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Fourier transform f̂ (k) =
1

2π

∫ ∞
−∞

f (x) e−ikx dx

Fourier integral f (x) =

∫ ∞
−∞

f̂ (k) e ikx dk .

1. (i) Write down Cauchy’s integral formula and state briefly the conditions under which
the formula holds.

(ii) Consider the integral ∫ b

a

x y ′(x)2

2
dx ,

where b > a > 0. Solve the associated Euler-Lagrange equation.

(iii) Let

v(x , y) =
y

x2 + y 2
.

Find an analytic function f with imaginary part v .

(iv) Consider the function

f (z) =
1

2− z
.

(a) Write down the Taylor series expansion of f (z) about z = 0.

(b) Obtain the Laurent series expansion of f (z) valid in the annulus |z | > 2.

(v) Simplify (a) εipqεjpq and (b) εijkεijk .

(vi) The Fourier transform of

f (x) =
1

1 + x2
is f̂ (k) =

e−|k|

2
.

Obtain the Fourier transform of

g(x) =
cos x

1 + x2
.

Hint: use cos x = 1
2
(e ix + e−ix).

(vii) Find in the form of a Fourier integral a solution of the ODE

ẍ(t) + γẋ(t) =
1

1 + t2
− πδ(t),

where γ is a positive constant (your solution need not be real).

(viii) Define what is meant by polar and axial vectors. What kind of vector is the cross
product of a polar and an axial vector? Briefly justify your answer.

[Total 40 marks]
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2. (i) The motion of a physical system with one generalised coordinate q is described by
the Lagrangian L(q, q̇) which has no explicit time-dependence. Show that

H = q̇
∂L

∂q̇
− L

is a constant of the motion.

(ii) A bead of mass m moves without friction or gravity on a heart-shaped wire de-
scribed in polar coordinates by the equation r = 1+cos θ. Show that a Lagrangian
for this system is

L(θ, θ̇) = m(1 + cos θ)θ̇2.

(iii) Find the general solution of the equation of motion and explain why the solutions
are only valid for a finite time interval (excluding the trivial solutions θ =constant).

Hints: Obtain θ(t) by solving the first order ODE H =constant and use the
trigonometric identity cos2 A = 1

2
(1 + cos 2A).

(iv) The Lagrangian

L(θ, θ̇) = m(1 + cos θ)θ̇2 +
mΩ2

2
(1 + cos θ)2

describes a bead moving on a rotating wire where the constant Ω is the angular
velocity of the rotating wire. Solve the equation of motion for the initial conditions
θ(t = 0) = 0 and θ̇(t = 0) = Ω.

Hints: Fix the value of H using the initial conditions and use the integral∫
du

cos u
= ln

[
tan
(u

2
+
π

4

)]
+ c .

[Total 30 marks]
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3. (i) Use residues to compute the contour integrals

(a)

∮
C

exp(1/z)(1 + z + z2) dz (b)

∮
C

exp(1/z)

z(1− qz)
dz ,

where C is the anti-clockwise oriented unit circle and q is a complex constant
(|q| 6= 1).

Hint: in part (b) consider the cases |q| > 1 and |q| < 1 separately.

(ii) The Bessel function J0 is the entire function defined by

J0(w) =
∞∑

m=0

(−1)m

(m!)2

(w

2

)2m
, (1)

where w ∈ C.

(a) Show that

J0(w) =
1

2π

∫ 2π

0

e iw cos θdθ (w ∈ C). (2)

Hint: Rewrite the integral in (2) as a contour integral over the unit circle (treating
w as a constant). Evaluate the contour integral using residues to obtain the series
in (1).

(b) Compute the Fourier transform of J0(x).

Hint: Compute the Fourier transform of e ix cos θ (treating θ as a constant).

[Total 30 marks]
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4. (i) Suppose

f (z) =
1

g(z)

where g is an analytic function.

Show that if f has a simple pole at z = w then Res (f , w) = 1/g ′(w).

(ii) Locate the poles and compute the associated residues for the complex function

f (z) =
e−ikz

cosh z

where k is a constant.

(iii) Show that the Fourier transform of

p(x) =
1

cosh x
is p̂(k) =

1

2 cosh(1
2
πk)

.

Hint: Integrate f (z) from part (ii) over the rectangular contour with vertices at
z = ±L and z = ±L + iπ.

(iv) Express p′′(x) as a Fourier integral and use the result to compute the definite
integral ∫ ∞

−∞

u2

cosh u
du.

[Total 30 marks]
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5. (i) Consider the Lagrangian

L =
m

2
ẋi ẋi + qẋiAi(r),

where m and q are constants and Ai is an arbitrary function of x1, x2 and x3.

(a) Show that the Euler-Lagrange equations can be written in the form

mẍi = qFij ẋj ,

where Fij = ∂iAj − ∂jAi . Use the equation of motion to show that

T =
m

2
ẋi ẋi

is a constant.

(b) Consider a constant Fij of the form

Fij = iµ(UiU
∗
j − UjU

∗
i ),

where Ui is a constant complex vector with the properties

UiUi = U∗i U∗i = 0, UiU
∗
i = 1.

Here µ is a real constant and the i before the µ is the imaginary unit.
Consider a solution of the form

ẋi(t) = Re(f (t)Ui),

where f is a complex function of time. Find the general form of f (t) and
determine the frequency of oscillation.

Hint: For what f (t) is the complex velocity ẋi(t) = f (t)Ui a solution of the
equation of motion?

(c) Verify that T is constant for your solution.

(ii) The iterative map

xn+1 =
x2
n

1 + xn
,

is the Newton-Raphson process for finding the roots of a function f .

(a) Find f (x). Is it unique?

(b) Does xn converge to a root of f as n→∞ if x0 = 10? For what range of x0
values does xn not converge to a root?

[Total 30 marks]
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