third law. If we try to do any process, following

some curve in the TS-plane, we will never actually be able to get to the origin. However, we’ve gotten pretty good at

getting close to absolute zero: ask professor Ketterle about this!

31.4 Free energy
So as a basic summary of what we’ve been talking about: we introduced S, our entropy, as a function of the number of

microstates. We’ve made some statements about general properties of S, but we’re going to start looking at smaller

parts of the system (and treat the rest as being a heat bath with constant temperature). So now our system exchanges

energy, volume, and particles with an outside world in thermal equilibrium, so we have our temperature fixed (rather

than the total internal energy).

There’s many different notions of free energy: they will be used in different constraints. Remember that in an

isolated system, we need ∆S ≥ 0 to have a spontaneous change of an isolated system (though this isn’t necessary

sufficient). Let’s now imagine that our system is in contact with a heat bath at a fixed T : now the total entropy

change is (at constant temperature)

∆Stotal = ∆Ssystem + ∆Sbath.

If our system does no work (because it is at a fixed volume),

∆Sbath =
∆Q

T
= −
∆Usystem

T
,

and we can plug this in to find

∆Stotal = ∆Ssystem −
∆Usystem

T

This means that we have a new necessary condition:

Fact 182

We must have

∆Ssys −
∆Usystem

T
≥ 0

for a spontaneous change of our system in contact with a heat bath.

This motivates us to make a new definition:

Definition 183

Define the Helmholtz free energy F of a system to be the state function F = U − TS.

We now require ∆F ≤ 0 to make a spontaneous change in a system at thermal equilibrium with fixed V and T . It

seems that because S is a function of U, V, N in our system, F should also be a function of the four variables T, V, N, U.

But the free energy is not actually a function of the internal energy! Indeed,

F = U − TbSsystem(US) =⇒
∂F

∂US
= 1− Tb

∂SS
∂US

= 1−
Tb
Ts
,

and at thermal equilibrium (which is the only situation where we use F to represent the system), Tb = Ts . So the

derivative is 0, so US is not an independent variable here!
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Fact 184

This is an example of a Legendre transformation, which helps us change from one type of energy or free energy

to another by using a different set of independent variables. For example, we go from (U, V, N) to (T, V, N).

As another example, we can change our variables in another way: considering a system at constant temperature

and pressure (this happens a lot in biology and chemistry). Then recall that

dU = dQ− PdV =⇒ dH = dQ+ V dP =⇒ ∆Q = ∆H

at constant pressure, and now we can play the same trick! The heat emitted into the environment at constant pressure

is −∆H, so the total change in entropy

∆Stotal = ∆Ssystem + ∆Sbath = ∆Ssystem −
∆H

T
,

and by the second law, we must have this quantity be at least zero.

Definition 185

This motivates the definition of the Gibbs free energy

∆G = H − TS

and for a spontaneous change in our system, we must have ∆G ≤ 0: free energy needs to decrease!

It’s important to note that this wasn’t all just to introduce a new state function: here’s a preview of what’s coming.

In some systems, we have a fixed energy and can calculate the temperature of that system: in a microcanonical

ensemble, we consider all possible microstates that are consistent with it. Then we can take some subset of our

system, where the temperature T is still fixed (though the energy is not), and that’s what a canonical ensemble deals

with!

31.5 Natural variables and Maxwell relations
The idea we’ve been developing in this class so far is to go from various constraints on our system to some mathematical

relationship between thermodynamic variables. For example, the first law tells us that if we define our internal energy

U in terms of S and V , then

dU = TdS − PdV =⇒
∂U

∂S

∣∣∣∣
V

= T,
∂U

∂V

∣∣∣∣
S

= −P.

Because we have a state function U, the mixed second partial derivatives should be the same: this means

∂

∂V

(
∂U

∂S

∣∣∣∣
V

)
S

=
∂

∂S

(
∂U

∂V

∣∣∣∣
S

)
V

and that gives us the relation
∂T

∂V

∣∣∣∣
S

= −
∂P

∂S

∣∣∣∣
V

.

This applies to other state functions we have too - we can apply the same logic with our free energy definitions as

well! The idea is that free energies are often easier to measure experimentally under certain conditions. For example,
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since H = U + PV , dH = TdS + V dP , so writing H as a function of S and P ,

∂H

∂S

∣∣∣∣
P

= T,
∂H

∂P

∣∣∣∣
S

= V,

and doing the mixed partial derivatives yields
∂T

∂P

∣∣∣∣
S

=
∂V

∂S

∣∣∣∣
P

.

Finally, since F = U − TS, dF = dU − TdS − SdT , which is also dF = −PdV − SdT . So this time, it’s natural to

write F as a function of V and T . Now

∂F

∂T

∣∣∣∣
V

= −S,
∂F

∂V

∣∣∣∣
T

= −P =⇒
∂S

∂V

∣∣∣∣
T

=
∂P

∂T

∣∣∣∣
V

.

These partial derivative equations often relate a quantity that is easy to measure with something that is generally less

experimental in nature! We’ll talk more about these concepts next time.

32 April 10, 2019 (Recitation)

32.1 Exchanging energy
Let’s start with the Helmholtz free energy

F = E − TS.

It’s easy to say what energy or momentum “does,” but what about free energy? One way to think about this is the

“balance” between energy and entropy. Any system that interacts with a reservoir at temperature T (for example,

room temperature in the world around us) cares about “free energy” to consider favorability of a reaction.

The main idea is basically that the second law must hold! If we create an entropy ∆S, then we can gain an energy

of E = T∆S from the reservoir. Another way to think about this is connected to the problem set: if we have a system

with (non-normalized) occupation numbers

na ∝ e−βEa ,

notice that all Boltzmann factors are equal if we have infinite temperature, and that means all states are equally

populated! On the other hand, with zero temperature, only the ground state is occupied, because any higher state

has exponentially smaller occupation numbers.

32.2 Looking at the Sackur-Tetrode entropy
Recall the equation that was derived by these two researchers from Germany back in 1913:

S(U, T,N) = kBN

(
ln
U

N
+ ln

V

N
+
3

2
ln
4πm

3h2
+
5

2

)
Note that the constants after the first two terms are just prefactors. Interestingly, though, Sackur got 32 instead of 52 :

this comes from ln n! = n(ln n − 1), and he didn’t include the −1 in his approximation.

But does this really matter? In almost all calculations, we ignore the entropy and only consider ∆S. But what

would we actually get wrong?

Notice that in the correct form of Sackur-Tetrode entropy, the entropy S goes to 0 as the temperature T goes to
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0. It turns out we can measure absolute entropy via

S(T ) =

∫ T
0

dQ

T
=

∫ T
0

cP (T )dT

T
.

(You also have to add latent heat to go from solid to liquid state, and so on. This can be written as a delta function,

but the details aren’t that important.) Well, some researchers followed mercury across different temperatures: knowing

CP , they integrated from 0, and eventually mercury became an ideal gas at high enough temperature! So through

measurements, they found agreement with the theoretical answer. (They did assume 52 .)

Fact 186

This allowed them to find an experimental value of h, Planck’s constant, and they did this to 1 percent precision!

It’s pretty amazing that we can determine this by measuring heat - this is really adding “entropy.”

But if we replace 5
2 with 3

2 and try to get that experimental result for h, we actually change it by a factor of

e−1/3 ≈ 0.72. So that would give you an incorrect experimental result by 30 percent! This is why absolute entropy

does occasionally matter.

32.3 Multiple ground states
In quantum mechanics, we have multiple energy levels: it’s possible that (for example at zero magnetic field) we have

two low-energy states. Then we have a special symmetry in our system!

For example, if we have N distinguishable particles and each can be in 2 degenerate states, we have an extra

contribution S0 to the entropy. This was actually mentioned in Sackur-Tetrode: mercury has multiple isotopes, so we

have to be careful. There’s other ways quasi-degeneracy could come up as well.

32.4 Fluctuations in a microcanonical ensemble
Let’s try to think about a system with two subsystems, but instead of exchanging energy, let’s think about exchanging

particles. If the system is divided into two symmetric parts A and B, and we have NA + NB = N particles, we expect

there to generally be N2 particles in both halves.

The total number of microstates ΓAB is then multiplicative, because we essentially pick a microstate from both A

and B. But then taking logarithms, the entropy SAB is now additive!

But let’s think a bit more about the number fluctuation. Is it true that the number of microstates for the whole

system, is

ΓN,A+B = Γ N
2
,A · Γ N

2
,B?

Not quite! Some arrangements of the system A + B don’t actually have the number of particles or the energy split

exactly: there are fluctuations! So we basically have to add over all possible number of particles in system A:

ΓN,A+B =
∑
k

Γk,AΓN−k,B.

But in principle, the extreme values of k are not likely - they contribute very little to the entropy. Specifically, the

distribution of probabilities NA is centered around N
2 , and now we have a sharp distribution that’s basically Gaussian

with standard deviation ∝
√
N.
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That means that allowing fluctuations, ΓN,A+B = Γ N
2
,A · Γ N

2
,B has an approximate “width” of

√
N: this gives us an

approximate answer of

ΓN,A+B =
√
NΓ N

2
,A · Γ N

2
,B.

But this kind of fluctuation is very small: if we have, for example, 1026 particles, we have a precision of 10−13: this is

unmeasurably small! So we wouldn’t be able to just count them. Now note that our counting of microstates is not

quite multiplicative with this approximation: we have an entropy

S ∝ S N
2
,A + S N

2
,B + c lnN.

So we should always be careful! The first two terms are extensive quantities, while the last term is not. Luckily, that

is almost negligible compared to the other terms.

33 April 11, 2019

33.1 Overview and review
This class is about studying the connection between microscopic and macroscopic descriptions of a system. What

we’ve been doing recently is imposing various constraints on our system: for example, setting a fixed energy U gives

us a microcanonical ensemble, and we’ll find that setting a fixed temperature T will give us what is called a canonical

ensemble.

Last time, we started discussing more relationships between our thermodynamic variables. If we have a first law

condition

dU = TdS − PdV,

then we can define our energy U in terms of S and V : then because U is a state function, the mixed partial derivatives

with respect to S and V gives us

∂U

∂S

∣∣∣∣
V

= T,
∂U

∂V

∣∣∣∣
S

= −P =⇒
∂T

∂V

∣∣∣∣
S

= −
∂P

∂S

∣∣∣∣
V

.

With the same kind of argument, we can also derive values from the enthalpy H = U + PV : this yields

∂H

∂S

∣∣∣∣
P

= T,
∂H

∂P

∣∣∣∣
S

= V =⇒
∂T

∂P

∣∣∣∣
S

=
∂V

∂S

∣∣∣∣
P

.

With the Helmholtz free energy F = U − TS,

∂F

∂T

∣∣∣∣
V

= −S,
∂F

∂V

∣∣∣∣
T

= −P =⇒
∂S

∂V

∣∣∣∣
T

=
∂P

∂T

∣∣∣∣
V

,

and finally with the Gibbs free energy G = F + PV ,

∂G

∂T

∣∣∣∣
P

= −S,
∂G

∂P

∣∣∣∣
T

= V =⇒
∂S

∂P

∣∣∣∣
T

= −
∂V

∂T

∣∣∣∣
P

.

These four relations between our state variables are known as Maxwell’s equations: we’ll soon see why they’re

important. For example, if we want to see change in entropy per volume at constant temperature, there’s really no

way to measure that quantity directly, since it’s really hard to measure entropy. On the other hand, we can measure
∂P
∂T

∣∣
V

a lot more easily: just change our temperature and measure the pressure inside some fixed volume!
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Fact 187

Don’t memorize these equations: we can always derive these from the first law directly.

More generally, we can make a table between intensive variables X and extensive conjugate variables Y :

X Y

−P V

σ A

H M

F L

E P

µ N

and in general, we can always write down our internal energy U as a function of S and Y , H as a function of

S and X, F as a function of T and Y , and G as a function of T and X! We’ve mostly only been focusing on a

three-dimensional gas, which is why we’ve been using P and V , but we could replace this with other pairs of variables.

33.2 An application of Maxwell’s relations
Let’s try to compute heat capacity of an arbitrary material: in general, the formula

CV =
∂U

∂T

∣∣∣∣
V

measures how much internal energy of a system depends on its temperature. For an ideal gas, we know that internal

energy only depends on temperature, but we may want to measure other heat capacities as well.

Example 188

What is a good way to find
∂U

∂V

∣∣∣∣
T

?

Let’s do this systematically so that it’s easy to understand how to do related problems! Start with the first law,

dU = TdS − PdV.

This means that ∂U
∂V

∣∣
S
= −P . Let’s write U as a function of T and V , so

dU =
∂U

∂T

∣∣∣∣
V

dT +
∂U

∂V

∣∣∣∣
T

dV.

This includes the term we want! Going back to the first law, writing S as a function of T and V as well,

∂U

∂T

∣∣∣∣
V

dT +
∂U

∂V

∣∣∣∣
T

dV = dU = TdS − PdV = T
(
∂S

∂T

∣∣∣∣
V

dT +
∂S

∂V

∣∣∣∣
T

dV

)
− PdV

Now all differentials are in terms of dV and dT , so we can gather terms of dT and dV and divide to find

∂U

∂V

∣∣∣∣
T

= T
∂S

∂V

∣∣∣∣
T

− P.
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If we want to make this a measurable quantity, though, we should replace the ∂S
∂V

∣∣
T

term: this can be done with

Maxwell’s relations! Since ∂S
∂V

∣∣
T
= ∂P
∂T

∣∣
V
, we just have

∂U

∂V

∣∣∣∣
T

= T
∂P

∂T

∣∣∣∣
V

− P .

So if we just have the equation of state, we have enough to find the quantity we desired!

Example 189

What is the V -dependence of CV ; that is, what is

∂CV
∂V

∣∣∣∣
T

?

Recall that CV is itself a partial derivative! Specifically,

∂

∂T

(
∂U

∂V

∣∣∣∣
T

=
∂

∂V

(
∂U

∂T

∣∣∣∣
T

=
∂CV
∂V

∣∣∣∣
T

.

Since we just found the leftmost quantity, we can plug that in:

∂CV
∂V

∣∣∣∣
T

=
∂

∂T

(
T
∂P

∂T

∣∣∣∣
V

− P
)
= T

∂2P

∂T 2

∣∣∣∣
V

.

Example 190

Can we find a relationship in general between CP and CV ?

Remember that we defined a quantity H = U + PV to help with this kind of problem:

∂H

∂T

∣∣∣∣
P

= CP =
∂U

∂T

∣∣∣∣
P

+ P
∂V

∂T

∣∣∣∣
P

.

(This came from expanding out the derivatives on both sides.) Expanding out the first term on the right hand side,

∂U

∂T

∣∣∣∣
P

=
∂U

∂T

∣∣∣∣
V

+
∂U

∂V

∣∣∣∣
T

∂V

∂T

∣∣∣∣
P

Note that ∂U
∂T

∣∣
V
= CV , and we also computed earlier that ∂U

∂V

∣∣
T
= T ∂P

∂T

∣∣
V
− P , so plugging everything in,

CP = CV +

(
∂U

∂V

∣∣∣∣
T

+ P

)
∂V

∂T

∣∣∣∣
P

=⇒ CP = CV + T
∂P

∂T

∣∣∣∣
V

∂V

∂T

∣∣∣∣
P

.

We defined response functions earlier in the class: we had variables like expansivity that are known for certain

materials! So if we’re doing a problem in that realm, we can rewrite our equation in terms of coefficients like thermal

expansion:

α =
1

V

∂V

∂T

∣∣∣∣
P

=⇒ CP = CV + TV α
∂P

∂T

∣∣∣∣
V

.

So now can we say anything about our function ∂P
∂T

∣∣
V
? Note that we have the partial derivative identity

∂P

∂T

∣∣∣∣
V

∂T

∂V

∣∣∣∣
P

∂V

∂P

∣∣∣∣
T

= −1 =⇒
∂P

∂T

∣∣∣∣
V

= −
1

∂T
∂V

∣∣
P
∂V
∂P

∣∣
T

=
−V α
∂V
∂P

∣∣
T
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where β = − 1V
∂V
∂P

∣∣
T

is the coefficient of isothermal compressibility. This lets us just write down ∂P
∂T

∣∣
V
= α
β : plugging

this in, we get the relation

CP = CV + TV
α2

β
.

This is basically a game of thinking like an experimental physicist: we know what’s easy to measure, so we just try to

write our derivatives in terms of those quantities!

33.3 The Joule-Thomson effect
This phenomenon is also known as the throttling process!

Example 191

What is the temperature change of a real gas when it is forced through a valve, if the container is isolated from

the environment (so no heat exchange)?

In a real gas, there is actually interaction between the particles, so the temperature will actually change. Specifically,

we then have a potential energy associated with our system as well!

To describe our system, imagine having two containers A and B connected with a small valve in the middle: let’s

say there is a pressure P0 on the left container A and a pressure P1 in the right container 2. We force some volume

V0 through the valve from P0 to P1: then the work done by the piston for container A is

WA = P0V0,

and the work done by the piston for container B is

WB = −P1V1.

where V1 is the volume the gas takes up in the new container. Since there is no heat exchange, by the first law,

U1 − U0 = WA +WB = P0V0 − P1V1 =⇒ U0 + P0V0 = U1 + P1V1.

This means that this is a constant enthalpy process! So does the gas that is pushed through get cooler or warmer?

We can define the Joule-Thomson coefficient

µJT =
∂T

∂P

∣∣∣∣
H

.

Since we have expansion, ∂P < 0. This means that µJT < 0 =⇒ dT > 0, so the gas warms up, and µJT > 0 =⇒
dT < 0, so the gas cools. This actually has to do with liquifying gases at room temperature!

So how can we say things about µJT ? Starting from the enthalpy equation, if H is written as a function of T and

P , since dH = 0,

dH =
∂H

∂T

∣∣∣∣
P

dT +
∂H

∂P

∣∣∣∣
T

dP =⇒ µJT = −
∂H
∂P

∣∣
T

∂H
∂T

∣∣
P

= −
1

CP

∂H

∂P

∣∣∣∣
T

.

This ∂H∂P
∣∣
T

term is analogous to the ∂U
∂V

∣∣
T

term from earlier! Specifically, we can go through the analogous derivations

to find

µJT = −
1

CP

(
V − T

∂V

∂T

∣∣∣∣
P

)
.

For an ideal gas, PV = nRT =⇒ ∂V
∂T

∣∣
P
= V
T , so µJT = 0: we can’t see any effect on temperature. But for a van der
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Waals gas, we have constants a and b so that

(V − nb)
(
P + a

n2

V 2

)
= nRT ;

if we expand out the left side, since a and b are generally very small, the −nb
(
an2

V 2

)
term is negligible, and thus

PV − Pnb +
an2

V
= nRT ;

taking differentials,

PdV −
an2

V 2
dV = nRdT,

and substituting in for P and doing the relevant calculations,

µJT ≈
n

CP

(
2a

RT
− b
)
.

So the temperature where µJT changes sign is the inversion temperature

Tinversion =
2a

Rb
.

If our temperature is larger than the inversion temperature, µJH is negative, so changing the pressure will increase our

temperature. Otherwise, if T is smaller, then temperature will decrease!

34 April 17, 2019 (Recitation)
There is a quiz tomorrow!

34.1 Types of free energy
Last time, we mentioned the Helmholtz free energy and Gibbs free energy

F = U − TS

G = U + PV − TS,

where both of these are a kind of balance between energy and entropy. We can think of this by looking at the

Boltzmann distribution as T → 0 and T →∞.

Question 192. What does free energy mean?

Let’s say we have our system S connected to a reservoir R fixed at temperature T . If we want to see if a

certain reaction can happen, we must have the total ∆Stotal > 0 to have a favorable reaction (by the second law).

Information-theoretically, we can go from more precise knowledge to less precise knowledge.

What is the change in entropy here? The change in internal energy of the reservoir is ∆U = ∆Q (since no work is

being done), which is −T∆Ssys in a reversible process. This means that the change in entropy

∆Stotal = ∆Ssys + ∆Sres = ∆Ssys −
∆Usys

T
= −

1

T
(∆U − T∆Ssys) ≥ 0.

Defining F = U − TS, any favorable reaction has to go to lower free energy!
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Fact 193

Think of a reservoir as a swimming pool and our system as a piece of cold chalk being thrown into it. The change

in temperature of the swimming pool can be assumed to be almost zero, and if not in a specific case, we can

always scale the system. This is the limit we take in a canonical ensemble!

On the other hand, when we have a system at constant pressure, we often use the Gibbs free energy G = F +PV ,

much like how we use enthalpy for some calculations instead of internal energy.

But why is it called free energy? We can think of this as “energy that can be converted.” Looking again at a

system with T and P constant (so we want to look at G), let’s say that we are part of the system, and we want to

transform some internal energy U into something useful. For example, can we turn the energy gained from

2H2 +O2 → 2H2O

into something useful by the laws of thermodynamics? Is the energy actually available?

Well, let’s say 1 mole of a large molecule dissociates into 5 moles of smaller constituents: then there are more

molecules, so to conserve the pressure P , we must increase the volume V , which does work

∆U = −P∆V.

This works in the water reaction as well! Since we now have less molecules, we have to reduce our volume, which

does work on the system. This is where the PV term comes from in our equation, and we can finally account for the

+T∆S from the change in entropy in our system (since that needs to be transferred to our reservoir).

So we change the internal energy by some ∆U, and this now gives us an associated work P∆V and heat transfer

−T∆S. This is indeed the G = U + PV − TS that we desire!

Fact 194

In summary, we do “boundary condition” corrections for the variables we are fixing constant: in this case P and T .

34.2 Ice packs
Some of these work without needing a frozen material: break something in a plastic pack, and it gets cold. How does

this happen?

It turns out that it requires energy ∆U > 0 to dissolve ammonium nitrate in water. So if this is in contact with

something warmer (like an arm), it will grab energy and cool down the environment. Now think of the system as the

plastic pack and our body as the environment! This is allowed because it creates some entropy ∆S > 0. So now

F = U − TS < 0

is indeed true because the temperature T is sufficiently large (so the entropy overcompensates for the change in internal

energy).

But what happens if the ice pack were not in contact with anything? Then the water and ammonium nitrate would

be completely isolated, and now this cannot dissolve!
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34.3 Heat engines
We have a theoretical bound on the efficiency of a heat engine

ηC =
T+ − T−

T+
.

Let’s say someone managed to create some η̃ > ηC : what would this look like?

We know that a reservoir T+ provides heat Q+, and the sink T− gains heat Q+ −W . Well, let’s imagine doing

this in reverse: pull heat Q+ −W from the T− sink and output heat Q+ to the T+ reservoir. (For example, this is a

refrigerator!)

We can scale this in such a way that the Q+ here is the same as the Q+ in the theoretical other engine! Then

putting the two engines together, the work we’ve created is W̃ − W , and the heat we’ve extracted is −(W̃ − W ):
we’ve removed the upper reservoir from the problem when we run the Carnot engine in reverse.

But then we’d create work by extracting energy from a single temperature reservoir: this doesn’t make sense

thermodynamically! We can’t get work and do a refrigeration at the same time, or at least it hasn’t been observed.

Thus, the Carnot efficiency is actually the best possible bound on our heat engine! What’s more, any reversible
engine has to work at exactly the Carnot efficiency, or else we could run it in reverse and combine it with the

Carnot cycle forward, and we’d get the exact same contradiction.

35 April 22, 2019 (Recitation)

35.1 Engines
Since we’ve been talking about engines, Professor Ketterle wanted to show us a Stirling engine!

Most engines we have in real life have some combustible material, so we have an open system with fuel and some

exhaust material (and this turns out to be more efficient in general). In principle, though, we should be able to operate

an engine by just having one heat source (like in our Carnot cycle).

The example at the front of class is just an alcohol burner, which acts as a hot reservoir, together with a cold

reservoir at room temperature. Then we can run a motor in reverse, which is an electrical generator!
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How does a heat engine work, generally? In principle, we can just say that we have a gas that compresses and

contracts with a piston. But in this case, when we heat up the gas in the hot reservoir, a piston system actually moves

the gas to the cold reservoir, where it cools down! We have pistons 90 degrees out of phase, and that lets our motor

run.

Recall that last time, we showed that if we ever had an engine with efficiency η > ηrev, we could couple it together

with a Carnot engine (running one in reverse) to create work for free by extracting heat from a single reservoir. This

would be very convenient, but it violates the second law of thermodynamics.

Fact 195

This also told us that all reversible engines between reservoirs at T1 and T2 must have the same η efficiency. This

is the maximum efficiency! The Carnot engine is just special because it’s an example of an easily described engine

with that efficiency

η =
T2 − T1
T2

.

35.2 Free energy
Recall that F = U − TS, the free energy, tells us something about whether a system’s entropy is going up or down:

∆F < 0 =⇒ ∆Stotal = ∆Ssys + ∆Sres > 0

at constant temperature. Basically, defining new “energies” like F,G,H includes information about the reservoir as

well: for example, G describes our environment on earth (at constant pressure and constant temperature), which is

why we use

G = U − TS + PV.

Basically, TS and PV tell us that we need to do some work or transfer some heat to satisfy the environment conditions!

So F and G tell us what is “left,” and that’s why their sign tells us about whether processes can happen spontaneously.

Fact 196

We can think of “spontaneous” processes as those that can give us work, and that’s how to reconcile thoughts

like “spontaneous combustion.”

35.3 Looking at free expansion of a gas again
Let’s say we have a gas that expands from a volume V into a volume of 2V , while keeping the internal energy U and

temperature T the same. (For example, consider an ideal gas). Then F = U − TS goes down, and free energy going

down means that we can extract work out of this! That means we “missed our opportunity:” we’ve increased our

entropy without getting the work out of it.

But we can also just keep that whole system at constant temperature T : if we’re being formal about it, with a

quasi-static process, we should actually have a piston that is isothermally expanding at temperature T . We’ll then find

that the work done does satisfy

|∆W | = |∆F |.

If the internal energy and temperature stay the same, where is that work coming from? Well, the gas is losing some

kinetic energy when the piston is moving back! It is the heat added by the environment at constant T that keeps the

114



internal energy constant, and that’s basically coming from the TS term in the free energy.

So we create energy by reducing our internal energy, but the PV and TS terms are “taxed” by our reservoir and

conditions. In our case here, we actually get a bonus from the environment to get work!

Proposition 197

Use F when we have constant temperature, and use G when we also additionally have a requirement that P is

constant.

35.4 Partial derivatives
We have a bunch of thermodynamic variables:

P, V, S, T,H, U, F, G.

This is a system with only PV work. Well, that already gives us eight variables: we can now play in eight-dimensional

space and write expressions of the form
∂a

∂b

∣∣∣∣
c

.

But how many of these eight variables are independent? For example, in 3-dimensional space, we can use r, θ, φ versus

x, y , z and do lots of coordinate transformations, but no matter what, we have three independent variables. How many

do we have in this situation.

Well, let’s think about an ideal gas, where N is constant. Defining volume and temperature gives us pressure (by

the ideal gas law), entropy (by the Sackur-Tetrode equation), and then we can get all types of energy. This means

that we always have two independent variables! Often, we students will write things like

∂S

∂P

∣∣∣∣
V,T

,

which doesn’t actually make any sense, since fixing V and T tells us exactly what our other variables are! It’s important

to not get lost in the jungle of variables: we can only keep one constant at a time (of course, unless one of the two is

N).

So Maxwell’s relations come about because P, V, S, T can be written as first derivatives of the thermodynamic

potentials H,U, F, G. Specifically, for a function X (which is one of U,H, F, G), we can think of

∂2x

∂a∂b
=

∂2x

∂b∂a
.

For example, in problem 4 of last week’s exam, we were told to compare

∂V

∂T
,
∂S

∂P
.

The relevant differentials here are

dU = TdS − PdV, dG = −SdT + V dP.

This means U is written most naturally as a function of V and S, but G is written as a function of T and P . We can

always convert between our variables, but this is the way we generally want to do it!

We are supposed to say what we keep constant in the two partial derivatives above, but we should ask the question:

should we use the Maxwell’s relation for U or for G?
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We do have V and S in the numerators, and we have T and P in the denominators, so either would work at this

point. But note that we were told to actually deal with

∂V

∂T

∣∣∣∣
S

,
∂S

∂P

∣∣∣∣
V

.

So now looking at the V and S, it’s most natural to work with U! But G gives the answer as well, and this is what

Professor Ketterle did initially! Let’s work out some of the steps:

dG = −SdT + V dP =⇒ −S =
∂G

∂T

∣∣∣∣
P

, V =
∂G

∂P

∣∣∣∣
T

.

So now
∂2G

∂T∂P
= −

∂S

∂P

∣∣∣∣
T

=
∂V

∂T

∣∣∣∣
P

.

This isn’t actually what we want, though: we have the wrong variables held constant! There is a way to get around

this though: just like we can transform CP and CV into each other, let’s look at how to relate ∂S
∂P

∣∣
T

to ∂S
∂P

∣∣
V
. We’re

going to have to label our variables carefully: writing S as a function of P and V (since this is what we want in the

end), where V is actually a function of P and T . This means we’re representing our entropy as

S(P, T ) = S(P, V (P, T )) =⇒
∂S

∂P

∣∣∣∣
T

=
∂S

∂P

∣∣∣∣
V

+
∂S

∂V

∣∣∣∣
P

∂V

∂P

∣∣∣∣
T

by the chain rule. So it’s possible to work from there, but it is very messy! Alternatively, we could go back and do the

smarter thing: looking at U as the thermodynamic potential instead, we end up with

dU = TdS − PdV =⇒
∂T

∂V

∣∣∣∣
S

= −
∂P

∂S

∣∣∣∣
V

.

This is exactly the reciprocal of what we wanted: we end up with

∂V

∂T

∣∣∣∣
S

= −
∂S

∂P

∣∣∣∣
V

.

36 April 23, 2019
All exam grades will be posted by the end of today. We can always email the professor to schedule a meeting if we

want to discuss! Also, drop date is very soon.

There is no pset due this week, because we just started some new material. Instead, we can focus on other

homework assignments we might have!

36.1 Overview
It’s time to start a new section in our class - we’re going to talk about a new kind of ensemble. We found that

for a system that is well-defined in a certain way (mechanically and adiabatically isolated) can be described by a

microcanonical ensemble, which relates to the probability distribution of the individual microstates. The key idea there

was that the energy was held constant, and in these cases, all microstates are equally probable. The temperature T

is then a natural consequence!

We often deal with systems that aren’t adiabatically isolated, though. Then the microstates may have different

probabilities: that’s what we’ll discuss today, and we’ll use the canonical ensemble as a tool! We’ll find that there
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really isn’t much of a difference between the properties of a microcanonical and canonical ensemble in some aspects,

but we don’t have to compute the actual number of microstates anymore.

36.2 The canonical ensemble
Let’s start by making a distinction:

Fact 198

In a microcanonical ensemble, we specify the internal energy U, and at thermal equilibrium we can deduce the

temperature T . On the other hand, in a canonical ensemble, we specify the temperature T and use this to deduce

the internal energy U.

Then our macrostates M are specified by our temperature T , as well as (potentially) other variables. In this

scenario, we’re allowing heat to be inputted, but no external work can be done on or by the system.

Proposition 199

We can have our system maintained at a fixed temperature T if it is in contact with a reservoir or heat bath at

temperature T .

We make the assumption that the heat bath is sufficiently large that it has basically negligible change in temperature!

For example, a glass of boiling water in a large room will cool down to room temperature, while the room’s temperature

is basically fixed.

Question 200. How do we find the probability of any given microstate

PT (µ)?

Let’s say our reservoir has some microstates µR and energies associated to them HR(µR). Similarly, our system

has some microstates µS and energies HS(µs). We can think of the reservoir and system as one larger system R⊕S:

this is now mechanically and adiabatically isolated, so we can think of this as a microcanonical ensemble!

Our total energy here is Etotal, and we know that (because our system is much smaller than the reservoir), we have

Esys � Etotal. Then the probability of some microstate (µs ⊕ µR) is

P (µS ⊕ µR) =
1

ΓS⊕R(Etotal)

if our total energy HS(µS) +HR(µR) = Etotal), and 0 otherwise. This is a joint probability distribution, so if we want

a specific µS for our system, we “integrate” or “sum out” all values of R:

P (µS) =
∑
{µR}

P (µS ⊕ µR).

Also recall that we can write the conditional probability

P (S|R) =
P (S,R)

P (R)
,

so (because probability is 1Γ , the multiplicity), this expression can also be written as

P (µS) =
ΓR(Etotal −HS(µS))
ΓS⊕R(Etotal)
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since we sum over the multiplicity of R given a specific energy. Notice that the denominator here is independent of

µS: it’s a constant, so we can rewrite this in terms of the entropy of our reservoir: given that S = kb ln Γ,

P (µs) ∝ exp
[
1

kB
SR(Etotal −HS(µS)

]
.

In the limit where the energy of the system is significantly smaller than the total energy of the system and reservoir,

we can do a Taylor expansion of this entropy to simplify this further! Then (treating HS(µS) as our variable), because

ER = 1−HS(µS),
SR(Etotal −HS(µS)) ≈ SR(Etotal)−HS(µS)

∂SR
∂ER

.

Dropping the S subscripts for simplicity and plugging into the probability distribution, since β = 1
kBT

, and exp[SR] is

some constant that doesn’t depend on our microstate (to first order), we have the following fact:

Theorem 201 (Canonical ensemble)

For a fixed temperature, the probability of our microstate is

P (µ) =
e−βH(µ)

Z
.

This is a probability distribution, which means Z is our normalization factor! Z is taken from the German word

“zustandssumme,” which means “sum over states.” That explains why it’s our normalization factor here: if we add up

P (µ) for all states, we’ll get ZZ = 1.

Definition 202

Z here is called a partition function. In this case,

Z =
∑
µ

e−βH(µ).

36.3 Looking more at the partition function
Why are partition functions useful? Basically, many macroscopic quantities can be described in terms of our function

Z. Remember that the multiplicity Γ was important in our microcanonical ensemble for finding S: now Z takes its

place, and it’s a lot easier to write this down!

Fact 203

The exponential term here is called a Boltzmann factor.

So now notice that the energy is no longer fixed: it’s some random variable H, and we want to find its mean,

variance, and other information. (Spoiler: the fluctuations are small, so in the thermodynamic limit, this will look a

lot like the microcanonical ensemble!)

First of all, we can write the probability of a given energy H as a sum

P (H) =
∑
µ

P (µ)δ(H(µ)−H),
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since we want to add up the states with our given energy. Since all probabilities in this sum are equal, this evaluates

to
e−βH

Z

∑
µ

δ(H(µ)−H)

The sum is the number of microstates with a given energy H′, which is just our multiplicity Γ(H). Thus, this can be

rewritten as

P (H) =
Γ(H)e−βH

Z
.

We’ll talk more about this later, but we can write Γ in terms of our entropy: this will yield an expression of the form

1

Z
exp

[
S(H)

kB
−

H

kBT

]
,

and since this is a constant times H − TS, this is related to our Helmholtz free energy!

36.4 Evaluating the statistics

Note that as H increases, Γ rapidly increases, while e−βH rapidly decreases. Therefore, if we plot this, we’ll find that

the distribution is sharply peaked around some energy U. What’s the mean and variance of this distribution?

Well, the average here is

〈H〉 =
∑
µ

H(µ)
e−βH(µ)

Z

which can be written as a derivative

−
1

Z

∂

∂β

∑
µ

e−βH(µ).

But the sum here is just Z, so

〈H〉 = −
1

Z

∂Z

∂β
= −

∂(lnZ)

∂β
.

How sharp is this distribution - that is, how narrow is it? We can compute the variance var(H) by first considering

−
∂Z

∂β
=
∑
µ

He−βH.

Taking another derivative with respect to β,

−
∂2Z

∂β2
=
∑
µ

H2e−βH,

but this looks a lot like the average value of H2! We then find

〈H2〉 =
1

Z

∂2Z

∂β2
.

Therefore,

var(H) = 〈H2〉 − 〈H〉2 =
1

Z

∂2Z

∂β2
−
(
1

Z

∂Z

∂β

)2
.

This can be rewritten as
1

Z

∂

∂β

(
∂Z

∂β

)
+

∂

∂β

(
1

Z

)
∂Z

∂β
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which is actually just
∂

∂β

(
1

Z

∂Z

∂β

)
by the product rule! If we look back, this tells us that

var(H) = −
∂

∂β
〈H〉,

where 〈H〉 = U is our “average energy.” Since β = 1
kBT

, this means we can rewrite this as

var(H) = kBT 2
∂U

∂T
.

Since CV , our heat capacity, is defined to be ∂U
∂T

∣∣
V,N

, if we define ĈV = CV
N (the heat capacity per particle),

var(H) = NkBT 2ĈV .

If we think of fractional fluctuations, we want to look at the ratio of our standard deviation to the mean. The mean

is proportional to N, the number of particles, since it is an extensive quantity, but the standard deviation of H is

proportional to
√
N. This means √

var(H)
mean(H)

∝
1√
N

which is very small on the thermodynamic scale, and thus our variable is highly concentrated! This means that we can

basically think of the system almost as being a microcanonical ensemble with fixed energy 〈H〉: it was just easier to

get to this point, since all we need to do is compute our partition function Z.

36.5 Writing macroscopic quantities in terms of the partition function
We found earlier that

〈H〉 ≡ U = −
∂

∂β
lnZ.

Since β = 1
kBT

,
∂

∂β
=

∂

∂T

(
∂T

∂β

)
=⇒

∂

∂β
= −kBT 2

∂

∂T
=⇒ U = kBT

2 ∂

∂T
lnZ.

Let’s next look at the entropy: by definition,

S = −kB
∑
j

pj ln pj .

Plugging in our probability distribution,

S = −kB
∑ e−βEj

Z
(−βEj − lnZ).

Rewriting this in terms of the internal energy U,

S = kBβU + kB lnZ =
U

T
+ kB lnZ .

From this, we can see that

−kBT lnZ = U − TS = F,
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which is the Helmholtz free energy! Recall that we have (by the differential dF = −SdT − PdV ,

∂F

∂T

∣∣∣∣
V

= −S,
∂F

∂V

∣∣∣∣
T

= −P,

so we can then get our other quantities by taking partial derivatives of F . This can always yield our equation of state!

37 April 24, 2019 (Recitation)
Let’s start by discussing a topic from last problem set.

37.1 Mixing entropy
Consider two gases (red and white) that are mixed in a box with volume V . How can we compare this situation to

one where the two are in separated boxes (each with volume V )?

Specifically, we have three scenarios: in A, red and white are in the same box of volume V , in B, red and white are

in two different boxes each with volume V , and in C, red and white are in two different boxes each with volume V2 .

What can we say about the entropy? First of all, any scenario in C can occur in scenario A, so the entropy SA > SC .

But let’s go ahead and do the mixing derivation again! Recall the Sackur-Tetrode equation

S = NkB

(
· · ·+ ln

V

N

)
.

(Everything else - masses, temperatures, and so on - are constant.) Usually, A and C are compared in textbooks:

there is a partition in a box that is then removed. If this partition breaks our volume V into two parts with N1 = c1N

and N2 = c2N of the total (for example, 80 percent Nitrogen on one side and 20 percent on the other), we can apply

the Sackur-Tetrode equation: V and N are proportional if our system is at equal pressure on both sides:

SC = kB

[
c1N ln

c1V

c1N

]
+ kB

[
c2N ln

c2V

c2N

]
= NkB ln

N

V

(before we mix). After we mix, though, we sum instead

SA = kB

[
c1N ln

V

c1N

]
+ kB

[
c2N ln

V

c2N

]
because each component now has the full volume instead of only a fraction! Note that we can write this as

SA = kB

[
c1N ln

V

N
− ln c1

]
+ kB

[
c2N ln

V

N
− ln c2

]
= SC − kBN(c1 ln c1 + c2 ln c2) ,

and this last term is called the mixing entropy.

Fact 204

This generalizes to more than two components as well.

Here’s a second derivation that is even simpler! We can ignore the color of the gas particles at first and go through

the derivation for the Sackur-Tetrode equation in both cases. But then we have N = N1 + N2 particles, and we need

to label N1 of them red and N2 of them white. In situation C, we must label all of the ones on the left red and all of
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the ones on the right white, but we’re free to do this arbitrarily in situation A! So we get an extra multiplicity of
(
N
N1

)
,

and that will contribute an extra

∆S = kB ln Γ = kB
N!

N1!N2!
= −kBN

(
N1
N
ln
N1
N
+
N2
N
ln
N2
N

)
,

as expected.

But notice that situations A and B are now essentially the same! When doing the Sackur-Tetrode equation, we

made the explicit assumption that we could treat the red and white gases separately. So that actually tells us that

SA = SB.

Proposition 205

So is there a way for us to separate the two gases from situation A into situation B without doing any work?

We can just construct a (one-directional) special membrane that only allows one of them to pass through! For

example, if one of them is large and one is small, we could have small pores - we don’t violate any real laws of physics

this way.

Fact 206

Specifically, think of a red and white membrane that allow only red and white particles to pass through, respectively.

Then we can enclose our red and yellow particles in boxes and “translate” the red box until it is side-by-side with

the white box!

So to get from situation A to situation B, we can place two boxes next to each other (each with volume V ),

separated by a membrane. No work is done this way - the translation doesn’t do any work or allow for any transfer of

heat!

To get from situation B to situation C, then, we can compress the containers of situation B: if we do this

isothermally, the work that we do creates an equivalent amount of heat (since ∆U = ∆Q + ∆W = 0), and the heat

∆Q is actually just T∆S, the change in entropy of mixing.

37.2 Looking at the canonical ensemble
Recall the setup: we have a system connected to a reservoir at constant temperature T . What’s the probability of

our system being at an energy E?

Basically, we think of the reservoir plus the system as a microcanonical ensemble: then the probability is just

proportional to the number of microstates of the system at energy E, which is the same as the reservoir being at

energy U − E (where the total energy of reservoir plus system is U). Then writing this in terms of entropy,

p(E) = ceSR(U−E)/kB ∝ ΓR(U − E).

But now assuming E � U, we can do the Taylor expansion

= ceSR(U)/kBe
∂SR
∂U
·−E/kB
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and the first two terms here can be encapsulated as one constant: remembering that ∂S∂U =
1
T ,

=
e−E/(kBT )

Z

for some constant Z. As a normalization factor, we now have our “partition function”

Z =
∑
j

e−Ej/(kBT ).

Fact 207

Probably the most important idea in this derivation is thinking of the reservoir and the system as one big system,

since it allows us to think about energy!

As a question: Taylor expansions are first order, so what’s the range of validity for the assumptions that we made?

Specifically, remember that the second derivative, which is related to the “curvature,” tells us how much the first

derivative (which is related to temperature) is changing when we vary our parameter. So we neglect the change in

temperature as we change our energy E!

So this error term only comes about when the reservoir is too small: this means that with small systems (or

theoretical “canonical ensembles,” really), our derivation gives an exact result.

Recall that we did some derivations related here earlier on: on an earlier problem set, we had na particles in states

of energy εa, and we had specific limits on
∑
na = N and

∑
naεa = U. We found then that

na = N
e−βεa∑
j e
−βεj
;

this was found by looking at the combinatorics of distributing particles over energy states and incorporating Lagrange

parameters for the constraints on N and U. Notice that we can now translate this: we have N systems, each at some

energy level, and now na
N tells us the probability that a random system has energy εa!

How do we make this into the language of a “canonical ensemble?” Any given system is coupled to the combined

reservoir of N−1 other systems: as long as 1� N, and we are at thermal equilibrium, the temperature of the reservoir

will not change very much, and we can use our canonical ensemble formula.

38 April 25, 2019
We’ll discuss the canonical ensemble some more today! We’ll also start looking at a few more examples - the main

idea is that the canonical ensemble will result in significantly simpler calculations, since microcanonical and canonical

ensembles predict the same results in the thermodynamic limit.

38.1 Review and remarks on the canonical ensemble
Here’s a helpful table: “macrostate” tells us which macrostates are fixed or given to us as constraints.

Ensemble Macrostate p(µ) Normalization factor

Microcanonical (U, x) δ(H(µ)−U)
Γ S(U, x) = kB ln Γ

Canonical (T, x) exp(−βH(µ))
Z F (T, x) = −kBT lnZ
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In other words, the free energy in the canonical ensemble and the entropy in the microcanonical ensemble play

similar roles.

Note that the logarithm of the partition function also gives other quantities. For example,

CV = NĉV =
1

kBT 2
σ2x

where σ2x is the variance of the energy of our system at thermal equilibrium. This shows up in more sophisticated

discussions of statistical physics! Since our heat capacity is a response function

CV =
∂Q

∂T

∣∣∣∣
V

,

it describes how much heat is transferred given some perturbation of our temperature. But instead of having to do

that perturbation, this equations tells us that observing fluctuations at thermal equilibrium works as well!

Fact 208

This is a special case of something called the fluctuation-dissipation theorem.

As another comment: we’ve mostly been summing over states to calculate the partition function, but we’re often

instead given the energies as opposed to states. For example, if we’re given that our energies are {Ei |1 ≤ i ≤ M}, we

can write our partition function as

Z(T,N, V ) =
∑
i

gie
−βEi ,

where gi is the degeneracy of the energy level (letting us know how many microstates are at that given energy Ei).

In the continuous limit, we can approximate this instead as

Z(T,N, V ) =

∫
dE

dN

dE
e−βE ,

where dNdE is the density of states we discussed earlier in class.

One more comment: since F = −kBT lnZ, we know that Z = exp(−βF ). This looks a lot like the Boltzmann

factor exp(−βEi) for a particular microstate! Thus we can think of exp(−βEi) as being a volume or weight in phase

space for a particular state: Z is then the weight contributed by all states for a given N and V . (For a canonical

ensemble, since F = U−TS is the “free energy,” it can be thought of as the amount of energy available for the system

to do useful work.)

38.2 Looking at the two-state system again

Example 209

Let’s go back and say that we have a system where a particle can be in two states: E↑ = ε
2 and E↓ = − ε2 .

The partition function here is then

Z = eβε/2 + e−βε/2 = 2cosh

(
βε

2

)
,

and now the internal energy of our system

U = −
d

dβ
lnZ = −

∂Z
∂β

Z
= −

ε

2
tanh

(
βε

2

)
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goes from − ε2 to 0 as our temperature T gets larger (which looks a lot like our microcanonical ensemble!). Then the

probability of being in each of our two states is

P↑ =
e−ε/(2kBT )

2 cosh ε
2kBT

+ 1
=

1

1 + eε/(kBT )
, P↓ = 1− P↑.

Indeed, P↑ goes from 0 to 1
2 , and P↓ goes from 1 to 1

2 as our temperature T gets larger.

Next, let’s calculate the entropy: from our free energy F , we find that

S =
U

T
+ kB lnZ = −

ε

2T
tanh

ε

2kBT
+ kB ln

(
2 cosh

ε

2kBT

)
.

Looking at the limits, this goes to − ε
2T + kB ln exp

ε
2kBT

→ 0 as T → 0. This is consistent with what we already know:

there’s only one possible ground state! On the other hand, as T → ∞, this goes to kB ln 2, which is consistent with

the microcanonical ensemble and the intuition of our system.

We can also calculate our heat capacity:

C =
∂U

∂T
= −

ε

2

∂

∂T
tanh

ε

2kBT
= kB

(
ε

2kBT

)2
1

cosh2 ε
2kBT

.

Plotting this as a function of thermal energy kBT , the distribution is (just like in the microcanonical ensemble) unimodal.

Think of this in terms of fluctuations! We can calculate the standard deviation of our energy at a given temperature:

σ(U) = kBT

√
CV
kB
=

ε/2

cosh ε
kBT

,

and the behavior models the microcanonical ensemble as T → 0 and as T →∞: it is

38.3 Systems with a large number of particles
Let’s now think about how to compute the partition function in larger systems! Specifically, how can we do this

for distinguishable versus indistinguishable particles - more specifically, how many microstates are there with a given

number distribution (n1, · · · , nM)?
Assume our particles are distinguishable. If we have N particles, there are

(
N
n1

)
ways to pick n1 of them to go in

the first energy level, then
(
N−n1
n2

)
ways for the next energy level, and so on: this gives the multinomial coefficient

N!

n1!n2! · · · nm!
.

This is the degeneracy factor for a given energy that we want! Let’s look at us having N distinct harmonic oscillators,

where there are M distinct energy levels ε1, · · · , εM . Then nk denotes the number of distinct harmonic oscillators that

are excited at our energy level εk . Now we can write our partition function

Z =
∑

n1+···+nm=N

N!∏m
j=1 nj !

exp

[
−β

M∑
k=1

εknk

]
.

where the first term is the degeneracy factor, and the
∑M
k=1 εknk is the total energy of our state. Let’s see if we can

simplify this: first of all, we can expand the sum inside the exponential as a product:

Z =
∑

n1+···+nm=N

N!∏M
j=1 nj !

M∏
k=1

exp[−βεk ]nk .
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Now remember the binomial theorem:

(a1 + a2)
N =

∑
n1+n2=N

N!

n1!n2!
an11 a

n2
2

which generalizes to the multinomial theorem

(a1 + · · ·+ aM)N =
∑

n1+···+nM=N

N!

n1! · · · nM!
an11 · · · a

nM
M .

This is exactly what we want here! By the multinomial theorem, we can rewrite our Z as

Z = (exp[−βε1] + exp[−βε2] + · · ·+ exp[−βεM ])N ,

and since the sum inside the parentheses is actually the partition function for an individual harmonic oscillator Z1, we

can write

Z = ZN1 .

Proposition 210

This means that the partition function for identical distinguishable systems is multiplicative!

It’s important here that the individual oscillators here were distinguishable to get the multinomial coefficient. But

if we want to do the same exercise with indistinguishable particles, the degeneracy factor becomes just 1.

Then calculations in general are a lot uglier, but we can look at a special case: let’s say we have high temperatures,

which is basically looking at our harmonic oscillators in the classical limit! Then our states are basically uniquely defined

by just the list of energy levels (and we rarely need to deal with overcounting issues), so we just end up with

Z →
1

N!
ZN1 .

Talk to Professor Ketterle when we’re not looking at the classical limit, though!

Example 211

Let’s explicitly compute the partition function for N distinct harmonic oscillators and work with it!

Then we have (using facts from quantum physics)

Z1 =

∞∑
n=0

exp

(
−β~ω

(
n +
1

2

))
= e−β~ω/2

∞∑
n=0

(
e−βhω̄

)n
=

e−β~ω/2

1− e−β~ω

by the geometric series formula, and Z is just ZN1 .

Now that we have our partition function, we can compute our other macroscopic variables:

U = −
∂

∂B
lnZ = −N

∂

∂β
lnZ1

which evaluates out to

U = N~ω
(

1

e−β~ω − 1 +
1

2

)
.

As we take our temperature T → 0, we only occupy the ground energy level, which is 12N~ω. On the other hand, if

our energy is large, kBT �
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hbarω =⇒ T � ~ω
kB

, which is the high-temperature classical limit: think about what happens this way! It’s also good

to think about how to calculate the heat capacity and entropy of this system from here.

One comment: we’ll deal with a lot of series in these kinds of calculations, so we should become comfortable with

the relevant techniques!

39 April 29, 2019 (Recitation)
Today’s recitation is being taught by the TA.

Recently we’ve been discussing the canonical ensemble - as a first question, when do we use it?

Basically, whenever we have a system, we have some different states: for example, we can consider them by energy

level. In a microcanonical ensemble, we consider a system that is cut off from all of its surroundings: no mass or heat

transfer, so we have conservation of energy.

But in the real world, most systems are connected to the environment, even if we have a fixed number of particles.

A canonical ensemble is just the most basic example of this!The main idea is that the probability of finding the system

in an energy εi is

pi =
e−βεi

Z
,

where Z is the partition function. How do we derive this? In general, our system needs to maximize entropy S

S({pi})
kB

= −
∑

pi ln pi .

We have the constraints
∑
pi = 1, and also we can say that the “average” energy of our system is constant: writing

that in terms of our probabilities, we have
∑
piεi = U.

Fact 212

An idea here is that thermodyanmics and statistical mechanics are connected by the idea of “averaging.”

Now that we have our constraints, we use Lagrange multipliers! Basically, given a function f that we want to

maximize and a bunch of constraints of the form {gi(x) = 0}, it’s equivalent to minimizing over x and λ (the

Lagrange multipliers)

F (x) = f (x)−
∑

λigi(x).

To minimize a vector function, consider the gradient: we want ∂F∂xi =
∂F
∂λj
= 0 for all i , j . (The latter, by the way, is

just saying that each gi(x) = 0.)

So let’s apply this to our problem! We have

G({pi}) = −
∑
i

pi ln pi − λ(
∑
i

pi − 1)− β(
∑

piεi − U)

Taking the derivative with respect to pi ,

∂G

∂pi
= − ln pi − 1− λ− βEi = 0 =⇒ pi = e

−1−λ−βEi .

Meanwhile, taking the derivative with respect to λ just yields
∑
pi = 1: this means we have to normalize our probability

distribution: this yields

pi =
e−βεi∑
a e
−βεa ,
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as before!

So we can actually define temperature T directly in terms of our Lagranage multiplier: β = 1
kBT

. Our partition

function looks important, but can we do anything with it? First of all, we can write it in two different ways:

Z =
∑

states i

e−βεi =
∑

energies {εn}

gne
−βεn .

(The gn degeneracy factor is pretty important here!) Let’s try to write this in terms of some quantities that we already

know about: since our energy

U = 〈E〉 =
∑
i

piεi ,
∑
i

εie
−βεi

Z
,

note that

−
1

Z

∂Z

∂β
=
1

Z

∑
i

εie
−βεi = −

∂ lnZ

∂B
= U.

Now that we have energy, we can think about this in certain kinds of systems. A real magnet is a bunch of small

atoms that are magnetic dipoles: microscopically, those dipoles are oriented in magnetic domains, and this order breaks

down if the magnetic heats up! (Basically, there’s no clear direction for the dipoles to point.) On the other hand,

magnets at very low temperature have a defined order: there’s a quantity “magnetization” which is the average |µ|
N ,

and it decreases to 0 at some Curie temperature TC . We might see later on that the decay is actually square-root up

until that point!

Example 213

So if we have a system with a bunch of magnetic spins, we have a total energy (in a two-state system)

E = −(
∑

µi)B.

Knowing B and knowing the temperature T , we want to think about the average magnetization

m =
〈
∑
µi 〉
N

.

We can think about this in another way: consider

∑
{µi}

(
∑
µj)e

β
∑
i µi )B

Z
=
1

β

∂ lnZ

∂B
= Nm,

and now we have what we want: we’ve found m in terms of the partition function!

So looking at probability distribution, we want the fluctuation in U

(∆U)2 = 〈E2〉 − 〈E〉2.

The second term here is already known: it is
(
− ∂ lnZ
|partialβ

)2
, and then how can we find the first term? Take more

derivatives! Note that
∂2 lnZ

∂β2
=

∂

∂β

(
−
1

Z

∑
εie
−βεi

)
,

and now by the product rule,

=
1

Z

(∑
ε2i e

−βεi
)
−
1

Z2

(
∂Z

∂β

)2
.

The first term is now the expected value of 〈E2〉, and therefore the fluctuations (∆U)2 are connected to partial

derivatives ∂
2 lnZ
∂β2 !
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We can think of this in terms of other situations as well: remember that when we have our heat capacity C = ∂U
∂T ,

we can also think about the relationship between ∂
∂T and ∂

∂β =
∂
∂T
∂T
∂B , and now ∂B

∂T = −
1
kBT 2

by direct substitution.

Fact 214

It will be important to switch between β and T in the future!

So then

C =
∂U

∂T
= −

1

kBT 2
∂U

∂β
=

1

kBT 2
∂2 lnZ

∂β2
=⇒ (∆U)2 = kBT

2C .

C is a response function: we can generally do something to our system and see how this changes the properties. The

equation, then, connects theoretical quantities to measurable experimental quantities!

As an exercise, we can prove that if χ = ∂〈M〉
∂B , we have a similar relation: then (∆M)2 = kBT 2χ.

Finally, is there a way for us to compute the entropy from our partition function? We have

S = −kB
∑

pi ln pi = −kB
∑

pi(− lnZ − βεi).

This can be rewritten as

= −kBβ
∑

piεi + kB lnZ
∑

pi .

The sum of the pis is 1, and the sum of the piεis is our energy 〈E〉, so we have

S =
1

T
〈E〉+ kB lnZ.

This should look familiar: since the Helmholtz free energy F = U − TS, we can rewrite

F = kBT lnZ =
1

β
lnZ.

But now knowing F and U, we are able to find S, and then we can get whatever else we want! In fact, we can also

use this to prove the first and second law.

Example 215

Let’s go back to our two-state system.

We can say that our energy is

E = −B
∑

µi = −(
∑

σi)µB,

where each σi is ±1. Intuitively, we should expect independence, so Z should be multiplicative. Indeed, our collection

of spins {σi} = (±1, · · · ,±1): this is 2N configurations, and we can then write this as∑
{σi}

e−βµB(
∑
σi )

and now we can expand this out as (since
∑
aibj =

∑
ai
∑
bj)

∑
{σi}

eβµBσ1eβµBσ2 · · · =
∏
i

( ∑
σi=±1

eβµBσi

)

But we always have the same B,µ, β, σ, so each sum is equal: this means we have

Z =
(
e−βµB + eβµB

)N
,= 2N cosh(βµB)N
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and we’ve found Z explicitly.

Finally, looking at the magnetization one more time,

〈M〉 =
1

β

∂ lnZ

∂B
= Nµ tanh(βµB).

So m, the average magnetization, goes from 1 to −1: a strong enough magnetic field will align all the spins in the

same direction! We also can expand the curve around B = 0 to figure out the linear relationship between m and B at

small B.

40 April 30, 2019
There is a problem set due this week on Friday - it covers a lot of concepts about the canonical ensemble, and each one

is a good way to put what we have learned into practice! Today, we’ll look at more examples of canonical ensembles

and see the applications to black-body radiation and other topics. (This is because we can think of black-body radiation

as a bunch of oscillators, and we can learn about their equation of state to deduce further information.)

40.1 Back to the two-level system
Let’s again imagine that we have N particles, each with two energy levels. This can be thought of as assigning an up

or down arrow to each of N spots on a lattice - the particles are then distinguishable, because we can identify them

by their position.

Let’s say the up and down spin have energy levels of ε2 and − ε2 , respectively. We found last time that the partition

function for one particle was

Z1 = e
−εβ/2 + eεβ/2 = 2cosh

βε

2
,

and then the partition function for all N particles, by independence, is just

Z = ZN1 =

(
2 cosh

βε

2

)N
.

We can now calculate the thermodynamic properties of the system: first of all,

lnZ = N ln

(
2 cosh

βε

2

)
This actually gives us the other quantities that we want: we can calculate

U = −
Nε

2
tanh

ε

2kBT
,

S = N

(
−

ε

2kBT
tanh

ε

2kBT
+ kB ln

(
2 cosh

ε

2kBT

))
.

We’ll also find that the heat capacity CV is just N times the heat capacity of a single particle, and the fluctuation

standard deviation of U is

σ(U) = kBT

√
CV
kB
=

√
Nε/2

cosh ε
2kBT

.

Since U ∝ N and σ ∝ N, we have concentration of the energy!
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40.2 Another look at the harmonic oscillators
Remember that for a similar system we examined (the quantum harmonic oscillator), we have that

Z1 =

∞∑
n=0

exp(−β~ω(n + 12)),

and then again by independence,

Z = ZN1 =⇒ U = −
∂(lnZ)

∂β
= N~ω

(
1

eβ~ω − 1 +
1

2

)
.

A good question here: what do we know about temperature in the limits? As T → 0, β → ∞, and that means

U = N~ω
2 . This is the ground state: all harmonic oscillators are in their ground state of ~ω2 .

Meanwhile, when T � ~ω
kB

, so the temperature is large enough for β~ω to go to 0, U becomes large. We can

define β~ω = x : now doing a Laurent expansion because our quantity blows up at 0,

1

ex − 1 =
1

x + x
2

2 +
x3

6 + · · ·
=
1

x
·

1

1 + x2 +
x2

2 + · · ·
.

Now we can neglect higher order terms and this simplifies to

1

x

(
1−

x

2
+O(x2)

)
=
1

x
−
1

2
+O(x).

Plugging this back in, as T →∞, we have

U → N~ω
(
1

β~ω
−
1

2
+
1

2

)
= NkBT,

and this is the famous result from the equipartition theorem! (Harmonic oscillators contribute a potential and kinetic

quadratic term to the Hamiltonian.)

So now, how can we determine the probability distribution for a single oscillator? We have

p(E) =
1

Z1
e−E/(kBT )

(as a property of the canonical ensemble in general), and plugging in our specific value of Z1,

p(E) = (1− e−β~ω)eβ~ω/2e−β
(
n+ 1

2

)
~ω,

and this is actually a probability distribution over our ns:

p(E) = p(n) = (1− e−β~ω)e−nβ~ω.

This is actually a geometric distribution: if we take a = e−β~ω, the probability

p(n) = (1− a)an.

This is indeed normalized:
∑
n p(n) = 1, and the average value of n, called the average occupation number of a

harmonic oscillator, is

〈n〉 =
1

e~ω/(kBT ) − 1
.
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Finally, let’s compute the heat capacity:

C −
∂U

∂T
= N~ω

∂

∂T

(
1

e~ω/(kBT ) − 1
+
1

2

)
which simplifies to

= NkB

(
~ω
kBT

)2
e~ω/(kBT )

(e~ω/(kBT ) − 1)2
.

Again, let’s look at the limits: when T →∞, all ~ωkBT terms go to 0 (define that fraction to be y). Specifically,

(ey − 1)2 ∼ (y +O(y2))2 ∼ y2, ey ∼ 1 + · · · ∼ 1,

and thus as T →∞, we have

C → NkB.

This is a familiar result as well - at high temperatures, we’re expecting U = NkBT , so it makes sense for C = NkB.

Remember also that because we have a gap between the ground state and next lowest energy level, we have gapped
behavior where C becomes exponentially small at low temperature T .

The distinguishing factor here from a two-level system is that there are always higher and higher energy levels!

40.3 Deriving the ideal gas law again
Let’s try to do this derivation without needing to count states!

We have our N indistinguishable particles, so we found last time that the partition function (by overcounting

arguments) is

Z =
1

N!
(Z1)

N .

To calculate Z1, remember that we need to do our density of states argument: by the semi-classical density of states

argument,

Z1 =
∑
j

eEj/(kBT ) →
∫
d3xd3p

(2π~)3
e−p

2/(2mkBT ).

Evaluating this integral, integrating out the d3x gives us a volume, and writing d3p = 4πp2dp by spherical symmetry,

Z1 = V
4π

(2π~)3

∫ ∞
0

dpp2e−p
2/(2mkBT ).

Using the change of variables y2 = p2

2mkBT
, the integral now becomes

Z1 = V 4π

(
2mkBT

4π2~2

)3/2 ∫ ∞
0

dyy2e−y
2

and the known integral has value
√
π
4 . This gives us a final partition function for one particle of

Z1 =

(
mkBT

2π2~2

)3/2
V.

Notice that the units of the partition function are dimensionless! That means that the mkBT2π~2 term should have units

of 1
length2 , and this helps us define a new length scale

λD =

√
2π~2
mkBT

=
2π~√
2πmkBT

=
h√

2mEthermal
.
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This is called the thermal de Broglie wavelength: how do we compare it to others? Thinking of our ideal gas as

noninteracting point particles, we have an average inter-particle distance(
V

N

)1/3
.

The main point is this: if we have
(
V
N

)1/3 � λD, we have a classical system, and we can use Maxwell-Boltzmann

statistics to evaluate our system. But if
(
V
N

)1/3 � λD (for example, when we start lowering our temperature),

quantum mechanical effects are dominant, and we describe the system either with Bose-Einstein statistics or Fermi-

Dirac statistics, based on whether we have distinguishability.

Example 216

Consider an electron at room temperature. Then we have

λD =
h√

2πmekBT
≈ 4.5nm,

which is pretty small.

This means that in our ideal gas situation, we should be using Maxwell-Boltzmann statistics! So now we have

Z1 =
V

λ3D
=⇒ Z =

ZN1
N!
,

and now let’s try to calculate our thermodynamic quantities. By Stirling’s approximation,

U = −
∂

∂β
lnZ = −

∂

∂β
(N lnZ1 − N lnN + N),

and if we work this out, we’ll derive the well-known

U =
3

2

N

β
=
3

2
NkBT.

Calculating the entropy for this system,

S =
U

T
+ kB lnZ =

3

2
NkB + kB ln

(
ZN1
N!

)
.

If we use Stirling’s approximation again, we’ll find that

S = NkB

(
3

2
+ lnZ1 − lnN + 1

)
,

and we can substitute in to find

S = NkB

(
3

2
ln

(
mkBT

2π~2

)
+ ln

V

N
+
5

2

)
which is the familiar Sackur-Tetrode equation!

40.4 The Maxwell-Boltzmann equation
Finally, we want to look at the probability distribution for the kinetic energy of a specific molecule in an ideal gas.

Using the semi-classical limit argument again, now that we know the partition function Z1,

p(E) =
1

Z1

∫
d3xd3p

(2π~)3
e−p

2/(2mkBT )δ

(
E −

p2

2m

)
,
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since we want to pick out those energies that are equal to p2

2m specifically. Making the same simplifications and plugging

in Z1,

=

(
2π~2

mkBT

)3/2
1

V

1

(2π~)3
V · 4π

∫ ∞
0

dpp2e−p
2/(2mkBT )δ

(
E −

p2

2m

)
=

(
2π

mkBT

)3/2
1

2π2
2mEe−E/kBT

(
m

|p|

)
.

Now since we can write p =
√
m
2E in terms of kinetic energy, this all simplifies to

p(E) = 2π

(
1

πkBT

)3/2√
Ee−E/(kBT ) .

The
√
E factor essentially tells us about the momentum: the density of states is proportional to

√
E. This is known

as the Maxwell-Boltzmann distribution for the kinetic energy of a molecule in an ideal gas situation, and it works

whenever we have
(
V
N

)1/3 � λD.

We can find the average energy here:

〈E〉 =
∫
Ep(E)dE =

3

2
kBT = 〈

1

2
mv2〉,

which gives us the root-mean-square of the velocity:

vrms =
√
〈v2〉 =

√
3kBT

m
.

This also gives us the velocity distribution

p(v) =

∫ ∞
0

dEp(E)δ

(
v −

√
2E

m

)

and through some routine algebra, we get the Maxwell-Boltzmann velocity

p(v) = 4π

(
m

2πkBT

)3/2
v2e−mv

2/(2kBT ) .

Next time, we’ll start talking about black-body radiation. Look at the problem set to examine some of these systems

more carefully!

41 May 1, 2019 (Recitation)

41.1 General comments
Let’s start with some general remarks about the partition function. We’re in a situation where we know about states,

entropy, and the general behavior of nature: now, we’ll try to tie that in to the canonical ensemble using our function

Z =
∑
i

e−βEi .
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This was derived in class: in particular, the probability of a state i is e
−βEi
Z , and then the average value of E is

〈E〉 =
∑
i

Ei
e−βEi

Z

which is connected to a β-derivative. We also know that S = kB
∑
pi ln pi can be written in terms of the derivatives,

as can free energy and all our other variables! So it basically has all the knowledge we need in our system.

So in relation to the problem set, we always “sum over states,” even if some of them may look different from

others!

What makes the partition function easy? The idea is that having N indistinguishable particles gives a partition

function

Z =
1

N!
ZN1 =⇒ lnZ = N lnZ1 − lnN!,

and it’s often much easier to calculate Z1 for one particle. This wasn’t true in the microcanonical ensemble: since we

had a fixed total U, we didn’t have independence between the energy states of our particles there, so our calculations

were more complicated! We don’t have to make the ugly approximation for the 3N-dimensional sphere’s surface area,

as we did when deriving Sackur-Tetrode with the microcanonical ensemble.

41.2 Particles in a potential
There’s a lot of different ways we can work with a particle with a potential and kinetic energy. The potential energy

can be constant (a box), linear (for example, due to gravity on Earth), or quadratic (a harmonic oscillator) in terms of

x , and the kinetic energy can be quadratic or linear in terms of p. Finally, we can pick how many degrees of freedom

d we have for our particle.

The idea is that many problems are just some combinations of these parameters! We’re going to generalize so

that we can see the big picture.

First of all, if our energy H(~x, ~p) can be written in terms of these phase variables, our equation for the partition

function Z1 (for one particle) is just (semi-classically)

Z =

∫
d3xd3p

h3
e−βH(~p,~x).

The first term’s 3 can be replaced with the number of degrees of freedom we have. So now we just insert our

expressions for kinetic and potential energy into H, but let’s not integrate yet. What are we trying to work with? For

example, if we’re trying to find the internal energy, we don’t need Z: instead, we want

U = −
∂

∂β
(lnZ).

So all the normalization factors in Z can be ignored if all we want is U: all of the Gaussian integrals give multiplicative

factors, and lnZ turns those into constants, which become zero under β. Given this, let’s rederive the relevant part

of this calculation for the ideal gas. The d3x integration gives a volume, and we don’t care about the h3 either, so

we’re left with

Z1 ∝
∫ ∞
−∞

d3pe−β(p
2
x+p

2
y+p

2
z )/(2m).

This is essentially just three independent integrals! To work with this, let’s define a new variable ξ2 = βp2x
2m : then

dξ = βdpx · C - here we only care about the β-dependence, since we take the derivative with respect to β later on.
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This gives us a scale factor of β−1/2 in each direction! So we’re left with

Z1 =

[
β−1/2

∫
dξe−ξ

2

]3
= β−3/2 · C,

where C has the volume, the h3 term, and so on - those aren’t relevant right now! Now lnZ is some constant plus

− 32 lnβ, and now

U = −
∂

∂β

(
−
3

2
lnβ

)
=
3

2β
=
3

2
kBT,

as we expect! (This also gives us things like CV = 3
2kB for free.)

Fact 217

If we need something like the entropy, then we do need the constants we’ve tossed out along the way, but the

internal energy doesn’t depend on them!

So we’ve now looked at one example of a potential: let’s now think about the relativistic gas, where the kinetic

energy is c |p|. Most of our derivation stays the same, except that now

Z1 =

∫ ∞
−∞

d3pe−βc|p|/2m.

Defining ~ξ = −βc~p, this converts us to an integral proportional to

β−3
∫
d3ξe−|ξ|

(with the point being that we want to convert to generic, normalized integrals which just give us fixed constants!).

Then almost everything stays the same: we just have U = 3kBT and CV = 3kB now.

In both of these cases, we’ve found that our partition function

Z1 = (c)β
−x ,

where x = d
2 is half the number of degrees of freedom for the quadratic kinetic energy and x = d is the number of

degrees of freedom for the linear kinetic energy.

But we’ve only been dealing with cases where our potential is constant: what if we have a linear or quadratic

potential? Well, the situation is exactly symmetric! We can make exactly the same arguments and substitutions, so

in general, we’ll actually have

Z1 = (c)β
−x+y ,

where y = 1
2d if we have a harmonic oscillator (quadratic) potential and d if we have a linear potential!

Fact 218

The whole point is that this is why statistics is useful: we can just look at how everything scales with β. This

gives us (at least in the semi-classical limit) the internal energy and many other quantities.

So now if we want the specific heat for a relativistic gas in two dimensions which lives in a potential

V (~x) = α|x |10,
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we know that the relativistic gas integration gives us (since d = 2),

x + y = 1 · 2 +
1

10
· 2 =

11

5
.

So the partition function is just going to be proportional to β−11/5. That gives us a specific heat of 115 kBT with very

few calculations!

Fact 219

This is a generalization of the equipartition theorem, which tells us that each quadratic term gives a β−1/2 in the

partition theorem, which gives a specific heat of 12kB.

42 May 2, 2019
In terms of exam regrades, everything will be updated later today. The problem set is due tomorrow!

We’re going to discuss black-body radiation today: the main idea is that being able to absorb light at all frequencies

leads to interesting behavior in terms of the spectrum of colors. In particular, we’ll start understanding ideas like why

we humans can see in the visible light range! (In particular, things would be very different if the sun was at a different

temperature.)

Looking ahead, we’ll look at photons as particles of a gas, and we’ll consider why the classical model of this gas

isn’t good enough to understand that spectrum, particularly in the UV range! This was part of the birth of quantum

mechanics, and it’ll let us actually plot the energy density with respect to our frequency ω correctly.

42.1 Black-body radiation
As a reminder, quantum mechanical particles can be described by a wavefunction, and the energy eigenstates (for a

particle in a box) are given by

ψk =
1√
V
e i
~k~x .

In three dimensions, we have ~k = (k1, k2, k3), where each ki = 2πni
L is in terms of the mode numbers ni ∈ Z. It

turns out this can also describe the quanta of the electromagnetic field! Each mode can be thought of associated with

a quantum harmonic oscillator, and we need all plane waves to travel at the speed of light, so we have ωk = c |k |.
(Looking at the polarization, there are two modes per wavevector ~k .)

So we’ll treat our black-body system as a gas of photons, and let’s see what happens as our temperature T

increases! We’ll start by essentially counting states: how many states are there available to a single photon whose

energy is between E and E + dE? We’ll calculate this in terms of frequency:

dN

dω
dω = (4πk2)

(
dk

dω
dω

)(
2V

(2π)3

)
,

where k2 = ω2

c2 and dk
dω =

1
c . What do each of these terms mean? The first term 4πk2 is the surface area of a sphere

of radius k , the second term is the thickness of a spherical shell for dω, and the last term is the density of a single

particle plane-wave eigenstate wavevector (where the factor of 2 comes from the fact that there are 2 directions of

polarization). So now simplifying,
dN

dω
dω =

V ω2

π2c2
dω,
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We want to calculate the partition function, so let’s look at a particular frequency ω for our photons and then integrate

later. This is essentially the partition function for a harmonic oscillator, but we’ll disregard the zero point energy: it’s

a constant, and in practice, we only care about energy differences (unless we’re talking about dark energy and so on).

This means that our partition function simplifies to

Zω = 1 + e
−β~ω + e−2β~ω + · · · =

1

1− e−β~ω .

We want to sum this over all possible frequencies - theoretically, we don’t have any upper limit (though in solids, we

do have some physical limit due to the properties). So now we can integrate out

lnZ =

∫ ∞
0

dω
dN

dω
lnZω,

which simplifies to

lnZ = −
V

π2c3

∫ ∞
0

dωω2 ln(1− e−β~ω).

We’ll leave the partition function like this, but we can already calculate some quantities. First of all, the average

internal energy can be found via

〈E〉 = U = −
∂

∂β
lnZ =

V ~2

π2c3

∫ ∞
0

ω3

eβ~ω − 1dω,

(since we can swap the integral and derivative). In differential form, this says that

E(ω)dω =
V ~2

π2c3
ω3

eβ~ω − 1dω,

which is the amount of energy carried by photons with frequency between ω and ω+dω. This is actually Planck’s
distribution! If we plot the integrand with respect to ω, this has a single peak: at low frequency, the distribution is

consistent with the equipartition theorem, but then the energy gaps at higher frequencies bring I back to 0 instead of

going off to infinity.

Fact 220

Calculating dE(ω)
dω gives Wein’s radiation law, which is a good exercise.

By the way, when the temperature is around 6000 Kelvin, which is the temperature of the Sun, the peak is mostly

in the visible light range, which makes sense!

Fact 221

This is known as a “radiation gas,” which has different properties from the normal gasses that we’ve been dealing

with.

42.2 Doing some derivations
Looking again at our internal energy integral, we have

U =

∫ ∞
0

dω

(
ω2V

π2c3

)
~ω
(

1

eβ~ω − 1

)
.

Here, the first term
(
ω2V
π2c3

)
is the density of modes per frequency. The ~ω is a kind of energy unit excitation, and

combined with the last term, this gives the mean thermal excitation energy per mode. Substituting in x = β~ω, we
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actually want to calculate

U =
V

π2c3

(
kBT

~3

)4 ∫ ∞
0

x3dx

ex − 1 .

That last integral is actually known because there is no upper limit on the frequency - otherwise, it’s only possible to

numerically approximate it! It turns out that this is

= Γ(4)ζ(4) = 6 ·
π4

90
=
π4

15
,

and therefore we can think about the energy density of our gas of photons

U

V
= ξ =

π2k4B
15~3c3

T 4.

In other words, we can just write down this law as

U

V
∝ T 4 .

Example 222

So we can imagine having a box of photons with a hole: how can we find the energy flux?

Flux is the rate of energy transfer, and it will just be ξc4 , where c is the speed of light: the 14 factor comes from us

not having a point source, and where the size of the hole is larger than the wavelength of the photons. This can then

be written as σT 4 , and this proportionality is called the Stefan-Boltzmann law. Here,

σ =
π2k4B
60~3c2

.

Example 223

Let’s see if we can find the pressure of this gas. (It will be interesting, because the pressure only depends on the

temperature!)

First of all, let’s calculate the Helmholtz free energy

F = −kBT lnZ =
V kBT

π2c3

∫ ∞
0

dωω2 ln(1− e−β~ω).

Again letting x = β~ω and doing similar simplifications,

F =
V (kBT )

4

πc3~3

∫ ∞
0

dxx2 ln(1− e−x),

and now by integration by parts, the integral simplifies to∫ ∞
0

dx

(
1

3

d

dx
x3
)
ln(1− e−x) =

1

3
x3 ln(1− e−x

∣∣∣∣∞
0

−
1

3

∫ ∞
0

dx
x3

ex − 1 .

We’ve seen the second term before: it evaluates to π4

45 , and therefore

F = −
π2(kBT )

4V

45~3c3
= −
1

3
U.
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Now we can find our pressure:

P = −
∂F

∂V

∣∣∣∣
T

= −
U

3V
=
4σ

3c
T 4.

This equation of state tells us that interestingly, this gas’s pressure only depends on the temperature! In particular,

the pressure P is 13 of the energy density, and this is an interesting fact in cosmology.

42.3 Continuing on
Let’s try calculating some other thermodynamic quantities: the entropy of our gas is

S = −
∂F

∂T

∣∣∣∣
V

=
16V σ

3c
T 3,

the specific heat

CV =
∂U

∂T

∣∣∣∣
V

=
16V σ

c
T 3,

and to find the number of photons,
dN

dωdV
=

ω2

π2c3
1

eβ~ω − 1 ,

and integrating out V and ω, we find that

N =
V

π2c3

∫ ∞
0

dω
ω2

eβ~ω − 1 ≈ 1.48
σT 3V

kBc
.

We can also now calculate the fluctuations in energy: normalizing the standard deviation with respect to U,

σ(E)

U
=

kBT
4
c σT

4V

√
16σT 3V

kBc
=

√
kBc

6T 3V
=

√
1.48

N
.

These fluctuations are very small as N grows large! So we can basically treat this from the microcanonical point of

view, and the thermodynamic behavior would look basically the same.

Question 224. So what does all of this mean?

First of all, this shows that classical mechanics isn’t enough to describe our systems. If we take ~ → 0 - that is,

we don’t assume that we have quantization - then

d2U

dωdV
=
~ω3

π2c3
1

e~ωβ−1
→

ω2

π2c3
kBT

as ~ → 0. This quadratic growth is consistent for ~ω � kBT with the equipartition theorem, but then quantum

mechanical effects give an exponential decay eventually, which classical mechanics can’t predict. Also, this gas is very

interesting, because local properties only depend on temperature. UV ,
N
V ,
S
V , and P are all dependent on T and not V !

Finally, this was a gas of photons, but we can also think about vibrations of solids in terms of phonons instead.

The same derivations can be made, but we just have some different quantities: c is now the speed of sound (since

we care about sound modes), and also, we have a bounded integral instead of integrating from 0 to ∞. Basically, the

wavelength can’t be smaller than the inter-atom distance! That makes it interesting to think about how CV of a solid

changes as we decrease the temperature - this will lead us to Einstein’s law.

An exercise: what is the chemical potential µ for this radiation gas? It will turn out to be zero, and we’ll see a

connection when we discuss bosons later on!
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43 May 6, 2019 (Recitation)

43.1 Homework questions
In one of the problems of the problem set, we have particles oriented with a dipole moment ~mu which gives us an

energy

−~E · ~µ = −|E||µ| cos θ.

We want to find the partition function, which is an integral over states:

=

∫
”dxdp”

h
e−βH,

where H, the Hamiltonian, is the kinetic plus potential energy that we have if we use the semi-classical approximation.

The main differences here are that we have two-dimensional space (and therefore two-dimensional momentum space

as well), so we really want

Z1 =

∫
d2xd2p

h2
e−βH.

What’s special is that we are integrating over angles θ and π, and we also have the canonical momenta pθ and pφ as

a result.

But now we can integrate our cos θ out through our polar coordinates, and everything works out! (We will get a

cos θ in the exponent.)

In a different problem, when we give a gravitational potential energy −mgh to each particle, that just adds a

e−βmgh to each term. This is generally solved more easily with the grand canonical ensemble (where we are actually

allowed to exchange particles), but if we are to solve the problem in the way that we know, the e−βmgh factor comes

out of the z-integral. Now we just get an additive constant in F (because we take lnZ) and the rest of the problem

looks like an ideal gas!

Finally, considering the polymer chain, the main concept is to treat each individual monomer separately! Since we

have a classical system, we can just compute Z1 for one monomer and take the Nth power. We basically have a bunch

of two-level systems, for which the partition function is easy to calculate!

Now all the degeneracies of the form
(
N
n

)
are accounted for in the binomial expansion of the two-level system

1 + e−β∆, raised to the Nth power. We don’t even need to do the combinatorics from the microcanonical ensemble!

43.2 Clicker questions
Question 225. Canonical versus microcanonical ensembles: do both ensembles have the same properties?

The answer is yes! We’ll unfold more details about this soon.

Question 226. Do both ensembles have the same number of microstates?

No! In the microcanonical ensemble, we’re given a total energy E for which all our states must reside, but in the

canonical ensemble, we’re given more freedom. Here’s a way to think about it: let’s say we divide a system into two

halves with N
2 particles. Then the total number of microstates is

Γtotal = ΓLeftΓRight,

but this isn’t quite correct in general because we might not have exactly N2 on each side! (Think of “fixing the number

of particles on the left side” as “fixing the energy of our system” as in the microcanonical ensemble.) It turns out in
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general that the right order of magnitude is to deal with the Gaussian fluctuation

Γ2V = (ΓV )
2
√
N.

In this case, it is easy to count microstates, but it may be more difficult in other versions! Well, the reason we

don’t worry about it too much is because taking log often makes the
√
N negligible. We really only care about those

microstates with non-negligible probability, so the Binomial distribution with mean N
2 and standard deviation on the

order of
√
N can be viewed as basically Gaussian, and we only care about those values within a few standard deviations.

So what is the number of microstates in a microcanonical distribution? We often have a density of states ∂N(E)∂E ,

but that’s a classical description and therefore can’t be used directly for counting. So we need to have some energy

width δE, and we often didn’t specify what that was!

Fact 227

Usually we don’t need to because the δE cancels out later, or because it only adds a negligible logarithmic term.

There was one example where it didn’t need to be specified: given a harmonic oscillator, there are only specific

states at width ~ω apart, so perfect, identical harmonic oscillators do actually have some “exact number of states.”

So in our equation

Γ(E) =
∂N(E)

∂E
δE,

we can think of “δE = ~ω′′ as an effective width between our energies.

Question 228. So what’s the energy gap that we’ve assumed in the canonical ensemble?

We have a Boltzmann factor e−βE that exponentially decreases with E, and we have a density of states that

increases very rapidly. Putting these together, we get a sharp peak at the average energy 〈E〉, which is why we say

that the microcanonical and canonical ensembles are equivalent for lots of purposes. So how broad is the distribution?

Well, we calculated this in class: we can find 〈E〉 and 〈E2〉, which allow us to find

σE = kBT

√
C

kB

where C is the specific heat. Thinking about this for an ideal gas: C ∝ NkB, so this is proportional to
√
N. This

is the same factor that’s been popping up in all the other situations, and that’s because that’s the right factor for

fluctuations! Now it’s the same idea:
√
N is small compared to N, so it can be neglected.

44 May 7, 2019
Some preliminary announcements: homework will be graded soon, and we should check the website to make sure

everything is accurate. The last graded problem set is due on Friday! The next one (on photons, phonons, gases) is

not graded but is good practice for the final. Finally, some past finals will be posted soon - there will be more problems

on the final because it is longer (3 hours), but some fraction will be taken from past exams.

44.1 Overview
Last time, we went over black-body radiation by thinking of photons as quanta of the electromagnetic field. We find

that raising the temperature of a black-body gives a spectrum of radiation, and we can figure out the thermodynamic

quantities of this body using the canonical ensemble!
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We’re essentially going to go over the physics of solids today, examining quantities like the heat capacity with

different models. We’ll also consider what happens when we look at the extremes of temperature: for example, what

if the de Broglie wavelength is comparable in size to the inter-atom distance? That’s where the grand canonical

ensemble comes in!

44.2 Phonons
Our goal, ultimately, is to consider the heat capacity C of a solid. A phonon is essentially a quanta of vibrational

mechanical energy!

Fact 229

We can discretize sound waves in solids using these quasi-particles. The energy of a phonon is

E = ~ω = ~kcs ,

where cs is the speed of sound.

We’ll be working with a perfect crystal of atoms as our system for convenience. The first thing we want to do is

to consider the density of states of our phonons

dN

dω
dω =

3V

2π2c2s
ω2dω.

where the 3 in the numerator comes from having a multiplicity of polarization.

Fact 230

The factor of 3 is really from having one longitudinal mode (compression) and two transverse modes (shear).

Since we have N atoms in our crystal, this is 3N different normal modes, meaning that there are 3N different

types of phonons with frequency ω1, · · · , ω3N .

As a result of this, we have another difference between phonons and photons: the frequency spectrum for light

waves is unbounded (it can go arbitrarily high), but the sound waves have a minimum wavelength

λ =
2πcs
ω

,

where λ is the spacing between atoms (since something needs to be able to propagate the wave). This means we have

a maximum frequency corresponding to our λD ∼ 3

√
V
N , meaning that our maximum frequency

ωD ∼
(
N

V

)1/3
cs .

To find the proportionality constant in front, note that we can count single-phonon states as∫ ωD
0

dω
dN

dω
=

V ω3D
2π2c2s

(by direct integration). One way to deal with this (with solid-state physics) is to deal with a “primitive cell,” but instead

we’ll argue that this number is just 3N, the number of degrees of freedom. Thus we can find our maximum allowed
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frequency:

3N =
V ω3D
2π2c3s

=⇒ ωd =

(
6π2N

V

)1/3
cs .

We’ll associate ωD with a new temperature scale now: define the Debye temperature

TD =
~ω
kB
.

44.3 Using the canonical ensemble
We’ll now calculate the partition function for our system: for a fixed frequency,

Zω = 1 + e
−β~ω + e−2β~ω + · · · =

1

1− e−β~ω .

Assuming the frequencies are independent of each other, the partition function is just the product over all ω

Z =
∏
ω

Zω,

and now taking the log, we can approximate the sum as an integral

Z =

∫ ωD
0

dω
dN

dω
lnZω.

(Note that we now have an upper frequency ωD instead of ∞.) Now the energy of our system is

E =

∫ ∞
0

dω
dN

dω

~ω
eβ~ω−1

,

which simplifies to

=
3V ~
2πc3s

∫ ωD
0

dω
ω3

eβ~ω − 1 .

There isn’t an analytic expression for this anymore, so we’ll instead just look at the low- and high-temperature limits.

Letting x = β~ω, we can rewrite our energy as

E =
3V

2π2(~cs)3
(kBT )

4

∫ TD/T
0

dx
x3

ex − 1 .

Example 231

One extreme is where T � TD, so our upper limit goes to ∞. Then we’ve seen our integral before: it evaluates

to π4

15 .

So in this case, we can calculate

CV =
∂E

∂T
=
2π2V k4B
5~3c3s

T 3 = NkB
12π4

5

(
T

TD

)3
.

In other words, at low temperatures, our heat capacity is proportional to T 3. This does line up with experimental

observations! In particular, CV → 0 as T → 0., which is consistent with our third law of thermodynamics.
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Fact 232

Einstein has a different description of this behavior with a different kind of calculation - Debye just extended that

model by allowing many different frequencies.

Example 233

On the other hand, can we recover the results we expect at high (classical) temperatures T � TD?

Then we integrate over very small values of x , so we can do a Taylor expansion. In these cases,∫ TD/T
0

dx
x3

ex − 1 =
∫ TD/T
0

dx(x2 +O(x3)) =
1

3

(
TD
T

)3
+ · · · ,

and now we find that our heat capacity reaches a constant

CV =
V k4BT

3
D

2π2~3c3s
= 3NkB,

which is consistent with the Dulong-Petit law! The data doesn’t perfectly fit with this, and that’s because we have a

flaw in the calculation: our dispersion relation ω = kcs isn’t quite accurate, but that can be left for a physics of solids

class.

44.4 Back to the monatomic ideal gas
Remember that when we talked about the ideal gas for a canonical ensemble, we treated the particles quantum

mechanically in a box: we put the system at fixed temperature, and we used the partition function to pull out the

thermodyanmics of our system. There, we introduced the de Broglie wavelength (or length scale), and we mentioned

that we should relate that to the inter-particle distance to see whether or not quantum effects are important.

Well, when we’re close to the de Broglie wavelength, we can’t use the Z = 1
N!Z

N
1 formula for our partition function

anymore: we need a better way to describe our system. That’s where the grand canonical ensemble comes in: we

relax our constraint on having a fixed number of particles, but we fix the chemical potential.
Remember that this length scale

λ =

√
2π~2
mkBT

increases as our temperature decreases. Eventually, this becomes comparable to our interparticle spacing ∝
(
V
N

)1/3
,

which is where quantum effects start to have an effect.

Remember that in a microcanonical ensemble, we fix V, U,N, and in a canonical ensemble, we fix V, T,N. In both

of these cases, we can calculate the energy, and the macroscopic properties are basically the same here because the

fluctuations are so small.

So in a grand canonical ensemble, we fix V, T, µ instead: it’s a pressure-like term that adds particles. Specifically,

our internal energy in differential form can be written as

dU = TdS − PdV + µdN =⇒
∂U

∂N

∣∣∣∣
S,V

= µ.

It’s usually difficult to keep S and V constant, so we instead work with the Gibbs free energy: there, we can instead
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calculate
∂G

∂N

∣∣∣∣
T,P

= µ,

which is generally easier to work with experimentally! We can show that in a system at thermal equilibrium,

∂S

∂N

∣∣∣∣
U,V

= −
µ

T
,

so two systems brought together at thermal equilibrium will also have the same chemical potential.

Proposition 234

This means we can think of our system as being connected to a large reservoir, so that both are at some fixed

T, µ. Now the total system and reservoir are a microcanonical ensemble!

So we want the probability distribution of a given state sj for our system: then

p(Sj) =
ΓR
ΓR⊕S

,

and similar to our canonical ensemble derivation, we can write the Γs in terms of our entropy:

ΓR(sj) = exp(SR(Sj)/kB) =⇒ pj(sj) =
1

Z exp [SR(U − Ej ,M − Nj)/kB]

where Z is our normalization factor, analogous to the partition function. Now

∂pj
∂Ej
= −

1

kB

∂SR
∂U

∣∣∣∣
U−Ej

pj = −
1

kBT
pj ,

and
∂pj
∂N
= −

1

kB

∂S

∂M

∣∣∣∣
M−Nj

pj =
µ

kBT
pj .

Thus, we can write our probability of any state

pj(Sj) =
1

Z exp
(
−
Ej
kBT

+
µNj
kBT

)
=
1

Z exp [(µNj − Ej)/(kBT )] .

We can now write our expression for our grand partition function

Z =
∑
j

exp [(µNj − Ej)/(kBT )] .

44.5 Thermodynamics of the grand canonical ensemble
How can we do physics with this new quantity? Let’s look at a similar quantity as in the canonical ensemble

∂

∂β
lnZ =

1

Z
∑
j

(µNj − Ej)e(µNj−Ej )β,

which can be rewritten as

=
∑
j

pj(sj)(µNj − Ej).

Thus, we actually have the average value of µNj − Ej , which is

∂

∂β
lnZ = µ〈N〉 − 〈E〉 = µN − U.
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We can also consider
∂

∂µ
lnZ =

1

Z
∑
j

βNje
(µNj−Ej )β;

again, we can extract out our probability term to get

= β〈N〉 = βN.

This means we can find the expected number of particles N, and in the thermodynamic limit, fluctuations are much

smaller (in order of magnitude) than N, so this is pretty accurate almost all the time!

Is it possible for us to find the entropy of our system? We know that

S = −kB
∑

pj ln pj = −kB
∑
j

eβ(µNj−Ej )

Z · (β(µNj − Ej)− lnZ) ,

which can be arranged as

S = −
1

T
(µN − U) + kB lnZ =⇒ U − TS − µN = kBT lnZ .

So the central theme is that lnZ basically gives us an energy term! This lets us create a new free energy

Ω = U − TS − µN = −kBT lnZ,

which is the grand potential: this is essentially a sum over all the different states!

In differential form, the grand potential can be written out as

dΩ = dU − TdS − SdT − µdN − Ndµ,

and writing out dU = TdS − PdV + µdN, this simplifies as

dΩ = −SdT − PdV − Ndµ.

This means we can take derivatives again: we can find our entropy, pressure, and number of particles via

∂Ω

∂T

∣∣∣∣
V,µ

= −S,
∂Ω

∂V

∣∣∣∣
T,µ

= −P,
∂Ω

∂µ

∣∣∣∣
T,V

= −N.

Next time, we’ll look at bosons and fermions, and we’ll try to recover the Boltzmann statistics at high temperatures!

45 May 8, 2019 (Recitation)

45.1 More on density of states

Let’s start by summarizing some concepts from last recitation. We have a density of states dNdE (which usually goes as

ENA if we have a mole of atoms), which is very steep. On the other hand, we have the Boltzmann factor e−E/(kBT ),

which usually goes as e−N . Multiplying together these rapidly growing and decaying distributions, we get a very sharp

peak!

Almost all of the action occurs around that sharp peak, because the probability of being found far away from 〈E〉
is very small. More quantitatively, note that the distribution is a delta function at 〈E〉 for a microcanonical ensemble,

since we fix the energy. Really, the only way to do this is to pick a bunch of harmonic oscillators with quantized energy
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states, but there are still some perturbations there - in other words, our discrete energy states are broadened a bit.

Fact 235

To account for this, we can think of the microcanonical ensemble as having an energy width of ~ω if our energy

states of the oscillators differ by ~ω.

So when we derived the Sackur-Tetrode equation, remember that we used quantized box numbers ni such that the

sum of the squares of those quantities is fixed: this ended up being the surface area of a sphere, which helped us find

the multiplicity of a given energy. Specifically, if we say that∑
i

n2xi + n
2
yi
+ n2zi

is constant, we can integrate to find the number of states: since we have a microcanonical ensemble, we pick out a

specific energy U to find that

Γ ∝
∫
d3Nni · δ

(∑
n2i − U

)
.

But there’s one thing we did not do: we never specified that we use a spherical shell with some energy width δE.

Surface areas are not volumes, so we have a density of states instead of a number of states - how can we introduce

an energy uncertainty?

Well, remember that we replaced r3N−1 with r3N due to N � 1: this means that we’re essentially allowing for the

whole volume instead of the surface area, so our energy width is actually from 0 to our energy E. This also tells us

that in an N-dimensional sphere, almost all of the volume is concentrated towards the surface area: in fact, half the

volume is concentrated within an O
(
r
N

)
distance from the surface area! That’s why it’s okay for us to also count the

volume of states inside: it’s negligible compared to that part near the surface.

Fact 236

So going back to the canonical ensemble, remember that we can find the uncertainty

σE = kBT

√
CV
kB
∝
√
N ∝

E√
N
.

Thus, the width of the energy peak is proportional to
√
N, which is precise (proportionally) up to experimental

accuracy! But when we made the approximation from r3N−1 to r3N , we actually get a fluctuation on the order of
E
N .

So it’s often okay to make what looks like a crude approximation!

45.2 Quick note about the different distributions

Fact 237

As a result, we almost never use the microcanonical ensemble. An awkward situation is that if we divide a system

in two, a microcanonical ensemble doesn’t stay microcanonical (because we can exchange energy between the two

halves)! On the other hand, the partition function is simple: we can just multiply Z = Z1 · Z2, and that makes

many calculations much easier.
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On the other hand, allowing particle exchange means we have to use the grand canonical distribution. This helps us

with quantum mechanical descriptions of particles - in particular, because of quantum indistinguishability, we no longer

have independent particles, but we do have independent states, and we can take our partition function and factor it

Z =
∏

Zi

over states! We’ll probably go over this a bit more in class soon, but it’s interesting that non-interacting particles still

affect independence for each other. (For example, we have the Pauli exclusion principle for fermions!)

We’re going to find that some derivations are easier for the grand canonical ensemble than in the microcanonical

or canonical ensemble as well. Le’ L

45.3 One last conceptual question
We know that we have a Boltzmann factor

e−E/(kBT )

in our probability distribution, so any energy state, no matter how huge, has some positive probability of happening.

Is that an artifact of the approximations we have made, or is it physical?

One assumption we make is that our reservoir (that our system is connected with) is large enough to sustain the

fluctuations of energy! Since we treat the reservoir and system as a microcanonical ensemble with some total energy

U, we can’t actually have energies E > U.

But other than that, this is indeed how nature works! Let’s assume that there is indeed some point where the

energy can’t get any larger. and then we have some small probability p of getting to an energy above that. Then the

entropy and energy change are approximately

∆ = −kBp ln p,∆E = pE =⇒ ∆F = ∆E − T∆S = p(E − TkB ln p)

So transferring some probability to a higher state changes the free energy F : ∆F < 0 if p < e−E/(kBT ), and that means

that it is always favorable to allow that energy state! This means the canonical ensemble probability distribution is

indeed a stable equilibrium, and any collision between atoms (or other perturbation) of the system moves us towards

that exact distribution.

46 May 9, 2019

46.1 Overview
Today, we’re going to continue talking about the grand canonical ensemble, which is a useful framework for trying to

understand quantum effects in different kinds of gases! As a quick reminder, this is a system where instead of fixing

energy or temperature (as in the microcanonical and canonical ensembles) along with the number of particles, we have

to make a more careful argument. At the quantum level, we can no longer assume that all of our particles are likely

to be in different states, so we can’t have a simple overcounting term like 1
N! . In addition, we now allow our system

to be open.

The number of particles can now fluctuate, but we’ll find that in the thermodynamic limit again, the fluctuations

are small. So this will also give similar results to the other formulations!

We’ll see some systems where we can use this model today.
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46.2 Types of quantum particles
The main idea is that in relativistic quantum field theory, there are two types of particles.

Definition 238

Bosons are particles that have an intrinsic spin of 0, 1, 2, · · · (in multiples of ~ω).

The main concept here is that we have indistinguishable particles: the quantum states are symmetric until particle

exchange, which can be written as

ψ(~r1, ~r2) = ψ(~r2, ~r1).

Examples of bosons include photons, gluons, Helium-4, as well as quasi-particles like phonons and plasmons.

Definition 239

On the other hand, fermions are particles that have an intrinsic spin of 12 ,
3
2 , · · · (in multiples of ~ω).

Examples here include electrons in metals at low temperature, liquid Helium-3, white dwarfs, and neutron stars.

This time, quantum states are antisymmetric: we have

ψ(~r1, ~r2) = −ψ(~r2, ~r1).

Fact 240

Bosons can have infinitely many particles per state, but by the Pauli exclusion principle, there can only be 0 or

1 fermion in each quantum state.

We’re going to label our states by occupation numbers {nr}, often as |n1, n2, · · · , nr 〉. At high temperatures, they

will be the same as in our Boltzmann statistics.

Fact 241

By the way, these are three-dimensional particles: 2-D systems are completely different!

Remember that we have our canonical ensemble partition function

Z =
∑
{nr}

e−βnr εr ,

where we sum over all ways of partitioning N particles into sets {nr}, with the constraint
∑
nr = N. But we have

indistinguishable particles here, and it’s hard to account for the fact that we can only have 1 particle in each energy

state for fermions.

46.3 Using the grand canonical ensemble
So our first step is to look at an open system: let’s fix our chemical potential µ and let N fluctuate! (We’ll also put

our system in contact with a heat bath at temperature T .)

Then for a given state, we have the variables

Nj =
∑

nr , Ej =
∑
r

nrεr
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which are allowed to vary, and now our grand partition function

Z =
∑
j

exp [(µNj − Ej)β] =
∑
{nr}

exp

[
(µ
∑
r

nr −
∑
r

nrεr )β

]
.

We can rewrite the sum of the exponents as a product:

=
∑
{nr}

∏
r

exp [(µ− εr )nrβ] =
∏
r

∑
{nr}

exp [(µ− εr )nrβ]

by swapping the sum and product. Now our path diverges for bosons and fermions: in one case, the nr s can be

anything, and in the other, the nr s must be 0 or 1.

Proposition 242

For fermions, since nr s are all 0 or 1, we find that

ZFD =
∏
r

(1− e(µ−εr )β).

This is referred to as Fermi-Dirac.

Proposition 243

Meanwhile, for bosons, since nr s can b, anything, we have an infinite sum

ZBE =
∏
r

( ∞∑
n=0

e(mu−εr )β

)n
=
∏
r

1

1− e(µ−εr )β
.

This is referred to as Bose-Einstein.

In both cases, we often want to deal with the logarithm of the partition function: then the product becomes a

sum, and we have the following expressions:

lnZFD =
∑
r

ln(1 + e(µ−εr )β),

lnZBE =
∑
r

− ln(1− e(µ−εr )β),

It’s important to note here that
∑
r is the sum over a single state! So if we want the ensemble average occupation

number, we take (as was derived previously)

N = kBT
∂

∂µ
lnZ.

For fermions,

N =
∑
r

e(µ−εr )β

1 + e(µ−εr )β
=
∑
r

1

1 + e(εr−µ)β

Each term here can be thought of as 〈nr 〉, the average occupation number of state r ! That means that for a given

state,

〈nr 〉 =
1

e(εr−µ)β
,

151



and this is known as the Fermi-Dirac occupation number. In particular, we have the Fermi function

f (tr ) =
1

1 + eβ(tr−µ)
.

Note that µ is allowed to be both positive and negative here. If we take low temperature T , β →∞, and then chemical

potential µ essentially separates our filled and empty states! The probability of having a state εr > µ is almost zero,

and the probability of having a state for εr < µ is almost 1. As we increase temperature T , the jump from probability

0 to 1 becomes less steep, and we’ll see how that works in a minute.

Meanwhile, for bosons,

N =
∑
r

−
e(µ−εr )β

1− e(µ−εr )β
=
∑
r

1

e(εr−µ)β − 1
.

Analogously, this can be thought os as a sum
∑
r 〈nr 〉, so we know that the average occupation

〈nr 〉 =
1

eβ(tr−µ)−1
.

Notice that the main difference here from the Fermi-Dirac occupation number is the −1 instead of the +1! (By the

way, remember that this is exactly the expression we saw with photons if we set µ = 0.)

One important idea with this system, though, is that 〈nr 〉 ≥ 0 for non-interacting particles. If µ → εr , the

denominator goes to 0, and thus 〈nr 〉 goes to infinity. In fact, µ > εr means our occupation number becomes

negative! This isn’t allowed, so that actually sets a bound on our allowed µ in relation to our energy states εr .

Proposition 244

The allowed values of µ for a boson system are

µ ≤ εrmin ,

where εrmin is the lowest energy state for a single particle.

By the way, Professor Ketterle may talk about Bose-Einstein condensates next Thursday!

46.4 Looking more carefully at the occupation numbers
Let’s take 〈nr 〉 to high temperature in both cases, so εr − µ � kBT . Then we should expect that our results agree

with the canonical ensemble answer of

〈nr 〉 = e−β(εr−µ)

for classical, identical particles. Indeed, this is what happens in the limiting case for both FD and BE statistics, since the

exponential terms dominate the 1 in the denominator! So our new model is really mostly useful at lower temperatures.

This means we really care about having our inter-atom distance on the order of of our length scale meaning that

V

N
∼
(

h√
2πmekBT

)3
.
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Example 245

Electrons at room temperature have a length scale of around 4.5 nanometers, and copper has a density of 9×103

kg/m3, which means there are 8.5 × 1028 atoms per cubic meter. So if we have one “conduction electron” per

atom, the volume we have to work with is about

1

8.5× 1028m
3 per atom.

This is about (0.23nm)3, and that means the inter-atom distance is small enough for us to want to use Fermi-Dirac

statistics! But looking at copper atoms instead of the electrons themselves, the relevant length scale is around

0.012 nm. In other words, copper is a bunch of non-degenerate atoms immersed in a degenerate electron gas.

46.5 Fermions at low temperature
We should think of “degenerate” as having density large enough for quantum effects to be important. This is because

two particles being too close gives overlapping wavefunctions.

So for the remainder of this class, we’ll be looking at degenerate Fermi systems (where we use Fermi-Dirac

statistics). Examples include electrons in a conduction band of metals, white dwarf stars, neutron stars, and heavy

metals.

Here our occupation numbers follow

nj =
1

1 + e(εj−µ)β
.

Note that when µ� kBT , levels with ε < µ have nj → 1, and levels with ε > µ have nj → 0.
We get complete degeneracy at T = 0, where we have essentially a sharp change from filled to empty states.

Let’s think a little more about such a degenerate Fermi gas: now we essentially have

nj =
1

1 + e(εj−µ)∞
=

1 εj < µ

0 εj > µ
.

This is essentially a step function! All states with low energy are filled, and all others are empty. If we increase our

temperature a little, the ∞ in the exponent becomes a large number, and we get a little bit of wiggle room. Then in

some interval ∆ε ∼ kBT , we can have partially filled states.

Fact 246

The filled levels are known as the “Fermi sea,” and the set of states with ε = µ is known as the “Fermi surface.”

We can then define a “Fermi momentum”

pF =
√
2mεF

where εF = µ.

In three dimensions, we can calculate the density of states of our Fermi gas:

dN = g
d3xd3p

(2π~)3
,

where g is our degeneracy factor (2 for an electron). This can then be written as

N = g

∫
d3xd3p

(2π~)3
1

e(p
2/2m−µ)β + 1

,
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and we can do similar tricks with the spherical integration as before: this evaluates to

=
4πV g

(2π~)3

∫ ∞
0

p2dp

e(p
2/2m−µ)β + 1

.

We’ll finish this and calculate some of the thermodynamic properties here next time!

47 May 13, 2019 (Recitation)
Professor Ketterle showed us another Stirling engine today! Basically, we have a displacer which displaces gas between

a hot reservoir (hot water) and cold reservoir (room temperature air). Whenever the piston moves down towards the

hot reservoir, the air above gets colder, so there is a temperature differential. This causes a pressure modulation,

which allows another piston to drive the wheel forward.

47.1 Entropic force
Often, we think of energy as the cause of force. But in statistics, we can think of entropy causing some kind of force

as well! Recall the differential formula

dU = TdS − PdV ;

we can use this to find the pressure at constant S or U:

P = T
∂S

∂V

∣∣∣∣
U

= −
∂U

∂V

∣∣∣∣
S

.

On the other hand, we also know that we have the free energy

F = U − TS =⇒ dF = −SdT − PdV,

which leads us to P in terms of isothermal derivatives:

P = −
∂F

∂V

∣∣∣∣
T

=
∂(U − TS)

∂V

∣∣∣∣
T

= −
∂U

∂V

∣∣∣∣
T

+ T
∂S

∂V

∣∣∣∣
T

.

But the pressure is always the same, regardless of what process we’re using to get to this point (because we have

a state function)!

So does pressure come from internal energy or from entropy? There’s actually contributions from both an internal

energy change and an entropy change! Applying this to the ideal gas, because ∂U
∂V

∣∣
T
= 0, we actually have

P = T
∂S

∂V

∣∣∣∣
T

,

and pressure is determined by entropy alone!

Fact 247

It’s important to think about isothermal versus adiabatic compression here: in the former case, compression leads

to no change in internal energy (which is only dependent on T ), so we get an output of heat. On the other hand,

adiabatic compression leads to an increase in the kinetic energy of the particles, which means the temperature

does increase.
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47.2 Applying this to the chain model
Let’s go back to the question where we have N chains of length `, each of which is either flipped to the left or to the

right in a one-dimensional system. Here, assume that the system doesn’t have any internal energy, so all states are

equally probable.

There are 2N possible configurations of our chain (since each chain can be flipped to the left or right independently),

and this is essentially a random walk! We can describe such a system by a binomial distribution, which can be

approximated as a Gaussian for large N: since the variance of each individual chain is `2,

p(x) = p0 exp

(
−
1

2

x2

`2N

)
.

From this, we know that our multiplicity

Γ(x) = Γ0 exp

(
−
1

2

x2

`2N

)
,

so the entropy

S = kB ln Γ = kB

(
c −
1

2

x2

`2N

)
:

(since the Gaussian exponential nicely cancels out with the logarithm!)

But now, we can calculate the force exerted by the chain: since P and V were conjugate variables in our boxed

equation above, we can also replace them with F and x . Notably, if ∂U∂x
∣∣
T
= 0 here (notice that −PdV is work, and

so is +Fdx , so we gain a negative sign),

F = −T
∂S

∂x

∣∣∣∣
T

=⇒ F = kBT
x

`2N
.

So force is proportional to temperature, and it’s also a Hooke’s law relation! This is a “pure entropy” situation, where

we just needed to count the number of microstates to find dependence of S on the length x of the chain.

In other words, we put energy into the chain when we stretch it, but there’s no way to store internal energy in this

chain! So the energy of pulling will be transferred as heat, as that’s the only way we can move the chain to a lower
entropy state by the second law.

Question 248. What causes the restoration here?

Let’s imagine that our chain is now vertical, and there is a mass hanging from the end. At a given temperature,

this gives us the length x of the chain where we have equilibrium.

But if we increase the temperature of our reservoir, what happens? Because our weight is constant, the force in

the above equation is constant, so Tx is constant. In other words, when temperature goes up, the chain gets shorter!

This is a lot like if we put a weight on a piston sitting on top of an ideal gas: increasing the temperature of the gas

increases the pressure, which makes the piston move higher up.

How exactly can such a massless chain with no internal energy even hold up a mass? Remember that the chain

is always connected to a reservoir at temperature T ! For entropic reasons, this nudges some of the chains upward.

There’s always a process to transfer force and energy between any reservoirs that exist and the system at hand.

47.3 Blackbody radiation and the Debye model
The former deals with a “gas” of photons, and the latter (which deals with specific heat of a solid) deals with a “gas”

of phonons, the quantized excitations of sound.
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In both cases, we can say that we have a bunch of energy states: then what’s the expectation value for the average

occupation number of a harmonic oscillator? It’s given by the expression

1

e~ω/(kBT ) − 1
.

If we want to know the total energy of a bunch of harmonic oscillator quanta like this, we multiply by the energy ~ω
(for each harmonic oscillator), and then we need a density of states to know how many harmonic oscillators we have

per interval. So

U =

∫
dω~ω

1

e~ω/(kBT ) − 1
dNω
dω

,

and this is essentially just a dimensional analysis argument! Integrating this out from 0 frequency to some maximum

ωmax, we have found our internal energy.

But how are the two different in their descriptions? The main difference is that we have dispersion relations ω = csk

and ω = ck , and in both cases, we find that dNdω is quadratic in ω2. The difference is just the factor of the speed of

photons versus phonons! In addition, there is also a factor of 32 from the polarization factors. But most importantly,

the maximum frequency is upper bounded for the Debye model because of the limitations of the solid, while the

maximum frequency is unbounded for blackbody radiation. Each of these concepts is important to understand!

48 May 14, 2019
Today’s lecture is being given by Professor Ketterle.

40 minutes ago, Professor Ketterle sent a press release about the kilogram changing next Monday! It will no longer

be defined by the Paris artifact but by Planck’s constant. We should celebrate this, because Planck’s constant is much

more beautiful than a chunk of metal. But he wants to mention that explaining physics should be simple: it should

not just be for “the physicists and the nerds.”

Today’s class will go in three parts: an introduction with the essence of quantum statistics, using the Bose-Einstein

distribution to describe phase transition, and how to create the first Bose-Einstein condensate in a gas.

48.1 Bose-Einstein condensate: an introduction
Bose-Einstein condensate allows us to create a matter wave by having many particles in one quantum state. This is

based on quantum statistics, and we can use situations from class to understand it!

Example 249

Let’s say we have 3 particles with some total energy 3.

This is a microcanonical ensemble: what’s the classical description of this? There’s 1 way to have all three particles

in energy level 1, 3! = 6 ways to have 3 particles in energy levels 2, 1, 0, and 3 ways to have one in energy 3 and the

others in energy 0.

But if we have indistinguishable particles, our distribution is different. Now we don’t have the multiplicity of 6 and

3; in particular, the distribution of particles in energy levels for these bosons is different from the classical model. This

means bosons actually have a tendency to clump together!

Finally, there’s one more problem: if we have fermions, we’re forced into a specific case, because you can’t have

two different particles in the same state!
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Fact 250

Notice that the difference for occupancy level iis just a −1 or +1 in the denominator of 1
e(ε−µ)/(kBT )

.

In particular, photons are bosons, but they can be freely created! This means there is no “chemical potential,” and

we can set µ = 0 here. This gives us the Planck blackbody spectrum

n(ε) =
1

eε/(kBT ) − 1
.

Notably, Bose rederived Planck’s formula with a new method, and Einstein used that method to add in the µ chemical

potential term! That became the “Bose-Einstein distribution.”

Question 251. How do we describe Bose-Einstein condensation, then?

The idea is that the classical distribution just shifts to be skinnier and taller when we adjust our temperature T .

But then at a certain critical temperature T < TC , corresponding to a critical wavelength, the population per energy

state goes to infinity. This specific singularity is described in Einstein’s paper.

But back in 1924, Einstein said (after describing the theory) “The theory is pretty, but is there also some truth

to it?” The idea is that “mathematical singularities” may not need to be part of actual physics, so there was lots

of skepticism. It was only in 1938 that Fritz London realized that Bose-Einstein condensation is indeed physical and

observable!

48.2 Why use the formalism that we do?
We’re going to look more at the equations and understand the singularity mathematically. First of all, note that we

can formulate things in many ways, but smarter choices (for example, in terms of coordinates) make our job easier.

We know that for atoms and molecules, energy is conserved, and so is the number of particles. But there is a

problem here: distributing energies is not independent, and this means one of the particles needs to “pay the price.”

We like to assume in classical physics that each particle is an independent entity, and fluctuations shouldn’t affect each

other! That’s why we use the canonical ensemble: we can then say that N particles have a partition function

Zn = Z
N
1 or

1

N!
ZN1 .

But then Einstein’s 1924 paper seemed to cause some problems: the particles turned out to not be independent

anymore under the canonical distribution. But indeed, descriptions under quantum physics no longer have particle

independence (for example, the Pauli exclusion principle)!

Instead, our independence shifts to the quantum states themselves. By allowing each quantum state to run

through each of its possible occupation numbers, we also allow for our total number of particles N to fluctuate, and

now we use the grand canonical ensemble

Z =
∏
i

Zi .

That’s the beauty of the grand canonical ensemble - we get our independence back again!

48.3 Mathematical derivation
We’ve derived in class before that the occupation number under the Bose-Einstein distribution

nj =
1

e(εj−µ)/(kBT ) − 1
.
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Question 252. What is the population n0 (corresponding to zero momentum and lowest energy)?

We use the fact that as T → 0, the chemical potential is negative but approaches 0−. Then the occupation of the

zero energy state is

n0 →
kBT

−µ →∞.

Notably, this means the chemical potential can’t be positive, or we’d have a singularity at some non-ground state!

Question 253. What is the number of particles in an excited state (all j 6= 0)?

This is just the sum over all nonzero states

N =
∑
εj>δ

1

eβ(εj−µ) − 1

where we’ll make δ → 0. If we only care about having an upper bound, we can ignore the small negative value of

chemical potential:

N ≤
∑
εj>δ

1

eβεj − 1 .

Remember that when we sum over all states, we can do this in a semi-classical manner instead:

=

∫
d3xd3p

h3
1

eβεj − 1 .

The position integral just becomes V , the volume of our system, and then we can use the spherical integration trick

again:

=
V 4π

h3

∫
dpp2

1

eβεj − 1 .

We can now replace p2dp with
√
εdε with a constant factor; C

√
ε here is our density of states! This ends up giving

us (replacing h with ~ for simplicity) an upper bound

Nmax =

∫ ∞
δ

N(ε)

eβε−1
, N(ε) =

V
(
2m
~
)3/2√

ε

4π2
.

We’ll remove most of the ugly constants by introducing a thermal de Broglie wavelength and dimensionless variable

λ =

√
2π~2
mkBT

, x = βε.

Remember that our integral is still counting the number of particles in non-ground states: this gives us

=
V

λ3
2√
π

∫ ∞
δβ

√
xdx

ex − 1 .

But now we can actually replace δβ with 0, since the integral converges, and we get an estimate of

Nmax ≈ 2.612
V

λ3
.

Notice that this is a fixed number dependent on T ! So if we put more particles into our system at a fixed temperature,

they don’t go into excited states! So we have some absolute limit on the number of excited particles in terms of V

and T : all others go into the ground state.
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Proposition 254

In other words, eventually we have a saturation of the quantum gas: when we have too many particles, the

whole system must condense! This is similar to the way in which eventually water vapor at 100 degrees Celsius

must start forming water droplets when the pressure is too large.

So if we lower the temperature enough, and Nmax reaches a point comparable to N, every subsequent increase in

the number of particles or decrease in temperature will create a Bose-Einstein condensate.

Fact 255

Notably, if we set the boxed Nmax = N, we can find our critical temperature

kBTC =

(
N

2.612

)2/3 ~22π
L2m

,

where V = L3 if we assume we have a box.

Notably, the N
2/3

L2 is proportional to n2/3, where n is the density of our gas!

There’s two things we should discuss here. First of all, the density we can get to realistically (when we work with

individual atoms) is n = 1014, which is a factor of 105 smaller than room temperature gases. Then we find that the

TC here is 100 nanoKelvin: that means verifying this experimentally requires us to get to very cold temperatures!

Question 256. If we want almost all atoms in the ground state, what’s the temperature scale that we are allowed to

have?

Remember that there is a first excited state: we have gapped behavior here. In our classical model, an energy

lower than that must put all the particles in the ground state! On the other hand, though, the Bose-Einstein model

has an extra factor of N2/3 in it. Because bosons are indistinguishable, we get this extra factor that actually helps us:

everything goes to the ground state much faster!

48.4 How do we do this experimentally?

Fact 257

In a paper that Schrodinger wrote in 1952, he expressed the opinion that van der Waals corrections (attractions

and repulsions between molecules) and effects of Bose-Einstein condensation are almost impossible to separate.

He thinks that most systems will become liquids before any quantum effects can be seen.

But it turns out that there exist cooling methods that can get us to very cold atomic clouds! Atoms cannot “keep

photons,” so if we shine a laser beam at an atom, the photons that hit the atom must be emitted out by fluorescence.

But now we can blue-shift the emitted radiation, every time an atom absorbs and emits a photon, it radiates away

some of its energy! This is hard to implement in the laboratory, but this is the way laser cooling works.

Fact 258

Atoms are a special system: they are almost completely immune to black-body radiation, so we don’t need to do

the same shielding from cameras and beams and other materials as in more complicated systems.
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Well, this gets us to the microKelvin level: what can we do to get closer to the 100 nanoKelvin level that we want?

It turns out evaporative cooling is very easy to understand. In a thermos, steam molecules (which have the

highest energy) escape, and the lower-energy molecules stay behind. In our atomic system, we have a container made

by magnetic or electric fields, and then use “radio frequency spin flips” to select the particles with highest energy (This

is the same as “blowing on a cup of coffee”).

In other words, if we remove our electric/magnetic field container, the gas will expand at a thermal velocity. Since

the kinetic energy mv
2

2 =
kBT
2 by equipartition, this is a way for us to figure out the temperature without needing to

explicitly put something like a thermometer in contact with it!

Fact 259

By the way, right now the temperature of 1 Kelvin is 1
273.15 times the triple point of water. Soon it’ll be defined

in terms of the Boltzmann constant instead!

Basically, when we “blow” with our radio waves, we should expect smaller clouds, and indeed, this is what happens!

There’s an elliptical object in the middle that stays put - that’s the Bose-Einstein condensate that we can observe.

Remember that a thermal gas is isotropic: the shadow should always be perfectly circular. So why is the condensate

elliptical? It’s because the ground state of an elliptical container is elliptical!

Fact 260

Finally, how do we prove that the atoms act as one single wave?

The key idea is interference! Two waves that collide form a standing wave, and it turns out that we can do the

same kind of interference by taking a Bose-Einstein condensate and cutting it in half. The interesting thing here is

that we have now accomplished interference of matter waves, since the positive and negative part of the wavefunction

add up to zero!

49 May 15, 2019 (Recitation)

49.1 Drawing more connections
Let’s start by trying to understand the last concept we introduced in this class. Exchanging energy in the canonical

ensemble is very similar to exchanging particles in a grand canonical ensemble! In the former, we’re connected to a

temperature reservoir, and in the second, we’re connected to some chemical potential reservoir.

What are the transitions here? We fix the internal energy U in our microcanonical ensemble, but in a canonical

ensemble, we essentially tweak our energy as a function of T , our temperature. In particular, we don’t clamp down the

energy: one thing we can do is to maximize entropy as a function of β (using Lagrange multipliers). The mathematics

here is that if we want to maximize F (x, y , z) subject to some constraint E(x, y , z) = ε0, we can introduce a new

parameter β which also varies independently:

F (x, y , z)− βE = 0

and then all derivatives with respect to x, y , z, β must be zero. So the microcanonical condition is enforced with the
Lagrange parameter, and ultimately that parameter is adjusted (aka, the temperature is our independent variable) to

reach our energy E.
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Fact 261

So temperature plays a dual role: temperature affects internal energy, but we can also use it as a Lagrange

parameter to ask questions like “how to maximize entropy.” E and β depend each other.

Well, this same dependence happens with N and µ! If we have a reservoir with some chemical potential, µ controls

the number of particles N, just like the temperature T controls our energy E. We now want to maximize the free

energy F , and we use a similar Lagrange parameter: this time, it is µ. So now µ can also be our “knob” that controls

N.

Example 262

Consider a semiconductor piece of metal. A battery is then a source of chemical potential: increasing the voltage

charges up the system and introduces more electrons!

So the battery becomes the “energetic cost” of delivering another particle. Our grand partition function

Z =
∑
j

e−β(εj−njµ

now takes into account that each particle being present changes our energy somehow. Remember where this all comes

from: we treat our system as being connected to a reservoir, and we think of this whole system-reservoir as being a

microcanonical ensemble. Then the probability of any specific microstate µj is

Pr(µj) ∝ ΓRes(E − εj , N − nj),

since E and N are fixed across the whole system-reservoir entity. This is then proportional to eSRes , and expanding out

S to first order in our Taylor expansion yields the result that we want:

=
∂S

∂N
(nj) +

∂S

∂E
(−εj) = βµnj − βεj

and that yields the −β(εj −µnj) that we want! This Taylor expansion basically tells us “how much energy it costs” to

give away a particle or give away some energy.

49.2 Going to the lab
Most particles in nature are fermions (quarks, electrons, and so on), rather than bosons.

Fact 263

By the way, the main difference is the spin (inherent angular momentum) of the particle, and whether it’s an

integer or a half-integer. Two indistinguishable particles must satisfy ψ(x1, x2) = ±ψ(x2, x1), where the ± comes

from us only observing the square of the wave function. Turns out − corresponds to fermions, and + corresponds

to bosons: now the Pauli exclusion principle comes from the “spin statistic theorem!”

50 May 16, 2019
We’re going to finish talking about Fermi gas thermodynamics, and we’ll finish by talking about what lies beyond this

class!
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Fact 264

By the way, the grade cutoffs for A/B, B/C, and C/D last year were 85, 65, and 55. This fluctuates year to year,

though.

We should check this weekend that everything is graded! The deadline for all grading-related things is tentatively

Sunday, but everything will definitely be done by Wednesday morning. Exam 1 and 2 solutions will be posted soon,

and past exams have been posted for reviewing for the final as well.

50.1 Back to Fermi systems: a gas of electrons
Remember that fermions are a gas of spin 1

2 . We found that because of the Pauli exclusion principle, we have an

interesting result for the occupation number at zero temperature for a degenerate Fermi gas:

nj(ε) =
1

1 + e(ε−µ)β

this is basically a step function at ε = µ. (If we increase the temperature to some T , we get partially filled states with

a width of around ∆ε ≈ kBT .)

At temperature T = 0, define µ = Ef to be the Fermi energy: we can then also define a Fermi momentum

pF =
√
2mEf , which has applications in condensed matter. The terms Fermi sea and Fermi surface then refer to

the filled states where E < Ef and the set of states where E = Ef , respectively.

We’re going to try to derive the thermodynamics of a 3D Fermi gas now! We start with a density of states

calculation: we have

dN = g
d3xd3p

(2π~)3
,

where g, the degeneracy factor, is 2s + 1 (where s is the spin of our particle). Since electrons have spin 1
2 , g = 2 in

this case! Integrating out,

N = g

∫
d3xd3p

(2π~)3
1

e(p
2/2m−µ)β + 1

.

We’ll do the same tricks we keep doing: integrating out d3x and using spherical coordinates, this simplifies to a single

integral

N =
4πV g

(2π~)3

∫ ∞
0

p2dp

e(p
2/2m−µ) + 1

.

As we take temperature to 0, we have some upper limit equal to our Fermi momentum (since the denominator is 1

for p < pF and ∞ for p > pF ), so this simplifies to (combining some constants)

N =
gV

2π2~3

∫ pF
0

p2dp =
gV p3F
6π2~3

;

substituting back for our Fermi energy yields

Ef =
~2

2m

(
6π2

g

N

V

)2/3
.

The idea is that this is the energy of the last filled state, because fermions that enter our system successively fill energy

levels from lowest to highest! This gives us a Fermi wavenumber

pF
~
= kf =⇒ N =

g

6π2
V k3F .
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We can also define a Fermi temperature
Tf =

Ef
kB
;

surprisingly, for electrons in metal, this temperature is around 104 Kelvin, and for electrons in a white dwarf, this is

around 107 Kelvin! Since these numbers are so large, the description of Fermi gases is very good for deriving material

properties of solids, as well as other fermion systems.

So now if we want to calculate our energy, we integrate

U = g

∫
d3xd3p

(2π~)3
p2/2m

e(p
2/2m−µ)β + 1

;

If we take our temperature T → 0, the same behavior with the denominator happens, and we’re left with

U =
gV

2π2~3

∫ pF
0

dpp2
p2

2m
=

gV p5F
20mπ2~3

.

Again, we can rearrange to write U in terms of N, our number of particles, and Ef , our Fermi energy: this yields

U =
3

5
NEF .

Finally, how do we derive the equation of state? If U is written as a function of N, V, T = 0 (in our limiting case), then

P = −
∂U

∂V

∣∣∣∣
N,T=0

.

We can rewrite our expression above for U: it turns out that we have

U = constant ·
N5/3

V 2/3
,

so taking the derivative,

P =
2

3

U

V
=

gp5F
30π2m~3

,

which can be rewritten in terms of Fermi energy as

PV =
2

5
NEf .

So even at temperature 0, there is some residual pressure! This is known as “degenerate pressure,” and it occurs

because of the Pauli exclusion principle - this has stabilizing effects in certain systems.

The only problem is that we’ve assumed our electrons are free particles, but we know that this isn’t true - they’re

bound to nuclei! So we need to start adding correction terms to account for interactions like this.

50.2 What’s next?
There’s a lot of cool and exciting areas that we can study after this class! Here’s some of them:

• Phase transitions. These can be observed in real life, and they also have applications in biophysics and other

areas like particle physics!

• Non-equilibrium physics: how does a system out of equilibrium relax into equilibrium? There’s something called

“linear response theory” here, as well as a notion of “non-equilibrium steady states.”

• Dynamical processes.
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• Thermodynamics of small systems - we’ve been using large N to simplify a lot of our calculations, but there’s

an exciting area of theoretical development where we start caring more about fluctuations! There’s notions of

“work-fluctuation” and other strange phenomena.

We should all continue with statistical physics after this point! This class is a basis for doing other, more exciting

things.
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