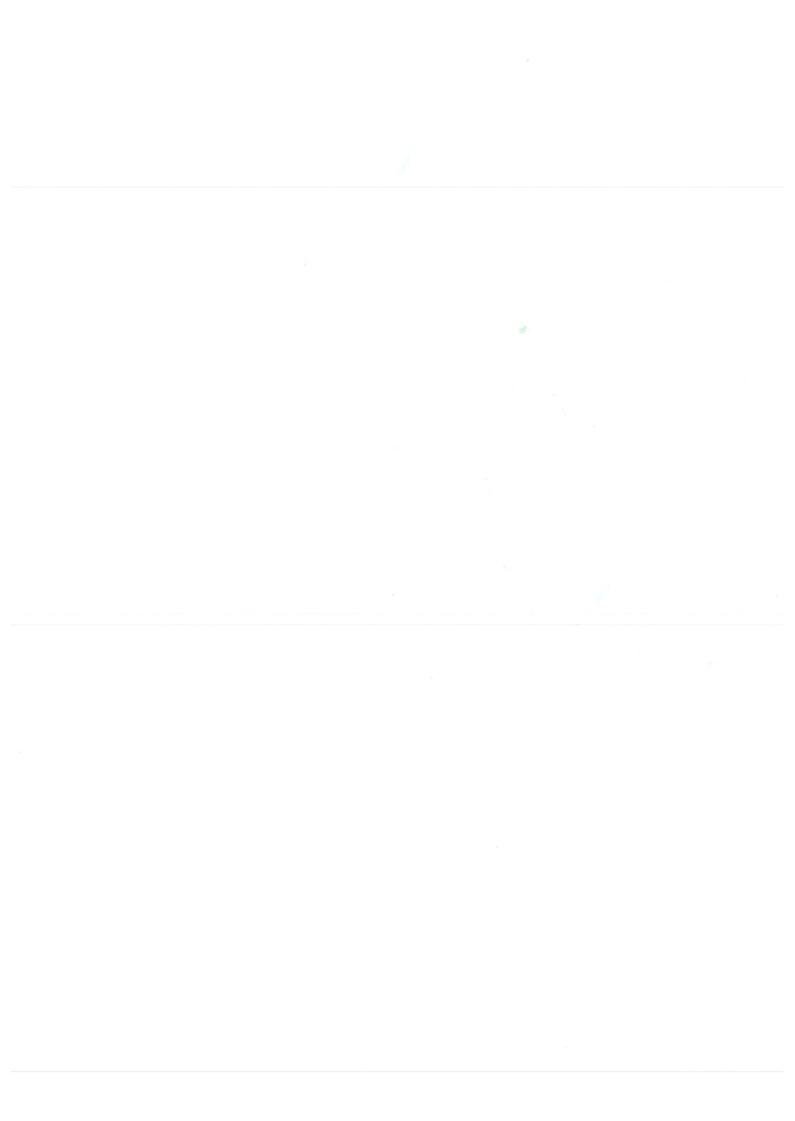
MATH0003 Analysis 1 Notes

Based on the 2018 autumn lectures by Prof L Parnovski

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.



ANALYSIS 1 (1101) Leonid Parnouski office: 607 (after Tuesday lecture) Problem classes - 9-10 am on Tuesdays 5% HW -> 10 pieces -> BMOSIGED < + compulsory problems & STUDENT NOMBER NO + voluntees, V (Room 502). 5% Midsessional exams 90% Final exam Analysis D Calculus toegetucal basis for Deginerions Lo Axions: statements that do not need proofs (Theorems <- proof. Ex: Consider the ingine series: $\left(1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{6} + \frac{1}{5} - \frac{1}{6} + \dots = \ln 2 > 0$ sha Now we have: $\left(1 - \frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4} - \frac{1}{4}\right) + \left(\frac{1}{5} - \frac{1}{6} + \frac{1}{6}\right) + \left(\frac{1}{7} - \frac{1}{8} - \frac{1}{8}\right) = \frac{1}{2}$ $= 1 + \frac{1}{3} - \frac{1}{2} + \frac{1}{5} + \frac{1}{7} - \frac{1}{7} = \frac{31n^2}{2}$ START OF THE COURSE -pinchide (forma parte) NCZCQCRCRCC t t t t t t natural enteres rational real complex numbers numbers (infinitions) N = { 1, 2, 3, 4, Y - A O is NOT A NATURAL NUMBER ORN are elements of the set of pl numbers. * Addition n, m, E N Teads n+m E N p belongs to the thing in

* multiplication
$$n,m \in \mathbb{N}$$
 to $n,m \in \mathbb{N}$ we have either $m > n$ or $m < n = n$
* Ordering: (p) $n,m \in \mathbb{N}$ we have either $m > n$ or $m < n = n$
* whicheves (for all)
ANNOTATION: \exists means "there exists"
 $(p) = n > n \leq n$.
 $(p) = m \leq n + n$.
 $(p) = m + (n + p)$
 $(m + n) + p = m + (n + p)$
 $(m + n) + p = m + (n + p)$
 $(m + n) + p = m + (n + p)$

$$\begin{aligned} & \int_{COL} \int_{COLOR} \int_$$

Eq. Can use approximate
$$1\mathbb{Z}$$
 by reacteds?
The can use find $\frac{2}{9}$ uncer is close to $1\mathbb{Z}^2$. In other useds, $\frac{p^2}{9}$
should be use to 2 :
 $\left|\frac{p^2}{9}-2\right|$ is small?
Then, here 100 : $9^2\left[\frac{p^2}{9}-2\right] = \left[\frac{p^2-2q^2}{9}\right]$ is not say large.
But $\left[\frac{p^2-2q^2}{9}\right] \in \mathbb{N}^{(1)}\left[\frac{q}{9}\right]$.
The smallest prestoring is a proper $1\mathbb{P}^2 \cdot 2q^2\left[\frac{q}{9}\right] + \frac{1}{2} = \frac{1}{2}$.
The smallest prestoring is a proper size $p^2 \cdot 2q^2 = \frac{1}{2}$.
The smallest prestoring is a proper size $1\mathbb{P}^2 \cdot 2q^2\left[\frac{q}{9}\right] + \frac{1}{2} = \frac{1}{2}$.
Proper Part of $1\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$.
Proper repeated to a proper size $1\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$.
Proper subscript to approximate $1\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$.
 $\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$, $\mathbb{P}^2 \mid 200$, $P, q \in \mathbb{N}$.
 $\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$, $\mathbb{P}^2 \mid 200$, $P, q \in \mathbb{N}$.
 $\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$, $\mathbb{P}^2 \mid 200$, $P, q \in \mathbb{N}$.
 $\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$, $\mathbb{P}^2 \mid 200$, $P, q \in \mathbb{N}$.
 $\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$, $\mathbb{P}^2 \mid 200$, $\mathbb{P}^2 \mid q \in \mathbb{N}$.
 $\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$, $\mathbb{P}^2 \mid 200$, $\mathbb{P}^2 \mid q \in \mathbb{N}$.
 $\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$, $\mathbb{P}^2 \mid \mathbb{P}^2 \mid q = \frac{1}{2}$.
 $\mathbb{P}^2 \cdot 2q^2 = \frac{1}{2}$, $\mathbb{P}^2 \mid \mathbb{P}^2 \mid q = \frac{1}{2}$.
 $\mathbb{P}^2 \mid \mathbb{P}^2 \mid \mathbb{P}^$

B

$$\frac{1}{||\mathbf{x}_{1}|| \leq |\mathbf{x}| + |\mathbf{y}| \cdot (\mathbf{T} + \mathbf{x}_{1} - \mathbf{x}_{2} + \mathbf{x}_{2} + \mathbf{x}_{2} + \mathbf{y}_{2} + \mathbf{y}_{2$$

(4)

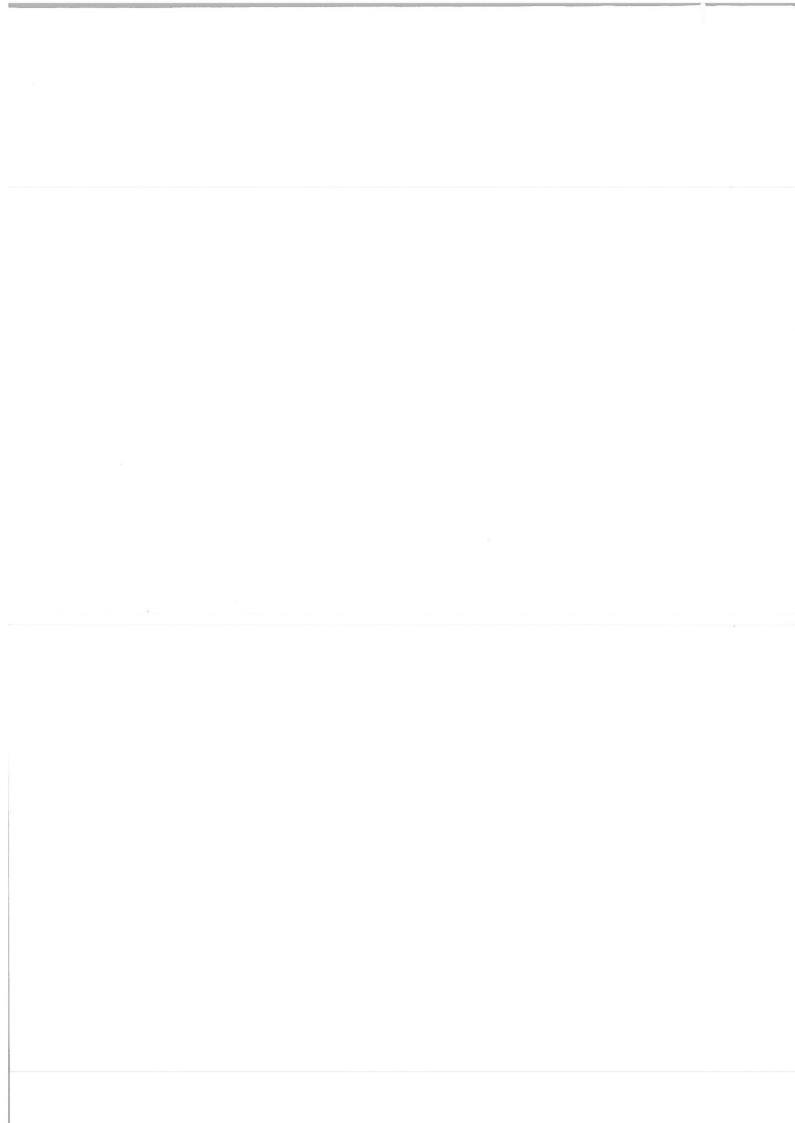
diffusion (ii) A subject is of an ordered field
$$X$$
 is bounded assume, if
 $\exists H \in X$ set: $X \leq H$, $\forall X \in S$ (then H is called an upper bound
get S).
(iv) S is bounded bellow, if $\exists h \in X$ la lower bound for S) st
 $f \leq X$, $\forall X \in S$.
Cecamples:
 $\bigcirc S = \begin{cases} 4, 2, 1 \neq 4 \end{cases}$, $X = Q$
Bounded assume. Upper bounds: $H_1(F, 1000, 000, ..., 100, 14)$.
The smallest upper bound is H . S is bounded below, lower bounds: $4, 0, 14$.
The shallest lower bound is H . S is bounded below, lower bounds: $4, 0, 14$.
The barded time Q size $S \subset X$ is bounded, lever bounds: $4, 0, 14$.
The barded time Q size $S \subset X$ is bounded, below, and
below.
 $\bigotimes S = \begin{cases} X \in Q, X > 0 \end{cases}$ $X = Q$
 $X = Q$: It is not boundles above, but it is bounded babove, and
lower bounds are any $H \leq 0$. The larger lower bound is Q .
 $\bigotimes S = \begin{cases} X \in Q, (X > 0) \ (if X > 0) \ (if X < 0] \ ($

October 11th 2018

Deginition Suppose SCR
(i) I has a maximum, g I Xm E S of XCS-
notation: Xm = max S > pertenede a S & co opps march
(ii) Shas a minimum, g = Xm ES St KES=D X > Xm.
notation X _m = min S » perference as y is lower bound
Theorem: NO SIEMPRE EXISTE MAXIMUM PERO ST SIEMPRE
O Ig = ×m=max S superimum sup S = ×m → Si hay max, max=sup, pero sup no siempre ≠ max.
© Ig 3 Xm=min S, then ug S=Xm.
Proof 03:
Xm=max5.
15: Xm is an upper bound.
an opper bound.
Therefore Xm is the smallest upper band = max S,
Examples
$O[\alpha,b] = \{x \in \mathbb{R}, a \leq x \leq b\}$
a, b e R, a < b max S=b
mins $S = \alpha$.
$O = (a,b) = \{x \in \mathbb{R}, a < x < b\} $
sup S=b. ing S=a. There is no max or min
(3) $S = [a,b] = \{ x \in \mathbb{R}, a \leq x < b \}$
$min S = \alpha$. sop S = b to max.
bounded below, not above, minS=a.
always have nexts and mins.
$OS = \{1 - \frac{1}{n}, n \in \mathbb{N}\}$
S is bounded, min $S = O$, $svpS = 1$, no max.

- Axions of an ordered gield (need to know clampleteness arian, but not arutimetic and order off the top of your head
- · Conductionally convergent series can be rearranged to have any rum.
- · Pell's equation
- · e is interval
- · convexity of et and the asithmètic mean nequely (HWD),
- · Function that are continuous but now here differentiable (HW10#7)
- · Radius of convergence of power weies
- · Term-by-term différentiation of power eiles

4



Definition : Suppose
$$a \in R$$
, $E > 0$
The E - neighbourhood of a is $(a - 5, a + 5) - (x \in R, (x, a) < 5)$
exercise
 $(a - 5) = a - (a + 5)$
Example: $X_n = \frac{1}{2} + \frac{1}{2} + \frac{1}{8} + \frac{1}{2} + \frac$

Definition!
$$\langle X_N \rangle$$
 concepts to $P_i P_j$ given any $E > 0$, we can find a
normal $N \in TR$ set all terms X_N with $n > N$ are noted E -neighted buck.
According $\lim_{n \to \infty} X_n = 1$, or $\lim_{n \to \infty} X_n = 0$ or $X_N = 0$.
Remark $1 \cdot 1 \in R$, not $\pm \infty$
 2 . Some people require $N \in IN$.
Definition $TR_i \cap dece not converge to any $1 \in TR_i$, we say that it
converges.
Example: $X_n = \frac{1}{n}$ claim $X_n = 0$
Recall given $E > 0$, we need to find $N \in TR_i$ of $x > N = p > n = 0$
 $\frac{1}{n} < E < x_n > 1$.
There $\forall n > N = \frac{1}{2}$ we have $|X_n = 0|$ so $X_n = 0$.
Converse 16^{4n} zots
 $\frac{1}{2018}$
 $\frac{1}{2018}$$

Take
$$N = \frac{1}{2}$$
 Then $\frac{1}{2} n \ge N \implies 1 \ge \frac{1}{2} \ge \frac{1}{2} - \frac{1}{2} \le \frac{1}{2} = \frac{1}{2} - \frac{1}{2} \ge \frac{1}{2} - \frac{1}{2} = \frac{1}{2} - \frac{1}{2} \ge \frac{1}{2} - \frac{1}{2} = \frac{1}{2} =$

Remark Suppose we have good NER st
$$\forall n > N$$
 we have
 $|x_n \cdot \ell| < \Sigma$. Then any number $\tilde{N} > N$ would also work $(n > \tilde{N} = 2 |x_n \cdot \ell| < \Sigma]$
In particulars we can just $\tilde{N} \in \mathbb{N}$ which would
back to last example $X_n = \frac{2n^2 - 1}{n^2 + 1} = \lim_{n \ge 1} \frac{2n^2 - 1}{n^2 + 1} \frac{1/n^4}{1/n^2} =$
 $= \lim_{n \ge 1} \frac{2 - \frac{1}{N} \cdot \frac{n}{n}}{1 + \frac{1}{2} + \frac{1}{2}} = \frac{|2|}{|1|}$
should $\frac{1}{2} \cdot \frac{1}{2n} = \frac{|2|}{|1|}$
Should $\frac{1}{2} \cdot \frac{1}{2n} = \frac{1}{|1|}$
 $\frac{|Nechem|}{|1|} (algebra of limits) :
Suppose, $x_n \Rightarrow x_1$ $y_n \Rightarrow y_1$.
 $\frac{|Nechem|}{|1|} (x_1 + y_n - p \times y_1) (sum rule)$
 $\frac{|N|}{|1|} \times n + y_n - p \times y_1$ (sum rule).
 $\frac{|N|}{|1|} \times n - p \times y_1$ (sum rule).
 $\frac{|N|}{|1|} \times n - p \times y_1$ (assuming $y \neq 0$, $y_n \neq 0$ $(aportiest rule)$.
 $\frac{|N|}{|1|} \times n - p \times y_1$ (assuming $y \neq 0$, $y_n \neq 0$ $(aportiest rule)$.$

Theorem (algorized limits)
a) Soon rule:

$$x_{n} \rightarrow x_{n} = x_{n} + y_{n} \rightarrow x_{+y}$$

Pread (take one).
Need to show:
($x_{n} + y_{n}$) - ($x + y$) becomes small for large n.
($that the difference between $\exists r$ is small)
[k_{n} ow]. $x_{n} \rightarrow x_{n}$ so given any $\Xi > 0 \exists N \in \mathbb{R}$ s.t. $\forall n > N$
we have $|x_{n} - x| < \Xi$
($also$] $y_{n} \rightarrow y_{n}$ so $\exists (N) \in \mathbb{R}$ s.t. $\forall n > N$ we have $|y_{n} - y| < \Xi$.
Take Nerman $\langle N, N \rangle$, then $\forall n > N$ we satisfy both $|x_{n} - x| < \Xi$
end $|y_{n} - y| < \Xi$.
Therefore, $|(x_{n} + v_{n}) - (x + y)| = |(x_{n} - x_{n}) + (y_{n} - y_{n})| \leq |x_{n} - x_{n}| + |y_{n} - y_{n}| < 2\Xi$$

Even three
$$\frac{5}{2}$$
 instead of Σ .
Prod (oppical vertice)
Given ΣTC , we are find $N_1 \in TR$ set $\forall h > N_1$ we have $|X_1 - X| < \frac{5}{2}$.
Given $\Sigma > 0$, we can also find $N_2 \in TR$ set $\forall h > N_2$ we have
 $|Y_1 - y| < \frac{5}{2}$.
Put $N = \max \{N_1, N_2\}$.
Then $\forall h > N$ we have back $|X_1 - X| < \frac{5}{2}$ and $(\forall h - \forall) < \frac{5}{2}$.
and therefore $|(X_n + \forall_n) - (X + 0)| = |(X_n - X) + (\forall_n - \forall)| \leq |X_n - X| + (\forall_n - \forall)| = |(X_n - X)| + (\forall_n - \forall)| \leq |X_n - X| + (\forall_n - \forall)| \leq |X_n - X| + (\forall_n - \forall)| = |(X_n - X)| + (\forall_n - \forall)| \leq |X_n - X| + (\forall_n - \forall)| = |(X_n - X)| + (\forall_n - \forall)| = |(X_n - X)| = |(X_n - X)| = |(X_n - X)| + (\forall_n - \forall)| + (\forall_n - \forall)| = |(X_n - X)| = |(X_n - X)| = |(X_n - X)| = |(X_n - X)| + |(X_n - X)| = |(X_n - X)| + |(X_n - X)| = |(X_n - X)| + |(X_n - X)| = |(X_n$

Similarly,
$$-\frac{1}{N^2} \rightarrow 0$$
, so by sandwith, $\frac{(-1)^n}{N^2} \rightarrow 0$.
Recall . Suppose, SCR is knowled; $\frac{1}{3} = \frac{1}{3}, 0 \in \mathbb{R}$ st
 $4 \times e^{\frac{1}{3}} = \frac{1}{3} =$

To be that
$$\langle \frac{1}{13N} \rangle$$
 is bounded? Different $2 cross st$ $|Y_N| \geq c \cdot M$.
(This implies $\frac{1}{13N} \leq \frac{1}{2}$).
Real $\frac{1}{2N} \leq \frac{1}{2}$.
Real $\frac{1}{2N} = \frac{1}{2N} = \frac{1}{2N} > 0$. This holds for $n > N$.
Put $c := \frac{1}{2} \frac{1}{2} \frac{1}{2} > 0$. This holds for $n > N$.
Put $c := \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} > 0$. This holds for $n > N$.
Put $c := \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} > 0$. This holds for $n > N$.
Put $c := \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} > 0$. This holds for $n > N$.
Put $c := \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} > 0$.
Real $\frac{1}{2N} = \frac{1}{2} \frac{1}{2} \frac{1}{2} > 0$.
Real $\frac{1}{2N} = \frac{1}{2} \frac{1}$

Example : consider a requerce
$$\langle x_h \rangle$$
 given by $\chi_1 = 1$ and
 $\chi_{nr_1} = \frac{1}{3} \cdot (\chi_h + 1)$ $\forall_h \geq 1$
where $\chi_1 = 1$
 $h = 1$ $\chi_2 = \frac{1}{3} = \frac{1}{3} \cdot (\chi_2 + 1) = \frac{1}{3} \cdot (\frac{1}{3} + 1) = \frac{5}{3}$
 $\chi_3 = \frac{1}{3} \cdot (\chi_2 + 1) = \frac{1}{3} \cdot (\frac{1}{3} + 1) = \frac{5}{3}$
Clavin $4 = \chi_h \geq \frac{1}{2}$, \forall_h (it is bounded balance)
 $\chi_1 = 1 \geq \frac{1}{2}$ because it was convenient
 $\Sigma_3^{0} \chi_h \geq \frac{1}{2}$, then $\chi_h r_1 - \frac{1}{3} (\chi_h + 1) \geq \frac{1}{3} (\frac{1}{2} + 1) = \frac{1}{2}$.
Clavin $2 : \langle \chi_h \rangle$ decreases:
 $\frac{1}{3} (\chi_h + 1)$ and $\chi_h \geq \frac{1}{2}$.
 $\frac{1}{3} (\chi_h + 1) = \frac{1}{3} (\chi_h + 1) = \frac{2\chi_h}{3} - \frac{1}{5} \geq \frac{2}{3} \cdot \frac{1}{2} - \frac{1}{3} = 0$
So $\langle \chi_h \rangle$ decreases.
 $\chi_h \geq \frac{1}{2}$.
 $\chi_h > \frac{1}{2} - \frac{1}{3} (\chi_h + 1)$ and $\chi_h \geq \frac{1}{2}$.
 $\chi_h > \frac{1}{2} - \frac{1}{3} = 0$
So $\langle \chi_h \rangle$ decreases.
 $\chi_h \geq \frac{1}{2}$.
 $\chi_h > \frac{1}{2} - \frac{1}{3} = 0$
 $\chi_h > \frac{1}{3} (\chi_h + 1) = \frac{1}{$

ſ

ſ

C

Example 2. FIGONALCE SEGURACE

$$x_1 = x_2 = 1$$
, $x_{ny} \ge x_{ny} + x_n$, $t_n \in n$.
 $(1, 2, 3, 5, 5, ..., (1, 2, 2), 5, 5, 5, ..., (1, 2, 3), 5, 5, 5, ..., (1, 2, 3), 5, 5, 5, ..., (1, 2, 2), 50 (E = 0).$
 $(1, 2, 3, 5, 5, ..., (1, 2), 50 (E = 21), 50 (E = 0).$
 $(1, 2, 3, 5, 5, ..., (1, 2), 50 (E = 21), 50 (E = 0).$
 $(1, 2, 3, 5, 5, ..., (1, 2), 50 (E = 21), 50 (E = 0).$
 $(1, 2, 3, 5, 6), 50 (E = 21), 50 (E = 0).$
 $(1, 2, 3, 5, 6), 50 (E = 21), 50 (E = 0).$
 $(2, x_n)$ is a sequence : (convergent =) bunded.
 $(2, x_n)$ is a sequence : (convergent =) bunded.
 $(2, x_n)$ is a sequence : (convergent =) bunded.
 $(2, x_n)$ is a sequence : (convergent =) bunded.
 $(2, x_n)$ is a sequence : (convergent =) bunded.
 $(2, x_n)$ is a sequence : (convergent =) bunded.
 $(3, x_n)$ is a sequence : (convergent =) bunded.
 $(3, x_n)$ is a sequence : (convergent =) bunded.
 $(3, x_n)$ is a sequence of the sequence show the theoremult
 $(3, x_n)$ is $(3, x_n)$ is $(3, x_n)$ is $(3, x_n)$ is a state of the sequence is the sequence is a new sequence with the demension of $(3, x_n)$ is a state of $(3, x_n)$ is a state

Examples : $-v_{i}\lambda_{i}-v_{i}v_{i}$ as a $\int X_{n} = (-1)^{n}$ Suppose, $j_n = 2n$. Then $X_{2n} = 1$, subsequence 1, 1, 1. Suppose, jn = 2n+1. Then X2n+1=-1 2) $X_{1} = \frac{1}{n} + \sin\left(\frac{\pi n}{2}\right)$ $1 + 1, \frac{1}{2} + 0, \frac{1}{3} - 1, \frac{1}{3} + 0, \frac{1}{5} + 1, \dots$ Suppose, in= 1+4n. Then Xunti=1+1 unti U $u_{n+1} = \frac{1}{2} + \frac{1}{2}$ $s_{in}\left(\frac{(u_{n+1})\pi}{2}\right) = s_{in}\left(\frac{u_{n}\pi}{2} + \frac{\pi}{2}\right) =$ Lin Xunti = 1. Suppose, $j_{n=2n}$. Then $X_{2n} = \frac{1}{2n}$ $\lim_{n \to \infty} X_{2n} = 0$. Similarly Xun+3 -> -1. The Suppose, Xn->e then any subsequence < Xin> satisfies Xin->e. Where LER or l= ±00. Places: (given only for l e IR) Claim: any strictly increasing requerce of natural Nbs, in Satusfies In Zn Proof of claim. Induction J, EIN, SO J, >1 5 prose, $j_n \ge n$. Then $j_{n+1} \ge j_n$. $so j_{n+1} \ge j_n \pm 1 \ge n \pm 1$. Proof of theorem We know that given 200, IN S.T YNON we have [Xn-1]<2. we need to show that $|X_{jn}-l| < \sum for large n$ But y n>N then in > n>N, so |Xin-l < 2 Therefore, Xin -> e 17/2

Coallesy 4 Jospene, Xn > e. Then Xn+1 -> e and
lin Xn+r = e,
$$\forall k \in \mathbb{N}$$
.
(~> 00
Gelleng 2: If a sequence $\forall Xn >$ has 2 subsequences convergent to
fue different invest, then $\langle Xn >$ is divergent.
Example: $Xn = (-1)^n$
I'm Xn+1 = -1 I'm $X_2 = 1$.
Thengone, $\langle Xn >$ diverges.
The Boardon - aceter streams.
Every bounded sequence has a convergent subsequence.
Lemma: Every sequence has a convergent subsequence.
Lemma: Every sequence has a convergent subsequence.
Receive that seat a is concenter of M>N set $|Xn \leq X_n|$
Then the vect A is concenter of M>N set $|Xn \leq X_n > Xn$.
There are 2 cases of a is convenient.
C Case 1: There are injuitely many convinces seases.
C Case 2: There are finitely many convinces seases.
 $i \leq Case 2:$ There are finitely many convinces seases.
 $i \leq Case 3:$ There are finitely many convinces seases.
 $i \leq Case 3:$ There are finitely many convinces seases.
 $i \leq Case 3:$ There are finitely many convinces seases.
 $i \leq Case 3:$ There are finitely many convinces seases.
 $i \leq Case 3:$ is convenient, so $X_{34} \geq X_{2}$.
Then sease j_{1} is convenient, so $X_{34} \geq X_{2}$.
Then sease j_{2} is convenient, so $X_{34} \geq X_{38}$.
Then sease j_{2} is convenient, so $X_{34} \geq X_{38}$.

Et Suppose, m, LM2 < m3 < :... < MN are all convenient sears ... all sears are m, m² m³ mN all reats ast net convenient Coneners Denote j = mN + 1. (put j= 1 if there are not converient secute) Seat j, and all sears to the right of j, are inconvenient The seat is inconvenient =>] jz>j, s.t Xjz>Xj1. je is inconvenient => 3 j3 jue set Xi3 > Xi2 in is inconvenient => I inti > in s.t Xinti > Xin. Thus, the subsequence : < Xin> is increasing 30th November. The (Balzano-Weierstrass) Every wounded sequence has a convergent subsequence. Lemma : Every sequence has a manatane subsequence. Proof of theorem. Let (Xn) be bounded. By lemma it has a monotone subsequence < Xin > This subsequence < Xin > is bounded, so it converges to as supremum (ig a increases) and to its infirmm (ig a decreases) Xn (all carecials in (0,1]) Then that is (0,1] I a subsequence convergent to a. (HW question).

INFINETE GERLES!
Sequences $(a_n 7 : a_1, a_2, a_3, \dots$
deries: $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \dots$
Examples.
(good) $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2$.
$ (horidore) = 0 + 0 + 0 + \dots = (l-1) + (l-1) + (l-1) + \dots = l-l+(-1+l(-1+l)-1) = \dots = l + l-1 + (-1+l) + \dots = l + l-1 + \dots = l + \dots = l + l-1 + \dots = l + \dots = l + l-1 + \dots = l + \dots = l + l-1 + \dots = l + \dots = l$
$= 1 - (1 - 1) - (1 - 1) - \dots = 1 - 0 - 0 - 0 = 1$
deg .
Let N E M. The partial sums of injinite series 2 an
These partial sums form a sequence $\langle SN \rangle_{N=1}^{\infty} = \langle SN \rangle_{N=1}^{2} = \langle \alpha_{1}, \alpha_{1} + \alpha_{2} \rangle$ definition with the station
definition: We say that infinitive series 2 an converges to lER, if
the sequence (SN) N=1 converges to l. N=1
Notazion
Equilater lin SN=1.
N=>00
$\sum a_n = \sum a_n$
def: If the sequence (SN> diverges, we say that I an diverges
Propiertion.
the Ean converges then:
1) The sequence (and converges, and linian = 0.
2) $\sum_{n=k}^{\infty} a_n = a_k + a_{k+1} + a_{e+2} + \dots + \sum_{n=k}^{k \to \infty} 0$
(The tails of convergent series go to 0).

(3) If
$$C \in RR$$
, then $\sum_{n=1}^{\infty} (C \cdot \alpha_n)$ converges and $\sum_{n \geq 1}^{\infty} (C \cdot \alpha_n) =$
 $= C \cdot \sum_{n \geq 1}^{\infty} \alpha_n$ $C\alpha_1 + C\alpha_2 + C\alpha_2 + \dots$
 $(C\alpha_1 + \alpha_n + \alpha_2 + \dots)$
(1) $E_1^{\infty} \sum_{n \geq 1}^{\infty} b_n$ also converges, then $\sum_{n \geq 1}^{\infty} (\alpha_n + b_n)$ or erges, and $\sum_{n \geq 1}^{\infty} (\alpha_n + b_n) = \sum \alpha_n + \sum b_n$.
(2) $\sum_{n \geq 1}^{\infty} (\alpha_n + b_n) = \sum \alpha_n + \sum b_n$.
(3) $\sum_{n \geq 1}^{\infty} (\alpha_n + b_n) = \sum \alpha_n + \sum b_n$.
(4) $\sum_{n \geq 1}^{\infty} \alpha_n = \alpha_1 + \alpha_2 + \alpha_2 + \dots + \alpha_N$
 $\sum_{n \geq 1}^{\infty} (\alpha_n + b_n) = \sum \alpha_n + \sum b_n$.
(4) $\sum_{n \geq 1}^{\infty} \alpha_n = \alpha_1 + \alpha_2 + \alpha_2 + \dots + \alpha_N$
 $\sum_{n \geq 1}^{\infty} \sum_{n \geq 1}^{N-1} \alpha_n = \alpha_1 + \alpha_2 + \alpha_2 + \dots + \alpha_N - 1$.
Then $\alpha_n = \alpha$.
(4) $\sum_{n \geq 1}^{N-1} (C \cdot \alpha_n) = \lim_{n \geq 1}^{N-1} \sum_{n \geq \infty}^{N-1} (C \cdot \alpha_1) - \lim_{N \to \infty} \sum_{n \geq 1}^{N-1} (C \cdot \alpha_1 + C \cdot \alpha_N) =$
 $\sum_{n \geq 1}^{\infty} (C \cdot \alpha_n) = \lim_{N \to \infty} \sum_{n \geq 1}^{N-1} (C \cdot \alpha_1 + C \cdot \alpha_2 + \dots + C \cdot \alpha_N) =$
 $\sum_{n \geq 1}^{N-1} (C \cdot \alpha_n) = \lim_{N \to \infty} \sum_{n \geq 1}^{N-1} (C \cdot \alpha_1 + C \cdot \alpha_2 + \dots + C \cdot \alpha_N) =$
 $\sum_{n \geq 1}^{N-1} (C \cdot \alpha_n) = \lim_{N \to \infty} \sum_{n \geq 1}^{N-1} (C \cdot \alpha_1 + C \cdot \alpha_2 + \dots + C \cdot \alpha_N) =$
 $\sum_{n \geq 1}^{N-1} (C \cdot \alpha_n) = \lim_{N \to \infty} \sum_{n \geq 1}^{N-1} (C \cdot \alpha_1 + C \cdot \alpha_1) = \sum_{n \geq 1}^{N-1} (C \cdot \alpha_1 + C \cdot \alpha_1) =$
 $\sum_{n \geq 1}^{N-1} (C \cdot \alpha_1 + C \cdot \alpha_1) = \sum_{n \geq \infty}^{N-1} (C \cdot \alpha_1 + C \cdot \alpha_1) = \sum_{n \geq 1}^{N-1} (C \cdot \alpha_1 + C \cdot \alpha_1) = \sum_$

$$\begin{cases} \frac{5^{n}}{N^{n}} \frac{1}{N^{n}} \frac{1}{N} \frac{1}{N$$

Therefore, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$ As the porticul sums converge to 1 than the serie converges to 1. Example <u>\$ 2</u>ⁿ 1=1 3+1 We have showed $\frac{1}{1-x}$, |x| < 1 $\frac{2^{n}}{3^{n+1}} < \frac{2^{n}}{3^{n}}$, and $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}} = \sum_{n=1}^{\infty} \frac{(2)^{n}}{3^{n}}$. We know converges (geometric series with $\frac{2}{3}$ (1) Then $\sum \frac{2^n}{\sqrt{n+1}}$ should converge? The (the comparison test). IS ocanebo to and S bo converges, then San also converses and so and so by Corollary: Under the above conductions, if Ean diverges then 5 by diverges. Recall. Suppose < Xn> is an indeasing sequence. Then either is bounded (above) and then it converges to its supremum or it 'it is unbounded and then it diverges to too. Proof of the theorem; Consider partial sums: $A_{N=} \sum_{n=1}^{N} a_n$ and $B_{N} = \sum_{n=1}^{N} b_n$. Then we know that $0 \leq A_N \leq B_N$. We also know a_70^{-1} , $a_{27}a_{17}a_{27}a_{27}a_{17}a_{27}a_{$ increasing. They converge (=> they are bounded. Since is by converges, BN -> Bas = lim BN = sup BN N=20 In particular AN LBN LBOO WN

So the sequence
$$(A_{NJ})$$
 is bounded, so it converges (since it
increases) to supply $A_{NJ} = B_{NJ} = A_{J}$ is bounded and therefore it converges
since upper bound.
Therefore,
 $\sum an converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges and $\sum a_{N} \leq \sum b_{N}$
 $\sum a_{N} converges = \sum a_{N} converges, for an experiments $\sum a_{N} converges = \sum a_{N} converges, and an experiments $\sum a_{N} converges = \sum a_{N} converges, an an experiments $\sum a_{N} converges = \sum a_{N} converges, an an experiments $\sum a_{N} converges, an an experiment and an experiments $\sum a_{N} converges, b_{N} converges, by an experiment and experiment and an experiment and an experiment and an experiment$$$$$$$$$$$$$$$$

Definitive any next
$$\sum_{n=1}^{\infty} a_n$$
 absolutely and solve that
 $\sum_{n=1}^{\infty} a_n$ is conductionally convergent. Since G and some G
Theorem: Ef $\sum_{n=1}^{\infty} (a_n) ($ and solve the energy and the ener

[[6]

We need to prove:
(2) If point then
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$
 converges
(2) If point then $\sum_{n=1}^{\infty} \frac{1}{n!}$ diverges
(2) If point $\sum_{N=1}^{\infty} \sum_{n=1}^{N-1} \frac{1}{n!}$ diverges
IF converges constructed.
IF diverges constructed.
(as a Q): point we know that $\frac{1}{n^p} \ge \frac{1}{n}$, we have
 $\sum_{n=1}^{\infty} \frac{1}{n!} + \sum_{n=1}^{\infty} \frac{1}{n!} +$

$$\frac{N_{\text{bernine}}}{S_{0}} \frac{||_{2}^{\text{bh}}|}{20||_{N=1}^{\infty}} \frac{||_{Q}}{||_{N=1}^{\infty}||_{N=1}^{\infty}} \frac{||_{Q}}{||_{N=1}^{\infty}||_{N=1}^{\infty}} \frac{||_{Q}}{||_{N=1}^{\infty}||_{N=1}^{\infty}} \frac{||_{Q}}{||_{N=1}^{\infty}||_{N$$

Thus, we have gound an upper bound

$$\left(\begin{array}{c} \frac{2}{2^{n}} \left(\frac{1}{2^{n-1}} \right)^{n} \right) \circ g \left(\frac{2}{2^{n-1}} \right), so \left(\frac{2}{2^{n-1}} \right)^{n-1} \text{ is bounded}, \\ \frac{2}{2^{n-1}} \left(\frac{1}{2^{n-1}} \right)^{n} \right) \circ g \left(\frac{2}{2^{n-1}} \right), so \left(\frac{2}{2^{n-1}} \right)^{n-1} \text{ is bounded}, \\ \frac{2}{2^{n-1}} \left(\frac{1}{2^{n-1}} \right)^{n-1} \right) \circ g \left(\frac{2}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} \text{ is bounded}, \\ \frac{2}{2^{n-1}} \left(\frac{1}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} \text{ is bounded}, \\ \frac{2}{2^{n-1}} \left(\frac{1}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} \text{ is bounded}, \\ \frac{2}{2^{n-1}} \left(\frac{1}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} \text{ is bounded}, \\ \frac{2}{2^{n-1}} \left(\frac{1}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} \text{ is bounded}, \\ \frac{2}{2^{n-1}} \left(\frac{1}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n-1}} \right)^{n-1} + \infty, so \left(\frac{2}{2^{n$$

11/2 W/

$$\frac{S(S)}{S(S)} = \frac{2}{N=1} \frac{1}{N^{S}}$$
 is called the Rieman zeta - function

plane
$$\mathcal{G}(s) = 0$$
]

$$\int (z) = \int_{N=1}^{\infty} \frac{1}{N^2} = \frac{11}{6}$$
 Se sabe.

$$G(\operatorname{odd} \operatorname{integer}) = ?$$

 $G(\operatorname{odd} \operatorname{integer}) = ?$
 $G(3) \notin Q$ this is the only thing they know
 $G(3) \notin Q$ this is the only thing they know
 $\operatorname{diverges}(\operatorname{harmonic} \operatorname{series} \operatorname{diverge})$
We know that $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{4} \operatorname{diverges}(\operatorname{harmonic} \operatorname{series} a a, hence
 $\operatorname{herestical} \operatorname{que} \operatorname{size}(a + \frac{1}{2}) + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{4} \operatorname{diverges}(\operatorname{harmonic} \operatorname{que} \operatorname{series} a a, hence
 $\operatorname{herestical} \operatorname{que} \operatorname{size}(a + \frac{1}{2}) + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{4} \operatorname{que} \operatorname{series}(a + \frac{1}{2}) + \frac{1}{4} + \frac$$$

But the series
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots$$
 onverges. entrances diverge).

Why?
Th: (alternating serves test).
Th: (alternating serves test).
Suppose
$$\langle \alpha_n \rangle_{n=0}^{\infty}$$
 is a decreasing sequence, $\alpha_n \ge 0$,
Suppose $\langle \alpha_n \rangle_{n=0}^{\infty}$ is a decreasing sequence, $\alpha_n \ge 0$,
 $\beta_n = 0$ Then $\beta_n = (-1)^n \cdot \alpha_n = \alpha_0 - \alpha_1 + \alpha_2 - \alpha_3 + \dots$ converges.

$$S_{2N+1} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} - \frac{1}{2} -$$

Frees.
(split we sequence of partial suminic
$$(a_{odd})$$
.
Consider 2 sequences of partial suminic
 $S_{2N} = \sum_{n=0}^{2N} (-1)^n a_n = a_0 - a_1 + a_2 - \dots - a_{2N-1} + a_{2N}$
and $S_{2N-1} = \sum_{n=0}^{2M} (-1)^n a_n = a_0 - a_1 + \dots + a_{2N-2} - a_{2N-1}$
(down $(a_{2N-1}) = \sum_{n=0}^{2M} (-1)^n a_n = a_0 - a_1 + \dots + a_{2N-2} - a_{2N-1}$
(down $(a_{2N-1}) = \sum_{n=0}^{2M} (-1)^n (a_n) = a_0 - a_1 + a_1 - \dots - a_{2N-1} + a_{2N} - a_{2N} + a_{2N} - a_{2N} + a_{2N} + a_{2N} + a_{2N} + a_{2N} + a_{2N+2}$.
(Since $a_{2N+2} - a_{2N+1} = (-1)^n (a_n) = a_0 - a_1 + a_1 - \dots - a_{2N-1} + a_{2N} - a_{2N} + a$

Now problem 6(g), HWY implies that < SN> converges, so our si porse lan diverse, pero Secles ac - a, +az-az+... conveges MA Ocollary, the series 1-1++++++ converges conductionally Question: given (an), can we gind out whether S an anverges? 1. IJ an to, veries diverges 2. Suppose, an ≥0 the. Then we can use: (A') limit comparison test. (HWS) (A") Improved comparison test (proved lates). (B) Rario test. } to be discussed (C) Root test. } 3. If not all an are positive, does the series Elan converse? I so, then Ean converges absolutely 4 Ig Elan duverges, then perhaps use can apply alternating series test. 5. Give up. The (Improved compareson test). Suppose, of an Ebn Then : (i) $\sum_{n=0}^{\infty} b_n$ converges $= \sum_{n=0}^{\infty} a_n$ converges. (iii) ¿ den alwerges => ¿ bin diverges Roog: og(i) (skeech og proog). Sen = Sant Sant n=0 Jinte sum Genverges, by comparison test

November 15th ZOIR Improved comparison test. or an i bon Ebon converges => Ean converges Recall: In secondaric series, we have an = x x & R. Ean = Ex converges ypixic1 Idea 1: $IXI = \frac{|\alpha_{n+1}|}{|\alpha_n|} = \frac{|x^{n+1}|}{|x^n|}$ If this expression is <1 then it will be convergent, if not, divergent. Idea 2. $|x| = \sqrt{|x|^2} = \sqrt{|a_1|}$ The The ratio test: Suppose, $\sum_{n=1}^{\infty}$ and is an infinite series and $\lim_{n\to\infty} \frac{|a_n+1|}{|a_n|} = l \in \mathbb{R}$. Then: (i) IS l < 1, then Ean converges (ii) Ig e>1, then Zan diverges (iii) Ig l=1, no conclusion. Proces (i) I know $\lim_{t \to 1} \frac{|ant||}{|an|} = l < 1$ para demostraslo con l < 1'. choose E > 0 s.t l + 2 < 1 (take $E = \frac{1-l}{2}$). extances for queIXI <1, y por Then ZNEIN S. t | antil - e < E tance Ean converge Kn >N - 2 < <u>lantil</u> - 1 < 2 <=> 1-2 < <u>lantil</u> < 1+2=> terningue la nuitroique pris (aurique la nuitroique pris (aurique la nuitroique pris => |an+1| < (l+ 2) |an) 4n>N. Suppose le EIN. Then Lopeura encontras una sequence man grande que se $|a_{N+K}| \leq (l+\epsilon) |a_{N+K-1}| \leq (l+\epsilon)^2 |a_{N+K-2}| \leq (l+\epsilon) |a_{N+K-3}|$ $< ... < (l + 2)^{k-1} | a_{N+1} | = (l + 2)^{k} | a_{N+1} |$ (2+2)

Since
$$\sum_{k=1}^{\infty} (l+s)^{<} \cdot \frac{|\alpha_{N+1}|}{(l+s)} = \frac{|\alpha_{N+1}|}{(l+s)} \cdot \sum_{k=1}^{\infty} (l+s)^{<} \text{ converges}$$
.
(a geometric series with $l+s \leq (1)$.
The improved companion test implies that $\sum |\alpha_{N}|$ converges
and, thus $\sum \alpha_{N}$ absolutely converges. $|\alpha_{N+1}| + 1 \leq |x||$, assume
(iii) choose $\sum \sigma_{N-1} = l + 2 > 1$.
Then $\exists N \in iN$ s.t $l-s > 1$.
 $l = l = 2 + 1$.
 $l = l = N \in iN$ s.t $l = 2 > 1$.
 $l = l = 2 + 1$.
 $l = l = 1 + 1 \leq |z| = 1 \leq |z| = 1$.
 $l = 1 \leq |z| = 1 \leq |z| = 1$.
 $l = 1 \leq |z| = 1 \leq |z| = 1$.
 $l = 1 \leq |z| = 1 \leq |z| = 1$.
 $l = 1 \leq |z| = 1 \leq |z| = 1$.
 $l = 1 \leq |z| = 1 \leq |z| = 1$.
 $l = 1 \leq |z| = 1 \leq |z| = 1$.
 $l = 1 \leq |z| = 1 \leq |z| = 1$.
 $l =$

Suppose
$$\lim_{n \to \infty} \sqrt{|a_n|} = e \in \mathbb{R}$$
 then:
(i) If $e \in I$, $\sum_{n \to \infty} a_n$ onverges absolutely.
(ii) If $e \in I$, then $\sum_{n \to \infty} a_n$ diverges
(iii) If $e = I$, then $\sum_{n \to \infty} a_n$ diverges
(iii) If $e = I$, then $\sum_{n \to \infty} a_n$ diverges
Applications — to power peries of the form $\sum_{n \to \infty} b_n x^n$.
Example: definition. For $x \in \mathbb{R}$ we define $exp(x) = \sum_{n \to \infty} \frac{x^n}{n!} =$
 $= 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$
Proposition. $\forall x \in \mathbb{R}$ this series onverges.

Bod Use the ratio test.
$$a_n = \frac{x^n}{n!}$$
, so $\left[\frac{a_{n+1}}{|a_n|} + \frac{x^{n+1}}{|a_n|}\right]$

$$= \frac{x^{n+1}}{x^n} \cdot \frac{n!}{(n+1)!} = \frac{x}{n+1} \rightarrow 0$$
 as $n \rightarrow c^n$ is $(1-n)$
and $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ converges by the name test.
We wave that exploring series:
 $(a_0 + a_1 + a_2 + \cdots)$ $(b_0 + b_1 + b_2 + \cdots) = a_0 b_0 + a_0 b_1 + a_0$.
 $(a_0 + a_1 + a_2 + \cdots)$ $(b_0 + b_1 + b_2 + \cdots) = a_0 b_0 + a_0 b_1 + a_0$.
 $(a_0 + a_1 + a_2 + \cdots)$ $(b_0 + b_1 + b_2 + \cdots) = a_0 b_0 + a_0 b_1 + a_0$.
 $(a_0 + a_1 + a_2 + \cdots)$ $(b_0 + b_1 + b_2 + \cdots) = a_0 b_0 + a_0 b_1 + a_0$.
 $(a_0 + a_1 + a_2 + \cdots)$ $(b_0 + b_1 + b_2 + \cdots) = a_0 b_0 + a_0 b_1 + a_0$.
 $(a_0 + a_1 + a_2 + \cdots)$ $(b_0 + b_1 + b_2 + \cdots) = a_0 b_0 + a_0 b_1 + a_0$.
 $(a_0 + a_1 + a_2 + a_0 b_1 + a_0 b_0 + a_0 + a_0 b_0 + a_0 b_0 + a_0 b_0 + a_0$

$$T_{n} \left(\text{couch } products \right)$$

$$F_{n} \left(\text{couch } products \right)$$

$$F_{n} \left(\text{couch } products \right)$$

$$F_{n} \left(\sum_{n=0}^{\infty} a_{n} \text{ and } \sum_{n=0}^{\infty} b_{n} \right) \text{ Onverge absolutely, then}$$

$$E_{n} \left(\sum_{n=0}^{\infty} a_{n} \right) \left(\sum_{n=0}^{\infty} b_{n} \right) = \sum_{n=0}^{\infty} a_{n} \left(\left(k \right) \right) \text{ bolds}$$

$$\left(\sum_{n=0}^{\infty} a_{n} \right) \left(\sum_{n=0}^{\infty} b_{n} \right) = \sum_{n=0}^{\infty} c_{n}$$

$$F_{n} \left(\sum_{n=0}^{\infty} a_{n} \right) \left(\sum_{n=0}^{\infty} b_{n} \right) = e_{n} proved \right)$$

$$e_{n} \left(\sum_{n=0}^{\infty} a_{n} \right) \left(\sum_{n=0}^{\infty} b_{n} \right) = e_{n} \left(\sum_{n=0}^{\infty} b_{n} \right) \left(\sum_{k=0}^{\infty} b_{n} \right) \left(\sum_{k=0}^{\infty}$$

$$e \times p(y) = \sum_{n=0}^{\infty} \frac{y}{n!}, \quad b_n = \frac{y}{n!}$$

$$C_n = \sum_{k=0}^{\infty} a_k \cdot b_{n-k} = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \quad \frac{y^{n-k}}{(n-k)!}, \quad b_n$$

$$e \times p(x) \cdot e \times p(y) = \sum_{k=0}^{\infty} C_n = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \quad \frac{y^{n-k}}{(n-k)!} = e \times p(y+x)$$

$$h = 0 \quad k = 0 \quad k = 0 \quad k!$$

Example: 0 $j: \mathbb{R} \longrightarrow \mathbb{R}$ Degried by: $j(x) = \begin{cases} y - x & y \\ 2x & y \\ 1 & y \\ x = 1 \end{cases}$

$$\frac{3}{3} - 0$$

$$\frac{3}{2} - 0$$

b) Inin
$$\int |x| = lin \int |y| = l \quad y$$
 $\forall z > 0 \quad \exists z > 0 \quad s \neq y$
 $x \rightarrow b$ $x \uparrow b$ $x \uparrow b$
 $x \in (b - \delta, b)$ then we have $|y|(x) - l \mid z \geq z$
c) Suppose $c \in (a, b)$ and f is defined on (a, b) , except
presides $c (i.e. f)$ is defined on $(a, c) \cup (c, b)$. We say
that this $f(x) = l \quad y \quad \lim_{x \rightarrow c^{-1}} f(x) = l \quad i^{-1}$
 $f(x) = l \quad y \quad \lim_{x \rightarrow c^{-1}} f(x) = l \quad i^{-1}$
Equivalence definition $(take \delta = min (\delta_1, \delta_2))$
 $\forall z > 0 \quad \exists \beta > c \quad s.t \quad x \in (c, c+S) \quad oc \quad x \in (c - \delta, c)$
 $= > |f(x) - l| < z$
 $def' \quad lin \quad f(x) = l \quad y \quad \forall z > c \quad \exists \beta > 0 \quad s.t$
 $c < |x - c| < \delta = s \quad |f(x) - l| < z$
 $f(x) = l + x^2 \cos(\frac{1}{2}) \quad \exists bc \quad x \neq 0$
 $f(x) = l + x^2 \cos(\frac{1}{2}) \quad \exists bc \quad x \neq 0$
 $def' \quad lin \quad f(x) = l \quad x^2 \cos(\frac{1}{2}) \quad \exists bc \quad x \neq 0$
 $f(x) = l + x^2 \cos(\frac{1}{2}) \quad \exists bc \quad x \neq 0$
 $f(x) = l + x^2 \cos(\frac{1}{2}) \quad \exists bc \quad x \neq 0$
 $def' \quad Given \quad z > 0 \quad dz ned \quad b \quad gind : \delta > 0 \quad s.t \quad o < |x - c| < \delta$
 $f(x) = l + x^2 \cos(\frac{1}{2}) < z$
 $f(x) = l + x^2 \cos(\frac{1}{2}) \quad \exists bc \quad x \neq 0$
 $f(x) = l + x^2 \cos(\frac{1}{2}) \quad \forall z > c \quad z \in [x - c] < \delta$
 $f(x) = l + x^2 \cos(\frac{1}{2}) \quad \forall z = l \quad z \in [x - c] < \delta$
 $f(x) = l + x^2 \cos(\frac{1}{2}) \quad \forall z = l \quad z \in [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x) = l \quad z = [x - c] < \delta$
 $f(x$

We notice that
$$|x^{2} \cos\left(\frac{1}{x}\right)| \leq |x^{2}| = x^{2}$$

Therefore, $y = x^{2} \leq \varepsilon$, then $|x^{2} \cos\left(\frac{1}{x}\right)| \leq \varepsilon$.
However, $x^{2} \leq \varepsilon \leq |x| < |\varepsilon|$. Take $\delta = \sqrt{\varepsilon}$. Then
 $0 < |x| < \delta = \sqrt{\varepsilon} = -x^{2} \langle s = -z |x^{2} \cos(\frac{1}{x})| \leq x^{2} \langle z = -z |x^{2} \rangle$
Thus, $\lim_{x \to 0^{-1}} \int |x| = z - x^{2} \langle z = -z |x^{2} |x^{2} \rangle$
Claim $\lim_{x \to 1^{-1}} |x| = z - x^{2} \langle z = -z |x^{2} |x^{2} \rangle$
Claim $\lim_{x \to 1^{-1}} |x| = z - x^{2} \langle z = -z |x^{2} |x^{2} \rangle$
Claim $\lim_{x \to 1^{-1}} |x| \leq z - z + z^{2} |x| = |z| - |z| < z - |z| < |z| <$

Claim sim
$$J(x) = 2$$

 $x \to z^{-1}$
Claim $\forall c \in (0,1)$
 $\lim_{x \to \infty} J(x) = 0$.
Prove size, since need to give $\delta > 0$ it $oc(|x-c| \leq \delta$
Prove $\delta = 0$.
Pro

Special cases.

(1)
$$S = (\alpha, b)$$
, $C \in (\alpha, b)$ Then J is continued at C JJ
 $\lim_{x \to c} J(x) = J(c)$
(2) $S = [\alpha, b]$ P is continued on S means:

(i) for any
$$C \in (a, b)$$

lim $f(x) = f(c)$
(ii) lim $f(x) = f(a)$ and lim $f(x) = f(b)$
 $x \to a^+$
 $x \to b^-$

(3)
$$g: S \longrightarrow \mathbb{R}$$
, $c \in S$, g is continuous
at $c \in g$ wherever $\langle Xn \rangle$ is a sequence with $Xn \rightarrow c$, $Xn \in S$
we have $(inn f(Xn) = f(c) \rightarrow (inn f(Xn) = f(c))$
 $f(x) = f(x) = f(c) \rightarrow (xn \in S, xn \rightarrow c)$
 $f(x) = f(x) = f(c)$
 $f(x) = f(x) = f(c)$
 $f(x) = f(c) \rightarrow (xn \in S, xn \rightarrow c)$
 $f(x) = f(x) = f(c)$
 $f(x) = f(c) = f(c) = f(c) = f(c)$
 $f(x) = f(c) = f(c) = f(c) = f(c) = f(c)$
 $f(x) = f(c) = f(c) = f(c) = f(c) = f(c) = f(c) = f(c)$
 $f(x) = f(c) = f(c)$

However, since
$$\beta(x_n) - \beta(c) \ge \xi$$
, this implies $\beta(x_n) \not\rightarrow \beta(c)$.
Thus, we have contracticuted a sequence $\langle x_n \rangle$ with $x_n \neq c$,
but $\beta(x_n) \not\rightarrow \beta(c)$
Concaduction shows that β is continuous
 $S_1 \times n \not\rightarrow c$ entries β to escape β .
Example 1 (yet again)
 $\beta(x) = \begin{cases} 2x , x < 1 \\ 1 , x = 1 \end{cases}$
 $\lim_{n \to 1^+} \beta(x) = ?$
 $x_{-24} - (x_1 + x_{-2}) + (x_{-2} +$

2)
$$\lim_{X \to c} \left[\int (x) \cdot S(x) \right] = AB$$

3) IJ $B \neq 0$ and $S(x) \neq 0$. for $oq(X - c] \leq S$ then:
 $\lim_{X \to c} \frac{f(x)}{S(x)} = \frac{A}{B}$.
Pray of a) Suppose, $X_{n \to c}$.
Pray of a) Suppose, $X_{n \to c}$.
Then $f(x_n) \Rightarrow A$ and $S(x_n) \rightarrow B$ (by the Thirm of Junctions and
Sequences.
Therefore, $(f + g) \cdot (x_n) = \int (x_n) + g(x_n) \rightarrow A + B$.
(sum tote f_0 is equences) Applying the same thirm againg, we
deduce that $\lim_{X \to c} f(x) + g(x) = A + B$.
(z) (3) Similar prof.
Then $(samaduren + h - m)$ for forcement).
Suppose, $\lim_{X \to c} f(x) = \lim_{X \to c} h(x) = L$ and
 $f(x) \leq g(x) \leq h(x)$.
 $\forall x with | X - c| \leq S$ for some $S > 0$
Then $\lim_{X \to c} g(x) = L$.
 $x \to c$
Then $\int (x_n) \leq g(x_n) \leq h(x_n)$
 \downarrow \downarrow
L
So $g(x_n) \rightarrow L$ and thus
thus $\lim_{X \to c} g(x) = L$.
(Kencelly all these Thirm were for one-sided limits as well).

Example
$$J(x) = \sqrt{x} \cdot \cos\left(\frac{1}{x}\right) \times 20^{\circ}$$

(Lavin Ring (h) = 0
 $x \cdot 20^{\circ}$
(Lavin Ving = 0 (HW F),
the sonawich them implies $x \cdot 70^{\circ}$ (Ming (h)) = 0.
Which functions are contained?
(J) $J(x) = x$ (Lake $S = E$).
(Lavin Suppose, J, $g \cdot 5 \rightarrow 1R$ are containeds at CES. Then
 $J \cdot 5$, SS are contained at C as well as $\frac{1}{3}$, assuming
 $J(c) \neq c$.
(Reall Suppose, Xn $\in S$, $X_n \rightarrow c$. Then $J(x_n) \rightarrow J(c)$, $S(x_n) \rightarrow S(c)$
therefore, $J(x_n) \cdot g(x_n) \rightarrow g(c) \cdot g(c)$, so $J \cdot S$ is continuous at c.
 $J \cdot S = and \frac{1}{8}$ are primed sinually.
(Conflictly: all polynomials are contained and R. All functions
 $P(q)$ where P and Q are polynomials are contained at g(c).
Then $(g \circ g)(x) = f(g(n))$ is continued at C.
Proof Suppose, S is continued at C.
Proof Suppose, $x_n = c$ Then $\lim_{n \to \infty} g'(x_n) = B(c)$.
 $\sum_{n \to \infty} g'(x_n) = f(g(n))$ is continued at C.
Proof Suppose, $\lim_{n \to \infty} x_n = c$ Then $\lim_{n \to \infty} g'(x_n) = B(c)$.
Since g is continued at 0 .
Since g is continued at $g(c)$, we haveling $(g(x_n) = \frac{1}{2}(g(c)))$

Thus, (Jog) (xn) -> (gog) (c). Therefore, g o g is continuous at C. November 24th 2018 $\int is continuous if X_n -> X => \lim_{n \to \infty} \int (X_n) = \int (X)$ i.e. p(lim Xn) = lim p(Xn). & "respects' linits We have defined $exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ Two results: $\forall x, exp(x) \ge 1 + x$ (RWG) also $exp(x+y) = exp(x) \cdot exp(y)$. The exp is continuous on IR. Proof Step 1) exp is continuous at a Picol Suppose -1 4 × 41 then: exp(x) > 1+x. thus, $exp(-x) \ge 1-x$, and exp(x) exp(-x) = exp(c)=1, So $exp(x) = \frac{1}{exp(-x)} \leq \frac{1}{1-x}$ Thus for -1 < X < 1. $\begin{array}{c} | \tau \times \leq e \times p(x) \leq \frac{1}{1 - x} \\ | x - > 0 \\ v_{i} \\ \end{array}$ By sandwich theorem, lim exp(x)=1=exp(c) X-70 So exp is continuous at O Step Z Suppose, c e iR Suppose, <Xn> is a sequence, Xn->c. Thus, Xn-c ->0. Therefore $e_{xP}(x_n) = e_{xP}((x_n-c)+c) = e_{xP}(x_n-c) \cdot e_{xP}(c)$

$$exp(x_{n}c_{n}) = exp(c_{n}) - perp(c_{n}) .$$

$$f(exp(c_{n}c_{n})) = exp(c_{n}c_{n}) = exp(c_{n}c_{n}$$

$$\begin{split} g([0, +\infty)) &= [0, +\infty] & \text{is constant } (\int a & \text{act defined on a} \\ g(\text{inter measured}) & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ g(x) &= \frac{1}{x} \\ \hline \\ \\ g(x) &= \frac{1}{x}$$

Equivalence of Belence decisions
Suppose, Chois a sequence and the [a, b] the There take
is a subsequence,
$$y_n$$
, $s \neq y_n \rightarrow s \in [a, b]$ as normal.
Notice reft 2018
Let a set $S \subset R$ is called sequence $(x_{j,n})$, $s \neq x_{j,n} \rightarrow x \in B$
the have proved the $[a, b]$ is sequentially connect.
Theorem 1: If $g \cdot [a, b] \rightarrow R$ is coordinates, then $g ([a, b])$ is
bounded.
Theorem 2: $f ([a, b])$ is introduced above, say then $\neg claim$.
We have $proved$ the $[a, b]$ is $f(x_{n,n}) \leq f(x) \leq g(x_{n,n}) \forall x \in [a, b]$
frequence. $f ([a, b])$ is introduced above, say then $\neg claim$.
Theorem 2: $f ([a, b])$ is introduced above, say then $\neg claim$.
Theorem 3: $[a, b] = r = R + g(n) > H - In particular, $H = n \in \mathbb{N}$
is not an objective set $f(n) = r = g(n) > H$. In particular, $H = n \in \mathbb{N}$
is not an objective set $X = x_n \in [a, b]$ set $g(x_n) \ge n$.
 $a = part$
Theorem 1: $(n, n) \longrightarrow rise as n > \infty$
 $e = part = f(a, b) = r = particular doesn't bounded theorem
 $e = part = f(a, b) = r = particular doesn't bounded theorem
 $e = part = f(a, b) = r = particular doesn't bounded theorem
Contactures 1: $(n, n) \longrightarrow rise as n > \infty$
 $f(a, b) = particular doesn't bounded f([a, b]) = core f([m]) =$$$$$

Cocollary, Suppose, g is continuious at c e (a, b) and g(c) />// Then 3 570 s. τ × e(c-5, c+ δ)=> β(x)/>(λ Proof of Th-3 If h=g(a), or h=g(b) there is nothing to prove (take cha or c=b). Assume S(a) < X < S(b) Put $5 = \{x \in [a, b], g(x) < \lambda\}$ (una) (una) Then S is bounded, also, a G S, so S \$\$ \$ PUE C := SUPS. claim g(c) = > P1009: i) Assume $f(c) < \lambda$. Then by the conclusing, $\exists \delta > 0$ set $x \in (c - \delta, c + \delta)$ => f(x) < > . gla) ch C-d c (c+d b $\left(C + \frac{\delta}{2} \right) < \lambda$ Thus, $C + \frac{\delta}{2} \in S$, so Cisnot In particular an upper bound of S Contraduction $g(c) > \lambda$ Then $\exists \delta > 0 \quad c.t \quad x \in (c-\delta, c+\delta) => f(\alpha) > \lambda$ 2) Assume

> + c

This means
$$(c-\delta, c+\delta) \wedge S = \delta$$
 and since
 C is an upper bound of S , $c-\delta$ is also an upper sound of S ,
so C is nor the smaller upper bound.
Thus, $g(c) = \lambda$ [D]
Suppose, $a > 0$. Then $a^{1/2} = 9[a!] = (Pa)^{p}$
How we us define $a^{n}, g \times e \ a^{n}$.
 $M_{0} \in B$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $M_{0} \in B$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $M_{0} \in B$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $H_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $H_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $H_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $H_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $H_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $H_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $H_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $H_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\forall x$.
 $I_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\exists (I \times e \land c \times f(\alpha) = \gamma$.
 $I_{0} = 0$ $\forall x = 0$
 $exp(x) = 1 + \frac{x}{2} + \frac{x^{3}}{31} + \cdots$.
 $I_{0} = 0$ $i \times 1$ $j \times 20$
 $exp(x) = 1$ $j \times 20$.

$$\begin{aligned} & \sum_{x \in Q} (x, Q) = \sum_{x \in Q} (x) = \frac{1}{e_{x,Q}(x)} = e_{x,Q}(x) \\ & = e_{x,Q}(x) > 0 \quad \forall x \in \{R\}. \\ & \sum_{x \in Q}(x) > 0 \quad \forall x \in \{R\}. \\ & \sum_{x \in Q}(x) > 0 \quad \forall x \in \{R\}. \\ & \sum_{x \in Q}(x) > 0 \quad \forall x \in \{R\}. \\ & \sum_{x \in Q}(x) = e_{x,Q}(x) = e_{x,Q}(x) > 1, p \quad e_{x,Q}(x') > e_{x,Q}(x) \\ & = e_{x,Q}(x) = e_{x,Q}(x) = e_{x,Q}(x) > 1, p \quad e_{x,Q}(x') > e_{x,Q}(x) \\ & \exists e_{x,Q}(x) = e_{x,Q}(x) = e_{x,Q}(x) > 1, p \quad e_{x,Q}(x') > e_{x,Q}(x) \\ & \exists e_{x,Q}(x) = e_{$$

Step 2 The stope of
$$y = g(k)$$
 at $x = c$.

$$g(c+k) = -\frac{1}{2} \frac{1}{k}$$
The wave of $L' = \frac{1}{2} \frac{(c+k) - g(c)}{(c+k) - c} = \frac{1}{2} \frac{(c+k) - g(c)}{k} = \frac{1}{2} \frac{1}{(x) - f(c)}$
Have $\frac{1}{2} \frac{1}{k} \frac$

R

December 6th 2018

.

In degree scale at c, y in
$$1(c+h) - g(c)$$
 in $g(h) - g(c)$ yeach
J wat to brow that this means that g is will approximate
by a price given on p graph with statight the integer of $c = 0$
 $f(c+h) - g(c)$ integer of the statight the integer of $c = 0$
 $f(c+h) - g(c)$ integer of the statight the integer of $c = 0$
 $f(c+h) - g(c)$ integer of the statight the integer of $c = 0$
 $f(c+h) - g(c)$ integer of the statight the integer of $c = 0$
 $f(c+h) - g(c)$ integer of the statight the integer of $c = 0$ of $f(c+h) = f(c) + m \cdot h$
 $f(c) + m \cdot h + g(h) h \oplus f(c)$ is a spectrum the $g(h) h \oplus f(c)$ integer of $f(c+h) = f(c) + m \cdot h + g(h) h \oplus f(c)$
 $f(c) + m \cdot h + g(h) h \oplus f(c)$ is the integer of $g(c+h) = f(c) + m \cdot h + g(h) h \oplus f(c)$
 $f(h) h \oplus f(c) = f(c) + m \cdot h + g(h) h \oplus f(c)$ integer of $g(c+h) = f(c) + m \cdot h + g(h) h \oplus f(c)$
 $f(h) h \oplus f(c) = f(c) + m \cdot h + g(h) h \oplus f(c)$ is the integer of $g(c+h) = f(c) + m \cdot h + g(h) h \oplus f(c)$
 $f(h) h \oplus f(c) = f(c) + m \cdot h + g(h) h \oplus f(c)$ is the integer of $g(c+h) - g(c) + m \cdot h + g(h) h \oplus f(c)$
 $f(h) h \oplus f(c) = f(c) + h \oplus f(c)$

.

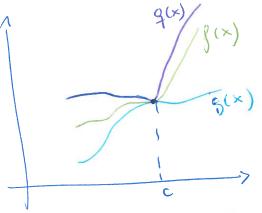
1. If f is defensioned at c, then f is antimuous at c.
Proof Suppose of is defensioned at c.
Then tim
$$f(k) = \lim_{k \to 0} f(c+h) = \lim_{h \to 0} (f(c) + mh + R(h), h) = f(c),$$

where
So f is contributed at c.
Then:
Suppose of and $f(r) = f'(c) + g'(c)$ (sum rule).
So for is grap, and $f(r) = f'(r) + g'(c)$ (sum rule).
So is of row and $f(r) = f'(r) + g'(c)$ (sum rule).
So is of row and $f(r) = f'(r) + g'(c)$ (sum rule).
So is of row and $f(r) = f'(r) + g'(c)$ (sum rule).
Suppose $f(r) = and (f(r))' = f'(r) + g'(c)$ (sum rule).
Suppose $f(r) = and (f(r))' = f'(r) + g'(c)$ (sum rule).
Suppose $f(r) = and (f(r))' = f'(r) + g'(r) + f'(r) + f'($

C

$$\frac{1}{\left(S_{1},S_{2},\ldots,S_{n}\right)^{\prime}} = \int_{0}^{\prime} \int_{2} \ldots \int_{n} t \int_{n}$$

Th: (sandwich Th-m).



Suppose, $g(x) \subseteq f(x) \subseteq f(x)$ $\forall x$ in a neighbourhood of c.

and

$$g(c) = g(c) = L$$
.
 $g'(c) = g'(c) = M$.
Then g is differentiable at c , and $g'(cc) = M$.
We have
 $L = g(c) \leq g(c) \leq g(c) = L$.
 $g(c) = L$. Therefore, $g(c+h) - g(c) \leq g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h}$. Then:
 $g(c+h) - g(c) \leq g(c+h) - g(c) \leq g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) \leq g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) \leq g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) \leq g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) \leq g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) \leq g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) \leq g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} \leq g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c)$
 $\frac{(ase(1) + h)o}{h} = g(c+h) - g(c) = g(c+h) - g(c) = g(c+h) -$

Thus, by the sandwich Theorem for the linics of Junctions, (im f(c+h)-f(c)

$$\begin{aligned} \cos \varepsilon z & h \ge 0 \text{ then:} \\ q \frac{(crh) - q(c)}{h} &\leq \frac{q(crh) - f(c)}{h} &\leq \frac{q(crh) - g(c)}{h - o^{-1}} \\ & h = o^{-1} & h = o^{-1} & h = 0 \\ \hline$$

Therefore,
$$g \circ g$$
 is deference on c and $(g \circ g)'(c) =$
= $j'(g(c)) \cdot g'(c)$.

$$E_{xamples}$$

$$() (x^{n})' = (x \cdot x \cdots x) = n \in \mathbb{N}$$

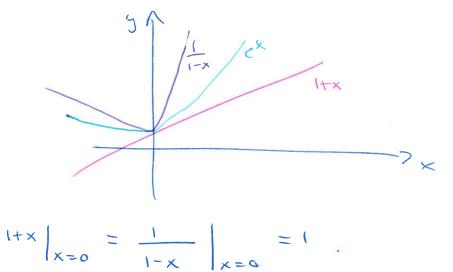
$$= 1 \cdot x \cdot x \cdot x \cdot x + 1 \cdot x \cdots x + 1 \cdot x \cdots x = n \cdot x^{n-1}$$

$$(n-1) \qquad n-1$$

2)
$$f(x) = exp(x) = e^{x}$$

Step 1 $c=0$

for 1×1 < 1



$$\frac{1}{(1+x)'} = \frac{1}{x=0} = \frac{1}{x=0}$$

$$\frac{1}{(1-x)'} = \frac{1}{x=0} = \frac{1}{(1-x)} = \frac{1}{x=0} = \frac{1}{x=0}$$

By the sandwich theorem for decuation,

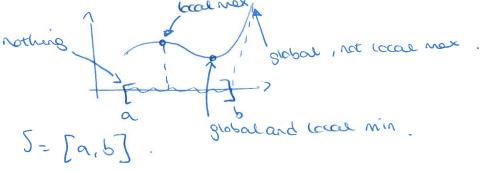
$$\frac{d(e^{\times})}{d\times}\Big|_{X=0} = 1$$

Step 2:

$$\frac{d}{dx} \begin{bmatrix} e^{x} \\ x=c & h>0 \end{bmatrix} \stackrel{e^{c+h}-c}{h} = \lim_{h \to 0} \frac{e^{e-h}-e^{c}}{h} = \lim_{h \to 0} \frac{e^{e-h}-e^{c}}{h} = e^{c} \cdot (\frac{1}{dx} \cdot e^{x}) = e^{c} \cdot (\frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{x}} = e^{c} \cdot (\frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{x}} = e^{c} \cdot (\frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{x}} - \frac{1}{e^{c}} - \frac{1}{e^{x}} - \frac{1}{e^{c}} - \frac{1}{e^$$

Example y= ln x (=> x=e) g x -> y a=x b= ln x.

Suppose ea = b, so a = 1nb. Then $\frac{d \left[\ln x \right]}{dx} = \frac{1}{x=b} = \frac{1}{\sqrt{e^2}} = \frac{1}{b}$ Therefore, [In X] = 1 P_{rop} : $g(x) = x^{n}$, $\forall n \in \mathbb{R}$ is differentiable on $q \times \in \mathbb{R}$, X > 0and $(x^n) = n \cdot x^{n-1}$ Picos for x >0. write $x = e^{inx}$, so $x^n = e^{n \ln x}$, so $(x^n)' = \left[e^{n \ln x}\right]^{-1}$ $= e^{n \ln x} \cdot \left[n \ln x \right] = x^{n} \cdot n \cdot \frac{1}{x} = n \cdot x^{n-1} \quad \text{Rel}$ chain role. Careful: VX is defined por X20. but is differentiable for XX. deg we say that a function g: S -> IR has a global maximum (global minimum) at $c \in S$, $y \in \beta(c) \ge \beta(x) \quad \forall x \in S$ $(f(c) \leq f(x))$ J: 5-7 R has a local meximum at ce Sig 35>0 Recal minimum des s.t. (i) (c-S, c+S) c S. (iii) $\forall x \in (c-S, c+S)$ we have $g(x) \leq g(c)$ ($g(x) \geq g(cs)$) Extremum = maximum or minimum



There is Suppose , c is a load extremum and f is differentiable
at c, then
$$f'(c) = 0$$
.
Press: Suppose, c is a load intrimum, i.e. $f(x) \ge f(c)$.
 $\forall x \in (-5, c+5)$
Then: $f'(c) = \binom{n}{(n-0)} \cdot \binom{f(c+1)-f(c)}{n} = \binom{n}{(n-0)} \cdot \binom{f(c+1)-f(c)}{n}$
 $f(c+1)-f(c) = \binom{n}{(n-0)} \cdot \binom{f(c+1)-f(c)}{n} \ge 0$.
If $h \in (c,5)$, we have $f(c+1)-f(c) \ge 0$.
 $f(c) \le 0$.
 $f(c) \le 0$.
 $f(c) \le 0$.
 $f(c) \ge 0$.
 $f($

Then,
$$\exists \zeta \in (\alpha, b)$$
 s. $f'(\zeta) = \frac{f(b) - f(\alpha)}{b - \alpha}$
 $f(\zeta) \in of \quad L' = slope + j L$.
 $f(\alpha) = \frac{f(\alpha) - f(\alpha)}{b - \alpha}$ and $g(x) = f(x) - Mx$.
 $f(\alpha) = \frac{f(\alpha) - f(\alpha)}{b - \alpha}$ and $g(x) = f(x) - Mx$.
Then, $g(\alpha) = \frac{f(\alpha) - (\frac{f(\alpha)}{b - \alpha})}{b - \alpha}$, $\alpha = \frac{f(\alpha) - (b - \alpha) - \alpha f(b) + \alpha f(\alpha)}{b - \alpha} = \frac{f(\alpha) - (b - \alpha) - \alpha f(b)}{b - \alpha}$
 $= \frac{f(\alpha) - (b - \alpha) - \alpha f(b)}{b - \alpha}$, $\beta = \frac{f(\alpha) - b f(\alpha) + b f(\alpha)}{b - \alpha} = \frac{f(\alpha) - \alpha f(b)}{b - \alpha}$
 $= \frac{f(\alpha) - \alpha f(b)}{b - \alpha}$, $\beta = \frac{f(\alpha) - b f(\alpha) - g(\alpha)}{b - \alpha}$, $\beta = \frac{f(\alpha) - b f(\alpha) + b f(\alpha)}{b - \alpha}$.
 $= \frac{f(\alpha) - \alpha f(b)}{b - \alpha}$, $\beta = \frac{f(\alpha) - \alpha f(b) - \alpha - b f(\alpha) + b f(\alpha)}{b - \alpha}$.
 $= \frac{f(\alpha) - \alpha f(b)}{b - \alpha}$, $\beta = \frac{f(\alpha) - \alpha f(b) - \alpha - b f(\alpha) + b f(\alpha)}{b - \alpha}$.
 $= \frac{f(\alpha) - \alpha f(b)}{b - \alpha}$, $\beta = \frac{f(\alpha) - \alpha f(b) - \alpha - b f(\alpha) + b f(\alpha)}{b - \alpha}$.
 $= \frac{f(\alpha) - \alpha f(b)}{b - \alpha}$, $\beta = \frac{f(\alpha) - \alpha f(b) - \alpha - b f(\alpha) + b f(\alpha)}{b - \alpha}$.
Thus, $g(\alpha) = g(b)$ so by the Rolle's theorem $\exists c \in (\alpha, b)$.
Thus, $g(\alpha) = g(b)$ so by the Rolle's theorem $\exists c \in (\alpha, b)$.
 $f(\alpha) = \frac{f(\alpha, b] - \alpha f(b)}{b - \alpha}$.
 $= \frac{f(\alpha, b) - \alpha f(b)}{b - \alpha}$.
 $f(\alpha) = \frac{f(\alpha, b) - \alpha f(b)}{b - \alpha}$.
 $f(x) = 0$, $\forall x \in (\alpha, b)$ then $f(\alpha, b)$ is struct $f(\alpha)$.
 $f(x) = \frac{f(x) - x}{b - \alpha}$

(2211)
$$\int_{1}^{1} (x) = 0$$
 $\forall x \in (\alpha, b)$
 $\Rightarrow \int_{1}^{1} (x) = 0$ $\forall x \in (\alpha, b)$
Then, the mean value theorem implies that $\exists c \in (x_{1}, x_{2})$ st
 $\int_{1}^{1} (c) = \frac{j(x_{2}) - j(x_{1})}{x_{2} - x_{1}} = m$
Then.
(i) $m \ge 0 \Rightarrow j(x_{1}) - j(x_{1}) < 0$.
(ii) $m \ge 0 \Rightarrow j(x_{2}) - j(x_{1}) = 0$
(iii) $m \ge 0 \Rightarrow j(x_{2}) - j(x_{1}) = 0$.
(iv) $m \ge 0 \Rightarrow j(x_{2}) - j(x_{1}) = 0$.
(iv) $m \ge 0 \Rightarrow j(x_{2}) - j(x_{1}) = 0$.
(iv) $m \ge 0 \Rightarrow j(x_{2}) - j(x_{1}) = 0$.
(iv) $m \ge 0 \Rightarrow j(x_{2}) - j(x_{1}) = 0$.
(iv) $m \ge 0 \Rightarrow j(x_{2}) - j(x_{1}) = 0$.
(iv) $1 \Rightarrow 0 \Rightarrow x \neq 1^{1}(x) \ge 0$ $\forall x \in (c - \delta, c)$, and
 $\int_{1}^{1} (x) < 0 \forall x \in (c, c + \delta)$, then c is a local max.
(iv) $1 \Rightarrow 5 > c \Rightarrow t \int_{1}^{1} (x_{1}) < 0 \forall x \in (c - \delta, c) + j(x_{1}) > 0$
 $\forall x \in (c, c + \delta)$. Then c is a vecase maximum
(iv) $1 \Rightarrow 5 > c \Rightarrow t \int_{1}^{1} (x_{1}) < 0 \Rightarrow x \in [c - \delta, c]$.
(iv) $\int_{1}^{1} (x) > 0 \Rightarrow a (c - \delta, c) = > j$ is increasing on $[c, c - \delta]$.
(iv) $\int_{1}^{1} (x) \ge a = (c, c + \delta) = > j$ is decreasing on $[c, c - \delta]$.
Thus, c is a vecae next [M].
Thus, c is a vecae next [M].
Thus, c is a vecae next [M].
(iv) $\int_{1}^{1} (x) = (f^{-1})^{1} (x)$ exists and is continued, and
 $c \in (a, b)$ is a cuback prove $(f_{1}(c) = 0)$.

(i) Suppose, g"(c) >0, then cis a load minimum (ii) J" (c) <0, then c is a local meximum (i) $\int f''(c) > 0$, $\int f''(c) = 0$ continuous = 7 $\exists S > 0$ s.t. $\int f''(x) > 0$ Pros ∀ × € (c-8, c+8) theorem the statement to the previous This reduces ENF. 2019 9