MPH2 MATHEMATICAL METHODS

For 2nd, 3rd and 4th year Physics students

Monday, 4 June, 2018: 14:00 to 16:00

Abstract

Answer question 1 and two of questions 2, 3, 4 and 5. A mathematical formula sheet is provided. Marks shown on this paper are indicative of those the Examiners anticipate assigning.

General Instructions

If an electronic calculator is used, write its serial number at the top of the front cover of each answer book.

USE ONE ANSWER BOOK FOR EACH QUESTION.

Complete the front cover of each of the 3 answer books provided, entering the number of the question attempted in the box on the front cover of the corresponding answer book.

Hand in 3 answer books even if they have not all been used.
Examiners attach great importance to legibility, accuracy and clarity of expression.

$$
\begin{gathered}
\text { Fourier transform } \hat{f}(k)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x \\
\text { Fourier integral } f(x)=\int_{-\infty}^{\infty} \hat{f}(k) e^{i k x} d k
\end{gathered}
$$

1. (i) Write down Cauchy's integral formula and state briefly the conditions under which the formula holds.
(ii) Consider the integral

$$
\int_{a}^{b} \frac{x y^{\prime}(x)^{2}}{2} d x,
$$

where $b>a>0$. Solve the associated Euler-Lagrange equation.
(iii) Let

$$
v(x, y)=\frac{y}{x^{2}+y^{2}}
$$

Find an analytic function f with imaginary part v.
(iv) Consider the function

$$
f(z)=\frac{1}{2-z} .
$$

(a) Write down the Taylor series expansion of $f(z)$ about $z=0$.
(b) Obtain the Laurent series expansion of $f(z)$ valid in the annulus $|z|>2$.
(v) Simplify (a) $\epsilon_{i p q} \epsilon_{j p q}$ and (b) $\epsilon_{i j k} \epsilon_{i j k}$.
(vi) The Fourier transform of

$$
f(x)=\frac{1}{1+x^{2}} \quad \text { is } \quad \hat{f}(k)=\frac{e^{-|k|}}{2}
$$

Obtain the Fourier transform of

$$
g(x)=\frac{\cos x}{1+x^{2}}
$$

Hint: use $\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right)$.
(vii) Find in the form of a Fourier integral a solution of the ODE

$$
\ddot{x}(t)+\gamma \dot{x}(t)=\frac{1}{1+t^{2}}-\pi \delta(t)
$$

where γ is a positive constant (your solution need not be real).
(viii) Define what is meant by polar and axial vectors. What kind of vector is the cross product of a polar and an axial vector? Briefly justify your answer.
[Total 40 marks]
2. (i) The motion of a physical system with one generalised coordinate q is described by the Lagrangian $L(q, \dot{q})$ which has no explicit time-dependence. Show that

$$
H=\dot{q} \frac{\partial L}{\partial \dot{q}}-L
$$

is a constant of the motion.
(ii) A bead of mass m moves without friction or gravity on a heart-shaped wire described in polar coordinates by the equation $r=1+\cos \theta$. Show that a Lagrangian for this system is

$$
L(\theta, \dot{\theta})=m(1+\cos \theta) \dot{\theta}^{2}
$$

(iii) Find the general solution of the equation of motion and explain why the solutions are only valid for a finite time interval (excluding the trivial solutions $\theta=$ constant). Hints: Obtain $\theta(t)$ by solving the first order ODE $H=$ constant and use the trigonometric identity $\cos ^{2} A=\frac{1}{2}(1+\cos 2 A)$.
(iv) The Lagrangian

$$
L(\theta, \dot{\theta})=m(1+\cos \theta) \dot{\theta}^{2}+\frac{m \Omega^{2}}{2}(1+\cos \theta)^{2}
$$

describes a bead moving on a rotating wire where the constant Ω is the angular velocity of the rotating wire. Solve the equation of motion for the initial conditions $\theta(t=0)=0$ and $\dot{\theta}(t=0)=\Omega$.
Hints: Fix the value of H using the initial conditions and use the integral

$$
\int \frac{d u}{\cos u}=\ln \left[\tan \left(\frac{u}{2}+\frac{\pi}{4}\right)\right]+c .
$$

3. (i) Use residues to compute the contour integrals
(a) $\oint_{C} \exp (1 / z)\left(1+z+z^{2}\right) d z$
(b) $\oint_{C} \frac{\exp (1 / z)}{z(1-q z)} d z$,
where C is the anti-clockwise oriented unit circle and q is a complex constant $(|q| \neq 1)$.
Hint: in part (b) consider the cases $|q|>1$ and $|q|<1$ separately.
(ii) The Bessel function J_{0} is the entire function defined by

$$
\begin{equation*}
J_{0}(w)=\sum_{m=0}^{\infty} \frac{(-1)^{m}}{(m!)^{2}}\left(\frac{w}{2}\right)^{2 m} \tag{1}
\end{equation*}
$$

where $w \in \mathbb{C}$.
(a) Show that

$$
\begin{equation*}
J_{0}(w)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i w \cos \theta} d \theta \quad(w \in \mathbb{C}) \tag{2}
\end{equation*}
$$

Hint: Rewrite the integral in (2) as a contour integral over the unit circle (treating w as a constant). Evaluate the contour integral using residues to obtain the series in (1).
(b) Compute the Fourier transform of $J_{0}(x)$.

Hint: Compute the Fourier transform of $e^{i x \cos \theta}$ (treating θ as a constant).
[Total 30 marks]
4. (i) Suppose

$$
f(z)=\frac{1}{g(z)}
$$

where g is an analytic function.
Show that if f has a simple pole at $z=w$ then $\operatorname{Res}(f, w)=1 / g^{\prime}(w)$.
(ii) Locate the poles and compute the associated residues for the complex function

$$
f(z)=\frac{e^{-i k z}}{\cosh z}
$$

where k is a constant.
(iii) Show that the Fourier transform of

$$
p(x)=\frac{1}{\cosh x} \quad \text { is } \quad \hat{p}(k)=\frac{1}{2 \cosh \left(\frac{1}{2} \pi k\right)} .
$$

Hint: Integrate $f(z)$ from part (ii) over the rectangular contour with vertices at $z= \pm L$ and $z= \pm L+i \pi$.
(iv) Express $p^{\prime \prime}(x)$ as a Fourier integral and use the result to compute the definite integral

$$
\int_{-\infty}^{\infty} \frac{u^{2}}{\cosh u} d u .
$$

[Total 30 marks]
5. (i) Consider the Lagrangian

$$
L=\frac{m}{2} \dot{x}_{i} \dot{x}_{i}+q \dot{x}_{i} A_{i}(\mathbf{r})
$$

where m and q are constants and A_{i} is an arbitrary function of x_{1}, x_{2} and x_{3}.
(a) Show that the Euler-Lagrange equations can be written in the form

$$
m \ddot{x}_{i}=q F_{i j} \dot{x}_{j},
$$

where $F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i}$. Use the equation of motion to show that

$$
T=\frac{m}{2} \dot{x}_{i} \dot{x}_{i}
$$

is a constant.
(b) Consider a constant $F_{i j}$ of the form

$$
F_{i j}=i \mu\left(U_{i} U_{j}^{*}-U_{j} U_{i}^{*}\right)
$$

where U_{i} is a constant complex vector with the properties

$$
U_{i} U_{i}=U_{i}^{*} U_{i}^{*}=0, \quad U_{i} U_{i}^{*}=1
$$

Here μ is a real constant and the i before the μ is the imaginary unit.
Consider a solution of the form

$$
\dot{x}_{i}(t)=\operatorname{Re}\left(f(t) U_{i}\right),
$$

where f is a complex function of time. Find the general form of $f(t)$ and determine the frequency of oscillation.

Hint: For what $f(t)$ is the complex velocity $\dot{x}_{i}(t)=f(t) U_{i}$ a solution of the equation of motion?
(c) Verify that T is constant for your solution.
(ii) The iterative map

$$
x_{n+1}=\frac{x_{n}^{2}}{1+x_{n}}
$$

is the Newton-Raphson process for finding the roots of a function f.
(a) Find $f(x)$. Is it unique?
(b) Does x_{n} converge to a root of f as $n \rightarrow \infty$ if $x_{0}=10$? For what range of x_{0} values does x_{n} not converge to a root?
[Total 30 marks]

