Imperial College
 London

[MP2 2014]
B.Sc. and M.Sci. EXAMINATIONS 2014

SECOND YEAR STUDENTS OF PHYSICS

MATHEMATICAL METHODS

Date Monday 2nd June $2014 \quad 2.00$ pm - 4.00 pm

DO NOT OPEN THIS PAPER UNTIL THE INVIGILATOR TELLS YOU TO.

Answer ALL of Question 1 and TWO questions out of Questions 2, 3, 4 and 5.

A mathematical formulae sheet is provided
[Before starting, please make sure that the paper is complete; there should be 6 pages, with a total of FIVE questions. Ask the invigilator for a replacement if your copy is faulty.]
(c) 2014 Imperial College London

1. (i) Consider the complex exponential function $f(z)=e^{z}$. Show that f is differentiable for all $z \in \mathbb{C}$.
(ii) Determine the residue at $z=0$ of

$$
f(z)=\frac{e^{z}-1}{z^{4}}
$$

(iii) Determine the Fourier transform $\hat{f}(k)$ of the function

$$
f(x)=e^{-\alpha x^{2}} \quad \text { for all } x \in \mathbb{R} \text { and } \alpha>0
$$

(You may use without proof the fact that $\int_{-\infty}^{\infty} \exp \left(-u^{2}\right) d u=\sqrt{\pi}$)
(iv) Use contour integration to compute the integral

$$
I=\int_{-\infty}^{\infty} \frac{d x}{\left(1+x^{2}\right)\left(4+x^{2}\right)} .
$$

(v) Consider the sequence

$$
\begin{equation*}
a_{n}=\frac{1+n^{2}}{n^{2}} \in \mathbb{Q} . \tag{1}
\end{equation*}
$$

Use the standard absolute value norm and show that the sequence is a Cauchy sequence.

Consider the sequence

$$
\begin{equation*}
b_{n}=\left(\frac{1+n}{n}\right)^{n} \in \mathbb{Q} . \tag{2}
\end{equation*}
$$

From the fact that $e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}$ explain why b_{n} must be a Cauchy sequence and also explain why b_{n} cannot be strongly convergent in \mathbb{Q} given that $e \notin \mathbb{Q}$.
(vi) Consider the two dimensional plane. Use the calculus of variations to show that the shortest path between two points in the plane is a straight line.
(vii) Show that for a 3×3 matrix \mathbf{A}

$$
\operatorname{det} \mathbf{A}=\epsilon_{i j k} a_{1 i} a_{2 j} a_{3 k}
$$

(viii) Explain the Newton-Raphson algorithm and find the real positive root to two decimal places of

$$
\cos (x)=x^{2} .
$$

2. (i) Consider the two functions

$$
\begin{aligned}
& f_{1}(z)=\frac{z^{2}+\frac{1}{4}}{z\left(z-\frac{1}{2}\right)^{2}} \\
& f_{2}(z)=\exp \left(\frac{1}{z-1}\right)
\end{aligned}
$$

Identify the singularities, and determine their nature, for both functions.
(ii) Compute the residues of the poles of f_{1} and f_{2}.
(iii) Let \mathcal{C} denote a circle of radius 2 with centre at the origin and positive orientation. Compute the integral

$$
\int_{\mathcal{C}}\left[f_{1}(z)+f_{2}(z)\right] d z
$$

(iv) Suppose the Fourier transform of a function $g(x)$ is given by

$$
\hat{g}(k)=\frac{1}{k-i} .
$$

Find the function $g(x)$ for all values of $x \in \mathbb{R}$ including $x=0$.
(v) The double Fourier transform

$$
\hat{f}(k, \omega)=\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d t f(x, t) e^{-i(k x+\omega t)}
$$

of a function $f(x, t)$ satisfies the equation

$$
i \omega \hat{f}+k^{2} \hat{f}-1=0
$$

Find the corresponding differential equation satisfied by $f(x, t)$.
3. (i) Use suffix notation and the permutation symbol to show that for any two vectors \mathbf{a} and $\mathbf{b} \in \mathbb{R}^{3}$

$$
\mathbf{a} \times \mathbf{b} \cdot \mathbf{a}=0
$$

(ii) Explain if the following sets, A, B and C, of vectors constitutes a basis for \mathbb{R}^{3}.

$$
\begin{array}{ll}
A: & \mathbf{a}_{1}=(1,0,0), \mathbf{a}_{2}=(1,1,1), \mathbf{a}_{3}=(0,0,1), \mathbf{a}_{4}=(-1,0,1) \\
B: & \mathbf{b}_{1}=\left(\frac{1}{2}, 1,-1\right), \mathbf{b}_{2}=(0,-1,2), \mathbf{b}_{3}=\left(-\frac{1}{2},-\frac{1}{2}, 0\right), \\
C: & \mathbf{c}_{1}=(1,1,1), \mathbf{c}_{2}=(0,1,1), \mathbf{c}_{3}=\left(-\frac{1}{2}, 0,0\right)
\end{array}
$$

(iii) Consider \mathbb{R}^{∞} with the l_{1} norm and show, using ϵ formalism, that the sequence $\mathbf{a}_{n} \in \mathbb{R}^{\infty}$ given by

$$
\mathbf{a}_{n}=\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots, \frac{1}{2^{n}}, 0,0, \ldots\right)
$$

is a Cauchy sequence.
(iv) Show that a strongly convergent series is always a Cauchy sequence.
(v) Use the Schwarz inequality

$$
|\langle x, y\rangle| \leq\langle x, x\rangle^{1 / 2}\langle y, y\rangle^{1 / 2}
$$

to show that

$$
\sum_{n=0}^{\infty} \frac{1}{\sqrt{2^{n} n!}} \leq \sqrt{2 e}
$$

(Hint: You may want to consider sequences constructed from the power series representations of e^{x} and $(1-x)^{-1}$.)
4. (i) Derive the Euler-Lagrange equation for the functional

$$
J[y]=\int_{x_{0}}^{x_{1}} f\left(y, y^{\prime}, x\right) d x
$$

where $y \in C^{2}\left(\left[x_{0}, x_{1}\right], \mathbb{R}\right)$ and is subject to the boundary conditions $y\left(x_{0}\right)=y_{0}$ and $y\left(x_{1}\right)=y_{1}$.
(ii) Show that if the kernel f does not explicitly depend on x, then the EulerLagrange equation implies

$$
f-y^{\prime} \frac{\partial f}{\partial y^{\prime}}=\text { constant. }
$$

(iii) Use the calculus of variations to derive Newton's second law for a particle moving along the x axis in a potential $U(x)$.
(iv) Let

$$
J[y]=\int_{0}^{2} \frac{\sqrt{1+\left(y^{\prime}\right)^{2}}}{y} d x
$$

Consider curves starting at $(0,1)$ and ending at $(2,3)$. Determine the curve that minimises the functional $J[y]$.
(v) Consider functions $y(x)$ for which $y(0)=0, y(1)=1 / 2$ and $\int_{0}^{1} 2 y d x=1 / 6$. Amongst this set of functions determine $y(x)$ such that it makes the functional

$$
J[y]=\int_{0}^{1}\left\{\left(y^{\prime}\right)^{2}+2 y\right\} d x
$$

stationary.
5. (i) Define the Kronecker delta symbol $\delta_{i j}$.
(ii) Define the permutation symbol $\epsilon_{i j k}$.
(iii) Use suffix notation to show that

$$
\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c} .
$$

You may use without proof that $\epsilon_{i j k} \epsilon_{p q k}=\delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p}$.
(iv) Consider the transformation between two orthonormal systems S and S^{\prime}. Show that the square length of a vector transforms as a tensor of rank zero.
(v) Consider the differential equation

$$
\frac{d y}{d x}=f(x, y(x))
$$

and derive the Runge-Kutta scheme

$$
y_{n+1}=y_{n}+\frac{h}{2}\left[f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n}+f\left(x_{n}, y_{n}\right) h\right)\right] .
$$

(vi) Consider the equation

$$
\frac{d y}{d x}=x \tanh (x y)
$$

Use the Runge-Kutta scheme to estimate, to one significant decimal, the value of $y(x)$ at $x=1.1,1.2$ and 1.3 given that $y(1)=1$.

