1101 Analysis 1 Notes (Part 1 of 2) Based on the 2011 autumn lectures by Dr C Wendl

The Author has made every effort to copy down all the content on the board during lectures. The Author accepts no responsibility what so ever for mistakes on the notes or changes to the syllabus for the current year. The Author highly recommends that reader attends all lectures, making his/her own notes and to use this document as a reference only.

3 October 2011 Dr. C WENDL. . CILT.

-0

--- (2)

-3

a problem of CONVERGENCE

MATHIOL MUSINISI What is Analysis? -> theory behind coloneus (and beyond) - introduction to "serious" mathematics found on: ANOMS, DEFINITIONS - PROPOSITIONS, LEMMAS, THEOREMS an of which require PROOF. -> many things that spear straightforward it first but are not! Ext. a sum of infinitely many numbers can (sometimes) be finite $\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots = \sum_{i=1}^{n} 2^{-i} = 1$ but this requires a formal definition of the "=" sign . however, it is sho known that $(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{2})+(\frac{1}$ multiplying by ± 2-2+5-3+10-12+14-16+...= ± ln 2. garing out @ 2 - + + + - + + ...= + 10.2. 1+(ち-之)+ち+(キー右)+古+(九-古)= 差い2?! from O+3 @ compare (1) and (1) ... how is it that some sums (on the left) result in different values? problems with definitions some sums in different orders --- different orders. guestion: why not ?? => f(x) = its Taylor series = 0 + 0x + 0x^2 + ... [ADMIN!] Resource page on Moodle : moodle.ucl. ac. uk. Key for course "analysis". Textbook to procure: Binmore Mathematical Analysis (2nd ed.), cup. Capprox 242]

Z. C. Q. C. R. C. C. integers rational real comp N C numbers real complex numbers numbers numbers (real + imaginary parts) N = {1,2,3,...} = every natural number has a successor.

if XEN, then X+1 EN also.

STRUCTURE OF IN. (D) addition: if x, y, E th, we can define xty e th _____ operation is commutative (xty=ytx), associative (xty)t = xt(ytz) (xy)z = x(yz)(xy=yx) (2) multiplication: If x, y & IN, we can define xy & IN order : for all [also written \$] xiy & M, exactly one of the following is time: 3 if and only if hole: x ≤ y ⇒ x < y or x=y. (i) x > y (ii) x = y (iii) x < yx ≤ y is true <> x>y is not true. 3-1 ordering is transitive: if xiy, z eth

x<y and y<Z ⇒ X<Z x≤y and y≤Z ⇒ X≤Z

DRAWBACKS OF HI

* NUMBERS

the equation x + n = m, if $n \ge m$ has no solution $x \in \mathbb{N}$. $\longrightarrow \mathbb{T} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$

MATH1101 - 001

PROPERTIES OF IL (in addition to traits shared by IN) ∃ on additive inverse : ∀x ∈ Z, ∃ y ∈ Z such that xty=y+x=0 (nomely y = -x) · · · · · · we now can define subtraction $x, y \in \mathbb{Z}, x - y = x + (-y) \in \mathbb{I}.$ DRAWBACK OF IL the equation mX=n has no solution X & I unless m/n. ~~~ Q= { g | p,q & I, q = 0 } the set of all fractions & such that P, q & I and q = 0 note: if $\frac{p}{q} = \frac{m}{n} \Rightarrow p = m$ and q = n e.g. $\frac{1}{q} = \frac{2p}{2q}$. New PROPERTIES OF Q 5 3 3 multiplicative identity element: 1 & Q. [Ilso shared by I] (a/203, .) is a group ∃ > multiplicative inverse : ∀x= f ∈ R has, if x ≠ 0 (i.e. p ≠ 0), the inverse x = f we now can define division $x = \frac{p}{q}, g = \frac{m}{m} \in \mathbb{Q}(\{0\}), \text{ define } \check{y} = \frac{q}{q} \cdot \frac{m}{m} = \frac{p_0}{qm} = xy^{-1}$? question : Are the rational numbers "enough" to do serious mathematics ? - in some fields (e.g. number theory), perhaps ... $1 \frac{x}{1} \frac{1^{2} + 1^{2}}{1} = x^{2} = 2; x \notin \mathbb{R}$ - but in some others (e.g. geometry), definitely not. ITHEOREM 1. \$ any x & Q such that x2=2. & theorem is an important statement that is true and it is provable 6 October 2017 Dr. C. WENDL CIA . à lemma is à less important theorem, helpful às à step in proving à more significant theorem. LEMMA - if n e I is odd, then n is odd i.e. if n2 is even, then so is n. (contrapositive). Proof: If n is odd, n= 2k+1 for some KETL \implies $N^2 = (2k+1)^2 = 4k^2 + 4k + 1 \equiv 1 \pmod{2}$. thus n2 is odd & n is odd / q.e.d. Assume daim is fake i.e. I some x & Q s.t. x2=2. CONCEPT WLOG. we do always drange this assumption by making the hight choices then x = q for some p,q = Z, q = 0. assume, whose that $\frac{p}{2}$ is simplified, so p and q are coprime, in particular then they are not both even. $\chi^2 = 2 \iff \frac{p^2}{q_2} = 2 \iff p^2 = 2q^2 \implies p^2$ is even. from the lemma, p2 is even >> p is even ... = k = Z st. p=2k so $p^2 = 2q^2 \iff (2k)^2 = 2q^2 \iff 4k^2 = 2q^2 \iff 2k^2 = q^2 \implies q^2$ is even from the lemma, q2 is even >> q is even thus p, q are both even, which contradicts the original assumption that p, q are not both even. "o original assumption is false, which implies \$ any x & Q sit. x2=2, q.e.d. APPROXIMATION OF J2 WITH RATIONALS . idea : Find $x^2 - 2y^2 = \pm 1$ where y is large, then $\frac{x_1^2}{y_2} - 2z \pm \frac{1}{y_2} \Rightarrow (\frac{x_1}{y_1})^2 = 2 \pm \frac{1}{y_2}$ we use a large y :: $\lim_{y \to \infty} \frac{1}{y^2} = 0 \Rightarrow \lim_{y \to \infty} \left(\frac{x}{y}\right)^2 = \lim_{y \to \infty} 2\pm \frac{1}{y^2} = 2.$

1101-002 .

How can we judge how dose & is to v2? The obsolute value (modulus) of x is -> |x| = {x if x >0 Obtimion In particular 1×130 and we interpret la-bl as the geometric distance between a and b. Our problem reduces to : now can we estimate (x - vz ?. $\left(\frac{x}{y}\right)^2 - 2 = \pm \frac{1}{y^2} \Rightarrow \left|\left(\frac{x}{y}\right)^2 - 2\right| = \frac{1}{y^2}$ (xy - 12)(xy + 12) = y2 c.f. Binmore 1.16 Lemma 1a.b = 1a11b1 $\left[\frac{x}{y} - \sqrt{2}\right] + \sqrt{2} = \frac{1}{y^2} \Rightarrow \left[\frac{x}{y} - \sqrt{2}\right] \left(\frac{x}{y} + \sqrt{2}\right) = \frac{1}{y^2}$ " y+12 >12 >0. thus Termina if a, b >0 and a>b, then a<b. Colso azb, then astil. Proof - Assume a>b => ab a > ab b (: to >0) ちっち so $|\frac{3}{2}-J_2| = \frac{1}{(\frac{3}{2}+J_2)} \frac{1}{y^2}$ and by the knows, $(\frac{1}{3}+J_2) \frac{1}{y^2} < \frac{1}{\sqrt{2}} \frac{1}{y^2}$ and thus, 13-52 < ty2/ To approximate the value, we construct sequences of solutions Xn, yn for n=1,2,3... s.t. (i) x1=1, y1=1 (ii) Xn+1 = Xn + 29n ; 9n+1 = Xn + 9n Vne N, Xn, yn defined in this way satisfy Xn2 - 2yn = ±1 Roposition (à minor theorem) Proof - by induction where h=1, $\chi_n^2 - 2y_n^2 = \chi_1^2 - 2y_1^2 = 1 - 2(1) = 1 - 2 = -1$, the proposition is true. assume the statement is true for some $k \in \mathbb{N}$ i.e. $x_{k}^{2} = 2y_{k}^{2} = \pm 1$ is true then where n=k+1, $X_{k+1}^2 = 2y_{k+1}^2 = (X_k + 2y_k)^2 - 2(X_k + y_k)^2 = X_k^2 + 4X_ky_k + 4y_k^2 - 2X_k^2 - 4X_ky_k - 2y_k^2$ $= -x_k^2 + 2y_k^2 = -(x_k^2 - 2y_k^2) = \mp I_k$ Since the statement is true for n=1 and n=k is true => n=kr1 is true; the proposition is true it n = 1/1, q.e.d. VNGIN, Xn, YNEIN and YNZN. Lemmal Proof - by induction where n=1, X1=161N, Y1=161N, Y1>1, the proposition is true. assume that for some K, XK, YK eth and YK >K. > XK+1 = XK+2YK EN, YKH = XK+9K EN also yk+1 = XK+YK > 1+K (: XK >1 and yn >k) "a theorem that follows-from previous discussions" since the statement is the for n=1... Proof: $a^2 \ge ab$ $a \ge b^2 \Rightarrow ab \ge b^2$. 1×n - 52 < 1/2 /2 Conollary Proof - we showed that $|\frac{x}{y}-\sqrt{z}|<\sqrt{z}:\frac{1}{y^2} \Rightarrow |\frac{x_n}{y_n}-\sqrt{z}|<\sqrt{z}:\frac{1}{y_n^2}$ 1101-003

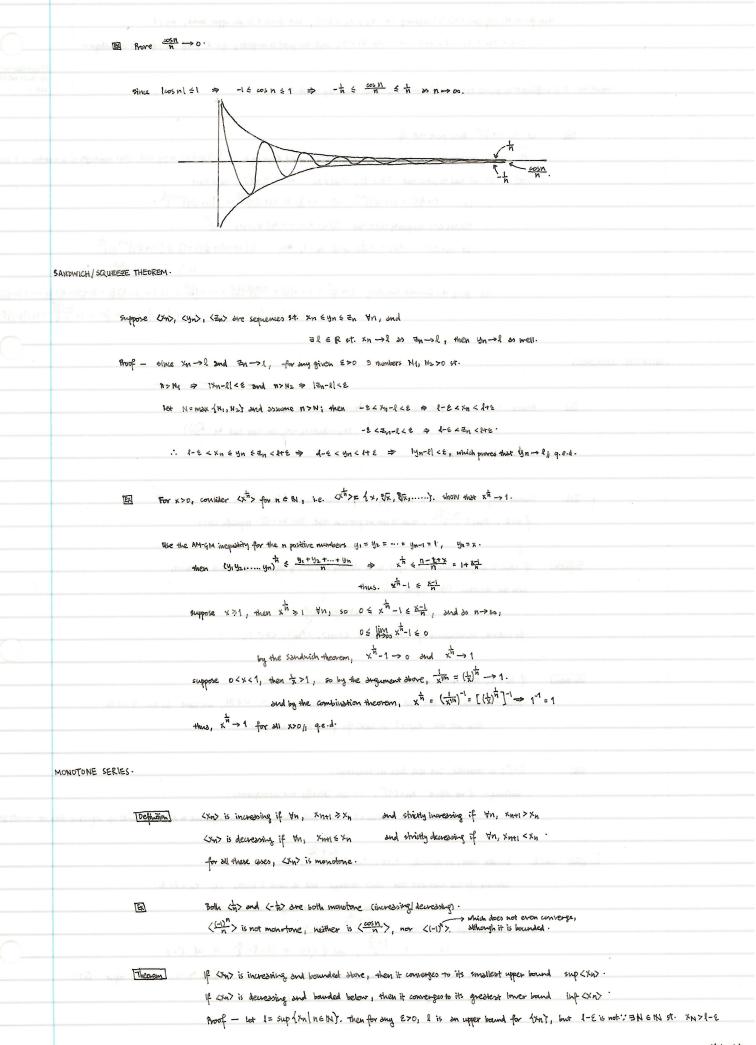
Calculating some values ... n 1 2 3 4 5 6 7 Se Coulor Xn 1 3 7 17 41 99 239 yn 1 2 5 12 29 70 169 10-1 <u>yn</u> 1 1.5 1.4 14167 1.4138 1.4139 REVIEW OF THE NUMBERS ... IL C R C = R = red numbers! division taking ////= red numbers! NC subtraction a subset of R is RIQ = { X & R | X & R}, the irrational numbers √2, √3, π, e ∈ R\R of course, some irrestional numbers are not as simple ... unlike 12, which is simply the solution of x2-2=0. I X & R that are not solutions to any polynomial equation with rational coefficients (transcendented numbers). 10 October 2011 Dr Chris WENDL art REAL NUMBERS, PR. Definition A subset S C IR is bounded above if I HCR (in upper bound from S) S.T V X ES, X SH. A subset S.C.R. is bounded below if I hCR (a lower bound from S) sit. V x & S, x > h. EX. For some set S = {1,2,5}, S is bounded above by 5, 6, 6.5, 30000 and bounded below by 1,0,-2, - 17, -1000000 lub S = 5 ____ gib S = 1. The the set of S= {x & R x>0} the set is unbounded above, bounded below by 0, -1, ... tub S=0 (atthough it is not part of the set). => S is an unbounded set. A subset SCR is bounded (>> ZHZO ST. VXES, IXISH Proposition note on ploving IFF statements: to prove A => B, then = 2 things to prove (i) A => B, and Proof -- we use the relation that - |x| < x < |x| + x & R (ii) B⇒A to prove : = HZO s.t. VX e S, IX SH -> set is bounded suppose it is true, then "H < - K < K < H < H i.e. - H is a lower bound, H is an upper bound -> S is bounded to prove: subset SCR is bounded => = H30 s.T. VX ES, 1x1 ≤ H suppose sis bounded above and below, I HER, hER st. VXES, h SX SH. we that $-|H|-|h| \leq -|h| \leq h \leq x \leq H \leq |H| \leq |H| + |h|$ \Rightarrow - (IH] + Ih] $\leq \times \leq$ [H] + Ih] \iff [X] \leq [H] + [h] since [H] + [h] >0, the statement is provery g.e.d. $S = \{x > 0 \mid x^2 < 2\}$ $\exists b \int = 0 \mid , \quad |ub \ J = \sqrt{2} \mid ,$ EK. remark: if we only consider national numbers, S would have no lub. ∃ H ∈ Q is an upper bound for S, then one can find a smaller h ∈ Q, h < H, s.t. h is also an upper bound for S (HW2, problem 2(b)) 1101-004

	Mitta etc. assume
	CONTINUUM PROPERTY.
	(i.e. why IR is better than Q). (dod to!) go bell program an and not add the base. We changed at the
	For any non-empty subset S C IR, and there is a part of part of parts of parts of parts of the second
	(i) if S is bounded above, then it has a smallest upper bound = sup 3 € IR ("supremum")
	(ii) if S is bounded below, then it has a largest lower bound : inf S & R ("infimum").
	we asserve, which ages had all a the last ages hand, i a the say
	Throughout this cause, we will drivers dosume that IR has the following properties
	(i) it contains Q approved but of the first part, but (1 the)
	(ii) it has the continuum property
e Will le pro	(implication: \mathbb{R} must contain $\sqrt{2}$, $\sqrt{2}$ = $\sup \{x \in \mathbb{R} \mid x^2 < 2\}$)
	R, does not have the continuum property.
	·王子·松阳·金子·金子·金子·
	EXTREMA
	Repution SCR has maximum H (i.e. max S=H) if HES and H is an upper bound of S.
	SCIR has minimum h (i.e. min S=h) if has and h is a lower bound of s.
	note: intervals.
	$[Ex] Given [a, \infty) = \{x \ge a\}, (a, \infty) = \{x \ge a\}$
	$(-\omega_0, b) = \{x \le b\}, (-\omega_0, b) = \{x \le b\}$
	· dosed interval [a,b]=2a3×3b2
	(-00,00) = R. man and the spectral sector of the sector of the spectral sector of the spect
	Find all inf 5, sup 5, max 5, min 5. (a,b)
na na dua	$\frac{S}{(a,b)} \xrightarrow{sup S} \frac{inf S}{b} \xrightarrow{max S} \frac{min S}{f} \xrightarrow{a} \xrightarrow{a} \xrightarrow{a} \overbrace{[a,b]} R$
	$c = c_{a,b} = $
	$\begin{bmatrix} a, b \end{bmatrix} = \begin{bmatrix} b & a & \# & a \\ (a, b) & \vdots & b & a & b & b \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & \vdots & b & a & b \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots & b \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a & \vdots \\ b & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a & \vdots \\ b & a & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a & \vdots \\ b & a & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a & \vdots \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a & a \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a & a \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a & a \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} \end{bmatrix} = \begin{bmatrix} a, b & a & a \\ \hline \end{bmatrix} $
	$\begin{bmatrix} a, co \end{pmatrix} \Rightarrow a \Rightarrow a \\ \Rightarrow & 7 \end{bmatrix}$
	600,6] 6 \$ \$ b \$ by examining sup S and inf S, (-00,6) 6 \$ \$ \$ \$ (these intervals are unbounded.
	note: 串 sup S ⇒ 书 max S , 书 inf S ⇒ 书 min S but the reverse does not apply !
	PROPERTIES OF BOUNDED SUBSETS
	(1) Binmore 2.12. For any non-empty subset SCIR bounded above, and any C70,
	$\sup_{X \in S} (\omega_X) = c \sup_{X \in S} (X) $ notation: for any function F(x) defined for $x \in S$, we write $\sup_{X \in S} F(x) = \sup_{X \in S} \{F(x) \mid X \in S\}$.
	$e.g.$ sup $x = \sup S.$
	(2) * for nonework, proc. For any non-empty subject SCR bounded above, and if C>0,
	$ sup_{x \in S} (c+x) = c + \sup_{x \in S} (x) $
	let T= { c+x { x ∈ S}, since x ≤ sup (x), c>o ⇒ x+c ≤ sup (x) + c; i.e. sup (x)+c is an upper bound for (c+x), and
	$s_{X \in S} (c+x) \text{ is the lowest upper bound for } ccrx), s_{W} (w) + c \geqslant s_{W} (c+x); s_{W} (w) + c \Rightarrow s_{X \in S} (c+x) \Rightarrow x \leq s_{X \in S} (c+x) - c \Rightarrow s_{X \in S} (w) (w) + c \Rightarrow s_{X \in S} (w) + c \Rightarrow s_{X \in S}$
	$\Rightarrow \sup_{x \in S} (x) + C = \sup_{x \in S} (x) + C = \sup_{x \in S} (c+x) \cdot (c+x)$
A STANDER	
	THE WELL-ORDERED PRINCIPLE
	$\ h_{\mathcal{A}}\ _{\mathcal{A}} = \max_{i \in \mathcal{A}} \ h_{i} \wedge h_{i}\ _{\mathcal{A}} \leq \max_{i \in \mathcal{A}} \ h_{i} \wedge h_{i}\ _{\mathcal{A}} \leq \max_{i \in \mathcal{A}} \ h_{i} \wedge h_{i}\ _{\mathcal{A}} \leq \max_{i \in \mathcal{A}} \ h_{i}\ \ _{\mathcal{A}} \leq \max_{i \in \mathcal{A}} \leq \max_{i \in \mathcal{A}} h_{i}\ \ _{\mathcal{A}} \leq \max_{$
1. 4 pathenis 4.	Every non-empty subset of TN has a minimum. (we will consider this as an axiom of TN).
	(ii) let n est, mark and a start the start warmed the is mean the start of the the the start of the the film
	THE ARCHIMEDEAN PROPERTY.
	a man a grant and a start and a st
en (11 sistelitegal	Theorem (N is not bounded above. (or, # any HER st. VnEN, nEN).

1101-005.

	Here we assume the following:	
	(i) every n & M has a successor n+1 (1995)	
	(ii) R contains R and satisfies the continuum property. (see pg 1107-005)	
	Proof of prehimedian property Proof by consordiction	
	Assume, conversely, that = H = R s.t. Vn = IN, n < H.	
	continuum property $\Rightarrow \exists a least upper bound.$	
	we assume, WLOG, A is the least upper bound, i.e. A = sup 11 =>	1 ->
	since H-1 < H, H-1 is not an upper bound for IN ⇒ Z n ∈ IN st. N>H	
	(n+1)>H, but n+1 ∈ N ⇒ H is not an upper bound for N.	
	This creates a conduction as it was assumed to be an upper bound, is \$ an upper	r bound of IN/ g.e.d.
	Corollong: \$ the real number that is smaller than every the rational number.	
	proof - in fact, for any given E>O, E = R; one can find a larger hatrons number n ∈ IN	
	where $f_{h} \in \mathbb{Q}$, s.t. $f_{h} < \varepsilon$	
	AM23732	13 outdoer 2011 Pr. Chris WENDL
	(Theorem) The Principle of Induction.	a <u>A</u>
	Suppose V n & IN, P(n) denotes a statement (either time or file) involving the number n, and we know	
	of a nerving	
<u>(Abasha (AA)</u> (Abashash	(ii) for all n E W, if P(n) is true then so is P(n+1);	
Idanait - Edina to		
alf open internati x etcis	Proof — Define the subset S= {n e IN P(n) is not true}	
(d.w) (d.xx)	$NTP: S = \phi_{NTP} \otimes \phi$	
2 Earl) 9	Proof by contradiction: Assume that $S \neq \phi \Rightarrow$ by the weat-ordering principle, S has a minimum	, m such that $m \in S$.
- Faile 6	since m ES, and P(m) is not the then m = 1 because P(1) is the and	1∉5.
	$\Rightarrow m \neq 2$. $\Rightarrow m -1 \in \mathbb{N}$	
	since m is the minimum of S, M-1 & S. => P(m-1) is true.	
· · · · · · · · · · · · · · · · · · ·	but since m-1 & IN, by hypothesis (ii), if P(m-1) is true then so is	P(m-1+1) = P(m)
	and since Plan) is three, m&S which constradicts mes.	
	Thus the assumption $S \neq \phi$ does not hold, and $S = \phi_{ } q.e.d.$	
	INDUCTION more than just a theorem ; is "too great on idea" to be packaged into a ringle theorem . Low and the anti-	
	(1) Examples 2 B = The day menotimping infator 5 & F. base and shore , and any CSC.	
122X [(83] 42 3	(1927) J	
	we define the AM (orithumetic mean) as $I_{ij}^{D} X_{ij}^{K}$, and the GM (geometric mean) as $\sqrt{\frac{n}{121}X_{ij}}$.	
	then prove the AM-GM inequality, where Gn & An	
	$(\infty) \frac{\delta_{\mu\nu}}{\delta_{\mu\nu}} + \beta^{-\nu} (\xi + \beta) \frac{\delta_{\mu\nu}}{\delta_{\mu\nu}}$	
	Proof - Let P(w) denote the statement Gn & An for some n & N.	
	We want to prove that this is true In G th, and we shall demonstrate that	
	(i) and (ii): induction by power of 2 < (i) P(2) is true, and (ii) In (x), if P(2) is true	e, then so is P(2ntl), and
	backward inductions (iii) the th, n 32, if 7(n) is three then so is P(n-1)	767
	Then since it is a power of 2 > n is the it is the in the interval	$A_2 \ge G_2$
	(i) P(2) is true $\iff \forall x_1, x_2 > 0$, $\forall \overline{x_1} \overline{x_2} \le \frac{x_1 + \overline{x_2}}{2}$ because $0 \le (\sqrt{x_1} - \sqrt{x_2})^2 \Rightarrow 2\sqrt{x_2} \le \overline{x_1} + \overline{x_2}$;	hence hypothesis (i) holds.
	(ii) let $n \in \mathbb{N}$, $m=2^n$; then $2^{n+1}=2^n\cdot 2=2m$. Then assuming P(m) is true, we want to show that	P(2m) is true.
	for any $\chi_1, \chi_2, \dots, \chi_{2m}$; then NTP: $(\chi_1\chi_2 \dots \chi_{2m}) \leq \frac{\chi_1\chi_2 \dots \chi_{2m}}{2m}$ if $(\chi_1\chi_2 \dots \chi_m) \leq \frac{\chi_1}{2m}$	m.
	let $g_1 = (x_1 x_2 \cdots x_m)^{\frac{1}{m}}$ and $g_2 = (x_m n x_m n 2 \cdots x_{2m})^{\frac{1}{m}}$; then $g_1 \leq \frac{x_1 x_2 t \cdots t x_m}{m}$ and $g_2 \leq \frac{x_m}{m}$	H + Xm+2+ ··· + X2m M (Since Plan) is the of
	since P(2) is true, $2\sqrt{g_1g_2} \leq \frac{g_1+g_2}{2}$ and $2\pi\sqrt{\chi_1\chi_2\chi_{2m}} \leq \frac{1}{2} \cdot \frac{\chi_1\chi_2\chi_{2m}}{m}$ and $G_{2m} \leq A_{2m}$	hence hypothesis (ii) holds
1107-006		

(iii) Assuming P(n) is true, show P(n-1); i.e. for any X1, X2,, Xn>0 then	
$G_{n-1} = (\chi_1 \chi_2 \cdots \chi_{n-1})^{n-1} \leq \frac{\chi_1 + \chi_2 + \cdots + \chi_{n-1}}{n-1} = A_{n-1}$ if $G_n \leq A_n$.	
since P(n) is true, if me let Gn-1 be equal to term Xn, then	
$(\chi_1\chi_2\chi_{n-1},G_{n-1})^{\frac{1}{n}} \leq \frac{1}{n}(\chi_1+\chi_2++\chi_{n-1}+G_{n-1})$	
$\left[\left(x_{1} x_{2} \dots x_{n-1} \right)^{\frac{1}{n-1}} \cdot G_{n-1}^{\frac{1}{n}} \leq \frac{1}{n} \left(x_{1} + x_{2} + \dots + x_{n-1} \right) + \frac{1}{n} G_{n-1}$	
$\left[\left(G_{n-1}\right)^{n-1}G_{n-1}\right]^{n} \leq \left[\frac{1}{h_{1}}(x_{1}+x_{2}+\cdots+x_{n-1})\right]\left[\frac{n-1}{n}\right] + \frac{1}{h}G_{n-1}$	
$[G_{n-1}]_{n \leq n-1} \leq \frac{(n-1)A_{n-1} + G_{n-1}}{n}$	
$G_{n-1} \leq \frac{n-1}{n} A_{n-1} + \frac{1}{n} G_{n-1}$	
$\frac{n-1}{n} G_{n-1} \leq \frac{n-1}{n} A_{n-1} \Rightarrow G_{n-1} \leq A_{n-1} \stackrel{\bullet}{:} \frac{n-1}{n} > 0 \; .$	
Hence, since (i) $P(2)$ is true, (ii) $P(2^n)$ is true $\Rightarrow P(2^{n+1})$ is true and (iii) $P(n)$ is true $\Rightarrow P(n-1)$ is true;	
Then the statement applies for all no IN/ (since n 21) . g.e.d.	
	17 Dutyber 2011
Recall from By 1: =======?	Pr. Chris WENDL
	0.0
what does "=", the equality symbol, mean? Let $X_n = sum of first n terms = \frac{2^n - 1}{2^n} = 1 - \frac{1}{2^n} \longrightarrow 1$ as $n \to \infty$.	
Let $\lambda_n = such of first n terms = 2n = 1 = 2n = 1 as n = 200.$	
· · · · · · · · · · · · · · · · · · ·	
[EN] How can be understand 0.333?	
consider successive approximations	
$0.3 = \frac{3}{10}$, $0.33 = \frac{33}{100}$, $0.333 = \frac{333}{1000}$ \longrightarrow $0.3 = \frac{1}{3}$	
a sign for which the second second second	
SEQUENCES .	
[Refinition] A sequences of real numbers is an arrighment to every n & N of a real number Xn & R.	
the trange of a sequence in the set {xn n e IN}.	
The sequence is bounded above / bounded below / bounded (=> its range is bounded.	
EX . Examine the sequence $1, 2, 3, 4, \dots$ i.e. $X_{H} = N$	
It is bounded below, but not allow.	
· Dr the converse 999, 988, 997, i.e. Xn = 1000 - 11	
It is bounded above, but not below	
· Or the sequence -1,1, -1,1, i.e. Xn=(-1) ⁿ is bounded ·	
Notation: The sequence as a whole can be expressed as	
(Xn) or (Xn) or (Xn) where ne M	
The individual n th term is then expressed as Xn.	
the linear section of a point state and the section of the section	
CONVERGENCE	
and and the second of the second s	
[Definition] A requesce	
for every $E>0$, $\exists N>0$ sit. $n>N \Rightarrow x_n-2 < E$	
whe says lis the limit of the sequence <xn>.</xn>	
and we unit $n \rightarrow \alpha \lim_{n \to \infty} \lambda_n = \ell \text{or} \lim_{n \to \infty} \lambda_n = \ell \text{or} \chi_n \rightarrow \ell.$	
Remark - in particular, this definition must be true for arbitrarily small E>0,	
then usually N must be very large	
(depending on E).	
a server pro the to be deep and the of the server pro such and a present.	
	1101-007-


Xn	·∧
	that design and the first section of the section of
{+1	· · · · · · · · · · · · · · · · · · ·
l	
4-1	
	(A a a a a a a a a a a a a a a a a a a a
	Given E=1,
a c 1 N	$n>3 \Rightarrow x_n \in (l-1, l+1) \iff x_n-l < 1$
A A A A A A A A A A A A A A A A A A A	
, sont i (1-1) & sont i (n)	Given e=12 and ("The second of the second of
	$n>5 \Rightarrow x_n \in (l-\frac{1}{2}, l+\frac{1}{2}) \iff x_n-l < \frac{1}{2}$
÷	* If $x_n \rightarrow l$, then we must be able to do this for arbitrarily small $\varepsilon > 0$.
Proposition	n if $x_n \rightarrow l$, then $\langle x_n \rangle$ does not also converge to any other number $l' \neq l$
,	Construction of the second
Perindia	a) if (Xin> does not converge to any l & R, then we say (Xin> diverges.
hod	I if which appear not converge to sky i a my than we say which alwerges.
	1 TRE Augustustant of restarting the
R	
	let Xn = th, then given any E>0,
	we need to find N>0 s.t. $n>N \Rightarrow x_n-o =t_1 < \epsilon$.
	we have $f_1 < \epsilon \iff n > \overline{\epsilon}$ it suffices to take $N = \overline{\epsilon}$, do then $n > N \iff n > \overline{\epsilon} \iff \overline{h} < \epsilon_{j}$ gie.d.
	Variation: Hove that for a constant CER, $x_n = C + \frac{1}{n}$ converges to C.
	given any ε_{70} , we need N>0 st. $n>N \Rightarrow Xn-C = \frac{1}{n} < \varepsilon$
	·· again, N= te suffices, q.e.d.
	man si parti i server se server e fal
EX	If xn=C, CER, prove that Xn->C evaluated with the second second
	Given any 270, we need to find N>0 st. n>N ⇒ D/n-cl <e.whenever n="">N.</e.whenever>
	But $ x_n-c =0$ \forall n, so this is true for day N, q.e.d.
EX	Tor a sequence formed from the series 2+ 4+ 5+
	let $\forall n > be the sequence formed from the sum of the first n terms : i.e. \pm, \frac{3}{4}, \frac{3}{4}, \dots$
	Rever that $x_n > 1$.
	Prove that $x_n \rightarrow 1$. Note that $x_n = \frac{2^n - 1}{2^n} = 1 - \frac{1}{2^n}$
	Given any ε_{70} , we read to find N>0 s.t. $n>N \Rightarrow X_n-l < \varepsilon$,
	·X·[Xn-1]= ± <h 2"="" ·="">n V n (see Homework 2, Problem 1)</h>
	Now take $N=\frac{1}{2}$, then $n>N \Rightarrow n>\frac{1}{2} \Rightarrow \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} < \frac{1}{2} > \frac{1}{2} < \frac{1}{2} <$
R	ecoll the sequences $\langle n \rangle$, $\langle (-0)^n \rangle$; since they do not converge to some limit $l \in \mathbb{R}$,
	here sul diverge. Note that they do not get arbitrarily closer to any limit l.
++	the all allerge. not meet they as not get eventering more to any time -
	Service on Report of Burger and Service Service
	I get to Repaired the Real print some so has
	\overline{XL} It is claimed that if $X_n = \frac{1}{n^2}$ for any <u>reasons</u> $r > 0$, then $X_n \to 0$. Hore the claim. NOTE: we restrict $r \in \mathbb{Q}$ because $r \in \mathbb{R}$ where $p_{q \in \mathbb{N}_{+}}$.
	it is a leavent a light out and a life

1101-008

$$\left\{ \begin{array}{c} \mu + \mu_{0} + \mu_{0}^{2} + \mu_{0}^{$$

1101-009.

Trans Pa	and was a the same the descent the second	
	But Soth Xn = n or Xn = 1000-n are sequences.	
	Both are unbounded .	
	Theorem? My convergent sequence is subounded.	
period ward		
	(and hence, all unbounded sequences diverge).	
	Proof - given any <u>finite</u> subset S of IR, max S and min S exists.	
	given also that $\chi_n \rightarrow l$, we know that for any ε_{70} ,	
	$\exists N>0 st. x_n-l < \xi \ \forall n>N.$	
	WLOG, by increasing N if necessary, we may assume N & NU.	
	$ x_n - \ell < \varepsilon \Rightarrow -\varepsilon < x_n - \ell < \varepsilon \Rightarrow \ell - \varepsilon < x_n < \ell + \varepsilon$	
	since {x1, x2, XN} is a finite set, it has a minimum and maximum.	
	min {x1, x2,, xn, l-E} ≤ xn ≤ mex {x1, x2,, xn, l+E} = <xn> is bounded, ge</xn>	-d -
	Consider a magnetic and construction of construction (1999). International advection	
	Proving the combination theorem.	
	Restatement of theorem. Assume $Xn \rightarrow X$ and $Yn \rightarrow Y$, and $c \in \mathbb{R}$ is a constant. Then	
	(i-a) $CXn \rightarrow CX$ and (i-b) $Xn + Yn \rightarrow X + y$	
	(ii) $x_{n}y_{n} \rightarrow xy$ (iii) if $x_{n}\neq v$ and $x\neq v$, $\frac{1}{x_{n}} \rightarrow \frac{1}{x}$ for if so, (iiii) if $x_{n}\neq v$ and $x\neq v$, $\frac{1}{x_{n}} \rightarrow \frac{1}{x}$ lim $\frac{x_{n}}{y_{n}} \rightarrow \frac{x}{y}$	
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	then how parts cxn from cx? cxn-cx = k xn-x < c = E	4
	(official) (i-a) since e is "smallenough", so would	ici have been.
· · · ·	$zf c=0$, then $CX_{N}=0 \rightarrow 0 = cX$.	
	Now assume $c \neq 0$, since $x_n \rightarrow x_n$, $\forall \in 70$, $\exists N > 0$ s.t. $n > N \Rightarrow x_n - x < \frac{\varepsilon}{ c }$	
	Then $n > N \Rightarrow C \times_n - C \times = C \times_n - ext < C \frac{x}{ C } = \varepsilon.$	
	Hence c×n -> c×y q.e.d.	
	$\begin{array}{cccc} (i-b) & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $	
	$y_n \rightarrow y \rightarrow \sqrt{\epsilon}$ 70, $\exists N_2 \rightarrow 0$ st. $n > N_2 \rightarrow y_n - y < \epsilon/2$	
	Hence $n \ge n \ge 1$ $\{N_1, N_2\}$, $ (X_n + U_n) - (X + U_n) = (X_n - X) + U_n - Y_n \le X_n - X + U_n - Y_n \le \frac{1}{2} + \frac{1}{2} = \epsilon$ Thus, $x_n + U_n \rightarrow x + U_n$, $q.e.d$.	
	Thus, $x_{n+1}y_{n} \rightarrow x_{+}y_{+}y_{+}q_{e-d}$. Thus, $y_{n+1}y_{n+1} \rightarrow x_{+}y_{+}y_{+}q_{e-d}$.	
	(iii)	24r Odroberr 2011 Dyr. Chris WENDL.
	since the converges, it is bounded i.e. 3 C>0 st. 1xn1 <c. hn.<="" th=""><th>CILIT</th></c.>	CILIT
	Given E70, since $x_n \rightarrow x$ and $y_n \rightarrow y$, $\exists N_1, N_2 > 0$ sit. $n > N_1 \Rightarrow x_n - x < k \le -\frac{1}{crty} ^2$, and	
A	$n > N_2 \Rightarrow y_n - y < k_{\mathcal{R}} = \frac{1}{c + y } \mathcal{E}.$	
	let N= max 2N1, N23, so if n>N, then IX-XI, lyn-yl < triy E.	
	π_{huo} , $ x_0y_0 - x_y = x_n(y_n - y) + y(x_n - x) \le x_n(y_n - y) + y (x_n - x) = x_n (y_n - y_0) + y (x_n - x) $	
	$\sqrt{C} \frac{\varepsilon}{\varepsilon + u } + u \frac{\varepsilon}{\varepsilon + u } = \varepsilon_{F}$	
	hence, Xn yn -> xy, g.e.d.	
	(iii) sequence is bounded only form 0.	sequence is non-zero
	since the converges, it is bounded i.e. 3 C>O sit. It'm sc V n Kn zc 70 <-> It'm	1120 for all n.
	Lemma - if <xn> is a sequence with Xn = 0 Vn and Xn = X = 0, then = C>0 st. IXn = C Vn .</xn>	
	Proof - for sufficiently longe N>0, N>N ⇒ 1×n-×1<2 → 1×n1= 1×+(×n-×)= 1×1-1×-×n1= 1×1× and ∀n, 1×n1= min1×1×××n, 1×1×	{ recall a inconstitu:
	Given 270, since $x_N \rightarrow x_1 \equiv N > 0 st. N>N \Rightarrow x_N - x < x $	12+2141214121
	Storm appropriate ten for stark gener and for here words all	(⇒) 19761 + 1613 1a1
	allers and where a lease a lease and the Chever and least and an and the second preserves	(a+b)-b1 ≤ la+b1+1-b1
- 610.		

Then for n>N, sequence $\langle N_N \rangle$ is increasing $\Rightarrow X_N > I - E$, but since I is an upper band, $X_N \leq I$.
. l- E< XN ≤ Xn ≤ l< lt E ⇒ 1Xn-l1< E, and the proof is completell q.e.d. proof for inf (Xn) is analogous.
27 October 2011 Dr. chuis WENDL
sometimes, it is sufficient to prove existence of something rother than the colluble it.
A
En let $x_n = (1+\frac{1}{n})^n$. Then prove that $\frac{2}{n}$
(i) SKN7 is monotone increasing, and (ii) Skn7 is bounded above by 3. [(i) and (ii) imply that SKN7 converges to a number \$3 caunally e)
$Rroop - (i)$ we want to prove that $\forall n \in \mathbb{N}$, $x_{n+1} \ni x_n \iff \forall n \geqslant 2$, $x_n \geqslant x_{n-1}$
$(1+\frac{1}{2})^{n-1} \Rightarrow (1+\frac{1}{2})^{n-1} \Rightarrow (1+\frac{1}{2})^{n-1} = [(1+\frac{1}{2})^{n-1}]^{\frac{1}{2}}$
the AM-GM inequality sides that $\frac{1}{2}(x_1 + x_2 + \cdots + x_n) \ge (x_1 x_2 \cdots x_n)^{\frac{1}{2}}$
$[e_{1} \times_{1} = \times_{2} = \cdots = \times_{n-1} = i_{1} \frac{1}{n-1} \text{ and } \times_{n} = 1, \text{ then } \frac{1}{n} \left[(n-1)(1+\frac{1}{n-1})^{n-1}(1) \right]^{\frac{1}{n}}$
$1+\frac{1}{h} \ge (1+\frac{1}{h-1})^{\frac{h-1}{2}}, q.e.d.$
(ii) Using the binomial theorem, $(1+ti)^n = 1 + n(ti) + \frac{n(n+1)}{2}(ti)^2 + \dots + (ti)^n = 1 + 1 + (1-ti)(1$
$\leq (+)+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{5!}\leq (+)+\frac{1}{2}+\frac{1}{2!}+\cdots+\frac{1}{2!}=1+\frac{1-\frac{1}{5!}}{1+\frac{1}{2!}}=1+2[1-\frac{1}{5!}]<3,$
RECURSIVE SEDUENCES .
Reflected to an en in the second second to the second
Tel Assume x1=1, and define the subsequent terms recursively by
$x_{n+1} = \frac{1}{2}x_n + \frac{1}{2}$ (by induction, we can show that $x_n = \frac{2^n - 1}{2^n}$).
This sequence converges to 1.
$\int -\frac{1}{2} \sum_{n=1}^{\infty} \sum_{n=$
if $a=2$, $x_{HTI}=\frac{x_{H}+\frac{x_{H}}{2}}{2}$, then it can be proven that $\lim x_{H}=\sqrt{2}$. (specific case).
i a stati i the state of the st
Tradivition of Kins is any sequence and Kins is a strictly increasing sequence of natural numbers,
then the sequence Kyn7 defined such that:
In = Xin is a <u>subsequence</u> of <xn>.</xn>
for instance, subsequences of <*** include <****, <****, <***-1,
the same but the monodestances are as
$revenuent$ if $x_n \rightarrow 1$, then every subsequence of $\langle x_n \rangle$ also converges to 1.
Proof – depends on fact that for any strictly increasing $\langle jn \rangle$, $n \in \mathbb{N}$, we have $jn \ge n \forall n \in \mathbb{N}$.
then we use $x_n \rightarrow 1$ as basis for proof of convergence.
ment has not up as easies for hood of connectioner
(Ei) (1-1)"> is bounded, but still does not converge.
Working - If we define $X_N = (-1)^N$, we can identify two subsequences:
(1/2n)= <1> and <x2n-1>= <-1>. both subsequences converge, but to different limits => sequence does not converge.</x2n-1>
The production of the second sec
$\sum EE (cont^{\dagger}d)$ consider where, in general, $x_{1}>0$, $x_{1+1}=\frac{x_{1}+\overline{x_{1}}}{2}$, $a>0$.
some for the moment that $\langle X_n \rangle$ converges and its limit lexists, i.e. $X_n \rightarrow l \in \mathbb{R}^+$
then (Xnatl) must also converge to the some limit.
this gives us $\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \frac{x_n + \overline{x_n}}{2} = \lim_{n \to \infty} x_n$
i.e. $l = \frac{l+1}{2}$, and if $l \neq 0 \Rightarrow 2l = l + \frac{\alpha}{l} \Rightarrow l^2 = \alpha$.
since $l^2 = a$, $l = \sqrt{a}$ (proving by induction that since $x_1 > 0$, $l = \frac{1}{n \to \infty} x_n > 0$, hence we reject $-\sqrt{a}$).
this tells us that if the limit exists and $l \neq 0$, then $l = \sqrt{a}$
a particular a state and participant responses of a construction of water descendency give it and - great

1101-012

	but how do we know that the limit actually exists?
	elsim 1: MN 32, Xn 2 Va and asim 2: the sequence <xmt1> is decreasing.</xmt1>
	proof of 1 - XNZVA = XNH ZVA VA VAZI
-	record that $X_{n+1} = \frac{1}{2}(X_n + \frac{2}{2n})$ and by the AM-GM ineprodity,
	$X_{n+1} = \frac{1}{2} \left(x_n + \frac{\alpha}{x_n} \right) \ge \sqrt{x_n} \frac{\alpha}{x_n} = \sqrt{\alpha} \Rightarrow dx_{n-1} = 1$
	proof of z - need to show Xnn ≤ Xn i.e. 2(Xn+==) ≤ Xn = Xn+= 2Xn =
-	$\frac{2}{\lambda_n} \in X_n \Rightarrow \alpha \in X_n^2 \Rightarrow X_n \ge \sqrt{\alpha}$, which reduces to claim 1.
	since doing is true, cloim 2 is true.
	so, since doins 1 and 2 are true, the sequence is monotone decessing to a greatest lower bound,
-	and the limit exists
and and and	for the printing of a set of the set of the second printing and a second printing and the
	[Theorem] If Xnza for nelly and new Xn=1 => 120
	If xn ≤ b for n ∈ IN and live Xn = l => l≤ b.
	Roopf - see details in 1101P-003.
	31 October 2011.
what i	s Analysis 3 CILT.
	 Conservation of Decidence of De
- telenic -y	Analysis is the study of <u>consorgence</u> .
	Q: What conditions on a sequence guarantee that it converges? grample, a monotone bounded sequence.
	but being bounded atome is not enough; such as the oscillating series <41)">,
	which has 2 subsequences which converge to different limits.
Bolza	NO - WEIERSTRASS THEOREM
8012A	"Brong bounded sequence has a convergent subsequence."
Bol.2A	"Brow bounded sequence has a convergent subsequence." it must converge . Proof we have established that if a sequence is bounded and monotone, which follows from
801.2 A	"Brenz bounded sequence has a convergent subsequence." it must converge . Proof we have established that if a sequence is bounded and monotone, which follows from [Theorem] Brenz dequence has a monotone subsequence .
Bolza	"Every bounded sequence has a convergent subsequence." it must converge . it must converge . froof - we call he IN a performe subsequence . proof - we call he IN a performing if I m > n, ×n > ×n.
801.2A	"Brow bounded sequence has a convergent subsequence." It must converge \cdot Proof - we have established that if a sequence is bounded and monotone. Which follows from [Theorem] Brow sequence has a monotone subsequence \cdot Proof - we call he IN a perturbin if $\forall m > n$, $x_h \ge x_m$. we distinguish 2 cases.
Bolza	"Bvery bounded sequence has a convergent subsequence." if must converge. if must converge. if must converge. if not converge. if there are infinitely many peak points k ₁ , k ₂ , e NI.
Bolza	"Every bounded sequence has a convergent subsequence." if must converge. if there established that if a sequence is bounded and monotone. Which follows from it is a monotone subsequence. if there are infinitely, many pest points k ₁ , k ₂ , E N. then the subsequence is monotone decreasing.
80124	* Brow bounded sequence has a convergent sublequence." If must converge . Roof — we have established that if a sequence is bounded and monotone A which follows from Theorem Brow sequence has a monotone sublequence . Roof — we call n e NI a peak point if V m > n, Xn ≥ Xm. we distinguish 2 cases. (1) if there are infinitely many peak points k, k2, E N. then the subsequence (2) If there are finitely many peak points k, K2,, Kn E NI.
Bolza	"Every bounded sequence has a convergent subsequence." It must converge. Roof - we have established that if a sequence is bounded and monotone, which follows form [Theorem] Every sequence has a monotone subsequence. (Proof - we call he RN a perk point if V m > h, Xh ≥ Xm. we distinguish 2 coses. (1) If there are infinitely many perk points k, k2, & N. then the subsequence $\langle X k_n \rangle$ is monotone decreasing. (2) If there are finitely many perk points k, k2,, kn & R.
801.2A	** Brong bounded sequence has a sonvergent subsequence." Front - we have established that if a sequence is bounded and monotone _A . which follows from Itherapid Brong sequence has a monotone subsequence. Proof - we call he the a peak point if V m > n , ×n ≥ ×m. we distinguish 2 closes. (1) if there are infinitely many peak points k ₁ , k ₂ , ∈ tN. then the subsequence (× k ₁ , × k ₂ ,, K _N) ∈ tN. then the subsequence (× k ₁ , × k ₂ ,, K _N) ∈ tN. (2) If there are finitely many peak points k ₁ , k ₂ ,, K _N ∈ tN. then for any n > k _N , ∃ n' > n soft × n ³ × n ³ × n ³ . is no other one other other finitely many peak points k ₁ , k ₂ ,, K _N ∈ tN. then for any n > k _N , ∃ n' > n soft × n ³ × n ³ × n ³ .
Bolza	"Every bounded sequence has a convergent subsequence." It much converge . Rroof - we have established that if a sequence is bounded and monotone, which follows form [Theorem] Every sequence has a monotone subsequence . (Proof - we call he RN a peste point if V m > n, Xn ≥ Xm. we distinguish 2 cases . (1) If there are infinitely many peste points k, k2, & N. then the subsequence (2) If there are finitely many peste points k, k2, & N. (2) If there due finitely many peste points k, k2, & N.
Boll2A	** Brong bounded sequence has a convergent subsequence." Front - we have established that it a sequence is bounded and monotone _A . which follows from Itheread Brong sequence has a monotone subsequence. Proof - we call h e th a peak paint if V m > n, ×n ≥ ×m. we distinguish 2 cases. (1) if there are infinitely many peak points k ₁ , k ₂ , ∈ N. then the subsequence ⁽²⁾ ×k ₁ , × is monotone decreasing. (2) If there are finitely many peak points k ₁ , k ₂ ,, K _N ∈ th. then the subsequence ⁽²⁾ ×k ₂ , × is monotone decreasing. (2) If there are finitely many peak points k ₁ , k ₂ ,, k _N ∈ th. then for any n > k _N , ∃ n' > n set: ×n > ×n
Bolza	* Brong bounded sequence has a convergent subsequence." Front - we have established that if a sequence is bounded and monotone, which follows from Theorem Brong sequence has a monotone subsequence. Proof - we call he TN a peak print if V m > n, Xn ≥ Xm. We distinguish 2 closs. (1) if there are infinitely many peak points K1, K2, E N. then the subsequence (Xkm> is monotone decreasing. (2) if there are finitely many peak points K1, K2,, Kn E TN. then for any n>kn, B n'>n set. Xn'>Xn is we can always endormed an increasing, subsequence (Xjn> with jn>kn Vn gre.d. thus, if this subsequence is monotone, and since the sequence is bounded ⇒ the subsequence is bounded, then
801.2A	* Broug bounded sequence has a convergent subsequence." Front - we have established that if a sequence is bounded and monotone, which follows from Theorem Broug sequence has a monotone subsequence. Proof - we call he TN a peak print if V m > n, Xn ≥ Xm. we distinguish 2 closs. (1) if there are infinitely many peak points K ₁ , k ₂ , ∈ N. then the subsequence (Xk _N) is monotone decreasing. (2) if there are finitely many peak points K ₁ , k ₂ ,, K _N ∈ M. then the subsequence (Xk _N) is monotone decreasing. (2) if there are finitely many peak points K ₁ , k ₂ ,, K _N ∈ M. then for any n > k _N . I n' > n set. Xn'>Xn ∴ we can always construct an increasing subsequence (Xj _N > with jn > k _N ∀n / q.e.d. thus, if this subsequence is monotone, and since the sequence is bounded ⇒ the subsequence is bounded, then
Bolza	"Brong bounded sequence has a environgent subsequence." H much converge . Roof — we have established that if a sequence is bounded and monotone, which follows from. Theorem Brong sequence has a monotone subsequence . Proof — we call the RN a peak point if V m > n, Xh 2 × m. we distinguish 2 cases. (1) if there are infinitely many pask points K ₁ , K ₂ , ∈ N. then the subsequence $4 \times k_m > 8$ monotone decreasing. (2) If there are infinitely many pask points K ₁ , K ₂ , ∈ N. then the subsequence $4 \times k_m > 8$ monotone decreasing. (2) If there are finitely many pask points K ₁ , K ₂ ,, K ₁₁ ∈ M. then for any n > K _N , ∃ n ² > n art. ×n >×n the subsequence is monotone, and since the sequence is bounded ⇒ the subsequence is bounded, then the subsequence much converge h ged.
Bol 2 A	 * Brong bounded sequence has a convergent subsequence." It much converge . Roof - we have established that if a sequence is bounded and monotone, while pollows from Theory depress has a monotone subsequence . Proof - we call n & M a perturbative form of the new part of Y m > n , Xn ≥ Xm. we distinguish 2 closs. (1) If there are finitely many pase points k₁, k₂, & N. then the subsequence der subsequence \$\lambda K_1, k_2, & N. then the subsequence \$\lambda K_1, k_2, \lambda K_2, k_3, \lambda K_1, k_4, & K. (2) If there are finitely many pase points k₁, k₂, & N. then the subsequence \$\lambda K_1, k_2, \lambda K_1, k_2, & N. then the subsequence \$\lambda K_1, k_2, \lambda K_1, k_2, \lambda K_2, \lambda K_1, \lambda K_2, \lambda K_2, \lambda K_2, \lambda K_1, \lam
Bolza	 * Brog bounded sequence has a convergent addicpointe." If much converge . Roof - we have established that if a sequence is bounded and monotone, which is follows form. Theorem Brog sequence has a monotone subsequence . Proof - we call he his a performant if V m > n, Xn > Xn > Xm. we distinguish 2 cases. (1) if there are infinitely many past points k₁, k₂, & N. the end distinguish 2 cases. (2) If there are infinitely many past points k₁, k₂, & N. the end for any n > k_N, ∃ n² > n st. Xn > Xn there are for any n > k_N, ∃ n² > n st. Xn > Xn the subsequence is monotone, and since the sequence is bounded ⇒ the subsequence is bounded, then the subsequence is bounded and increasing subsequence is bounded, then the subsequence is monotone, and since the sequence that tout to 1 and -1. End the subsequence, and thus it contains convergent sequences that tout to 1 and -1. End the subsequence, and thus it contains convergent sequences that tout to 1 and -1. End the subsequence for 0 to 1 : i.e. ±, ±, ±, ±, ±, ±, ±, ±, ±, ±, ±, ±, ±,
Bol 2 A	 * Brow bounded sequence has a sonrengent subsequence." If most sonrenge . Ring - we have established that if a sequence is bounded and monotone, which follows from. Theorem Brow dequence has a monotone subsequence . Ring - we can not the subsequence has a monotone subsequence . Ring - we can not the subsequence has a monotone subsequence . Ring - we can not the subsequence if Y mis ng. Xn 3 Xm. we distriguish 2 cases. (1) If there are infinitely many pase points K₁, K₂, ∈ N1. then the subsequence of for any nong pase points K₁, K₂,, K_N ∈ M. (2) If there are infinitely many pase points K₁, K₂,, K_N ∈ M. (3) If there are forvietly many pase points K₁, K₂,, K_N ∈ M. (4) If there are showing ensembles and since the conversion descensing. (5) If there are always ensembles an increasing makeparate (X₁) > k₁ K₂,, K_N ∈ M. thus, if this subsequence is monotone, and since the ceptance is bounded of the subsequence is bounded, then the subsequence must conversige gende. (1) The show the subsequence is touristies enversions enversions that tout to 1 and 1. (1) The shi factions from 0 to 1 : i.e. \$1,\$,\$,\$,\$,\$,\$,\$,\$,\$,\$,\$,\$, (2) The shi provide conversion enversion enversion every r ∈ Q, with 0
Bolza	 "Brong bounded sequence his a servergent subsequence." Brong bounded sequence his a servergent a bounded and menotive, while follows from Theorem Brong sequence has a monotive subsequence. Port - we have established that if a sequence is bounded and menotive, while follows from Theorem Brong sequence has a monotive subsequence. Port - we call he Mi a forse print if Y M > N a X a X m. we distinguish 2 circs. (1) If there are infinitely many pase points K₁, K₂, ∈ N1. them the subsequence <i>XX</i> has > to monotive subsequence <i>XX</i> has > to monotive developmence <i>XX</i> has a set. (2) If there are finitely many pase points K₁, K₂,, K_N ∈ M. (3) If there are finitely many pase points K₁, K₂,, K_N ∈ M. (4) If there are finitely many pase points K₁, K₂,, K_N ∈ M. (5) If there are finitely many pase points K₁, K₂,, K_N ∈ M. (6) If there are finitely many pase points K₁, K₂,, K_N ∈ M. (7) If there are finitely many pase points K₁, K₂,, K_N ∈ M. (8) If there are finitely many pase points K₁, K₂,, K_N ∈ M. (9) If there are finitely many pase points K₁, K₂,, K_N ∈ M. (1) If the subsequence is monotive, and since the sequence of X₁ > K₁. (2) If there are finitely many pase points K₁, K₂,, K_N ∈ M. (3) If the subsequence is monotive, and since the sequence is bounded, then (4) If this subsequence, is and thus it contains convergent sequences that tend to 1 and 1. (1) The all foreions from 0 to 1 : i.e., \$, \$, \$, \$, \$, \$, \$, \$, \$, \$, \$, \$, \$,
Bol 2 A	 * Broy bounded sequence has a servergene subsequence." Broy depressed has a servergene subsequence." Broy depressed has a memotive subsequence. Port - we have established that if a sequence a beneficience. Port - we call a c B1 a peak point if Y M > 11, Xa 2 × m. we diving with a cites. (1) if there are influintely many pase points K1, K2, & NI. them the subsequence diving having pase points K1, K2, & NI. them the subsequence divintely many pase points K1, K2, & NI. them the subsequence divintely many pase points K1, K2, & NI. them the subsequence divintely many pase points K1, K2, & NI. them the subsequence divintely many pase points K1, K2, & NI. them the subsequence divintely many pase points K1, K2, & NI. them the subsequence divint for N > K1 & Non>Xn. the subsequence is monotone, and since the sequence is bounded, then the subsequence, must converge to the subsequence divint and the subsequence is bounded, then the subsequence, must converge to the convergent sequences that tanks 1 and -1. Take all factions from 0 to 1 : i.e. \$1, \$3, \$5, \$7, \$7, \$7, \$7, cally this space does not converge. the subsequence diving of the does not converge. when you can diving the most one diving the does not converge. when you and \$1, het does not converge. when you and \$1, het does not converge. when you are \$1, \$5, \$7, \$ the subsequence 1: \$5, \$7, \$1, \$2, \$3, \$4, \$1, \$4, \$2, \$1, \$1, \$1, \$1, \$2, \$1, \$1, \$1, \$2, \$1, \$1, \$1, \$2, \$1, \$1, \$1, \$1, \$1, \$1, \$1, \$1, \$1, \$1
Boll2A	 "Brow bounded sequence his a servicegent subsequence." Brow bounded sequence has a servicegent is bounded and manchine, which pollows for. Theorem I we have established that if a sequence is bounded and manchine, which pollows for. Theorem I have been a monotive subsequence. Port - we have established that if a sequence is bounded and manchine, which pollows for. Theorem I have a first a first poly and the Y m>n, Xe3×m. We defining with 2 cases. (1) If there are firstly many pasts points Ki, Ks, & NI. then the subsequence diversaring. (2) If there are firstly many pasts points Ki, Ks, & NI. then the subsequence on the subsequence on interessing management of the subsequence diversaring. (2) If there are firstly many pasts points Ki, Ks, & NI. then the subsequence on the subsequence on interessing management of the subsequence diversaring. (2) If there are firstly many pasts points Ki, Ka,, Kw & IN. the subsequence is monotone, and diver the sequence diversaring. (2) If there are firstly not not interessing management diverse is bounded, then the subsequence must convergent sequences that tout to 1 and -1. (3) If there are firstly a convergent sequences that tout to 1 and -1. (4) The is a bounded togenera, and thus it contains convergent sequences that tout to 1 and -1. (4) The is a bounded tog and 1, but does not convergent sequences that tout to 1 and -1. (4) The is bounded by 0 and 1, but does not convergent sequences that tout to 1 and -1. (5) is bounded by 0 and 1, but does not convergent sequences that tout to 1 and -1. (5) is bounded by 0 and 1, but does not convergent sequences that tout to 1 and -1. (5) is bounded by 0 and 1, but does not convergent sequences that not just that (5) is bounded by 0 and 1, but does not convergent sequences that not just that
	 * Broy bounded sequence has a servergene subsequence." Brody - we have established that if a sequence is bounded and wandome, which pollows from Floore- we have established that if a sequence subsequence. Porf - we call a c R1 a peek point if V M > N y Xa > Xa > Xa. We diving with a color of the peek point if V M > N y Xa > Xa > Xa. We diving with a color of the peek point if V M > N y Xa > Xa > Xa. We diving with a color of the peek point if V M > N y Xa > Xa > Xa. We diving with a color of the peek point if V M > N y Xa > Xa > Xa. We diving with a color of the peek point if V M > N y Xa > Xa > Xa. We diving with a color of the peek point if V M > N y Xa > Xa > Xa. We diving with a color of the peek point if V M > N y Xa > Xa > Xa. We diving with a color of the peek point if V M > N y Xa > Xa > Xa. We diving with y > Xa > Xa > Xa. We diving with y > Xa > Xa > Xa. We diving with y > Xa > Xa > Xa. We diving with y > Xa > Xa > Xa. We diving with y > Xa > Xa > Xa. We diving with y > Xa > Xa > Xa. We diving with y > Xa > Xa > Xa. We diving with y > Xa > Xa > Xa. We diving with y > Xa > Xa. We d

Roof of proposition - First assume a, b>0; then 3 q G N s.t. q> 5-a (by the winnedesn property). <> \frac{1}{9} < b-a. Let p = min {n ∈ N } \$ a}. Cagoin by the tradinedes purperty, we choose n). the set is non-empty, ... by the well-ordered principle, min Eset) exists and p exists. thus {z>a, and since { is the smallest number greater than a, ? < < a > $f_q = \frac{p-1}{q} + \frac{1}{q} < a + (b-a) = b.$ and letting r= 2, acr<b/ q.e.d. Proof of dain - we have stready found subsequences -> 0 and 1, so we assume l & (0,1). diso, every rational number in (0,1) occurs in XX17 infinitely many times (non-simplified versions) . for invitance, $\frac{1}{2} = \frac{2}{7} = \frac{2}{7} = \cdots$ and $\frac{2}{7} = \frac{2K}{9k} \forall k \in \mathbb{N}$. . we can find a subsequence <X jn> s.t. Xjn & (1-tn, 1+tn). from the proposition, I re Q st. 1-th<r< 1+th, and roccurs infinitely many times in the sequence. Also, since it is sometimes difficult to compute the limit of a sequence, we seek a notion of convergence without mentioning the limit. convergence idea successive terms in the sequence get closer together. EX Take Xn = tr. thisngle inequality For N>O, if N>N and M>N, then [Xn-Xm] = [th-tn] can be made arbitrarily small as N increases On the other hand, take $\chi_n = (-1)^n$. inhen [X2n - X2n-1] = [1-1-1] = 2, which does not get smill for large n? Question: Is it enough to recognise that $|X_{NTI} - X_N| \rightarrow 0$ as $n \rightarrow \infty$? NO. Take $X_n = \overline{J_n}$. Then $(\overline{Y_n})$ diverges to too, but $|X_{n+1} - \overline{Y_n}| = |\overline{J_{n+1}} - \overline{J_n}| = |\overline{(\overline{y_{n+1}} - \overline{y_n})} \cdot \overline{\overline{J_{n+1}} + \overline{y_n}}| = \frac{(n+1)-n}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \longrightarrow 0 \xrightarrow{a} n \longrightarrow \infty.$ [X] Hence, it is not true that [xn-xm] is always small when both m and n are large; only small when successive. CAUCHY SEQUENCES . A sequence LANT is colled a couchy sequence if for every E>0, Definition $\exists N>D$ st. $m, n > N \Rightarrow |X_n - X_m| < \epsilon$. EX L'hit is cauchy. (Xn) is convergent => (Xn) is concheg. Roposition Broof - given 200, ∃ N>O sit. N>N ⇒ |Xn-lim Xn | < 2. when $i \beta m, n > N$, $|X_n - X_m| = |X_n - \lim_{n \to \infty} X_n + \lim_{n \to \infty} X_n - X_m| \leq |X_n - \lim_{n \to \infty} X_n| + |X_m - \lim_{n \to \infty} X_n| < \frac{\pi}{2} + \frac{\pi}{2} = \sum_{j \in \mathbb{Z}} q.e.d.$ COMPLETENESS OF IR (doo the "general principle of convergence") Theorem A sequence converges (=> it is Guiling. Roof - we have slressly proven the forward sistement, we hence only need to show that Country \Rightarrow convergence. lemms: a country sequence is bounded. Boof - choose ≥=1, then if <×n> is clucky, = N>0 st. m, n>N = 1×n-×m1<1. Then in porticular, $|X_N - X_{NYT}| < 1 \forall N > N \Rightarrow |X_N - X_{NYT}| + |X_N| \le |X_N - X_{NYT}| = |X_N| \le |X_N - X_{NYT}| + |X_{NYT}|$ hence, $|X_N| < 1 + |X_{NYT}| \Rightarrow \forall N$, $|X_N| \le \max \{ |X_1|, |X_2|, \dots, |X_N|, 1 + |X_{NYTT}| \} \Rightarrow bounded/preset$ Assume <Xn> is cauchy, then by the lemma states that <Xn> is bounded, and by the Boljano-Weiershass theorem, it has a convergent subsequence subsequence: <×mj7, ×n; →leR: given E>0, ∃R>0 st. J>R > |×n; -l< €; and since sequence is Canchy, ∃N>0, m, n>N > [×n-×m]< €.

caples.	Take n>N and k>R large enough sit. NK>N also, then	
	$ x_n-l = x_n-x_{n_k}+x_{n_k}-l \le x_n-x_{n_k} + x_{n_k}-l < \frac{n_k}{2} + \frac{n_k}{2} = \varepsilon.$	
	(Least subscripts) & see are press of supported by support of press and	3 November 2011
an-14-10	Adding real numbers	Dr. Chris WENDL. CLA
-15-15- 1-15-15-	what are the real numbers?	
	ARCHITECTURE OF R.	
	R is (1) unlimited/whending decimal expansions - but then what is x + y?	
	(2) "points on a live" (R but how thick is a "point"?	
	(3) thus for in the course, we have assumed that R is a set containing Q, and has 2 declarations "t" widdition and "	" (multiplication).
	which satisfy axiomatic properties (A1) to (A9). [of a field]. However, (A1)-(A9) also can define Q	
	(N) (X+1)+5= X+ (1+5) AX, (1+5 ek.	
	(A2) BOER ST. OTKEX VKER	
	(AS) VXES 3-XES site Xt(-X)=0 -> Allows us to define subtraction.	
	(44) Xty = ytx VX,y GR.	
	(AB) $\times (y_{\mathcal{B}}) = (y_{\mathcal{A}})^2 = \langle x, y \rangle = G \mathbb{R}^2$. (Another product of the set o	
	(48) xy = yx	
	(A9) x(y+2) = xy+ y≥ ∀x,y,z∈ℝ	
	so we indude two more options	
rolly in	(01) there exists an ordering relation ">" st. Yx & R, either x>0, x=0 or x<0.	
	(02) Yx, y e R, if x, y>0 then xty>0 and xy>0.	
	from this, we have definition x>y \Leftrightarrow x-y>0.	
	diðim — transitivity: x>y ind y>z ⇒ x>z Proof-	
	we assume x-y70 and y-270, then x-y+y-270;	> x>=/, q.e.d.
	but (01) -(02) are also shared by. R; so we did the condimusion property. (C)	
	(c). THE CONTINUUM PROPERTY:	
	every non-empty subset of R bounded from obarelbelow has a supremum/infimum respectively.	
	> bounded monotone sequences converge > bounded sequences have convergent subsequences (B	oljano-Weierstrass
	⇒ Couchy sequences converge.	
	1 to the the termination of terminatio of termination of termination of terminati	
	Question: Does dury set having all these properties actually exist?	
	have Recall: Meshaved that if R exists, then Q are "deuce" in R. (i.e. every XER can be approximated arbitrarily well by natural numbers	,
	i.e. tx eR, 3s sequence (Xn) st. Xn G Q. In and Xn > X.	
	sides: we define R to be convergent sequences of Q.	
	but to do this nithant assuming existence of R, we cannot susted limit l & R, so we use pational Cauchy sepa	ences:
	LXN7, Xn EQ s.t. Y EZO with EEQ, 3N>0, NEQ s.t. n, m>N ⇒ [Xn-Xm] <e.< td=""><td></td></e.<>	
Salata sa	[Pefinition] R= { rational Country sequences }	
	For (XN>, Kyn> ER, we define (XN>+ Kyn> = <xn+yn> and <xn7.kyn> = <xn4yn>.</xn4yn></xn7.kyn></xn+yn>	
	we identify each $r \in \mathbb{Q}$, with the contribut sequence $\lambda_n = r$.	
	Define <xn> >0 iff = N>0 and S>0, SEQ st. XN> S & N>N.</xn>	
	Question: Does our definition of <4x7+ (yo> and <xx7- (yn=""> make some?</xx7->	
	Lemma - if (xin); (yin) are cauchy, then so are (xin Tyn) and (xin yin).	
		Jn-ym < E, n,m

now if MIN > max {N, N'}, [(Xn+yn)-(Xm+ym)] = [(Xn-Xm) + (yn-ym)] ≤ [Xn-Xm] + [yn-ym] <28, which is arbitrarily small by choosing & small enough > < Xn + Yn 7 is cauchy. we identify 2 sequences (Xn> and Kyn> if Xn-yn -> 0 -> R (equivalence classes!). 14 November 2011 Dr. Chris WENDL aut. INFINITE SERIES. (i.e. sums). series: Zan or Zan. Ex Tequitional the partial surve of a series $\sum_{n=1}^{N} a_n$ are non numbers $S_N = \sum_{n=1}^{N} a_n$. These form & sequence \$1, 52, 53,... We write I an = I and say that the series converges to I (=> SN-> I as I->00. of Stan converges, then Popolition (i) an -> 0 (as a sequence) (ii) Zan -> 0 & N-> ... (iii) For any c & R, Zean = e San. (iv) if Lon 2150 converges, then Z (an+bn) = Zan + Lon. Pool of projection (i) - SN = 2 an = SN - SN-1 = an ; then l-l=0, g.e.d. (iii) - if $a_1 = l$, then $\sum_{n < n} c_n = \lim_{N \to \infty} \sum_{n = 1}^{N} c_n (finite sum) = \lim_{n \to \infty} \sum_{n = 1}^{N} a_n (distribution low for finite series).$ = c lim 2 an = c lim 2 an = c Zan y gierd. (geometric series) Given $x \in \mathbb{R}$, what is $\int_{ab}^{bas} X^{7} = 1t \times t \times x^{2} + x^{3} t \cdots ?$ x"→0 ⇔ 1x1<1 ⇒ ∑x" can converge ⇔ 1x1<1 (otherwise it divarges). assume Mal, then SN = 1+ x + x2 + ... + xN $S_{N+1} = (+x+x^2 + \cdots + x^N + x^{N+1} = S_N + x^{N+1} = (+ x S_N).$ $\Rightarrow 1-x^{N+1} = s_N (1-x) \Rightarrow S_N = \frac{1-x^{N+1}}{1-x} \Rightarrow \frac{1}{1-x} \Rightarrow N \Rightarrow Orp.$ 國 (felescoping series). n= -1(n+1) = 去+ + + + = + = + ... think: use partial practions - - that = - this. then SN = 高市(m) = 「(け-前) = (1-も) + (も-ち) + (は-ち) + …+ (ガーカ) + (カーカ) = 1-カー The Taylor series of an infinitely differentiable function flow at x=0 is $f(x) \stackrel{?}{=} \sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} x^n \quad e.g. \text{ for } f(x) = \frac{1}{1-x} \Rightarrow f^{(n)}(x) = n! \Rightarrow \frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$ this is true, but only when IXI<1 ; othermise it druggs diverges. Ruestion: Given & series 2 an, does it converge or diverge? coffer cannot be computed). Proposition - if an 20 Mn, then Fran converges (=> partial scans are bounded above (since (Sin) is monotone increasing). ie. 3H ST. VNEW, R an SH. Proof - (Sh> is monotone increasing, ... converges (>> bounded there ; q.e.d. fimpt? Sometimes we cannot compute limit of series - e.g. Riemann-Zeta function. Test is \$ no for p>1, pe Q. {(p) -> converges. (ii) $\Sigma \frac{1}{h}$ $\xi(l)$ \longrightarrow diverges! (note: just because $a_n \rightarrow 0$, it does not guarantee Ξa_n converges!) only converse is true. relatedly, J' XP dx is finite when p>1, but infinite when p=1.

1101-016.

1 0 < p < 1, then I be diverges. Ex $Roof - n^{p} \leq n \Rightarrow \frac{1}{n^{p}} \geq \frac{1}{n} \Rightarrow \sum_{n=1}^{N} \frac{1}{n^{p}} \geq \sum_{n=1}^{N} \frac{1}{n}$ by constradiction: if Zhit converged, its partial sums would be bounded above => partial sums of Sith also bounded above >> Zh converges (contradiction!) Thus, Zh diverges. Theorem COMPARISON TEST. of $0 \leq a_n \leq b_n$ in and $\sum_{n} b_n$ converges; then $\sum_{n} a_n$ also converges. Proof - since is in proof that In the diverges. Does \$ 13-2 converge? (We expect so, since \$ 13 converges). EA (Remarks) we cannot directly spply the comparison test as stated above, because. (i) h=1 term is negative (ii) $\frac{1}{h^2-2} \leq \frac{1}{h^2}$ is not true; but $\frac{1}{2}$ at least $\frac{1}{h^2-2} \leq \frac{2}{h^2}$ where $n \geq 2$ (: $\frac{2}{2h^2-4} \leq \frac{2}{h^2} \Rightarrow h^2-4 \geqslant 0$). lemma! - Zan convergeo (n=N an also converges. i.e. removing finitely many terms does not affect convergence, but the sum may be different. Proof of lemma - dr_0 , $\forall n \geqslant 2$, $0 \le \frac{1}{n^2-2} \le \frac{2}{n^2}$; $drad \lesssim \frac{2}{n^2}$; $drad \lesssim \frac{2}{n^2}$; $draverges \Rightarrow by comparison text, <math>\sum_{n=2}^{\infty} \frac{1}{n^2-2}$ converges $\Rightarrow \sum_{n=1}^{\infty} \frac{1}{n^2-2}$ converges, g.e.d. what if there are sho negative terms ? ³/₁₌₀ (-1)¹¹ = 1-1+1-1+... has partial scenes 1,0, 1,0, 1,0,... E due bounded but not monotone => not convergent. Definition A series Zan converges absolutely (=> Zan converges; (=> partial sums in zan are bounded above. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \text{ converges absolutely, since } \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} \text{ converges.}$ ∑an converges absolutely ⇒ ∑an converges. Theorem Proof - write SN = = 1 an. say N > M, both are brige, then ISN - Sm = | = | = an an | & = = menter lan | chrisingle inequalitys. if MIN are brige; since Zan converges absolutely, nEntrillant converges. i.e. ISN-SMI<E. => <Sn> is a conchy sequence, :. it converges , q.e.d. 17 November 2011. Dr chris WENDL. recall: $\sum_{n=1}^{N} a_n$ has partial sums $S_N = \sum_{n=1}^{N} a_n$; and $\sum_{n=1}^{\infty} a_n = l \iff S_N \rightarrow l$ as $N \rightarrow \infty$. (convergent series). CIA. special case: an 20 Vn => (Sn> is monotone increasing: : converges iff bold above : either SN-3/20 for some 1; or diverges to the if SN -> + so; we write Snan = + Do. diverges Prove that $\vec{\xi}(-1)_A$ i.e. $\vec{\xi}_1 \cdot \vec{\eta} = \infty$. (we need to show partial sums are unbounded). (we need to show partial sums are unbounded). Proof — For any NEIN, consider the 2^{N-1h} partial sum , $S_{2N} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2N} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{3}$ Ex = 1+N(=)= 1+ 1/2. 20 N -> 00, 2 -> 00 and SZN -> 00 => <SZN> is not bounded => <Sn> is not bounded. St diverges, and since to>0 V nerN; Str=too. 1101-017.

daim. If p>1, Ship<00

Proof - we need to show portial sums are bounded. since <SN? is increasing, if we find a subsequence that is bounded above, it suffices =>

$$\begin{aligned} \text{under sequence sho is bounded showe} \\ \text{Consider } S_{2^{N}-1} &= 1 + \frac{1}{2^{p}} + \frac{1}{3^{p}} + \cdots + \frac{1}{(2^{N}-1)^{p}} &= 1 + (\frac{1}{2^{p}} + \frac{1}{3^{p}}) + (\frac{1}{4^{p}} + \frac{1}{5^{p}} + \frac{1}{6^{p}} + \frac{1}{4^{p}}) + \cdots + (\frac{1}{(2^{N}-1)^{p}}) \\ \text{if } p>1, \quad m>n \implies m^{p} > n^{p} \implies \frac{1}{m^{p}} < \frac{1}{m^{p}} \\ \text{thus}_{1} \quad S_{2^{N}-1} < 1 + 2(\frac{1}{2^{p}}) + 4(\frac{1}{4^{p}}) + 8(\frac{1}{6^{p}}) + \cdots + 2^{N-1}(\frac{1}{(2^{N}+1)^{p}}) \\ &= 1 + \frac{1}{2^{p-1}} + \frac{1}{4^{p-1}} + \cdots + \frac{1}{(2^{N-1})^{p-1}} \\ &= \sum_{n=0}^{N-1} \frac{1}{(2^{p-1})^{n}} = \frac{1 - (\frac{1}{2^{p-1}})^{N}}{1 - \frac{1}{2^{p-1}}} \xrightarrow{n \to \infty} n \to \infty . \end{aligned}$$

.. bounded > S2N-1 is also bounded above, and CND is bounded above => convergence.

general case: may not always be the case where $a_n \ge 0$, so $\langle S_N \rangle$ may not be monotone \therefore not enough to show that $\langle S_N \rangle$ is bounded. for instance, $\sum_{n=1}^{\infty} (-1)^{n+1} = 1 - 1 + 1 - 1 + \cdots$ has partial sums 1, 0, 1, 0, 1, 0. (bounded but divergent).

 $a = \frac{1}{2} \frac{1}{2}$

recall: 5 an is absolutely convergent if 5 lan < as (converges).

Editivities. If Zan converges but not absolutely, we say that it is conditionally convergent.

ALTERNATING SERIES TEST.

Theorem Assume (and is a monotone decreding sequence with $a_n \ge 0$ and $a_n \Rightarrow 0$. Then $\sum_{n} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \cdots + converges.$	
stetch of proof - consider the portial sums SN = N=1 (-1) Nt an , and subsequences <s2n>, <s2n+1>-</s2n+1></s2n>	
S_{N} S_{1} S_{3} S_{5} S_{7} S_{4} S_{10} S_{10} S_{10} N	
<52443 > is decreasing but bounded below by S2; <5247 is increasing but bounded above by	s ₁ .
⇒ both converge, and San+1→L and San → l.	
note that $a_n \rightarrow 0$ is $n \rightarrow \infty$, so $l = l$.	21 Note: mbeer 2 011 Dr. chuis WENDL CIET:
convergence tests for Zan	,
convergence tosts for 王an. (1) if an -1+20, 东an diverges	
(1) if an -too, En an diverges	
10 if an +>o, fran diverges	(111) Riemonum-2013 function . [Hough me counts compute its that yo].
 (1) If an -1+0, \$\overline{n}\$ an diverges (2) if an >0 Vn (2) sometric series \$\overline{x} x^n\$ (3) comparison text. (3') limit comparison text. (4) ratio text 	cilii) Rieucoun-sets function. [Huongh me counts compute Hs lituit yet].
 (1) If an -1/20, \$\overline{A}\$ an diverges (2) if an 30 Vn (2) comparison text. (3) comparison text. (4) ratio text. (5) limit comparison test. 	(111) Riewown-Zets function. [Housen we cannot compute its thingt yet].
 (1) If an -1/20, \$\frac{1}{h}\$ an diverges. (2) if an >0 Un (2) if an >0 Un (3) comparison text. (4) limit comparison text. (5) integral text. (6) ratio text. (7) integral text! (8) nort text. 	Uii) Riemonn-zets function. [Hough we counter complete is that yet].
 (1) If an -/> 0, \$\frac{1}{h}\$ an diverges. (2) if an >0 Vn (3) comparison text. (3) timit comparison test. (3) timit comparison test. (4) sometric series \$\frac{1}{h}\$ xⁿ (11) telescoping series. (11) telescoping series. (11) telescoping series. (11) telescoping series. (12) test (13) test (14) nort test. (14) test integral test! (15) tights of terms alternate, e.g. \$\frac{1}{h}\$ (-1)ⁿ an for an >0 : alternating series test. 	(111) Rieussun-Jets function. [Huongh me countr compute Hs tituit yer].
 (1) If an -1/20, \$\frac{1}{h}\$ an diverges. (2) if an >0 Un (3) comparison text. (3) himit comparison text. (3) himit comparison text. (3) nort text. (4) interval text. (5) himit comparison for an >0: sitemating series text. (4) if none of the shore split, we we property of text (2), 	Ulii) Rieudun-zets function. [Hough we dange compare is that yet].
 (1) If an -/>o, \$\frac{1}{h}\$ an diverges. (2) if an >0 Un (3) comparison text. (3) himit campanison test. (3) nort test. (3) highs of terms sittemste, e.g. \$\frac{1}{h}\$ (-1)^t an for an >0: sittemsting series test. 	ciii) Rieuwan-zets function. [Huongh me countor compute is tiruit yor].

Recall: for a geometric series, So X" converges \Leftrightarrow [X]<1. ided - consider Ean that behave like a geometric series as N+200, then (i) if $a_n = x^n$, then $x = \frac{a_n + 1}{a_n}$ (ii) x = Nan. Etheorem RATIO TEST : if an >0 Vn, suppose anti al & IR is h->00; then . if 1<1, the series converges · if 1>1, the series diverges (i.e. Enen= on). Proof - since $\frac{a_{n+1}}{a_n} \rightarrow \ell$, for any ENO 3ND St. N>N $\Rightarrow \left[\frac{a_{n+1}}{a_n} - \ell\right] < \epsilon \iff \ell - \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon \iff \ell - \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon \iff \ell - \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon \iff \ell - \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon \iff \ell - \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon \iff \ell - \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon \iff \ell - \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon \iff \ell - \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon \iff \ell - \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon < \frac{a_{n+1}}{a_n} < \ell < \frac{a_{n+1}}{a_n} < \ell + \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon < \frac{a_{n+1}}{a_n} < \ell + \epsilon < \frac{a_{n+1}}{a_n} < \ell < \frac{a_{n+1}}{a$ $a_n(l-\varepsilon) < a_{n+1} < (l+\varepsilon)a_n$ then if N'>N and KG IN, then anol-Elk < another < (1+E)kan if 1<1, choose 2>0 smill enough sit. It E<1, then $\sum_{n=N}^{\infty} a_n = \sum_{k=0}^{\infty} a_{N'+k} < \sum_{k=0}^{\infty} (l+\epsilon)^k a_{N'} = a_{N'} \frac{1}{(-(l+\epsilon)} < \alpha_{N'}$... by companison with a convergent geometric series n=NIAn < 10 = 5 = an converges 1 q.e.d. now suppose l>1, choose $\varepsilon>0$ small enough site l-z>1, then $\sum_{n=N}^{\infty} a_n > \sum_{n=0}^{\infty} (l-z)^k a_{N'} = + \varepsilon_0$. ROUT TEST: Theorem if an >0 Vn; suppose "Jan -> l & R; then · lui > San converges · 1>1 => Zan diverges. Proof - compare with a geometric series for large n (as in ratio text). . . · · . in Mewel Applications - Power Series. $\sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^2}{3!} + \cdots$ (remark, to be proved (ster: this yields et). Tex. Proof of convergence - write series $\int_{1}^{\infty} a_n$ with $a_n = \frac{H^n}{h!}$ then defining $b_n = \frac{|X|^n}{n!}$, we try the ratio text: $b_n = |X| \cdot \frac{n!}{(n+1)!} = \frac{|X|}{n+1} \rightarrow 0 < 1$ as $n \rightarrow \infty$. . voltio test > = [2n] < 00 > desolute convergence > convergence, q.e.d. 欧 show x- 学+ 答- 辈 +... converge. (remark: this is arctan x) When does it converges absolutely? note that we have $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \times 2n-1 = converges absolutely \iff \sum_{n=1}^{\infty} \frac{1 \times 1^{2n-1}}{2n-1} < \infty$. write $|a_n| = \frac{|x|^{2n-1}}{2n-1}$, $\frac{|a_ny|}{|a_n|} = b |^2 \frac{2n-1}{2n+1} \rightarrow k|^2$ by the ratio test, 1x1<1 > series connerges absolutely, and 1x1>1 > series diverges. for X=土1, the series becomes 土 (1-方 + 吉 - 章 +...), onverges by the attensiting series test. it will converge absolutely (=> 1+ま+ち+··· converges; but it diverges: 1+ち+ち > 気+年+ち= 気(1+を+ち) = divergence. thus, for x= ±1, the series converges conditionally !! REAPPRANGEMENTS. we have seen that (i) 1-++=++ -++ converges conditionally, and (ii) 1-++=-++++++ converges absolutely. consider subsequences of the terms (and defined as (pn) = will terms in (and site and a) (mn) = will terms in (and site and a) back to (i), we know that it converges, and define 1-五十方一本 +··· = S. 》 (1-五)+(言-右)+(言-亡)+··· = S. adding them: (1-支+支)+(ち-キーキ)+(ち-さ+ち)+(キーちーを)+...= 喜ら (iii) and hen(c, 1+ (字-字) + 字 + (字-字) +...= 毫S, then we notice that this is series (i), but only with its torma rearranged. (i): P1+m1+P2+m2+P3+m3+...=5 (iii): (P1+P2)-m1+(P2+P4)-m2+...= 3. ⇒ order sometimes matters. 1101-019.

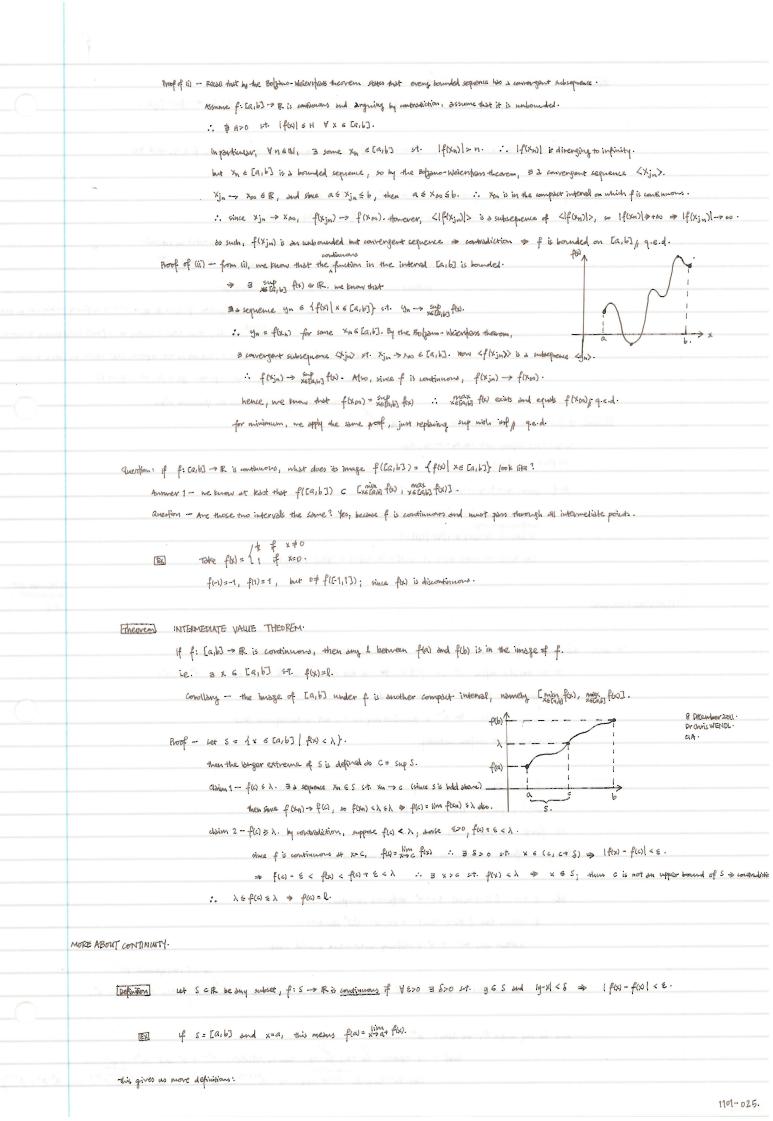
Ethermonal Suppose Zan converges conditionally. Then, YI & IR, the terms of Zan can be reduced sit. they sum to l.	
· ·	
i.e. different order => different ceries (: partial sums change).	
sketch of proof - we assume & an converges but \$ lan = +00.	
iemma: In an is conditionally convergent a Ipn=+00, and Imn=-00.	
Proof- $\sum_{n=1}^{N} a_n$ and $A_n = \sum_{n=1}^{N} a_n $; when do $N \to \infty$, SN converges but is $\sum_{n=1}^{N} a_n = \sum_{n=1}^{N} a_n $; when do $N \to \infty$, SN converges but is $\sum_{n=1}^{N} a_n = \sum_{n=1}^{N} a_n $	An diverges .
$SN = \frac{1}{h_{\pm 1}} P_n - \frac{1}{h_{\pm 1}} m_n \text{for some } J, K \in IN ; \text{whereas } A_N = \frac{1}{h_{\pm 1}} n + \frac{1}{h_{\pm 1}} $	n _n [.
(an example (3.1) supported content and the second	
so do N→000, P-M is bounded but P+M is unbounded. ⇒ P,M are not both be	ounded .
but-for P-M is bounded, then both P and M must both be unbounded.	
P.M are partial sums of I.P.M and I.M.n respectively; unbounded => diverge	nce ji q.e.d.
(remarks the lemma would not hold if Zan is absolutely convergent).	
A recipe for a reardening of I an convergent to le R:	
sleps (1) add positive terms write sum is l kcan do duis because Iph diverges - lemma)	
(2) add negative tomus until sum al. (can do this because \$ mn diverges to -00).	
(3) continue iterating steps (1) and (2) on nepest => we will obtain partial sums assillating around l	
as terms are used up, smaller terms remain to be applied, as In an converges => an -> outs	n-> 00 11 9. c.d.
agazana na 22 a	
Beencens if I an convergen absolutely, then all reordenings of the series have the same sum.	
$e.z$. $\sum_{n=0}^{\infty} \frac{(-1)^n}{n^2}$. The product of the product o	
	24 Wovember 20
$Refine test: we show that x - \frac{12}{3} + \frac{12}{5} + \frac{12}{7} + \dots = \sum_{n=1}^{N} \frac{(-1)^{n-1}}{2n-1} \times 2^{n-1}$ this convertes absolutely if $\sum_{n=1}^{\infty} a_n < \infty$	Dr chuis WENDL UA
$\frac{ \Delta_{net} }{ \Delta_{net} } = \mathbf{k} ^2 \frac{2n-t}{2n+t} \longrightarrow \mathbf{k} ^2 \text{ so } n \to \infty.$	
· if hild, then Stan < an a source for standularly.	
if 15/21, then Z land = 100; but unded Z an converge conditionally? no	
recall: if $\frac{ a_{n+1} }{ a_n } \rightarrow l > l \Rightarrow me can pide $20 st. l - \epsilon > l and find N > 0 site n > N \Rightarrow \frac{a_{n+1}}{ a_n } - \epsilon < \epsilon$	
i.e. $l - \varepsilon < \frac{ a_{n+1} }{ a_n } < l + \varepsilon;$ and thus $\frac{ a_{n+1} }{ a_n } > l - \varepsilon > 1 \Rightarrow a_{n+1} > (l - \varepsilon) a_n $	
now if $N'>N$; KGIN we have $ a_{N'+k'} > (1-\varepsilon) a_{N'+k-1} > \cdots > (1-\varepsilon)^{k} a_{N'} $	
:. to k-+100, [ani-10] -> 00, :. [an]-200 (contex does yets) = an -/30 (contex divergen).	
energia and a table have generate an an a table and	
Theorem RATIO TEST (POUR 2).	
given duy series \$ an (no need to assume an >0), if tant ->1, then	
is if l<1 => = an converges absolutely.	
(ii) if l>1 ⇒ ≦an diverges.	
া দেৱন্ত ক্ৰেন্সিয়	
UNCTIONS.	
given two sets A, B C R, & functions from A to B (notation: "f: A ~> B") assigns to each × GA a unique element for GB.	
then A is the density of the function" and I is the "tatglet of F" (not the varge! vange & tanget : the varge of F is the set F(A)	={f(x)&B{x&A}
recold from MATH201-	
f:A -> B is injective if whenever x, y < A s.t. x + y, f(x) + f(y)	
f: And is surjective if f(A) = B.	
For a subset $C \in A$, the image of C under F is $f(C) = \{f(c) \in B \mid x \in C\}$.	
tor 2 subset C = 11, the image of C mater of 15 fills = 1 for = 1 for = 0 [x = 0]	
THE THE TAX AND A TAX AND A TAX AND A TAXABLE	

1101-020

EN Let f: R > R, X +> x2 then domain is R, range is Right ; not injective since V x = o, f(x) = f(-x) but x = -x. not surjective since Rt o for = fur) + R. f: (-00,0] -> [0,00) : x +>x2 Ex this is both injective and surjective. Reportion - Any bijedive function f: A >> B has a unique inverse f-1: B -> A st. fof: A > A: X >> X and fof-1: B >> B: X >> X (or y +> y). *(A) (B) 3 surjective: y is in image of f(A) injective: "for each y, x is unique... En f: (-00,0]→[0,00): × +> ×², then f: [0,01)→ (-00,0]: y+> -Ty Definition Assume A, B C R. Then a function f. A => B is bounded above/below if its wange is bounded above/below. f:A→B is (prictly) monotone increasing if x,y & A, x>y ⇒ f(x) > f(y) (strictly: f(x)>f(y)) (shirtly) monotone decreasing if x, y & A, x>y => ftx) ≤ fty) (shirtly: ftx) < fty)). EXI We know that a function f: IN -> IR is a sequence : < f(n)>. If g: N → N is strictly increasing, then fog: N → R is a subsequence <f(gon)>. 28 November 2011 By clinis WENDL LIMITS AND CONTINUITY. $f(x) = \begin{cases} 2x & -f & x < 1, \\ 1 & if & x = 1, \\ q - x & if & x > 1. \end{cases}$ EV. For this piece wise function, $-f_{(1)} = 1$, $\lim_{x \to 1^-} f(x) = 2 \quad \text{or} \quad \lim_{x \to 1^-} f(x) = 2$ x-> 1 fu)=3 or x >1 fu)=3. (Refinition) Firen & function f: (a, b) -> IR and & number leR, we say xing fw = l if given smy €>0, 3 \$>0 sit. a<x<a+8 ⇒ 1 fb0-l1 < E. (or equivalently, l- E < flx) < l+ E.) (equivalently: if ix e (a, at 8) -> fue e (l-E, l+E)) We say that xlimb- flo = l if given any Ero, = S >0 st. b-S<x<b => 1f(x)-l<E (equivalently: if x ∈ (b-S, b) ⇒ fix) ∈ (1-E, P+E)). If f is defined on (a, b) except possibly at some point c E (a, b), then f is defined at least on the intervals (a, c) and (a, b). we say that time f(x) = l if time f(x) = lime f(x) = l. closes not depend on value of f(x), even if it exists). (equivalently, given €>0, 3 8 s.t. x € (c-8, c+8) → f(x) € (1-2, 1+2); or if 1x-c1<8 ⇒ [fux)-l<€). and x+c. For instance, using an applet, we propose that $\frac{1}{x \to 0} (1 - x^2 \cos{(\frac{1}{x})}) = 1$. Returning to the earlier example, Ex could we doin x-31 - P(x) = 2. Roof - Given €>0, we must show that = 5>0 st. × € (1-8,1) → f(x) € (2-8, 2+8) → 2-8< f(x) < 2+8 → For x <1 2-E< 2x < 2+E ➡ 1- 墨 e x < 1+ 毫 1, given €>0, it suffices to choose S= 玺, Ind hence

 $x \in (1-\delta,1) \Rightarrow x \in (1-\frac{\varepsilon}{2},1) \Rightarrow f(x) \in (2-\varepsilon,2) \in (2-\varepsilon,2t\varepsilon)_{j} \text{ q.e.d.}$

1101 - 021 -


Roof for time for)= 3. Given 270, we must find \$70 st. x ∈ (1, H 8) ⇒ f(x) ∈ (3-E, 3+E). now if x>1; then fly)=4-x io 3-2<fly)<3+2 ⇒ -1-2<-x<-1+2 ⇒ .1+2>x>1-2 domining x>1, 1<x<1+2. set: S=En g.e.d. (i.e. if S= €, x ∈ (1, 1+ 8) → f(x) ∈. (3- €, 3+ €) , > pmay not include all $\lim_{x\to c} f(x) = l \iff -for every sequence < you with you in the <u>domain of f</u>(Y is and x_n <math>\rightarrow c$, we have $f(x_n) \rightarrow l$. Theorem him f(x)= f(x)= f(x)= f(x) = f tion + fix) = l (=> the above statement is the Y sequences (Xn) also satisfying Xn < c Yn. consider the function $-f(x) = \begin{cases} x-1 & if x \neq a \\ 0 & if x = 2 \end{cases}$ => flx) is not continuous at x=2. Refinition A function of defined on (a,b) is continuous at a point c e (a,b) if f(c) = x - sc f(x). we also deduce that given 270, 3570 set. In-cl<8 and x= c = 19(x)-ll<2 => for any seq. (Xn> set. Xn & domain of f; Xn= c 4n, Xn > c implies p(xn) -> l. Poop of forward relation - assume f(x) = l. Given a sequence ×n -> c sit. xn #c, we need to show f(xn) -> l. that would mean that given 270 , 3 N>0 st N>N = 1 f(Xn) - 1 < E. since \$142-f(x)=1, we know = \$>0 s.t. y x G (c-5, c+8) with x ≠ c; 1f(x)-11 < €. . our desired statement is true whenever |Mn-c| < S. now since Xn→C, ∃ N'>O st. N>N' > lXn-cl < S so n>N = 1×n-cl<S => 1f(×n)-ll<E, .: p(×n)->ly q.e.d. Broof of backward relation -- we prove the contrapositive, i.e. NTP if light fix) # 1. then not every sequence Xn > c with Xn # c yields P(Xn) > l. amming kine flow = l, then for some ETO, every STO has the property: [x-c] < S and x = c = flow - 1] < E. in other words: = x 6 (c-8, ct 8) with x=c and 1-f(x) - l ≥ e. in particular, I an 200 st. this is the for arbitrarily small \$20. in we can find a sequence (Xn) sit. by setting S=to, we may assume Xn & (c-tn, c+ta), Xn 7c. yet 1f(Xn)-117 E. .. our sequence Xn -> c, but f(Xn) to ly g.e.d. Condlang. A function f: (a,b) → R is continuous at c = (a,b) (=> for every sequence ×n ∈ (a,b) with ×n→c, me have f(×n) → f(p). served value Corolly " combinition theorem" for limits of fuctions suppose time f(x) = l and time g(x) = m. Then (i) im [fu)+g(u)] = l+m (ii) For any constant a G IR, sime [a f(x)] = al. (iii) lim [f(x) g(x)] = ml. (iv) if m=0, then time gos = tm. Broof of (i) - lime f(x) = l and lime g(x) = n => V sequences Xn > c with Xn + c, f(xn) > l and g(xn) > m. . by the combinistion theorem for sequences, f(xn) + g(xn) -> m+l. since this is the for all sequences ×n -> c with ×n => c, we could that lime [ftx) + g(x)]= l+m/, q.e.d. Proofs of (ii), (iii), (iv) are analogous. remma - The function f(x)= x is continuous everywhere. corollony : by the combination theorem, Proof - me need to prove that VCER, C= tim t(x). = tim X x x. every polynomial furtion is continuous everywhere; and so is every rational function $f(x) = \frac{P(x)}{Q(x)}$ where P(Q) are polynomials? as long as lemma - every constant function is continuous.

R(x) = 0

Proposition - given functions of and z which are continuous at a point c, (product) the functions of + g and figure also continuous at c, and if qui = 0, so is the. Proof - assume f, g are continuous at c, is fig continuous at c? -f(c) + g(c) = lime [f(x) + g(x)] = lime f(x) + lime g(x) = f(x) + g(c), ged. 1December 2011 Dr chris WENDL Etheorem Assume of is a function defined on (a, b), except possibly at some point c e (a, b). UA. then $\lim_{x\to a} f(x) = l$ \iff for all sequences (X_N) with $X_N = (a, b)$, $X_N \neq c$ $\forall h$ has $X_N \rightarrow c$; $f(X_N) \rightarrow l$. If f is defined an some interval (a.00), we say \$100 for = l if given E>0, we can find HER sit. X>H ⇒ [fix)-l <E. Rehution If f is defined on some interval (-60, b), we say time f(x)=l if given E70, we can find H&R st. $x < H \Rightarrow |f(x)-l| < \epsilon$. Prove that $\begin{array}{c} \lim_{x \to \infty} \frac{1}{x} = 0 \end{array}$ EN Given Ero, we wont HER st. X>H → 12-0 < E ↔ 文<E ↔ X>É. we take H= É/ q.e.d-[Theorem] Assume f is a function defined on (a, on). Then there are fixed and the sequence (xn) with xn & (a, on) the and xn-> too, f(xn) -> d. Food of forward relation - Assume into for = ? and <xn> is a sequence with xn -> +00. then given €>0, 3HER St. X>H > If (x)-el < E. sloo, ∃ N>0 str. n>N > Xn>H. n : $\forall n > N$, $x_n > H \Rightarrow |f(x_n) - \ell| < \epsilon$; therefore $f(x_n) \longrightarrow \ell_{\ell_1} q.e.d.$ SANDWICH THEOREM for functions. Coro Bug suppose figh are functions on (a, b), except possibly at c ∈ (a,b); and f(x) ≤ g(x) ≤ h(x) ∀x, and two f(x) = lim h(x)=l. then lim q(x)=l. (note: can also apply where c= ±00). Proof - It suffices to show that I sequences Xn to but Xn -> c, we have g(Xn)-> l. notice that In, f(xn) ≤ g(xn) ≤ h(xn). In and f(xn) -> l and h(xn)-> l. we then apply sondwich theorem for sequences / g.e.d. [f(x) = 1 - x² cos (for x ≠ 0. Prove the dain that in f(x) = 1. y= 1-x2 cos(x) we know that -1≤ cos \$ ≤ 1 => 1-x2 ≤ f(x) ≤ 1+x2. since polynomials are continuous, 1-x2 and 17x2 are continuous, and lim f(x) = x ->0 (1-x2) = lim (1+x2) = 1/ q.e.d. EX Find X = 300 (sin X); and prove it. claim: limit does not exitt: by contradiction. Proof - For all sequences ×n → +20, limit exits ⇒ sin ×n must converge to le R. Consider Xn = In. where Xn -> too, < (in Xn) = 1.0; -1.0; 1.0; -1.0; ... has subsequences converging to different limits ⇒ sin Xn diverges => controdiction! so limit does not exility g.e.d. 9 December 2011 Dr. chris WENDL . If him glow= I and xin flow = m, then him [fog(x)] = m. Not necessarily. ar. canderexample: g(x) = 2, $f(x) = \begin{cases} 1 & \text{if } x=2\\ 0 & \text{if } x\neq 2 \end{cases}$ -then $\lim_{x\to\infty} g(x) = 2$; $\lim_{x\to\infty} 2f(x) = 0 \neq f(2) = 1$. $\lim_{x\to\infty} \chi_{10} = 1 \neq 0$. why? The discontinuity here result in the statement being until.

In general, for the following, assume that the give a sud wine fix = m. Roposition - if f is continuous at I, then the [fog 60] = m. Proof - It suffices to show that for any sequence <Xi>> s.t. ×n+c, ×n -> c, then fog (×n) -> m. we have glin > l, then by mutimity of f at l, we have f(l) = f((in g(Xn)) = in f(quin) = xin for = mp g.e.d. Corollony - If g is continuous at c, and f is continuous at g(c), then fog is also continuous at x=c. Roposition - if 3 220 s.t. glo) # l on interval x e (c-2, c+2); except possibly at c, then im [im c [fo glas] = m. supporte. not suceptable. c-4 649 Proof - source Xn -> c but Xn + c 4n. we know g(Xn) -> l; but 3N>0 st 4n>N, Xn = (c-2, ct2) but Xn+c, : g(Xn) + l. since tim fix)=m, f(g(xn)) -> m ... time [fog(x)]=m/ q.e.d. More on continuity. Assume of has domain continuity (a, b) on [a, b]. [Definition] of is continuous on (a,b) if it is continuous at x if x e (a,b). f is continuous on labl if it is continuous on (a, b) and time f(x) = f(a) and time f(x) = f(b). $\begin{aligned} & f(b) = \frac{1}{x-1} \quad \text{for } x \neq 1 \cdot \text{ then } f \text{ is contributions on } [0,1], \text{ but not on } [0,1], \\ & \chi^2 \quad \text{if } x \in [0,1] \\ & g(b) = \begin{cases} \chi \in [0,1] \\ 0 & \text{for all other } x \in \mathbb{R} \end{cases}. \end{aligned}$ Ex TEX guy is continuous on [0,1], not continuous on R is it is discontinuous (only " continuous from the left") at 1. However, if h(x) = 1 & Forsel other xER. h(x) is not continuous on [0,1] since h(1)=0 = lim - h(x)=1. The anchetype of an ill-posed problem: · What is the maximum value of the function f(x) = * for x = (0, 1]? Maximum does not exist, since f is not bounded on (0,1]. . For feb), given an interval, what will guarantee that (1) it is bounded, (2) it achieves a max and min? (E) could consider http:= { x2 if x e [0,1] o for all other xell again. hbs) is bounded on R. : = sup h(x) = sup h(x) x (0,1] = 1; but = max x (0,1] h(x) since = x (0,1] st. h(x)=1. Tooking A compact interval is any interval in IR that is dosed and bounded. ie any interval of the form [a,b] for a, b & R, a < b. Theorem (i) Every continuous function on a compact interval is bounded. (ii) Every continuous furtion on a compact interval achieves maximum and minimum values : ie. if f: [a, b] -> IR is continuous, then = x_, x+ E[a, b] s.t. f(x-) is a lower bound and f(x+) is an upper bound for the image of f for x ∈ [a,b].

1101-024-

	Refuestion (i) f is continuous on s if it is continuous at x + x es.	
	(ii) f is uniformly continuous on S if 42>0, ∃ \$>0 st. x,y & S with 1x-y1 < S → 1f(x)-f(y)1< E.	
	* note the difference : continuity - given x and E, find S ; wiform continuity - given E, find S, valid 4x.	
	Calle and a contract to make approximate of the state of the second s	
-	Application of curiform continuity - given a>0, what does at mean if x & @2?	
	For: a where $x \in \mathbb{Q}$, $x = \frac{1}{2} \Rightarrow$ we define $a^* = \sqrt[2]{a^p}$	
	where $X \notin \mathbb{Q}$, though, we recall that every $X \in \mathbb{R}$ can be approximated by rationals.	
1	i.e. I sequence $x_n \in \mathbb{Q}$ st. $x_n \rightarrow x$. hence, we define $\alpha^{\chi} = \lim_{x_n \rightarrow x} \alpha^{\chi n}$	
	problems - (I) we do not know if < < 2 m > converges.	
_	see HW9 Problem - given that the function of (-> IR (x-> (x*) is uniformate	continuous in eve
4	bild subset of Q , then $\langle Xin \rangle$ is cauchy \Rightarrow $\langle f(x_n) \rangle$ is a	
	(II) the value of at should depend only on x, but not on the sequence (Xh> which in	e have chosen.
	(because 3 infinitely many other sephances yn 6 a sit. yn-> x).	
	so how do we know this? we use the theorem below	
	Theorem of f: 5- > IR is uniformity continuous and	
	Xn yn es are sequences with lim Xn = lim yn, then	
	tim f(xn) = tim f(yn).	
	Proof-given Xn->l, yn->l, then: Xn-yn->l-l=0.	
	we want to show f(xn)-f(yn)->0 - given 270,	
	$(u) = S > 0 \text{sit.} x - y < S \Rightarrow f(u) - f(y) < \varepsilon.$	
	then Xn-Yn→0 means BN>0 st. n>N⇒ Xn-Yn <s (flxn)-flyn) <e.<="" td="" ⇒=""><td></td></s>	
		1. Day 1
1		12 December 2011. Dr chris WENDL -
ľ	EXPONENTIAL FUNCTIONS.	alt.
	A STATUT SALVY STRATE AND A STATUT	
	For ard, the function of: Q> (0,00): X +> a ² . is uniformly continuous on any bounded subset of Q.	
	\Rightarrow one can also define a^{χ} for $\chi \notin \mathbb{Q}$ such that for any $\chi_h \in \mathbb{Q}$, $\chi_h \to \chi_h$ then $a^{\chi_h} \to a^{\chi}$.	
+	we have shown that (i) <a<sup>24n> is Cauchy, and</a<sup>	
	(ii) lim a th is dependent only on X, not on the sequence S(n).	
4		
	we still need to prove unifocus coustinuity.	
4	we still need to prove unifocus continuity.	
34 540 6.53	We still need to prove uniform continuity. Theorem Assume SGR is either R or R , and $f: S \rightarrow (0, 00)$ is a function such that	
	we still need to prove unifocus continuity.	
	We still need to prove uniform continuity. Theorem Assume SGR is either R or R , and $f: S \rightarrow (0, 00)$ is a function such that	
	We still need to prove uniform continuity. Theorem Assume SCR is either Q or R, and $f: S \rightarrow (0, 00)$ is a function such that (i) $f(0) = 1$, $f(0) > 1$ $\forall x > 0$ and $-f(0) < 1$ $\forall x < 0$:	
	We still need to prove uniform continuity. [Theorem] Assume SCR is either Q or R, and fis -> (0,00) is a function such that (i) f(0)=1, f(0)>1 4x>0 and f(0<14x<0: (ii) f(1+1y) = f(1y).f(1y) 4 x,y 65. Then f is uniformly continuous on every bounded subset of S.	
	We still need to prove uniform continuity. [Theorem] Assume SCR is either Q or R, and f. S -> (0,00) is a fluction such that (i) f(0)=1, f(x)>1 +x>0 and f(0<1 + x<0. (ii) f(x+y) = f(x).f(y) + x,y < S.	
	We still need to prove uniform continuity. [Theorem] Assume SCR is either Q or R, and fis -> (0,00) is a function such that (i) f(0)=1, f(0)>1 4x>0 and f(0<14x<0: (ii) f(1+1y) = f(1y).f(1y) 4 x,y 65. Then f is uniformly continuous on every bounded subset of S.	
	We still need to prove uniform continuity. $\overline{\text{Theorem}} \text{Assume S C R is either Q or R, and f: s \rightarrow (0, 00) is a furtion such that (i) f(0) = 1, f(0) > 1 4_{X>0} and f(0) < 1 4_{X<0}:(ii) f(0+1) = f(0) \cdot f(0) 4_{XY} \in S.Then f is uniformly continuous on every bounded subset of S.\overline{\text{ER}} \text{if } a>1, \ f: Q \rightarrow (0, av); \ X \mapsto a^{X} \text{ satisfies this assumption.}$	
	We still need to prove uniform continuity. $\overline{\text{Thermal}} \text{Assume } S \in \mathbb{R} \text{ is either } \mathbb{Q} \text{ or } \mathbb{P}, \text{ and } f: s \rightarrow (0, 00) \text{ is a function such that}$ $(i) f(0) = 1 , f(0) > 1 4 \times > 0 \text{ and } f(0) < 1 4 \times < 0 $	
	We still need to prove subfact continuity. $\boxed{\text{Theorem}} \text{Assume } S \subseteq \mathbb{R} \text{ is differ } \mathbb{Q} \text{ or } \mathbb{R}, \text{ and } f: S \rightarrow (0, 00) \text{ is a fluction such that}$ $(i) f(0) = 1, f(0) > 1 \forall x > 0 \text{and} f(0) < 1 \forall x < 0 :$ $(ii) f(0 + 1) = f(0) \cdot f(0) \forall x + y \in S.$ $\text{Then } f \text{ is uniformly continuous on every bounded subset of } S.$ $\boxed{\text{El}} \text{if } a > 1, f: \mathbb{Q} \rightarrow (0, a): X \mapsto a^{X} \text{subflextub assumption.}$ $\text{if } D(ca(1), \text{ then } f: \mathbb{Q} \rightarrow (0, a): X \mapsto a^{X} = (\frac{1}{2})^{X} \text{ also does.}$ $\therefore \text{ in either abse, this } \Rightarrow a^{X} \text{ is uniformly continuous on some or sounded subsets.}$	
	We still need to prove uniform continuity. $\overline{\text{Thermal}} \text{Assume } S \in \mathbb{R} \text{ is either } \mathbb{Q} \text{ or } \mathbb{P}, \text{ and } f: s \rightarrow (0, 00) \text{ is a function such that}$ $(i) f(0) = 1 , f(0) > 1 \forall x > 0 \text{and} f(0) < 1 \forall x < 0 \cdot \\ (ii) f(0+y) = f(0) \cdot f(y) \forall x, y \in S \\ \text{Then } f \text{ is uniformly continuous on every bounded subset of } S.$ $\overline{\text{Then } f \text{ is uniformly continuous on every bounded subset of } S.$ $\overline{\text{ER}} \text{ if } a > 1 f: \mathbb{Q} \rightarrow (0, a): x \mapsto a^x \text{ satisfies this assumption.}$ $\text{ is either doe, this } \Rightarrow a^x \text{ is uniformly continuous on bounded subset.}$	
	We still need to prove subfact continuity. $\boxed{\text{Theorem}} \text{Assume } S \subseteq \mathbb{R} \text{ is differ } \mathbb{Q} \text{ or } \mathbb{R}, \text{ and } f: S \rightarrow (0, 00) \text{ is a fluction such that}$ $(i) f(0) = 1, f(0) > 1 \forall x > 0 \text{and} f(0) < 1 \forall x < 0 :$ $(ii) f(0 + 1) = f(0) \cdot f(0) \forall x + y \in S.$ $\text{Then } f \text{ is uniformly continuous on every bounded subset of } S.$ $\boxed{\text{El}} \text{if } a > 1, f: \mathbb{Q} \rightarrow (0, a): X \mapsto a^{X} \text{subflextub assumption.}$ $\text{if } D(ca(1), \text{ then } f: \mathbb{Q} \rightarrow (0, a): X \mapsto a^{X} = (\frac{1}{2})^{X} \text{ also does.}$ $\therefore \text{ in either abse, this } \Rightarrow a^{X} \text{ is uniformly continuous on some or sounded subsets.}$	

1101-026.

10 Pedanta 2011 See door wordst. GIA	Similarly, we can show that at >1 & x>0, at <1 & x<0. : f: IR -> (0,00): x +> at satisfies the conditions of theorem > continuous on R.
	and also uniformily continuous on all bounded subjects.
	Remarks: It is true that for any continuous function of: Early -> R (compact interval), then of is also uniformly continuous on Early.
	Front - given 270, 3870 = Sis function of x, S(X) 20 for [a, b].
(60) 3	S(9) is continuous, and bounded oney from 0
	use det istates, the to territory has all actions should
	Roof (of theorem) - we assume S= Q or IR, f: S++ (0, 00) satisfies
	f(x+y) = f(x) f(y) and -f(0)=1, f(x)>1 + x>0, f(x)<1 + x<0.
	Step 1: If $f(u) = a$, then $\forall x \in \mathbb{R}$, $f(x) = a^{X}$.
	$\mathcal{R}_{out} \longrightarrow \mathcal{R}_{out} \rightarrow R$
	(i) $f(n)=1=a^n$, by sumption, for $n \in \mathbb{N}$, $f(n)=f(n)f(n)=f(n)=f(n)=a^n$ \Rightarrow $f(n)=a^n$.
	$\therefore f(n) = a^n \forall n \in \mathbb{Z}.$
	(iii) $a = f(t) = f(t_h) = f(t_h + \dots + t_h) = Cf(t_h) \exists^m \implies f(t_h) = \forall a = a^{\frac{1}{h}}$
	(ii) for $\frac{1}{2} \in \mathbb{Q}$, $f(\frac{1}{2}) = f(\frac{1}{2}) = [f(\frac{1}{2})]^{T} = (\sqrt[T]{a})^{T} = a^{\frac{1}{2}}$.
· · · · ·	step 2: f is shirtly increasing. i.e. X>y => fbx> fby).
	$Reof - x > y \iff x - y > 0 \implies f(x - y) = f(x) f(-y) = \frac{R(y)}{F(y)} > 1.$
	by someption, fix) > fly).
	step 3: Claim of is continuous at 0.
	Roof - We need to Alman f(0)=1 = introf f(0) = x = 0.
	(i) For time for, it suffices to show that it sequences XH & S, with XH>O and XH=>O, we have f(XH) -> l-
	3 a sequence kn ≤ 1 with kn → too sit. O< xn < Kn. ⇒ 1 < f(xn) < f(kn) = a kn
	to the form a log the son, the son, at so 1< form <1 > 1 by the sondwich theorem.
	(i) use the dualogous argument to show that $\frac{1}{1000}$ flow = 1.
	dente lat has been beinted enter an and the blend the she a -NKXKM a a'M & BANK aM.
516	(p) f. tet how since for early sole f W is nonotone increasing, so WLOG, we can increase M to a restored number. WLOG, assume - ≥ e A. ye O, given my = 20, -38>0 st. M(-6 ⇒ (f(N)-fron) < 6.
- Leanispecture - L	$\therefore f(x) \le \alpha^{M}, \text{ Now, } f \text{ is continuous } 0 \Rightarrow \forall e>0, \exists s>0 \text{ st} s < s \Rightarrow f(x) - f(x) - f(x) \le 1$
these scales	Then x, y = A s.t. $ k-y < s \implies f(k) - f(y) = f(k) [1 - f(y-x)] = f(x) _1 - f(y-x) = f(x) _1 - f(y-x) < a^{n}z$.
	[Full Vorsion] Given \$>0, x,y & A with [x-y] < 2 > 1 fox) - f(g) < E.
	becall corollony: f(x)= a" defines a continuous function on R and is uniformly continuous on del bounded subse
	$\frac{2(p-q)}{2n}\sum_{i=0}^{\infty} = n^{\frac{p}{2}} = \frac{2}{1n} + \frac{2}{1n} + \frac{2}{1n} = \frac{1}{1n} + \frac{2}{1n} = \frac{1}{1n} + \frac{2}{1n} + \frac{2}{1n} + \frac{1}{1n} + \frac{2}{1n} + \frac{1}{1n} + \frac{2}{1n} + \frac{1}{1n} + \frac$
· Grant portant reads	(1) (Definition) $\forall x \in \mathbb{R}$, we define the function $\exp(\mathbb{R} \to \mathbb{R})$ by $\exp(\mathbb{X}) = \sum_{n=0}^{\infty} = 1 + x + \sum_{n=1}^{\infty} + \frac{x^2}{3!} + \dots$
	exp converges docalitely for sul x. Eproof by vario test).
$\int_{-1}^{-\frac{M}{2}} \frac{(\mu+\lambda)}{r_M} \neq \cdots$	- qualital - (20 + - + p a) (20 + - + + + + + + + + + + + + + + + + +
Con S. Se will leges	theorem the function exp satisfies the following properties.
	(i) exp (x+ty) = exp (x) exp(y) (follows from proof of es
	(i) $\exp(x) > 1 \forall x > 0$, $\exp(x) \in (0,1) \forall x < 0$ and $\exp(0) = 1$. (i) $\lim_{x \to \infty} e^x = 0$, and $\lim_{x \to \infty} e^x = 0$.
	consiliony - by theorem edulier, exp: R→R is antinuous and always portive. Woof - ex=1+x+ fr +> 1+x fr x>0.
	and if we define $e = exp(1) = \frac{2}{n \neq 0} \frac{1}{n!}$, then $exp(x) = e^{x} \forall x$. By e^{x} is bijective for $R \to (0, 0)$. Proof - injective $e^{x} = e^{x} \Rightarrow e^{-y} = ($
	proof inguitive by IVT.
	$\frac{1}{1000} = \frac{1}{1000} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{100} + \frac{1}{1000} + \frac{1}{1000$
	how assuming part (i), exp (v)=1 = exp (x + (-x)) = exp(x) exp(-x) ⇒ exp (-x) = exp(x) if x>0, then -1≤ x≤0, thill .
	$\exp(t_{\lambda}) > 1 \Rightarrow \exp(t_{\lambda}) = \frac{1}{\exp(t_{\lambda})} \in (0, \mu) $
	now for parts), we will concer it later.
	see provedent.
	1101-02

15 December 2011 we define $e = \int_{N=0}^{l_0} \frac{1}{N!} \approx 2.71928... = exp(1)$. Dr. Chris WENDL CLA -Elhermond crantid) V X1y & IR, exp (xty) = exp (x). exp (y) consequences of this theorem. 1 we know exp(0)=1, so if x>0, exp(h)>1. >> exp(x-x)=1=exp(x)exp(-x) => if x<0 then exp(x) = ap(-x) & (0,1). therefore exp(x) >0 V/x and exp(x) >1 (=> x>0; exp(x) <1 (=> x<0. O. exp (x) is continuous, and uniformly continuous on 211 bounded subsets; and exp (x) = [exp (b)] x = ex. 3. VXER, ex > 1+x. we can use this to prove x = 1 y= x-1 i.e. hoo eth-eo = dr extx=0. ③· exp: R→ (0, 20) is bijective => 3 inverse function. defined as notwell logarithm in: (0,00) -> IR. s.t. in (ex) = e^{in x} = x. using ex =1+x and lim #-1 = 1, one can show that, for In, • $\ln x \leq x-1 \quad \forall x>0 \quad and \quad \lim_{x\to 0} \frac{\ln (1+x)}{x} = 1.$ • now $\frac{\ln(1+X)}{X} \rightarrow 1$ to $X \rightarrow 0 \implies$ since exp is continuous, $\exp\left(\frac{\ln(1+X)}{X}\right) \rightarrow \exp(1) = e$ do $X \rightarrow 0$ $e^{\ln (1+x)/x} = [e^{\ln (1+x)]^{\frac{1}{x}}} = (1+x)^{\frac{1}{x}} \Rightarrow \lim_{x \to 0} (1+x)^{\frac{1}{x}} = e^{-1}$: since $t_1 \rightarrow 0 \rightarrow n \rightarrow \infty$, $\left(\frac{1}{n \rightarrow \infty} (1+t_1)^n = e\right)$ (replacing x by t_1). Proof - we first use a lemma. LEMMS - BINOMIAL THEOREM. VX, y & R and no iN, (x+y)" = 2 (h) xk yn-k. where (k)= 1/(n+5)! Distribute and group together all products with the same total degree : $exp(x) \cdot exp(y) = 1 \tau (x+y) + \left(\frac{y_1}{21} + \frac{x_1}{21} + \frac{x_2}{21}\right) + \left(\frac{y_1}{3!} + \frac{x_{1y_2}}{2!} + \frac{x_{1y_2}}{2!} + \frac{y_3}{3!}\right) + \cdots$ [is this sublytically cound? question of convergence.]. $m_{\text{c}} \xrightarrow{\text{comp}} \frac{x^{k} y^{n-k}}{k! (n-k)!} = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \frac{n!}{k! (n-k)!} x^{k} y^{n-k} = \sum_{n=0}^{\infty} \frac{x^{k} y^{n-k}}{k! (n-k)!} = \exp(k) \exp(y) g e.d.$ Note however, that we need to address the question of convergence to make this precise . in order to think of an infinite series in finite terms, we consider the behaviour of partial sums. for N & IN, we define $X_N = \sum_{n=0}^N \frac{x^n}{n!}$, $Y_N = \sum_{n=0}^N \frac{y^n}{n!}$, $Z_n = \sum_{n=0}^N \frac{(x+y)^n}{n!}$ >> N→ 00, XN→ exp(X), YN→ exp(y), Zn→ exp(xty). then XnYn-2 exp(x) exp(y) combination thm). we want to show that this matches Nim Zn; or equivalently, $X_NY_N - Z_N \rightarrow 0$. $X_NY_N - Z_N = (H + 1 + \dots + \frac{X^N}{N!})(H + 1 + \dots + \frac{Y_N}{N!}) - [1 + (x+y) + \dots + \frac{(x+y)^N}{N!}]$. = sum of products of total degree > N appearing in binomial expansion of $\frac{g_2}{n} \frac{(x_{HA})^2}{n}$ => [XNYN-ZN] = N=NH n1 => 0 do N=> 00 p. q.e.d. END OF SYLLABUS. 1101-028.