1201 Algebra 1 Notes

Based on the 2009 autumn lectures by Prof F E A Johnson

The Author has made every effort to copy down all the content on the board during lectures. The Author accepts no responsibility what so ever for mistakes on the notes or changes to the syllabus for the current year. The Author highly recommends that reader attends all lectures, making his/her own notes and to use this document as a reference only.

06.10.09 Linear Algebra a + y = 1, but not $a^2 + ay + y^2 = 1$ y=-x+1 2+y+z=1 - plane p+q+v+2=1 -? Low to waite equation with more variables.

22, +392 - 33 + 74 + 95 + 7, -74 = 1 $\frac{2}{2} = \begin{pmatrix} \frac{\pi_2}{\pi_3} \\ \frac{\pi_4}{\pi_6} \\ \frac{\pi_6}{\pi_6} \end{pmatrix}$ Column Clictor Note: still we will run out of warrables! (a117, + a1222+ + + a1 2 = 6, a a 21 2, + a 22 2, + ... + a 2 n 2 h = 6 2 : aira, + aiaz+ ... + ain x n = 60 - it-equat. and 2, + an 292 + ... + ann 2 = 6, Le Color 0

$$S = \begin{cases} a_{11}^{2} a_{11}^{2} + a_{11} a_{2}^{2} + a_{21}^{2} a_{1}^{2} + a_{21} a_{1}^{2} + a_{21}^{2} a_{21}^{2} + a_{21}^{2} a_{21}$$

Mustuin Multiplication

a, a, + a2 22 + ... + a, 2, = 6 $\left(a_{1}, a_{2}, \ldots, a_{n}\right) / \frac{\pi}{2} = 6$ Def' if $a = (a_1, \dots, a_n)$ - Row electer $a = \begin{pmatrix} 2 \\ 22 \\ \vdots \\ 2n \end{pmatrix}$ - Column verter In the general system:

the ith equation: $Q_{i} = \frac{1}{2} + Q_{i} + Q_{i} + \dots + Q_{i} + Q_{$ $(a_{i1} \dots a_{in}) \begin{pmatrix} a_{i1} \\ \vdots \\ a_{n} \end{pmatrix} = b_{i}$ Pow sector is 1x4 sector matria $A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$ $\begin{pmatrix} a_{m1} & \dots & a_{mp} \\ \vdots & \vdots & \vdots \\ a_{m1} & \dots & a_{mp} \end{pmatrix}$ $m \times n$ $n \times p$ AB defined to be mxp matrix, where (i, n) is (ith Row A) (kth column of B)

 $T>=\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ $A = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$ (2,2) th entry (01) (1) = 1

08.10.09.

 $m \times n$ $n \times p$

'AB is defined to be the mxp matria. Such that entry in (i, x) position:

$$(a_{i}, \ldots, a_{in}) \times \{b_{1K} = \sum_{j=i}^{n} a_{ij}b_{jK} = b_{ij}\}$$

- Qij lik+Qibok t. +Qin bok

$$(AB)_{ik} = \sum_{j=1}^{k} q_{ij} g_{jk}$$
 $i = mumb f row$

$$k = mumb of column$$

Example:

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 $\begin{pmatrix} 3 & 4 \\ 5 & 6 \end{pmatrix}$
 $\begin{pmatrix} 1 & 3 & 2 \\ -1 & 0 & -1 \end{pmatrix}$

3 * 2 2 * 3

$$AB_{11} AB_{11} AB_{12} AB_{13} = \begin{pmatrix} -1 & -1 & -1 \\ -1 & -3 & -1 \end{pmatrix}$$

$$AB_{21} AB_{22} AB_{33} = \begin{pmatrix} -1 & -3 & -1 \\ -1 & -5 & -1 \end{pmatrix}$$

Lecolor

$$(AB)_{ij} = (r, 2) (r) = 1 - 2 = -1$$

$$(AB)_{ij} = (r, 2) (r) = 1 - 2 = -1$$

$$(AB)_{ij} = (r, 2) (r) = 1 - 2 = -1$$

$$(AB)_{2j} = (3, 4) (r) = 3 - 4 = -1$$

$$(AB)_{2j} = (3, 4) (r) = -3$$

$$(AB)_{2j} = (3, 4) (r) = -3$$

$$(AB)_{2j} = (5, 6) (r) = -1$$

$$(AB)_{3j} = (5, 6) (r) = -1$$

$$(AB)_{3j} = (5, 6) (r) = -1$$

$$(AB)_{3j} = -5$$

$$(AB)_{3j} = -1$$

$$(AB)_{3j} = -1$$

$$(AB)_{2j} = -1$$

$$(AB)_{2j$$

2) BA is defined, when m-p 3) Even if both AB BA are defined they may be different sizes. i.e. both matrices are square 4) Even if AB both squeel (saynin) so AB, BA both olefined and nxn However in general AB & BA. AB = [-107 BA = [1-0] 0 1 0 1 => AB=13A is rare occurrence $\begin{cases}
a_{11} & 2_{1} + \dots + a_{1n} & 2_{n} = l_{1} \\
a_{m1} & 2_{1} + \dots + a_{mn} & 2_{n} = l_{n}
\end{cases}$ A = = = - single matrix equation E comple $1 \times = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \times \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 \end{pmatrix}$ 2) Zero matrin For any M, h there is a mx h matria o 0: = 0 Le Color

3) Identity matria For each in there is a special ux is matrix (tn); = { o i + j } = Si - Inonexer Pelta $A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix}$ J2 A = (10) (a 6 c) = (a 6 c) = A AJ3= (a 6 c) (1 00) = (a 6 c) - A 0 0 1) = (d e f) - A Show of Ais mxn Int= A AIn = A Knowever delta - the function denoted of of two soundles is it is that toeses the value 1 when i = j and is zero otherwise

15/10/09

1201* - enercise I

$$P(n): H^n = \begin{pmatrix} 1 & n & f(n) \\ 0 & i & 2n \\ 0 & 0 & 1 \end{pmatrix}$$

Proce P(n) by induction
P(r): A= 1 1 f(1)

(0 1 2)

(0 0 1)

this is true fox and f(1) = 0

Suppose P(x) is true

$$A^{k} = \begin{pmatrix} 1 & h & f(k) \\ 0 & 1 & 2k \\ 0 & 0 & 1 \end{pmatrix}$$

$$A^{k+1} = \begin{vmatrix} 1 & K & f(k) & f$$

if for reg from where f(e+1) = f(k) + 2 k

i.e. $\mathcal{P}(k) \Rightarrow \mathcal{P}(k+1)$ So by industion $\mathcal{H}(n)$ holds $\mathcal{H}(n \geq 1)$

$$|f(t)| = 0$$

$$|f(k+1)| = f(k) + 2k \quad (k \ge 1)$$

$$|f(t)| = f(t) + 2 + t$$

$$|f(t)|$$

09.10.09. Inversible maticas. Let A = aij 1 \(i \) i \(i \) h be nxn matrin Say that A is inversible

If there enists nxn matrix B

AB = In and BA = In Beneave: A nem sero matris many possibly e.g. $A = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, A = 0 but A is not inversible $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 6 \\ 0 & d \end{pmatrix} = \begin{pmatrix} e & d \\ 0 & 6 \end{pmatrix} \neq I_n \neq \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ y Depredend A B Proposition: Let A = (a;j) = i ≤ m 1 ≤ j ≤ n then Im A = A = A Im Lew color (+ i i m j=1)

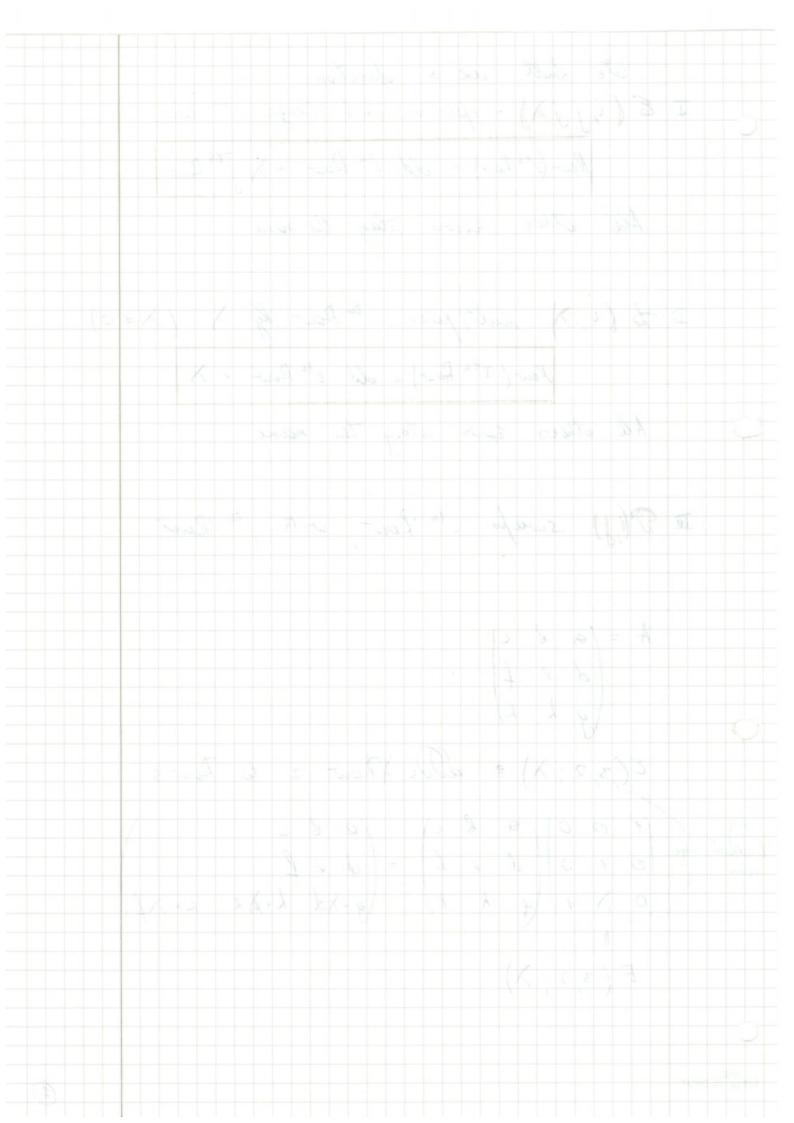
Lew color (+ i i m j=1)

1 ± x ± n

A = (@ij) In = (Soj.) Sij= 11 if i=j A In - A(as) A $(A In)_{ij} = \sum_{k=1}^{n} a_{ik} \delta_{kj} = a_{ij}$ unless k=j $d if k=j then it's a_{ij}$

 $\sum_{j=1}^{n} q_{ij} \delta_{jk} = q_{i1} \delta_{ik} + q_{i2} \delta_{2k} + ... + q_{in} \delta_{nk}$ j=1all terms zero except j'=k $= q_{ik} \delta_{KK}$ (AIn)ik = aik Do In A = A es enercise AI, = A Example [1] fe, + 7 7 731 (a, -a2 = 2 [2] 1st operation: Allowed to add eq. j to eq. i [1] 1 [2]: $\begin{cases} 2\pi, = 3 \\ \pi, -\pi_2 = 2 \end{cases}$ 2 nd operation: [1] = 1 $\begin{cases} a_{i} = 1.5 \\ a_{i} - x_{i} = 2 \end{cases}$ [2] 3 d operation: - [2] + [2] = [1] 9th of: [2] x -1)7, = 1,5 |N2 = -0,5 Le Color (6) Ea. In A = A $(I_n A)_{ik} = \sum_{j=1}^n \delta_{ij} a_{jk} = a_{ik}$ Q.E.D.

I E (i, j ig x) = operation which changes it rows, New (Ith how) = old ith Row + x jth Row All other was stay the same I & (i,) multiplies it Pow by > (x +0) New (Ith Row) = old ith Row x > All others rows stay the same. I D(i, swaps ith Low with jith Rose E(3,2; X) = adds Thow 2 to Rows; F (3,2: \) Le@ Color



Basic matrian Pick in and fix €(i,i) is defined to be nxn matrix with 1 in $E(1, 1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $E(2, 3) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ G(i,j) B B nxp B= (bjk) 1 ≤ j ≤ n 1 ≤ k ≤ p (G(E,j)B) pt = \(\sum_{S=1}^{n} \in (i,j)rs Bst = \sum_{S=1}^{n} \in S_{er} \displays \Bst = \sum_{S=1}^{n} \in S_{er} \displays \Bst = \left \left \left \left \left \left \left \left \left \Bst = \left \left \left \left \left \left \left \left \Bst = \left \left \left \left \left \left \left \Bst = \left \left \left \left \left \left \left \left \Bst = \left \left \left \left \left \left \left \left \Bst = \left \left \left \left \left \left \Bst = \left \left \left \left \left \left \left \left \left \Bst = \left \Bst = \left \Bst \left \left \left \left \left \Bst \left \ -= Jir Bc ⇒ E(i,j) B is the Matrix whose ith Row = jth of B all other rows = 0. [In + X = (i,j)]B

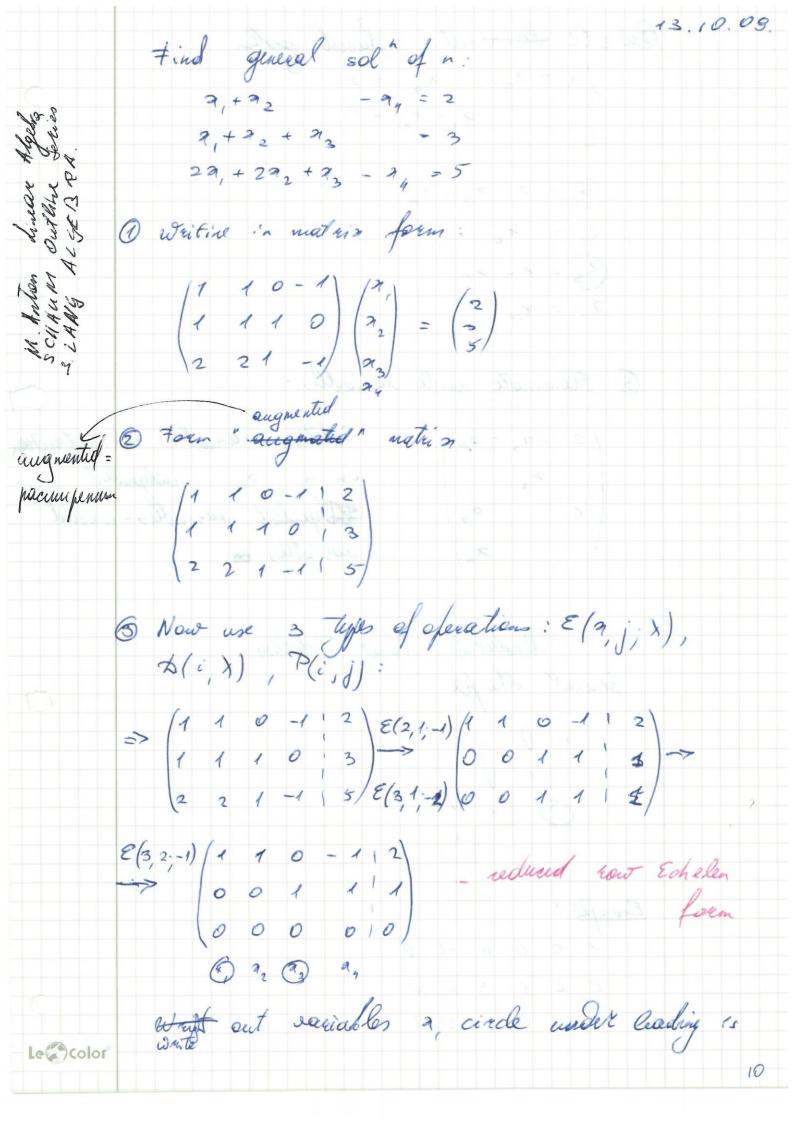
ith Row = ald ith Row + X j & Row
of B. B+X&(i,j)B

Lecolor

8.9

In - (10) is (In) ij = Sij motera = E(ij) E(i,j)rs = 3.t. if i=r & j=s then - it's one $=\delta_{i,r}\delta_{s_i}$ scend filter. How filters dir dej werns?

E(i,j)=dir djs = \sum dir drj 2 (0 0 0) 1 0 0 (1 0 0) 2 (0 1 0) · 0 1 0 = (1 0 0) 8 0 1) 0 0 0 0 0 0 0 1) => Due to 8 - is not a metrica it is a function.



· (9) = 2 - 92 + 24 2 = 22 (23 = 1 - 24 24 = 24 6) Eléminate aircle variables: Solution variables no restriction 12 -92 + 24 1 -94 on a 24 - independent Dependent sariables - circled variables . Reduced Post Echelon General Shape 0 1 Example: 1204-10 001300 000001

Examples of not cohelon \$299-20 \(\delta \text{20}\)
\[
\text{000}\] 00000 1 eg 12,-92+23+295=-1 $\begin{cases} 2 & + 2 & + 3 & = 3 \\ 4 & + 2 & + 3 & = 3 \end{cases}$ $\frac{\mathcal{E}(3,2;-1)}{\mathcal{E}(2,2;-1)} \begin{pmatrix} 1-1 & 1 & 0 & 2 & | & -1 & | & \mathcal{E}(1,2;1) & | & 1 & 0 & 2 & 0 & 1 & | & 1 \\ 0 & 1 & 1 & 0 & -1 & 2 & | & -7 & 0 & | & 1 & 0 & -1 & 2 \\ \mathcal{E}(2,\frac{1}{2}) & 0 & 0 & 0 & 1 & 1 & 3 & | & \mathcal{E}(2,\frac{1}{2}) & 0 & 0 & 0 & 1 & 1 & 3 \end{pmatrix}$ Teduced system: 7, to 93+95-=1 7 + 93-85=2 2,+95=3 General sol". 3, 95 - Ordinary 1 -223-05 2 -73+77 3 - 3

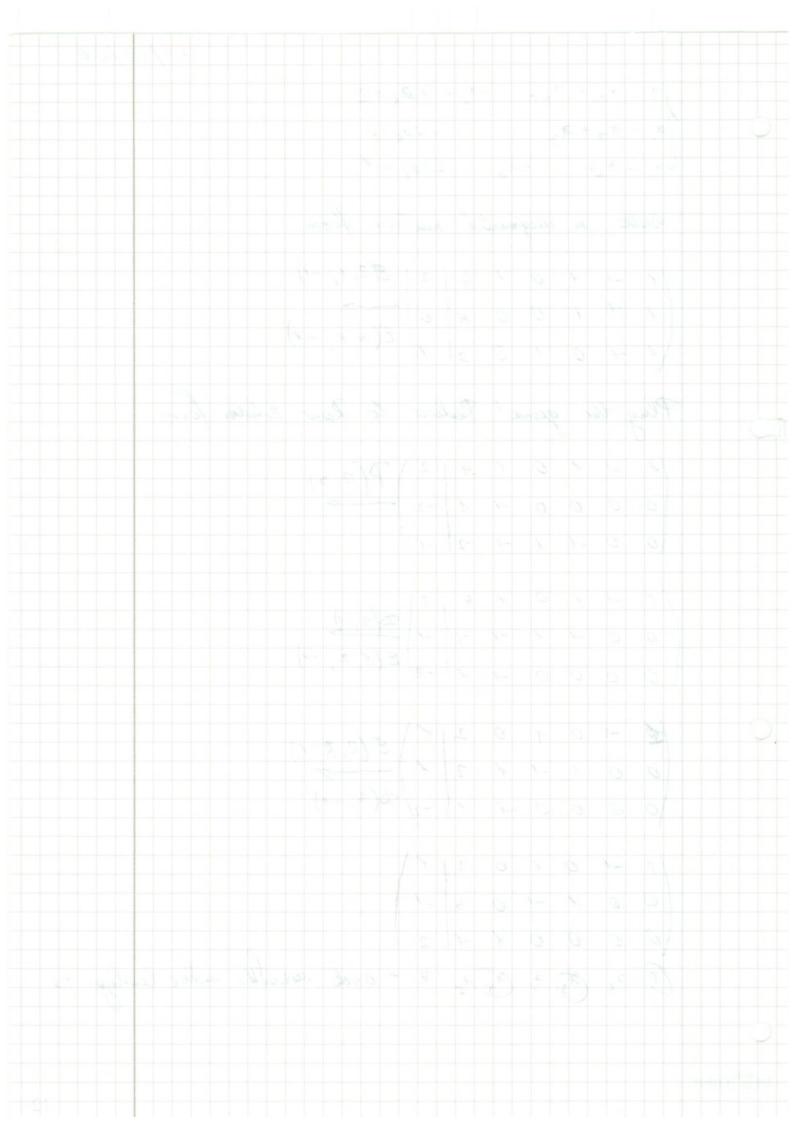
11

	Enangles of set the lan	
	201000000	
	333)	
	1/2004-1-2	
	1100001	
	San St. C. T. Contract St. C.	
	= 12 - 1 + 3 2 1 - 1 2 (6 ! 1) 14 - 1 + 2 = 1	
	1 1 0 1 R 0 C T T T T T T T T T T T T T T T T T T	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	The state of the s	
	(313 200) (100) 100 100)	
	2 1 2 1 0 - 1 2 1 0 1 1 0 1 2	
	2 (200) (2 11 00) (200)	
	Testuccil sy the	
	2 . 2 . 2	
	Marine out of the contract	
	0 5 1	
	2 2	
l		
30		

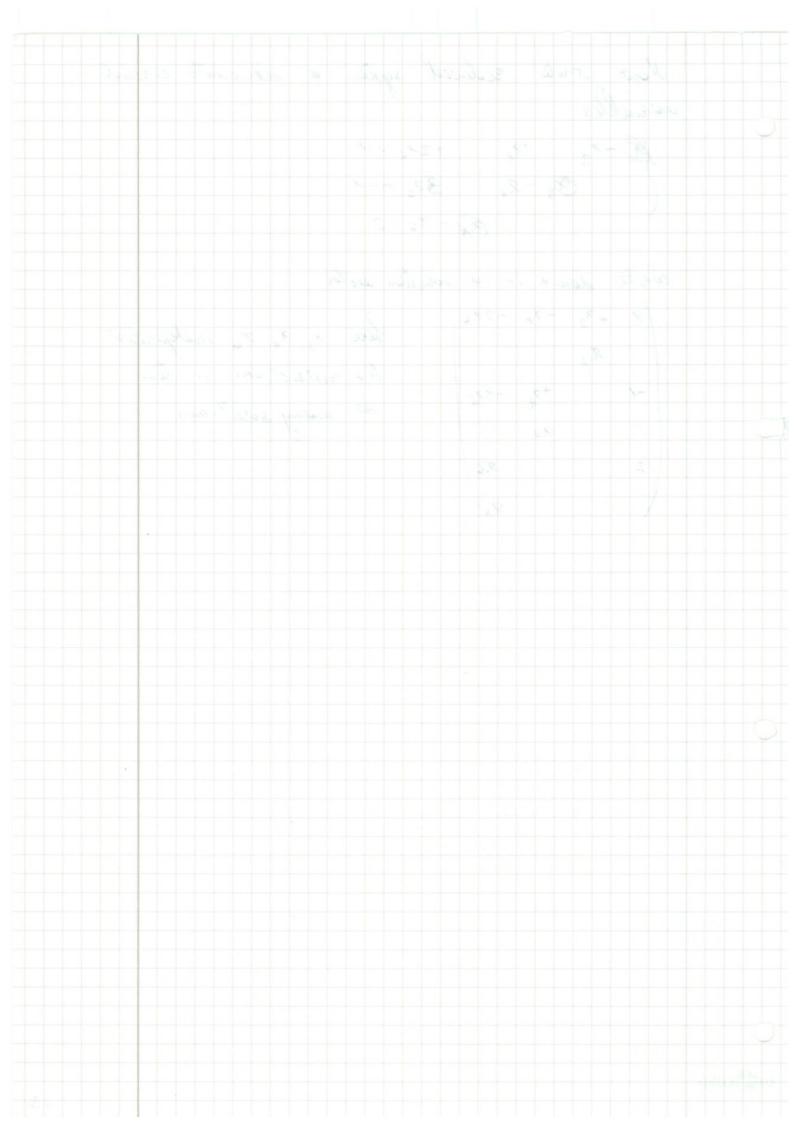
6.

15/10/09 1a, - 22 + 23+ 425=2 $\int_{a_{1}}^{a_{1}} - x_{2} + x_{3} + 5x_{6} = 0$ $\int_{a_{1}}^{a_{1}} - x_{2} + x_{4} + 2x_{6} = 0$ write in augmented matrix form: $\begin{pmatrix} 1 & -1 & 1 & 0 & 1 & 4 & | & 2 & | & 2(2,1;-1) \\ 1 & -1 & 1 & 0 & 0 & 5 & 0 & | & -2 \\ 1 & -1 & 0 & 1 & 0 & 2 & 1 \end{pmatrix} \xrightarrow{\mathcal{E}(3,1;-1)}$ Play the game! Reduce to Row Eshelar form. $\begin{pmatrix} 1 & -1 & 1 & 0 & 1 & 4 & 2 \\ 0 & 0 & 0 & 0 & -1 & 1 & -2 \\ 0 & 0 & -1 & 1 & -1 & -2 & -1 \end{pmatrix} \xrightarrow{P(2,3)}$ $\begin{pmatrix} 1 & -1 & 1 & 0 & 1 & 4 & 2 \\ 0 & 0 & -1 & 1 & -1 & -2 & -1 \end{pmatrix} \xrightarrow{\mathcal{D}(2, -1)} \mathcal{E}(1, 2, -1)$ 11 -1 0 1 0 2 1 1 0 0 1 -1 0 3 -1 0 0 0 0 1 -1 2 3 2 2 2 - airsk reciables under leading 1s

Lecolor



Now write reduced system a climenate circled eariables: waite donn in a solution enter. here a, a, 26 independent
No vistrictions mitem
or many solutions 2 24 2 26 Le@color



Basic Madrices Fin n = 2

(i) informally is the nx numbers howing 1

in (i,j) a position and o elsewhere Sab of a the E(i, jes - digs $e.g. \ \epsilon(2,1) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ \epsilon(4,2) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ = It &=i &= j 0 otherwise $e(ij)\cdot e(k,e) = je(i,e)$ j=ke.g. n = 3 $\epsilon (1, 2) \epsilon (2, 3) = \epsilon (1, 3)$ Star =1 J=0 25 5+2 = dir 1.1. die = (1,3) Le Color

what does it know if matrix has fixed row / column? Dois if is is not changing from s=1 to s=1 t Let A a b c d e f g h g A = \(\alpha_{12} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\ \alpha_{32} & \alpha_{33} & \alpha_{34} & \alpha_{34} & \alpha_{34} \\ \alpha_{32} & \alpha_{33} & \alpha_{34} (e(2,3)A)2+ = \(\frac{2}{5}\)\(\xi\)\(\epsilon\)\(\frac{2}{5}\)\(\ $= \begin{cases} 2 & q_{3t} = \begin{cases} a_{3t} & 2 = 2 \\ 0 & 2 \neq 2 \end{cases}$ m.l. $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \\ q_{31} & q_{32} \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ q_{31} & q_{32} \\ 0 & 0 \end{pmatrix}$

 $E(i,j)_{1S} = \text{ for } \text{ of } s \qquad m \times m$ Let A be an $m \times n$ matrix $A = (a_{S} t)_{1 \le S} \le m$ $1 \le T \le h$

What is $\epsilon(i,j) A? mxn$

Calculate [e(ij) A Jet = \sum_{s=1}^{m} \((ij)_{rs} \) ast

Soir of ast = Sirof aft (+ zeros)

5=1

- Siroft a

[E(ij) +] Total of gt = {gt r=i

ith Row of $\in (i,j)A = j^{th}$ Pow of A all other rows of $\in (i,j)A$ are O

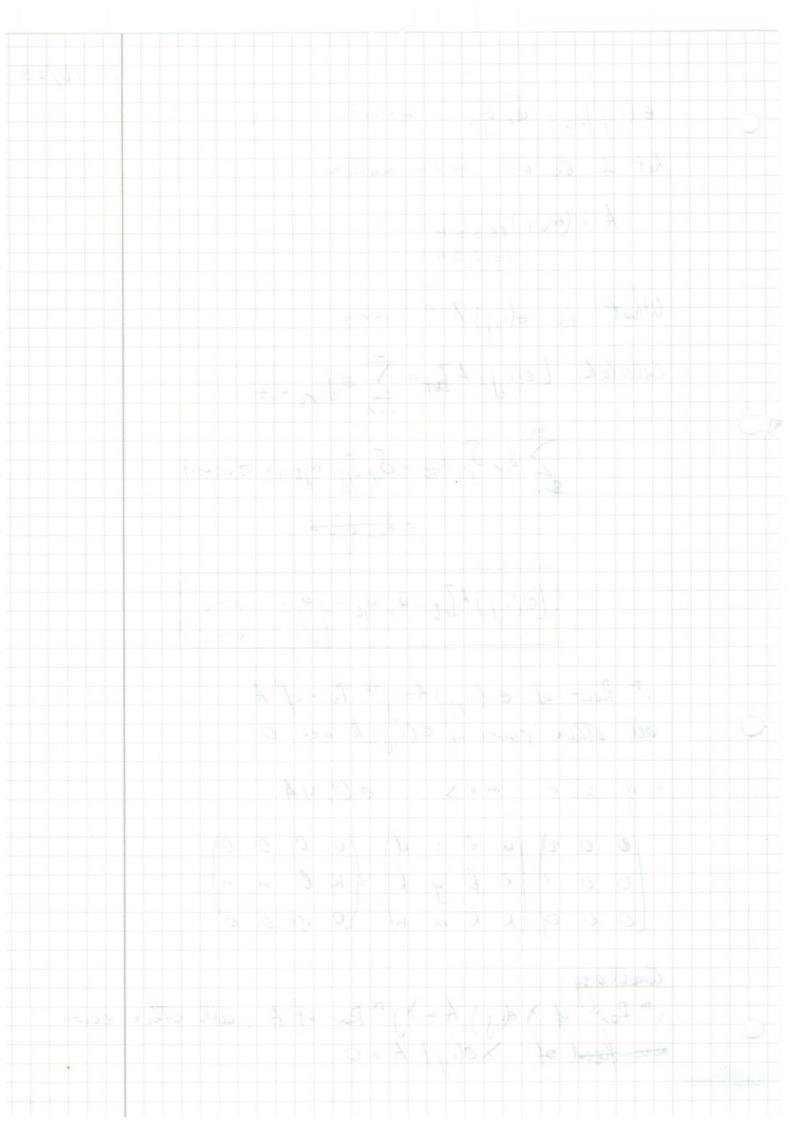
e.g. h= 4 m=3 e(2,3)4

(0 0 0 (a & c d) (0 0 0 0) (0 0 1) (e f g h) = k l m n (0 0 0) (k l m n) (0 0 0 0

coollary

ith Pow of X dij) A = Xjth Pow of A, all other rows

are fred of XC(i,j) A = 0

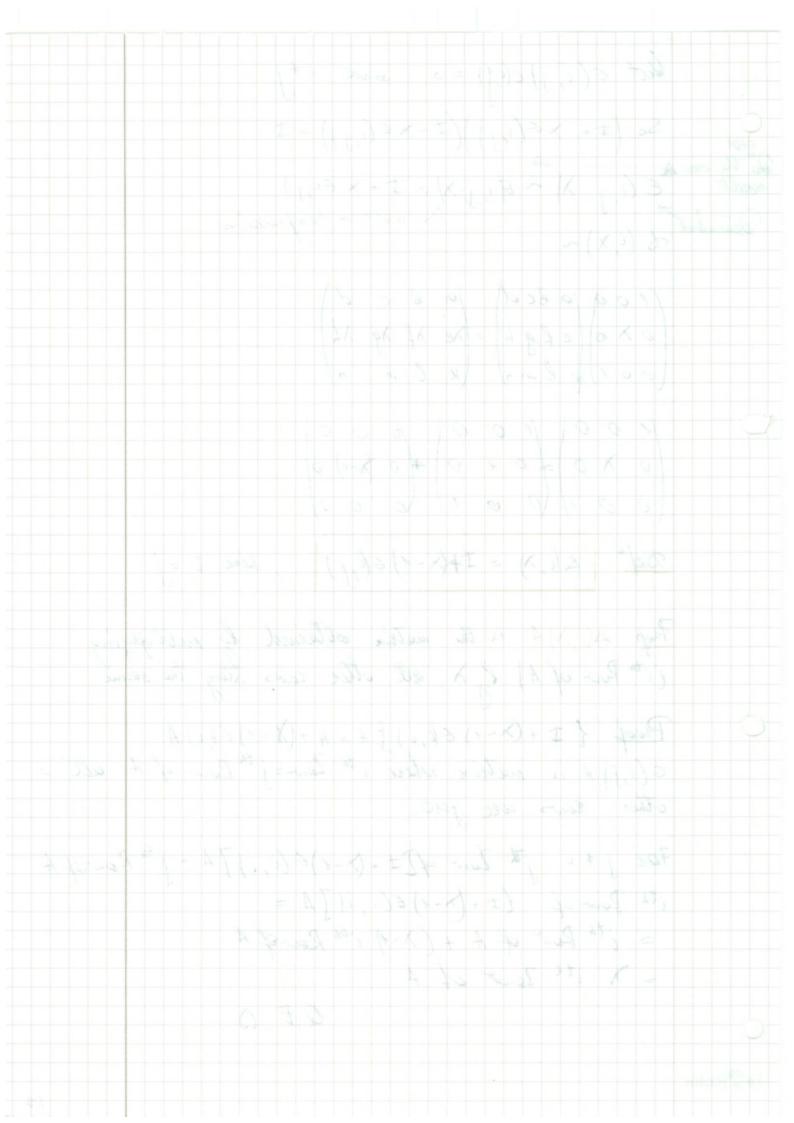


Collary Corollary (A + \(\si_j\) A) is precise (precisely) The motion obtained by adding > Pow j & Rowi leaving all other was fixed. Cerollary $[\pm_{m}+\lambda \in i,j]$ 4 is matrix obtained by applying $E(i,j;\lambda)$ to A Def $E(i,j;\lambda) = Im + \lambda E(i,j)$, where $i \neq j$ So m=3 E(2, 3; N) = (01) So eg m=3 E(3;1;p)= 100 | 010 | n01) Enample E(2,3;) A A=/a & cd/ efgh & lmn I + XE(2,3)] A = A + XE(2,3) A (a b c a) (0 0 0 0 0) (a b c d)
e f g h + \(\lambda (i,j;) is incersible $\begin{array}{cccc}
E(i,j,x) &= E(i,j,-x) & (i \neq j) \\
E(i,j,x) &= E(i,j,-x) &=$

Does E(i,j) E(i,j) = 0? E(i,j) = (i,j) = 0? c'=j eg. (100)(100) (100) (000)000 ±000 (000)000 itj

Quot G(i, j) G(i, j) = 0 since i + j So (+ x & (i,j)) (+ x & (i,j)) =] The same $E(i,j,\lambda) = I + \times E(i,j)$ result $E(i,j,\lambda) = I + \times E(i,j)$ Dewondul $E(i,j,\lambda) = I + \times E(i,j)$ Midwin /expression (eoglabed) a & c d oxolefgh = xe xf xg xh oo1) klmn (x l m n) (100) (100) (600) (0 \(\) \(Def (i, x) = I+(x-1) 6(i,j) , here : = j Prop. $\Delta(i, \lambda) A$ is the matrix obtained by multiplying (ith Row of A) by λ , all other rows stay the same. Preof { I + (x-1) & (e,i) } A = 4 + (x-1) & (i) A

G(i,j) A is matrix where ith Low=jth Row of A all o
other rows are zero. For j + i jt low of 2 + (x-1) = (i, i)] A = j th Row of A ith Pow of (+ (n-1) &(i, i) 7 A = = ith Row of A + (x-1) ith Row of A - > it's four of A Q.E.O Le@color



Prop If >+0 & (i, x) is inversable and si, x)-4(i, 1) Proof $\Delta(i,\lambda)\Delta(i,\frac{1}{x})$ = [] + (1-1) di,i]][]+(1-1)66,i)]= = I+(x-1) & (i,i) + I-X & (i,i) + (x-1)(-x) & (i,i) Part e(i,i) = e(i,i) (- y) = = I + (1-1) + (-1) + - (1-1) = (i) = $=(-2\lambda + \lambda^2)$ = I+ (1-1) + (x-1) + (2-x)] = (c,i) = I -(-X)= = 2 -1+X P(i j) swafs Dow i = j
if P(i,j) realizes P(i,j),—then P(i,j) is obtained from
I by applying P(i,j) P/2,3) should be 1000 0010 0100 0001) 0000 (Q 6) = (H/W Enflore flow to enfren Ri, j) in term of e(i,j)? Le@ Color 18.1

Espress P(i,j) in terms of dis) # Exploring P(i,j) }

P(1,2) = 10100 | 1000 | 1-100 | 1

0010 | 0000 | 0000 | 0000 |
0001 | 0001 | 0000 | $P(i,j) = I + \epsilon(i,i) - \epsilon(j,j) + \epsilon(i,j) + \epsilon(j,i)$ $\mathcal{F}(i,j) = J - \epsilon(i,i) - \epsilon(j,j) + \epsilon(i,j) + \epsilon(j,i)$

20 20.10.09 P(i,j) mxm matrix s.t. P(r,j) A is obtained from Aby P(v,j) P(i,j) hast to be the metric esteined by onesping , the P(i,j) Im = T(i,j) m=h P(1,3) Im operating in In [1000] x P(3) = [0010] 0010 x P(3) = [0100] 0001] Perop P(i,j)= Im - E(i,i) - E(j,j) + E(i,j) + E(j,i) Prop P(i,j) = P(i,j) Preof Need to show PE, j) P(i,j) = I My! e(i)=e(i,i)-e(i,j) + e(i,j)+e(j,i)]= I € (ij) € (k, l)= $\begin{array}{ll}
\epsilon(i,j) \in (k,l) = \mathbf{J} - \epsilon(i,i) - \epsilon(j,j) + \epsilon(i,j) + \epsilon(j,i) \\
= \epsilon(i,l) + \epsilon(j,j) + \epsilon(j,j) - \epsilon(j,i) \\
= \epsilon(i,l) + \epsilon(j,l) - \epsilon(j,l) - \epsilon(j,l) \\
+ \epsilon(i,l) - \epsilon(j,l) - \epsilon(j,l) + \epsilon(j,l) \\
\end{array}$ + E(i,i) + E(i,i) - E(i,i) - E(i,i)

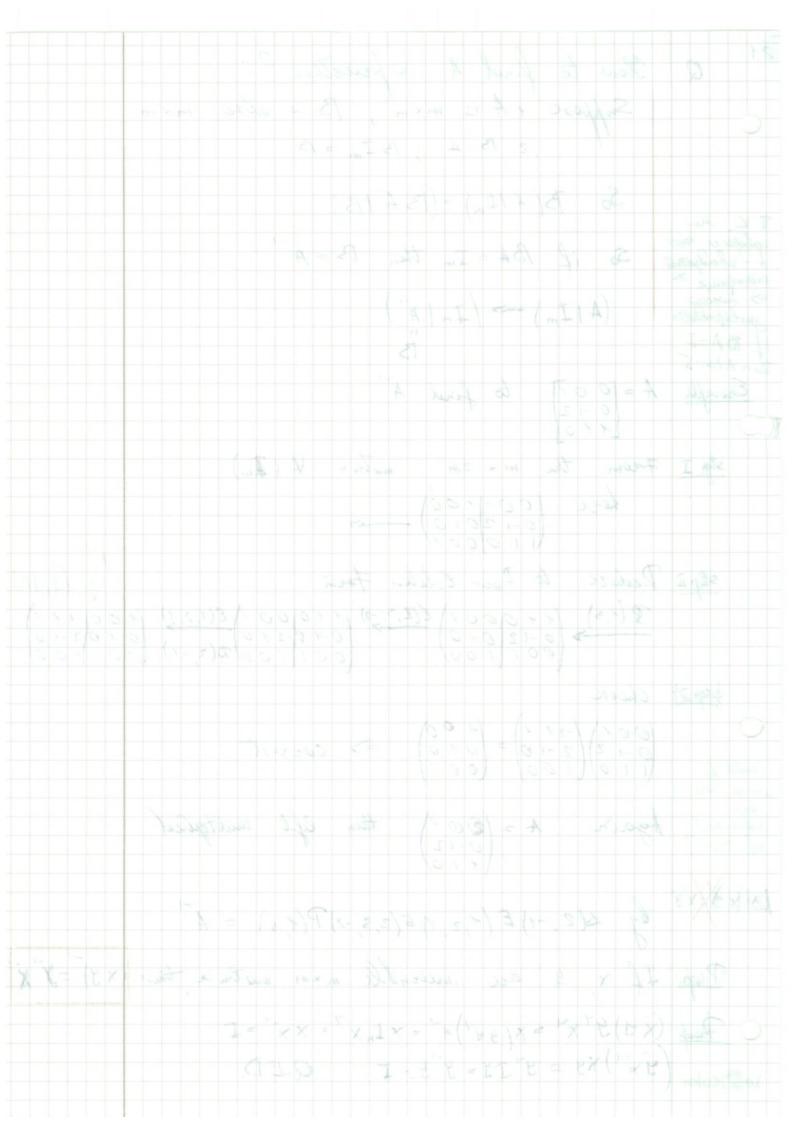
Le@ Color

Paraden of $E(i,j) \cdot E(k,l)$ To theory: 1. $E(i,j) \cdot E(k,l) = JE(i,l)$ = [0]if j=k 13! e(i,j) - ii a motive at a franction

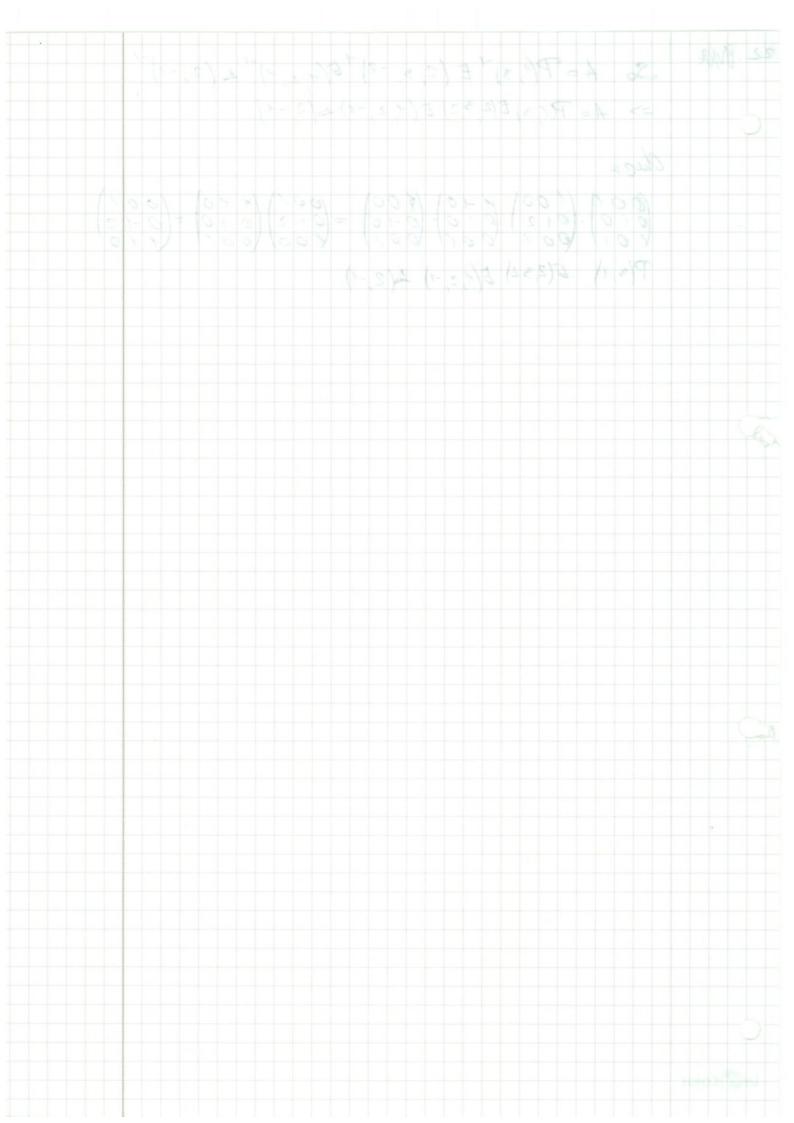
21 Q How to find A' in practize?

Suppose 1. A is mxm, B is also mxm

2. B. A; B Im = B So B(Altm) = (13 A 1/3) F K. Man roboful umo So if BA = In then B = A A - ubordiation wanyings => $(A | I_m) \longrightarrow (I_m | A)$ => woneno zubefoldetto if BA=J then AB=J Example A = [0 0] to find A' step I From the m + 2m matrin (4 (Im) here (001/100) step is Reduce to Fow Echelen Form $\frac{\mathcal{B}(1,3)}{\Rightarrow} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -(2) & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}}_{\left(\begin{array}{c} 0 & -(2 & 0) \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -(2) & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -(2 & 1) \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 & 0 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 & 0 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 & 0 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 & 0 & 0 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 & 0 & 0 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 & 0 & 0 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 & 0 & 0 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & -2 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 & 0 & 0 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 & 0 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}$ }_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} \underbrace{\begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}}_{\left(\begin{array}{c} 0 & 0 & 1 \\ 0 & 0 & 1 \\ \end{array}\right)} tep in their Could be (001) (-211) (00) = (000) => correct wede then Again A = (00) then left multiplied variant of 15-7 10! (x 3) x x y by b(2, -1) E(1,2,1) E(2,3,-2) P(1,3) = A Prop: If x 4 are inverible mxn matria then (x4) = x.x Proof: (X 5) '9' x' = x(yy') a' = x In x' = xx' = I Le@color (yx') xy = y' Jy = y' y - I Q.E.D.



22. M/A 30 A=P(1,3) E(2,3,-2) E(1,2,1) &(2,-1) => A= P(1,3) E(2,3,2) E(1,2,-1) 6(2,-1) Check $\begin{pmatrix} 001 \\ 010 \\ 011 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 012 \\ 001 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} \cdot \begin{pmatrix} 100 \\ 010 \\ 001 \end{pmatrix} = \begin{pmatrix} 1001 \\ 012 \\ 010 \end{pmatrix} = \begin{pmatrix} 1001 \\ 012 \\ 012 \\ 010 \end{pmatrix} = \begin{pmatrix} 1001 \\ 012 \\ 012 \\ 012 \end{pmatrix} = \begin{pmatrix} 1001 \\ 012 \\ 012 \\ 012 \end{pmatrix} = \begin{pmatrix} 1001 \\ 012 \\ 012 \\ 012 \end{pmatrix} = \begin{pmatrix} 1001 \\ 012 \\ 012 \\ 012 \end{pmatrix} = \begin{pmatrix} 1001 \\ 012 \\ 012 \\ 012 \\ 012 \end{pmatrix} = \begin{pmatrix} 1001 \\ 012 \\$ P(3,1) E(2,3,2) E(1,2,-1) &(2,-1)

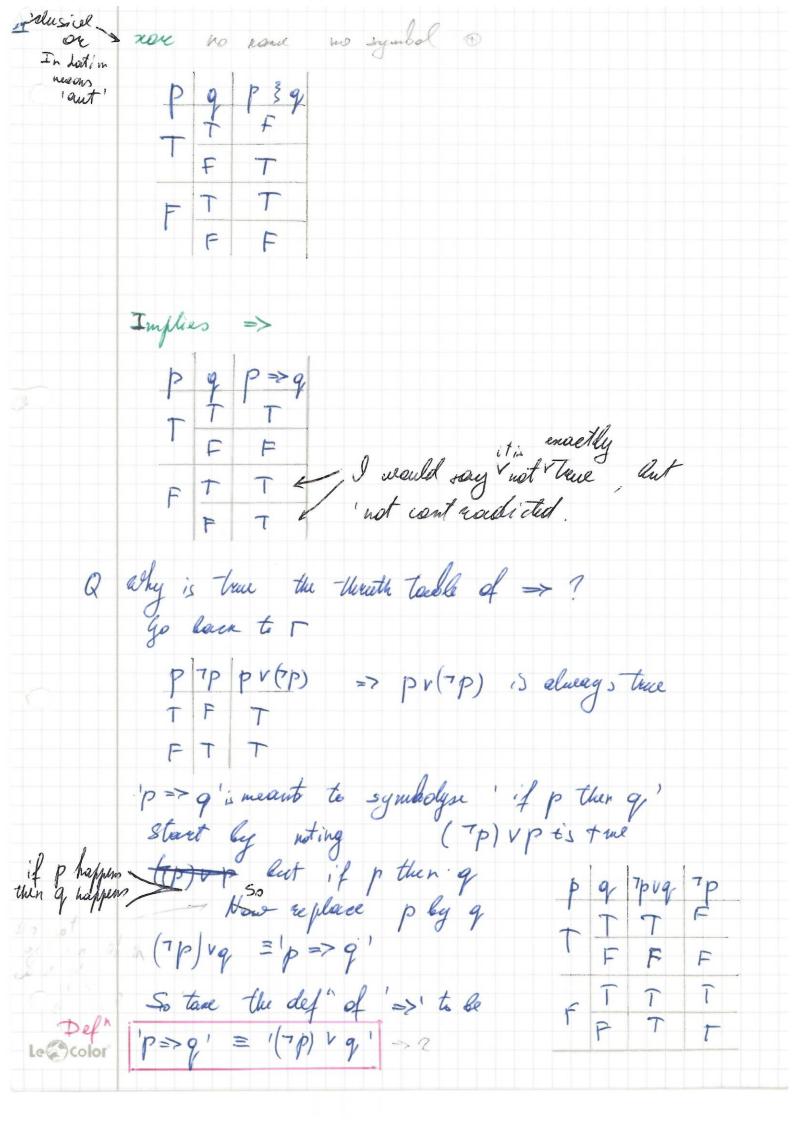


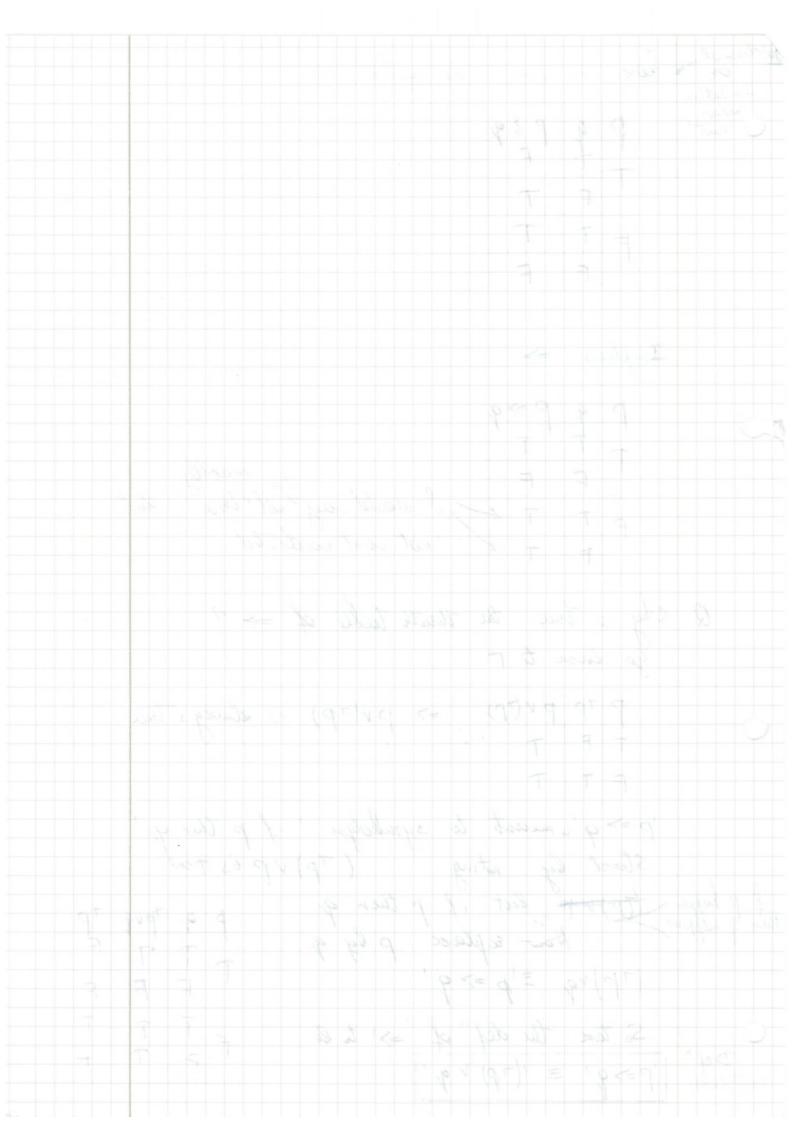
Le Color

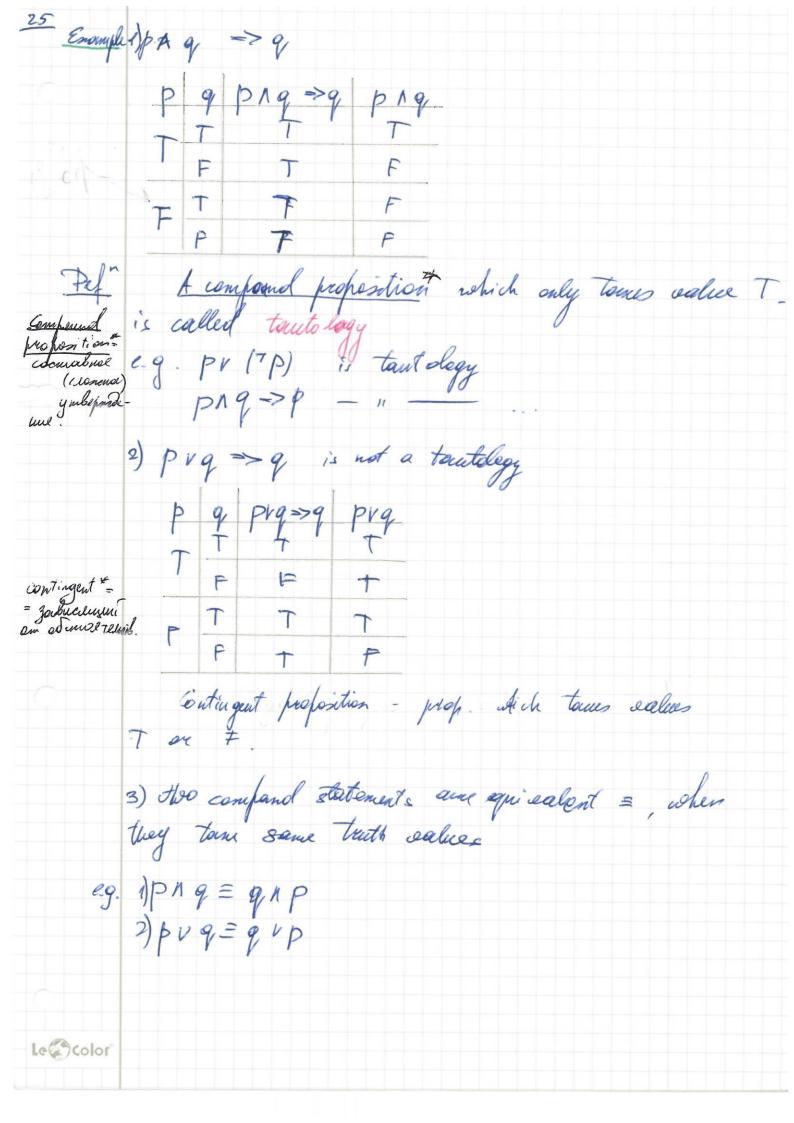
Def " Proposition - it is a statement * which can be statement = either true ar fale.

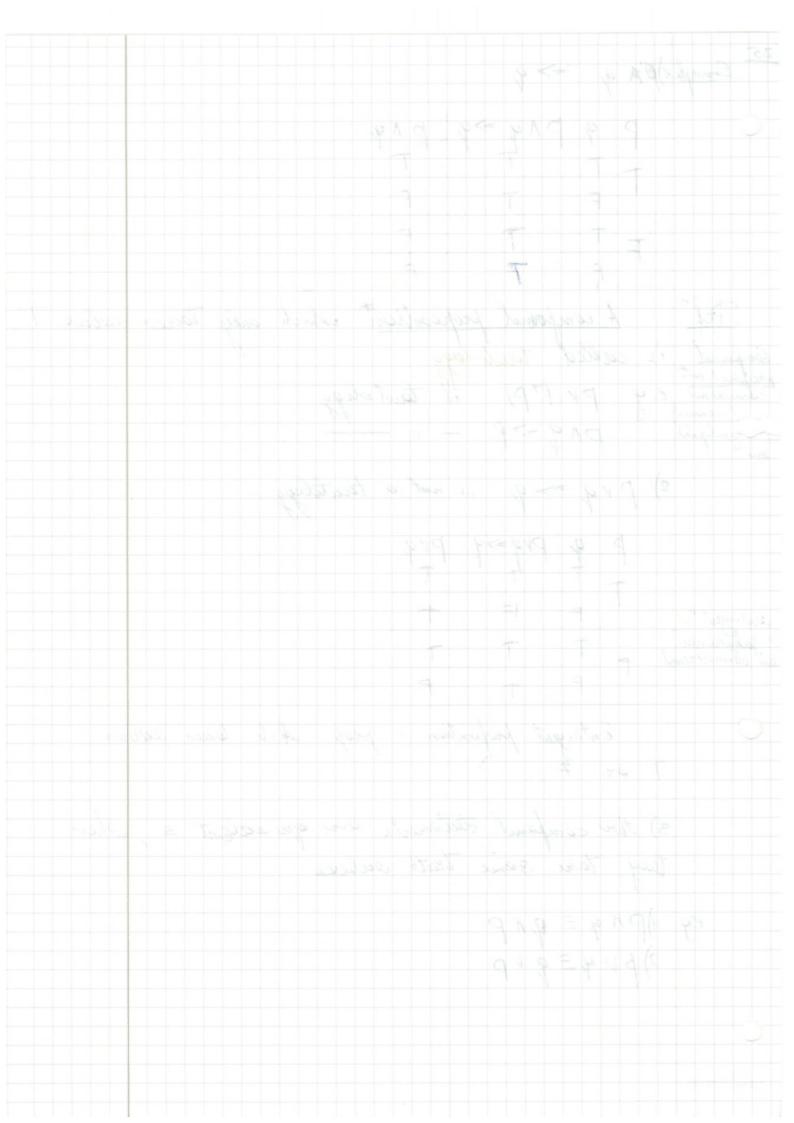
Statement = yndeprederue

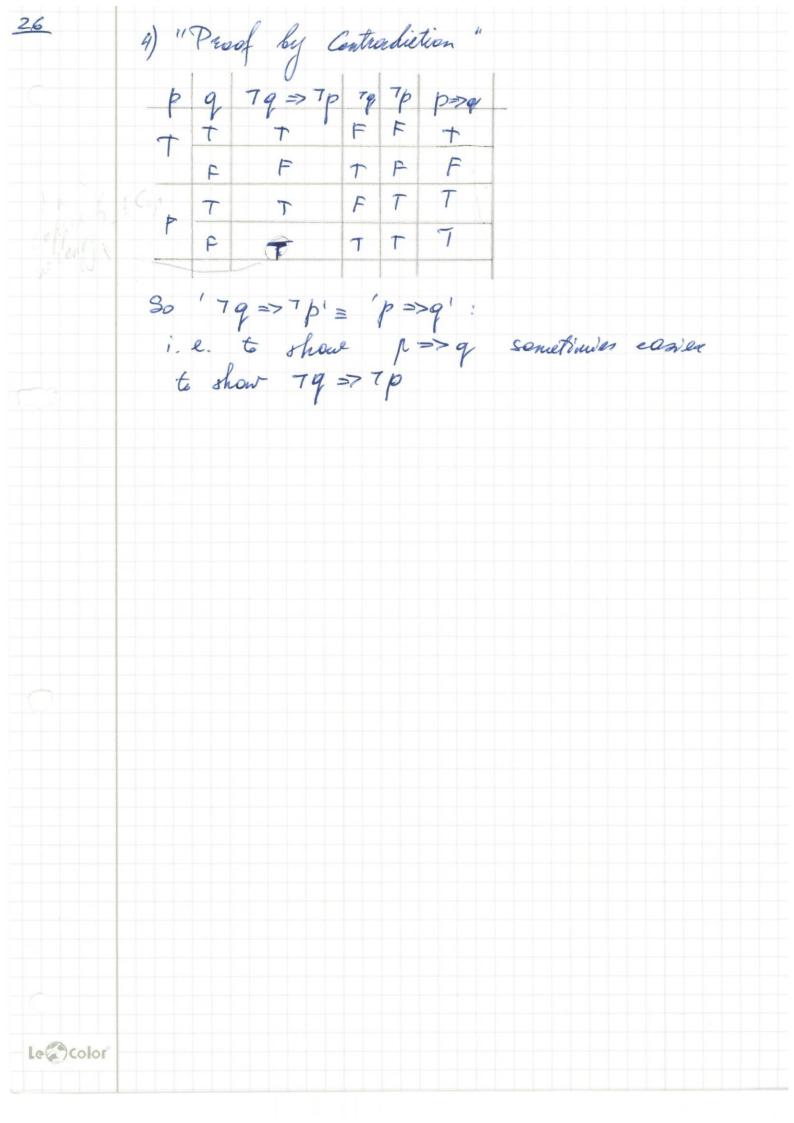
utterance = lucragubanne

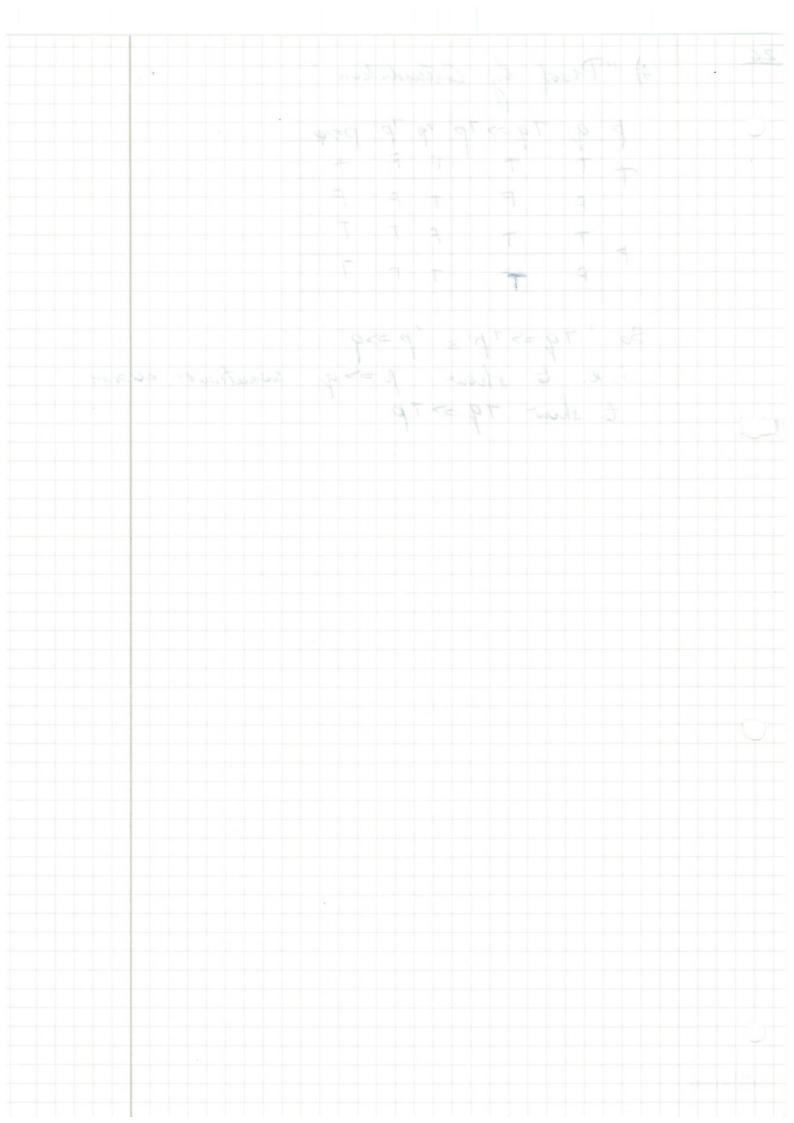




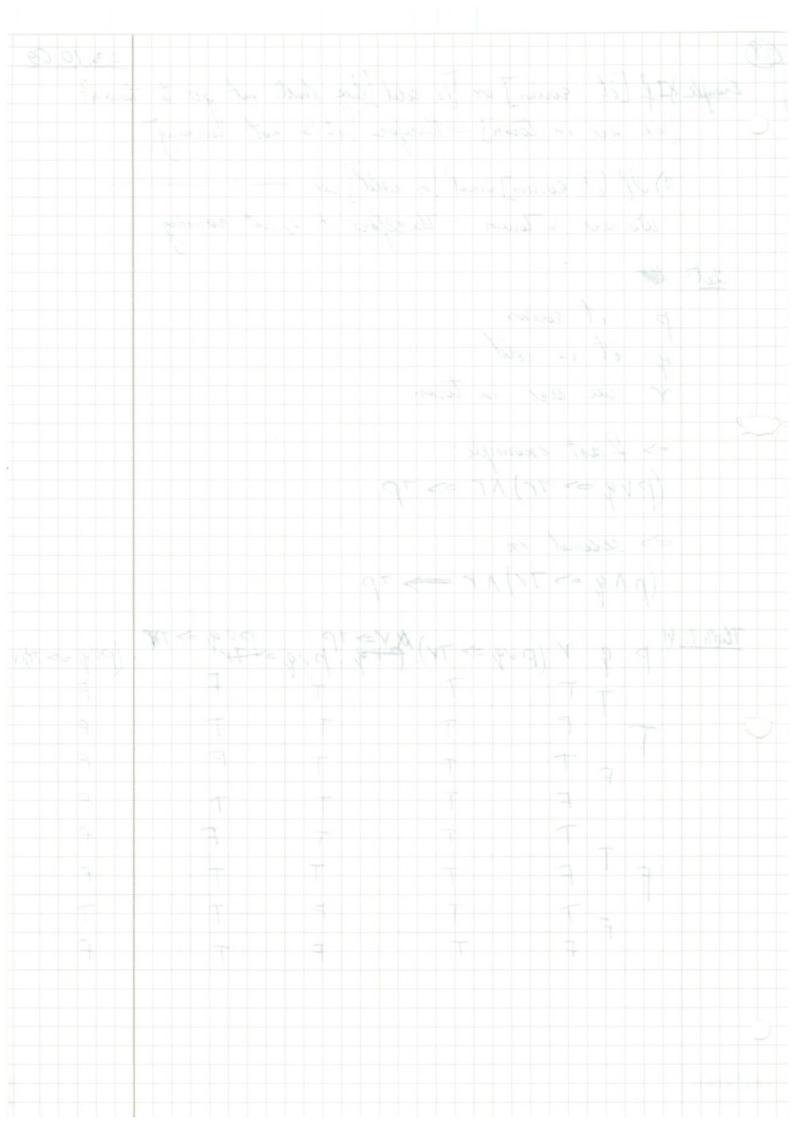


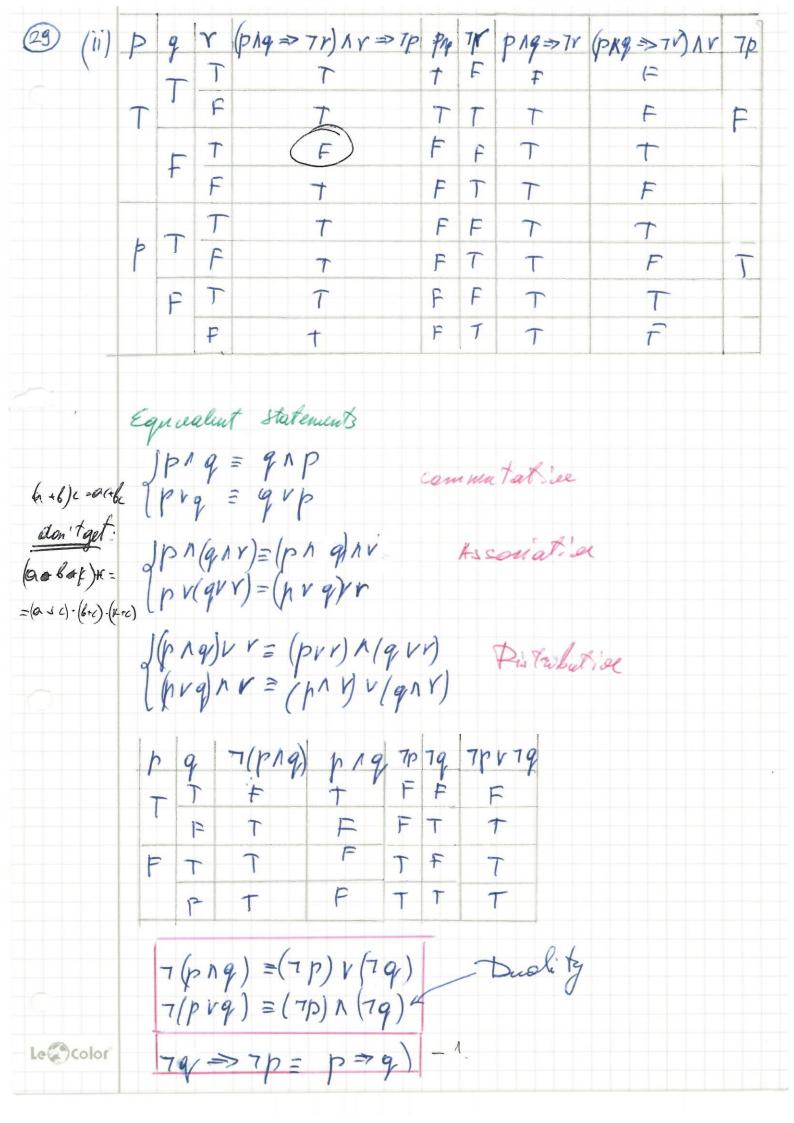


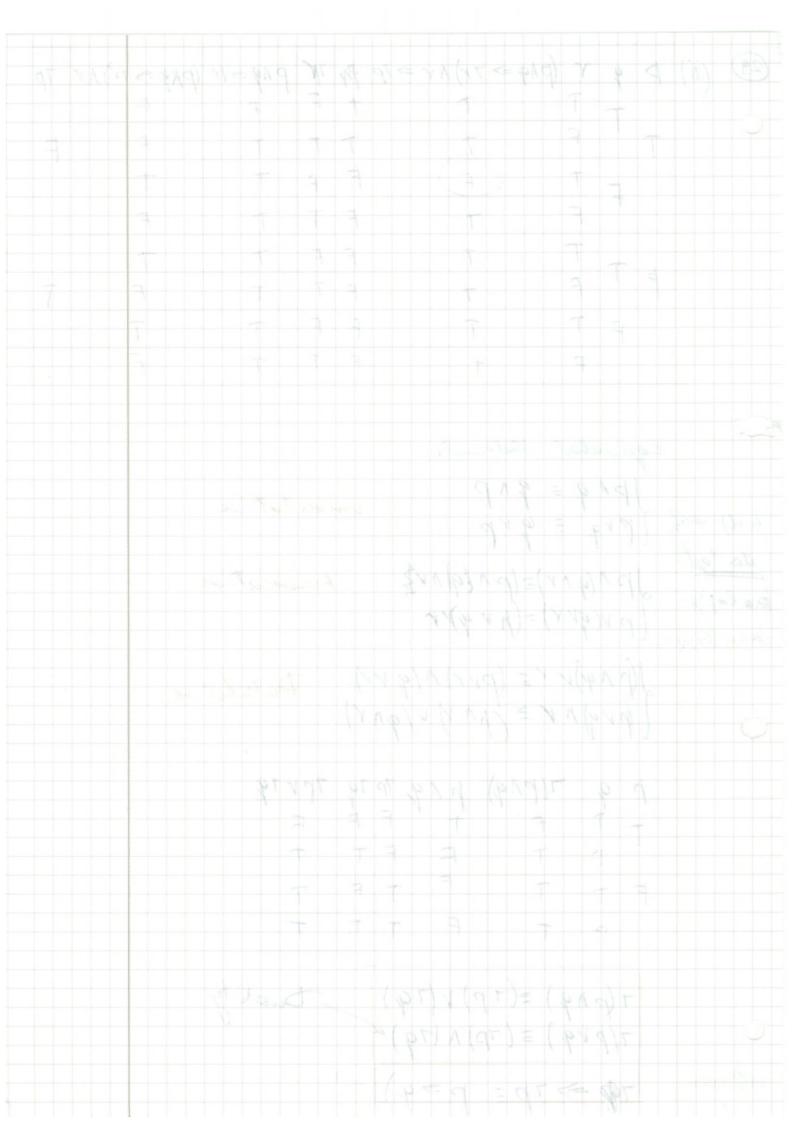




Enough &If [it rains] or [is cold] thee shall not go to town?
[we are in town] := therefore [it's not raining] 2) If [it rains] and [is cald] we — " — we are in town: therefore it is not raining p: it rains q: it is cold v: we are in town -> first example: (pvg => 7r) Ar => 7p => sexand en: (prg -> 7r) 1r -> 7p That T. () p q v (pvq => Tr). prq pvq => Tr (pvq => Tr). F T F CT FF Le@ Color







D Proof (70 => 7p)= p=>0 q => p is -the "contrapositive" of p => q So $(q \Rightarrow 7p) \equiv p \Rightarrow q$ $(q \Rightarrow p) \neq p \Rightarrow q$ Used four signeds: 7 1 v =>. I can eliminate 1 , by 7(p 19=(7p) v (7q) I can eliminate V, by prq = 7p => q Pefre papla Gust med to ux one sign sind disigned for use 1 h compu-ters. Sheffor's Strate Function 1900 Pig=76ng) 7(p ng)= (7p)v(7g) 7p vg = p = 7 g prq=ap=>q pragnr) = (pragn prr pv(qvr) = (pvr)v(pvag) Le Color

6-- 1 = (10 - X6) Exal have dignets ? A v =+

Liverese:

So can eliminate V, 1

So
$$piq = 7(p \wedge q)$$

 $pi(piq) = 7(p \wedge (piq)) = 7(p \wedge (7(p \wedge q))) =$
 $= 7p \wedge (p \wedge q) = 7p \vee 7(p \wedge q)$

1 h d = (d l) = h d l 50 p.y=7/pxg| -1/pxg|=7/pxg|=7/pxx|-7/px 7pxpxy=7pv7/pxg| (32) Legic of Variable Proposition (Predicate Coloubus)

First attempt:

Suppose our Universe consits of two elements Consider statements about 0,1 So P(0) is T, P(1) is F Still house 7,1, V -> Fact in addition get two extra ways of maxing stalement Existablial statement: Here exists on such that Paj is T Universal statement: 40) P(1) when talking about only two elements of a Universal statement Ro) A R(1) Existantial St. Ro) V P(1) more anditions. Suppose U now have three dements 0, 1, 2 Universal St. PO) 1 PH) 1 PE) POJ v Pa) v Pa) Exest st.

Lecolor

that allowings 11 ACA 1626 ACA 12 E

mathematics! Mare Statement orbest N= {0, 1, 2, ..., 2, n+1, ...} swag*: [Universal statement: P(0) n P(1) n P(2) 1. P(n) 1 P(n+1) n.,
get Founde L'Exist. Statement: P(0) V P(1) V P(2) V. P(n) V P(n+1) V. 2 men smorbel The new eigns:
2 men smorbel The Universal Questifier Quartifier = (4a) P(a) 2 1 Pa T for every a 1 Thinks ta Ra)~ 'PON PH) A... A Ph) A HUMA. I Existential Quantifier => (7 a) Pa) n'PA) T for at least one a! Thins (Ia) P(a) ~ 1 P(0) V P(4) V P2) V. 1 tam: New to relate & I in terms of what we already most Q How do they interest with 1? Back to universe = 20, 13 (#a) P(a) = 7(P(o)) T(a) = 7 P(o) v 7P(1) = J(a) 7P(a) 7(a) Q(a) = Q(0) UQ(1)= 7(+ 2) P = (32) TP 7(3a)P=(Va)7P Unicerse = d 0, 1, 2} (= a) P(a) = P(o) VR1) v P(2)

= 7 P6) V 7 P(1) V P(2) = 7 P6) V 7 P(1) V 7 P(2) = (+ m) 7 P(a) V: For any I : There exists -> 7 H is There exists e.g. # " integers

n is die by 2

I n = 3, which is not die by 3 7 { tn, P(n)} = { In, 7p(n)} esobo emo sage neped esobrepanon cynedenie (bee, un soun, usum per u m. J.) u y rajubanoujae, omnocum el mu cynedenne no breay so seejant nomenne, bespananoujae ujo even, une n ero rasiun. Henrep: "The some great receber ne Tesbaem craemab"-cyroden.

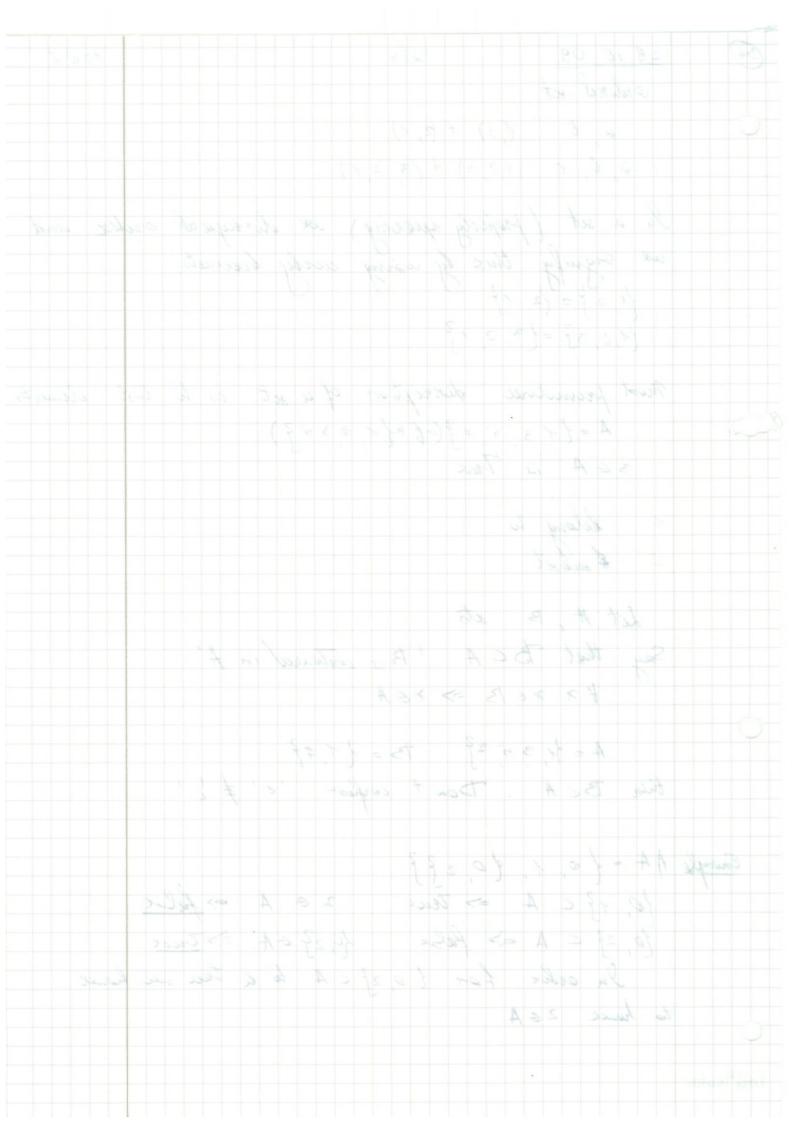
Green(3) = ". great receber."

upedunam(P) = nonenne ". craemand"

clayer = " ne backaem

Il annopne enobo = ", nu som".

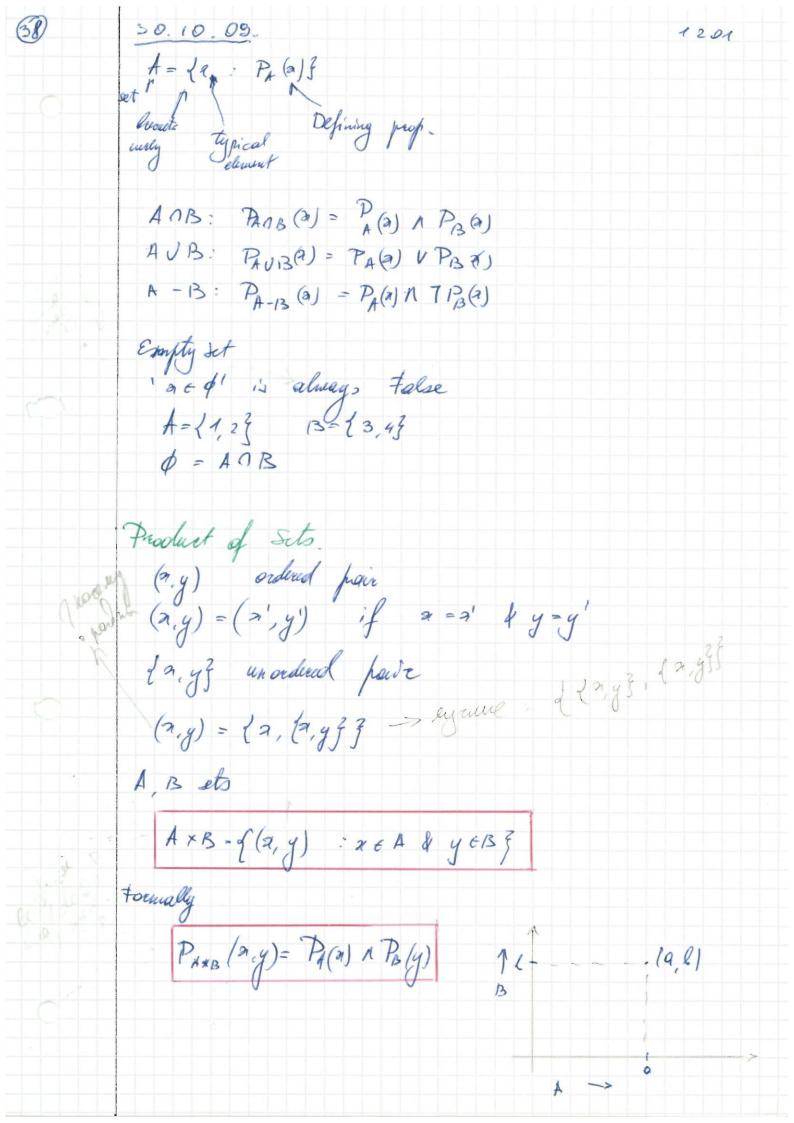
29.10.09. Sets (34) 1201 a, b = (2) + (2, 1)0,6,0 (1,2,3) + (3,2,1) In a set (properly spearing) we disregard order and use signify this by using weby brevenets. (1,2,3] = (3,2,1] most primitures derigition of a set is to list elements A= (1,3,5,43(= \$ n(1,43,53)) 36 A is True € belong to C & subset Let H, B xts Say that BCA Bis contained in A' A= 11, 35, 23 T3= 11, 43 then BcA. Don't confuse '&' \notin 'c' \notin 'c Enougle 14 = (0, 1, do, 233 2 e A -> false 10, 13 c A => Tene { 2,2 g € A => Truce 10, 23 € A a> Palse In order for 10,27 c A to be truce were home to have 26A Le Color



35)		2) A = 20, 2, 20, 13, 10, 23, 3, {3}}
		203 c A → true d 03 6 A => folse
		20,13 c A => folse 20,13 c A => true
		20,29 c A => true 20,29 c A => true
		do, 3 g c A => tun {0, 3 g ∈ A ⇒ false
		3) 10, 2, 20, 13, 20, 23, 3, 1333 7
		+ { e, 2 , e, 1 , 0 , 2 , 3 , 3 }
		20, 2, 1, 3} = {0, 1, 2, 3}
		Sets in Mathematics
		$N = \{0, 1, 2,, n, n \neq 1,\}$
		$Z = \{0, 1, -1, 2, -2,, n, -n,\}$
	li li	E = { 2 & IN : 2 = 2 n for same n } Here l'u limited set le means of d'inspectes
	11	this is assual near to describe sets.
		Mis is usual neag of describe sets. A:{n:n is left hand drive can }
		X = 12: Paz - standert discription
		ty.
		Ty cal element Defining property
	e.g.	$A = \{a : P_A(a)\}$ P_A defining a property of A $P = \{a : P_B(a)\}$ $P_B = \{a : P_B(a)\}$ $P_B = \{a : P_B(a)\}$
	,	7= (a: PB(a)} PB -11
	R	when is B c A! when 'PB(x) => PA(2)'
)	
		* = A OB Note: do not use venn diagram!
Lecoc	olor	Jeng diagram

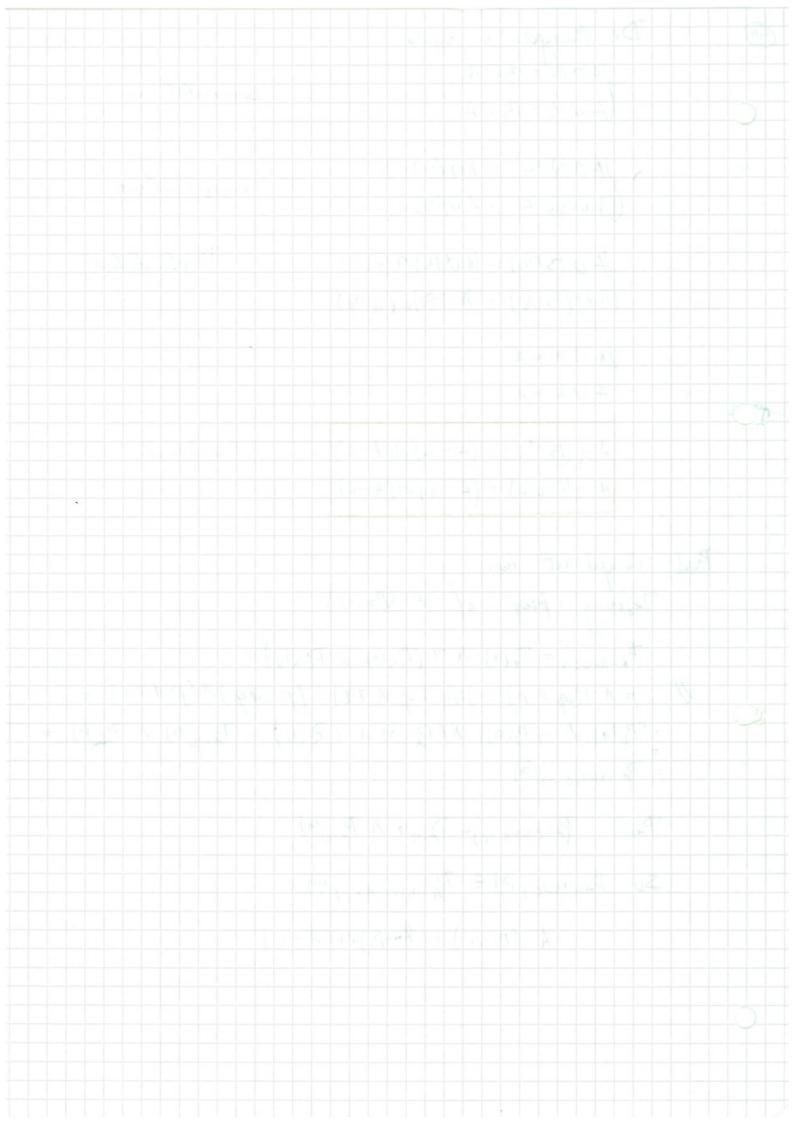
36 \$ 34 Operations en Sets. $A = \{ \alpha : P_{4}(\alpha) \} \qquad B = \{ \alpha : P_{B} \}$ -intersaction of A&B ANB = { 2: PHENNPB 23 4UB={7: PA(M) V PB(M)} union 4-13={ a : P,(a) 1 (7 PB(1))} complement Standard Pules for manupulating Sets (De Morgan's laws) JAUB = BUA LAMB - BOA SAUBUC) = (AUB)UC (An(Bnc) = (ANB)nc JAn(BUC) = (ANB)UANC) (AU(Bnc) > (AUB) n(AUC) X- (A UB) _ (7-4) 7(2-B) 12: Px (a) 17 (Px(a) 1 Px(a))] Px (a) 1 (7 Px (b) 1 7 PB(4)) [PrainTPan] N[Prain 1 P3W] x-(40B) = (x-A) (x-B)

4-13-47 801(120) 14013 BUA + UEVE) = 14 UBVE 0(804) = (308)04 (A OB) - (A - K) 7 (B - B) 10271027102 ACIVER INTENIAL (E-X) = (X-X) = (E194)



De Morgan's Laws (39) 140B=130A AUB=130A commutat ; ce JAMBAC = AMBAC) associative ((AUN)UC = AU(BUC) Distri Sutua JAU (300) = (40B) (400) (An (BUC) = ANB)U(Anc) JA 1 H = A (AUA = A 4 - (B/C) = (A-B) U(A-C) Complement 4 - (BUC) = (A-B) n(A-c) Pred Complement how Defining prop. of t-(Bvc) PA-RUC) = PA(a) A7 (PBM) V PC(a)) =

11 p 17 (q V r) = pN(79 172) = (p 129) 1 (p172) = = P+(a) 1 - P+(a) 1 (P+(a) 1 - P-(a)) = P+-+ (a) 1 P+=(a) = = P(4-B)n(4-c)(2) But PA-B) n(4-c) = PA-B? 1 PA-c(9) So PA-(BUC) (2) = P(A-B) (A-C) (2) = : A-(BUC) = A-B)n(A-c)



Def " Mapping (or Function) & set A to set B Punction is a subset of C A + B , that for apply a & A there exists a single element & & B that (a, b) & f. f: A -> B = f c A x B that (i) taeA 3 beB (a, 6) & f (ii) \(\(a, b \) \(\ef \) and \(\(\alpha', b' \) \(\ef \): a=a' => b=b' Def Injective mapping - is a mapping that for all elements in codemain these is no more then one element in domorin that (9,6) & f. f: A > B is injectivel >> f(a) = f(a') =7 a = a' Def " Surjective mapping - is a mapping that for all elements in codomocin there is at least one element in domain that (a, b) ef. f: A >> B is surjectivel => theB FacA: faj=h

		_																			
															+						
		\exists																			
		_				-															
												-									
															-						
		-											-								
															-						
		-																			

Composition of Mapping A for B for C hogof (a) Def gofa) = g (fas) Prof. (hog) of = hogof) -> composition is associative Interse Mapping If f c A x B Define f'c 13+A

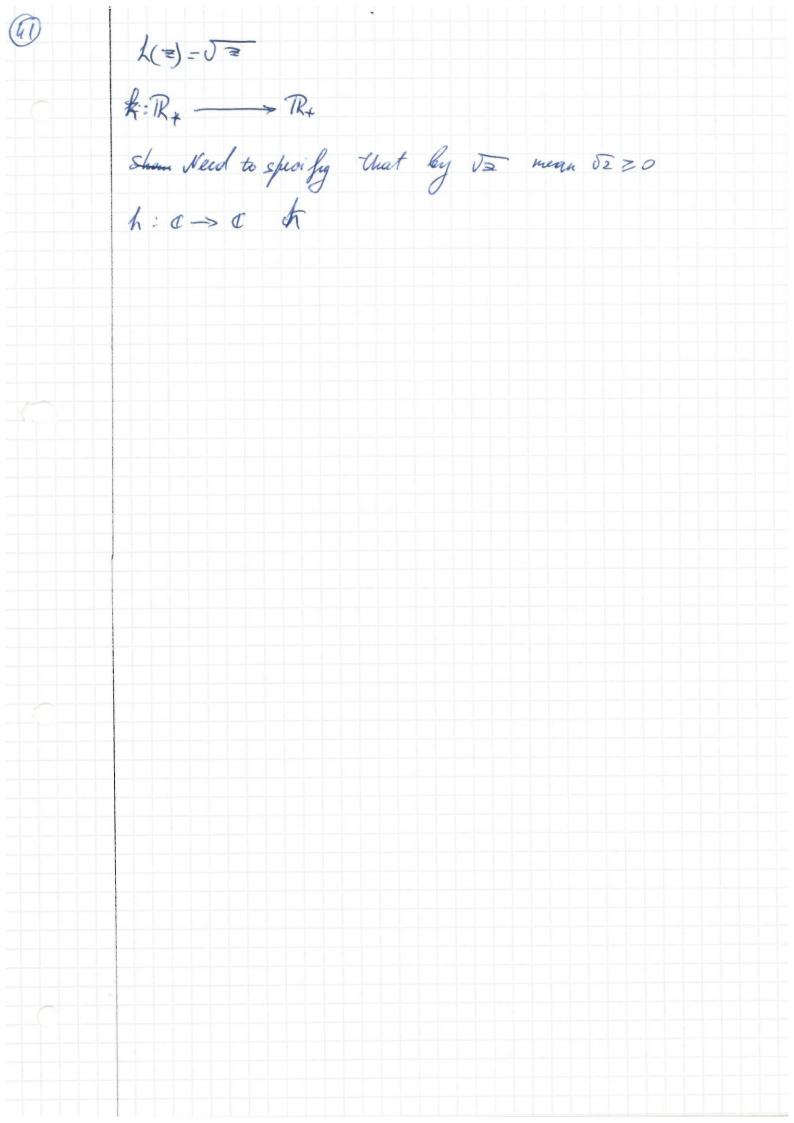
ly (b,a) ef '=> (a, b) ef Conclusion: if f' is mapping then f is bijective if f is mapping then f' is bijective Thun Let $f: t \rightarrow B$ be a mapping $f: bjectise \rightarrow f'$ is bjecties

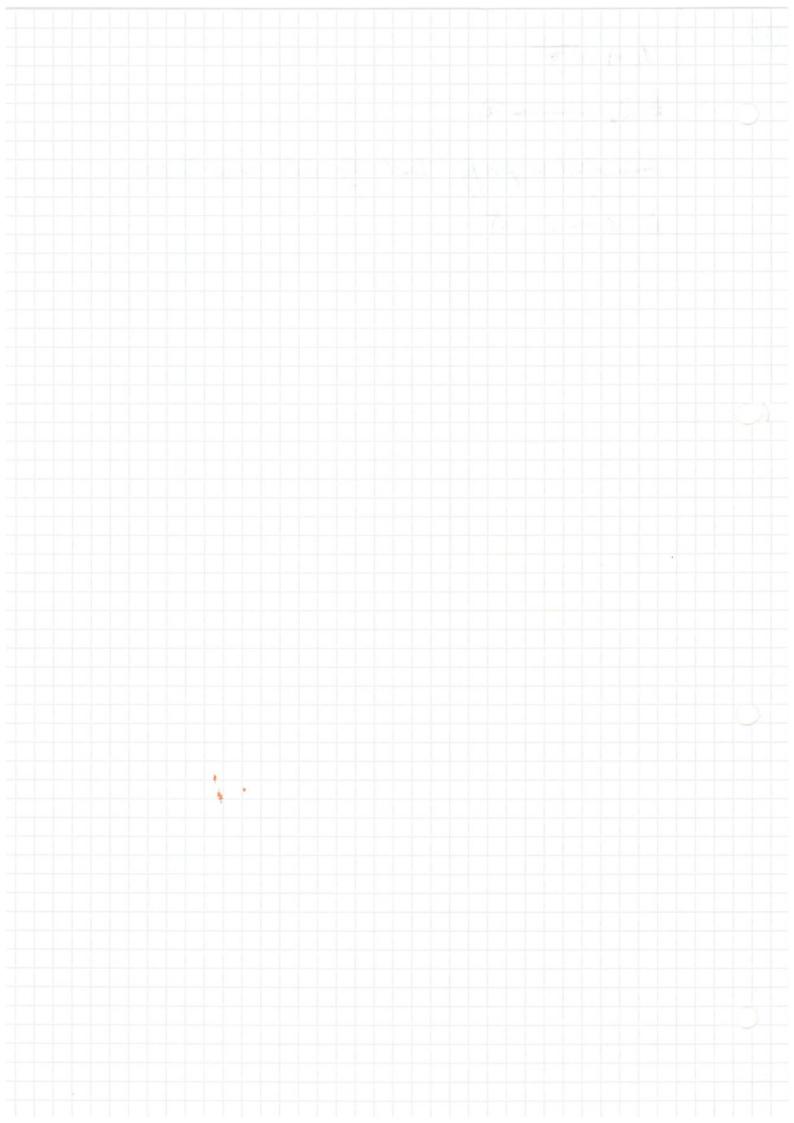
																	T							
		-																+						
																		+						
		-							-		*						76							
		-																						
																+								
															Ann I									
																							1	
																+			+					
		-															+		+					
		7			7														7					
		_				4																		
		-																						
		-					-									+								
-			- 1														- 1			- 1				

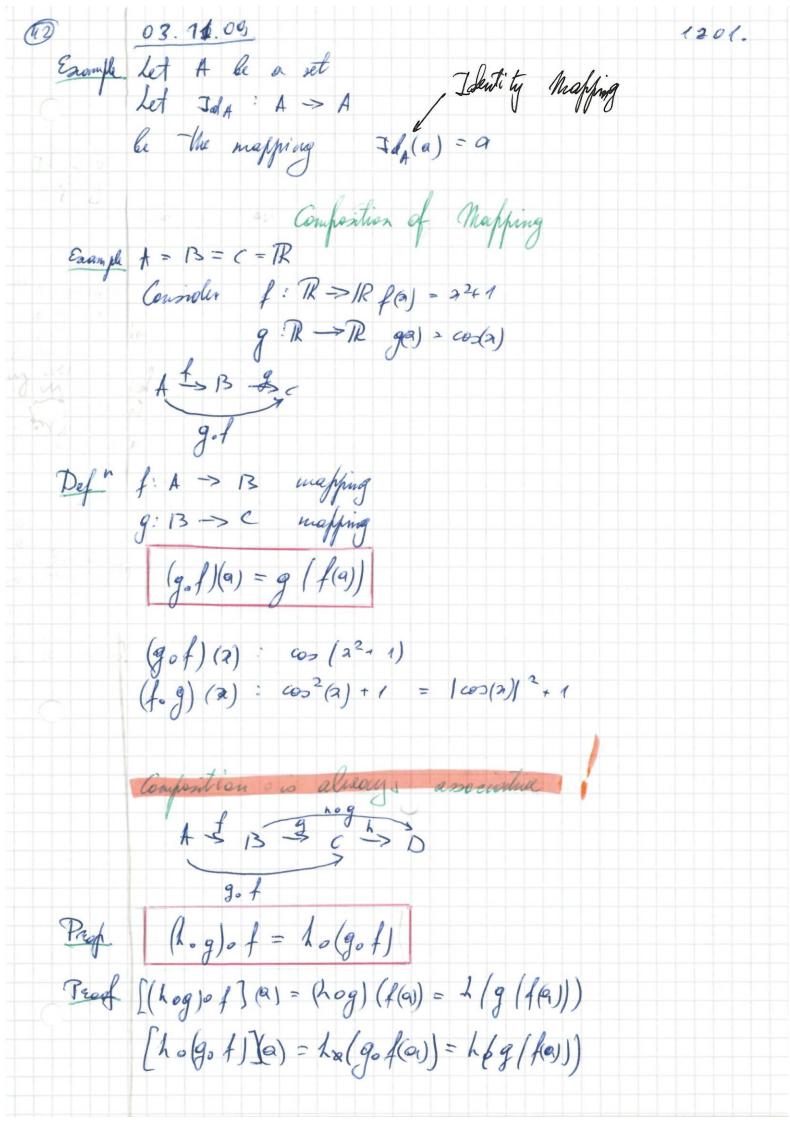
insesting Problem with Venn Diagrams Condusin => Do not use it Functions (or Reappings) Abel 1820 aifred femilia Let A, B be sots. Informal Def": A function (+ +>13) is a Rule mapping = which using assigns to each a + A a well defined function element fax is send writes f: A = 13, l= f(a) A = domain of function B = caluses of punstion (Cod omain) A= B= Q demain of functor f(q) = q + 2and in the second f(q) = q + 2and in the second f(q) = q + 2Beware: A function is not a formule

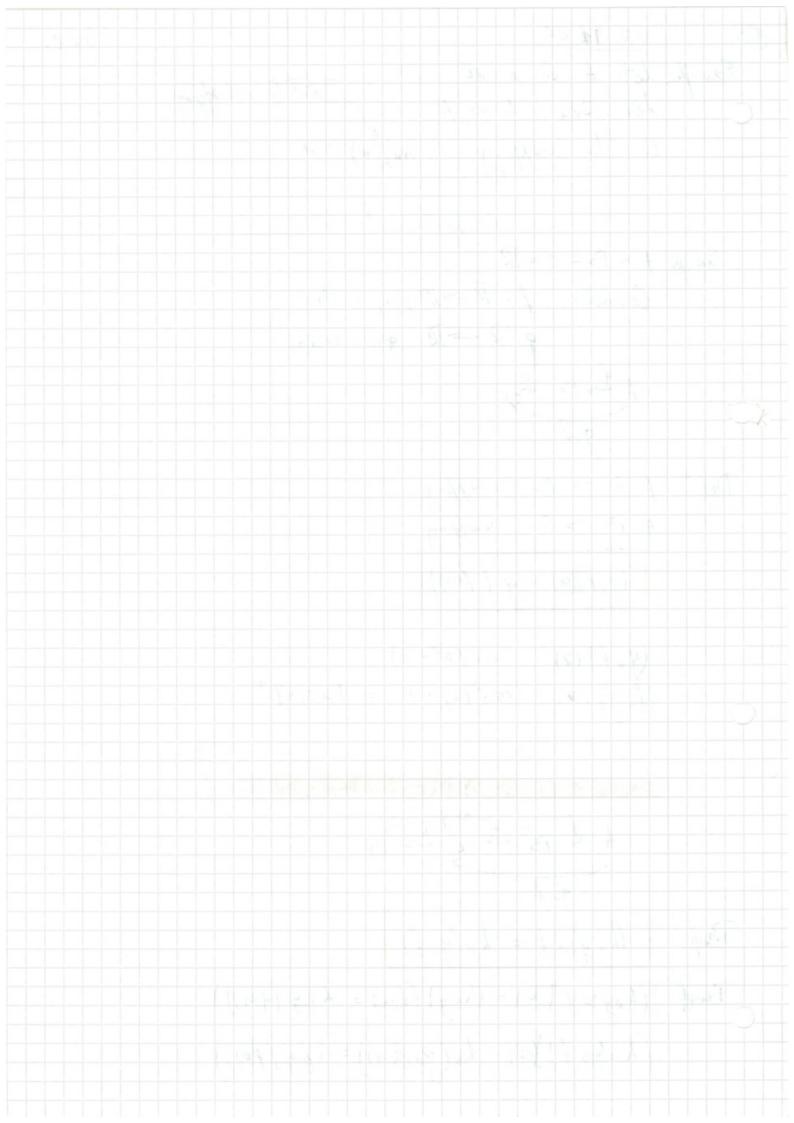
i. l. $g(3) = \frac{3^2}{21-1}$ is not a function a Hew to maine g(3) into a fundien! g: R-117 - R $g(x) = \frac{x^2}{x^{-1}}$ is a function.

Pamoin of function - is the set of calues of the independent servicelle for which a function is deficenced.

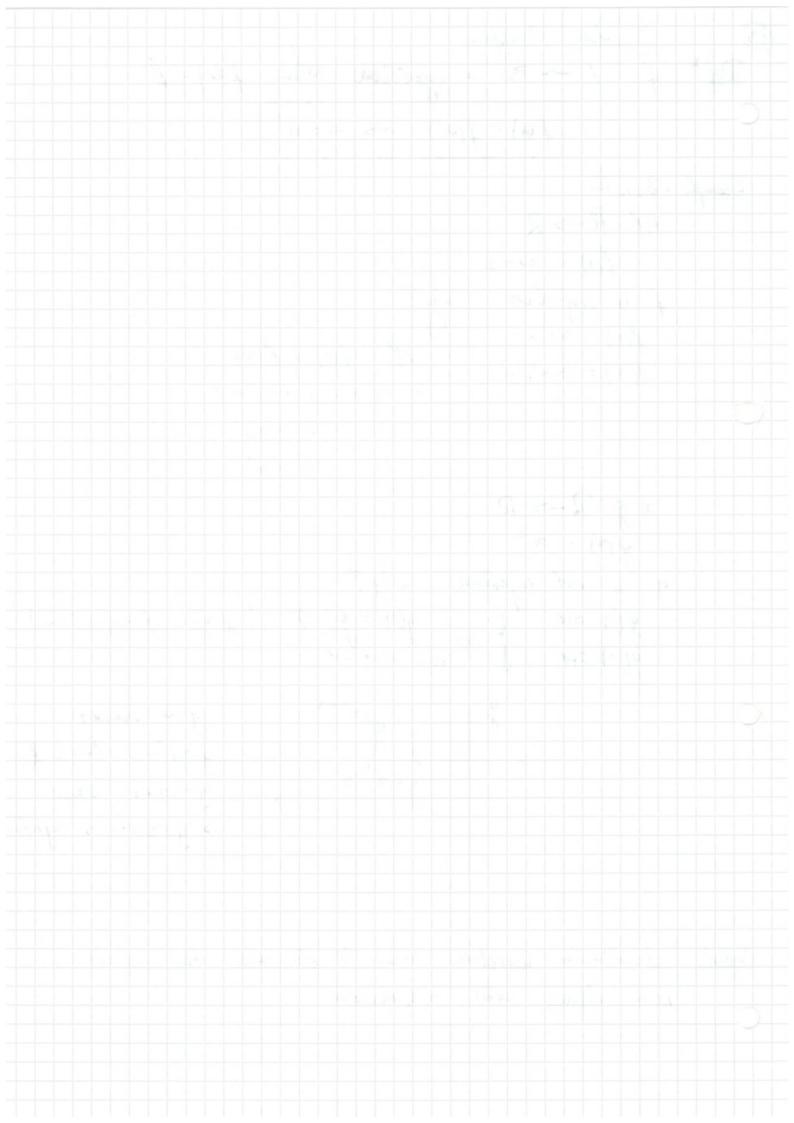








Def n f: A -> B is injective when fa) = f(a') => a=a' Example Consider 1)f:1R -> R fa) = 24+2 roly? f is injectice f(n) = 3a+2 if fe) = f(a) f(a') = 3a'+2 : 3942 = 32+2 32 = 32 21 = 21 2) g: R -> R 9(2) = 22 g is not injective why? g(1) = +1 g(1) = g(-1) (prop. of injection) g(-1) = -1but $1 \neq -1$ $y = y^{23}x + 2$ $y = x^{2} - 3$ $x = x^{2}$ y=a crossey y=22-3 twice 1, y=32+2 once => y=3 21+2 is injective inglish Function is injective when t its value has one or none defined codice in the domain.



Surjective Mapping

Del Let f: A > B le a mapping

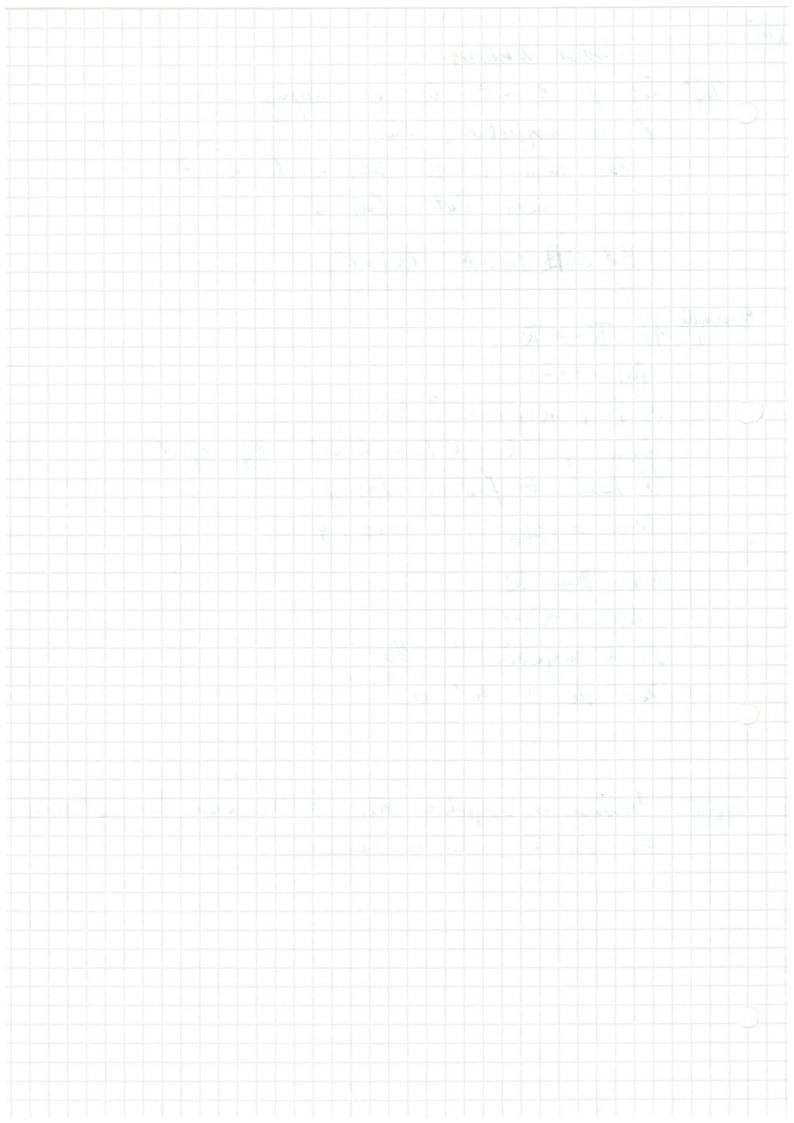
f is surjective, when

for each b & B there exists a & A

such that f(a) = b 40 cB JacA: f(a)=R Example: of : TR -> R fa) = 32+2 Is f is surjective? Ges

Given you Re I have to "let" by by f

I have to find a ; f(a) = y Take = 4-2 39+2 = 4 $2 h : \mathbb{R} \longrightarrow \mathbb{R}$ $h(a) = a^2 + 1$ Is h surjachiel? No How do y hit o? English Function is surjective other Vits value has at least one defined value in domain.



(45) of Mapping / Function Definition 16) (a, fas) (a, fa)) E A × B Pef" Let A, B be sets.

By a mapping f: A > B is

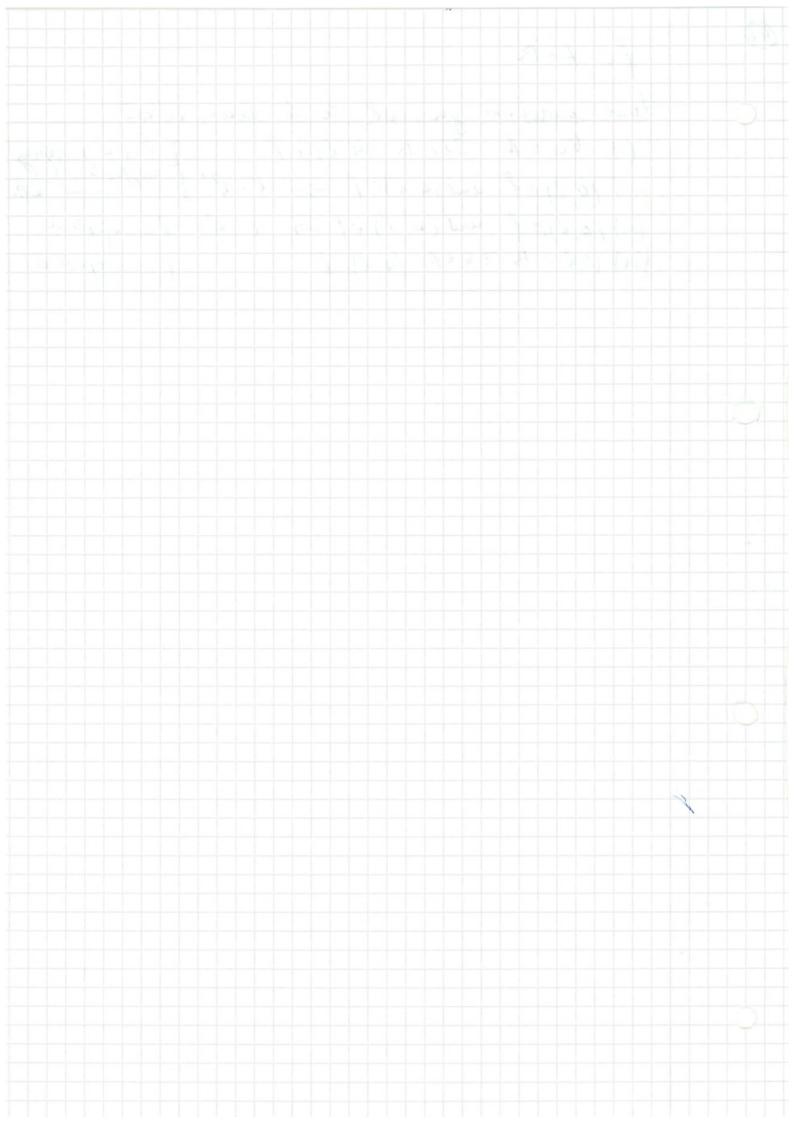
I mean a subset of C A × B, such that (i) \(\frac{1}{2} \in A Example i) f(a) = 32 +2 f = of (2, 32+2), 2+ Rf (ii) gr) = 22 g = {(a, 2), 2 ∈ R} f: injective (a, b) & f and (a', b) & f => 0 = a' f: surjective 4b & B Za & A (a, b) & f

ned une recembo $F \subset X \times Y$ mance run due so deno $X \in X$ equeembyem educenbennous runn $Y \in Y$, manne, run $Y \in Y$, manne, runn $Y \in Y$, manne, runn $Y \in Y$, manne, runn $Y \in Y$,

fc AxB Tour conditions you need to be clear about

(i) to EA ILEB (a b) Ef I fix a mapping

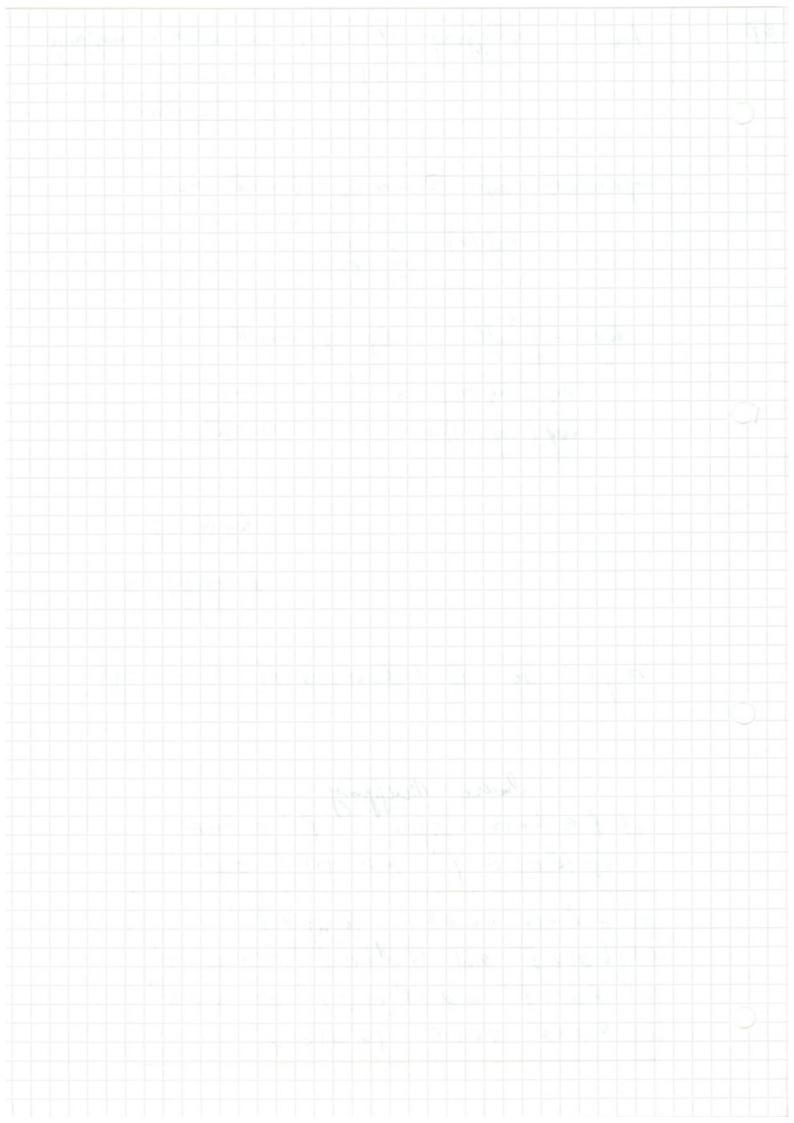
(ii) (a,b) Ef and (a,b) Ef => l=l' | sufficient & cond. both (iii) (a, b) cf and (a, b) ef => Q = a' - fis injective (10) 4 b c B 3 Q c A (a, b) ef - f is surjective - f is surjective



(44) 05.10.09 1201 A = B-{1,24 f: {1,23 -> {1,23 identity i.) fas = 1. 1 -> 1 injectial, surjectial >> Bijectice 2) f(2) =2 2 -> 2 ii. 1) (1) = 1 All fee), 1 + 2, not injective 1->1 2 2 2) fe) = 1 not registrus f(1) + f(2), 1+2 and f(1)+f2) 2 1 2 iii 1) f(1) = 2 Bijectiel 2) f(2) = 1 iv) 1) f(1) = 2 $\begin{array}{c} 1 \\ 2 \\ \end{array} \begin{array}{c} 1 \\ 2 \\ \end{array}$ not injective 2) f(2) = 2 not acjectice cardinal AB - two sets, home the same continal number. number 1 papounasonel when I bijective. rivero mone f: A > 13 () noughour. monegado 9: {1,2,3} -> {1,2} g: secobrati, censbusin remembers chaens etc. Here thre are no injenctive mapping Back to formulations: fc A xB I pieced out 4 conditions (i) tacA 38613 : (a, b) ef (i) (a, b) ef and (a, b') ef -> b = b' (ii) (a, 6) ef and (a, 8) ef => a = 0' (iv) +6 e B = a e A: (a, b) ef

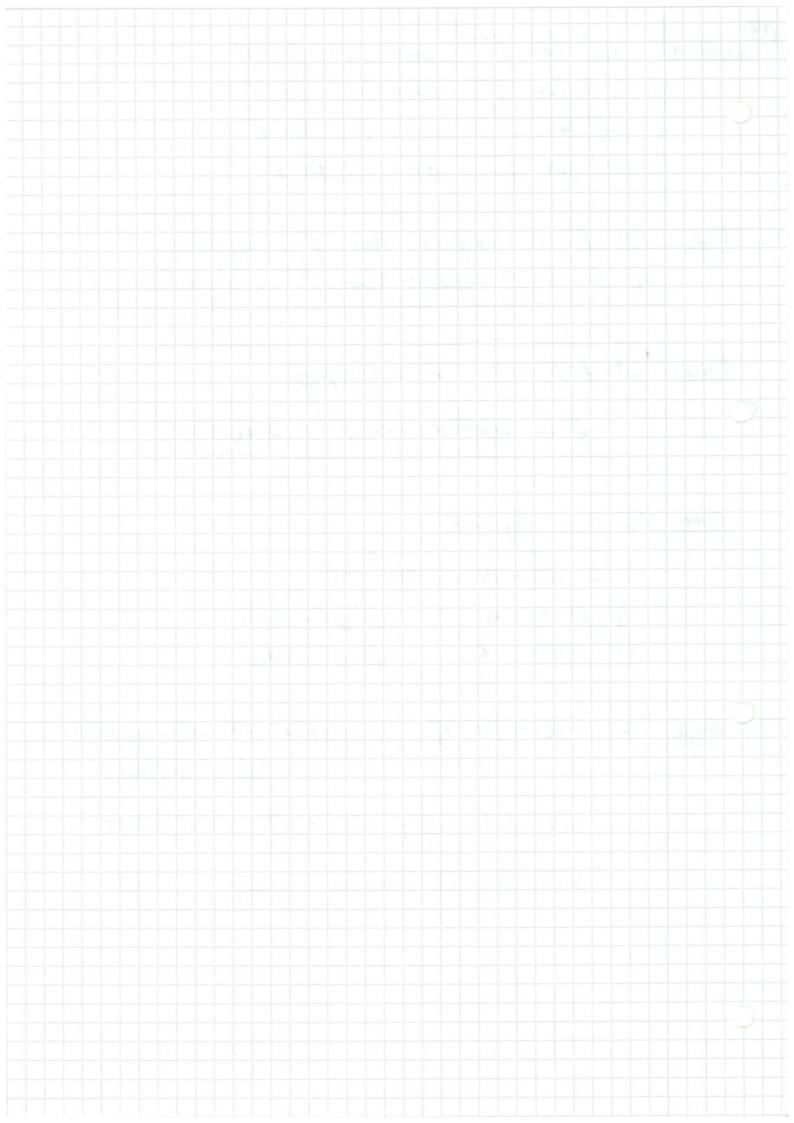
a mathematical set.

frything satisfying (1) & (ii) is called a mapping 41 (iii) is injective
(iv) is surjective enponentials eap: R -> R+ = { 26 R x>0} $enf(n) = \sum_{r=0}^{\infty} \frac{3^r}{r!}$ log = f dt log : P+ -= R $exp\left(leg(n)\right) = n$ leg(exp(x)) = n770 26 R log (1) = y if eap(g) = a(2, y) & log iff. (ifteend only if) (y, 2) & cap I f c A x (3 Define f' c Bx A ly (1,a) & [' &> (a,b) &f (i) + 6 = B I a = A : (8, a) = f' (i) (b, a) e f and (b, at) e f => a = 9' (w) (P,Q) & f and (b, a) & f => l=b (i) ' Kack TREB (8, a) e f



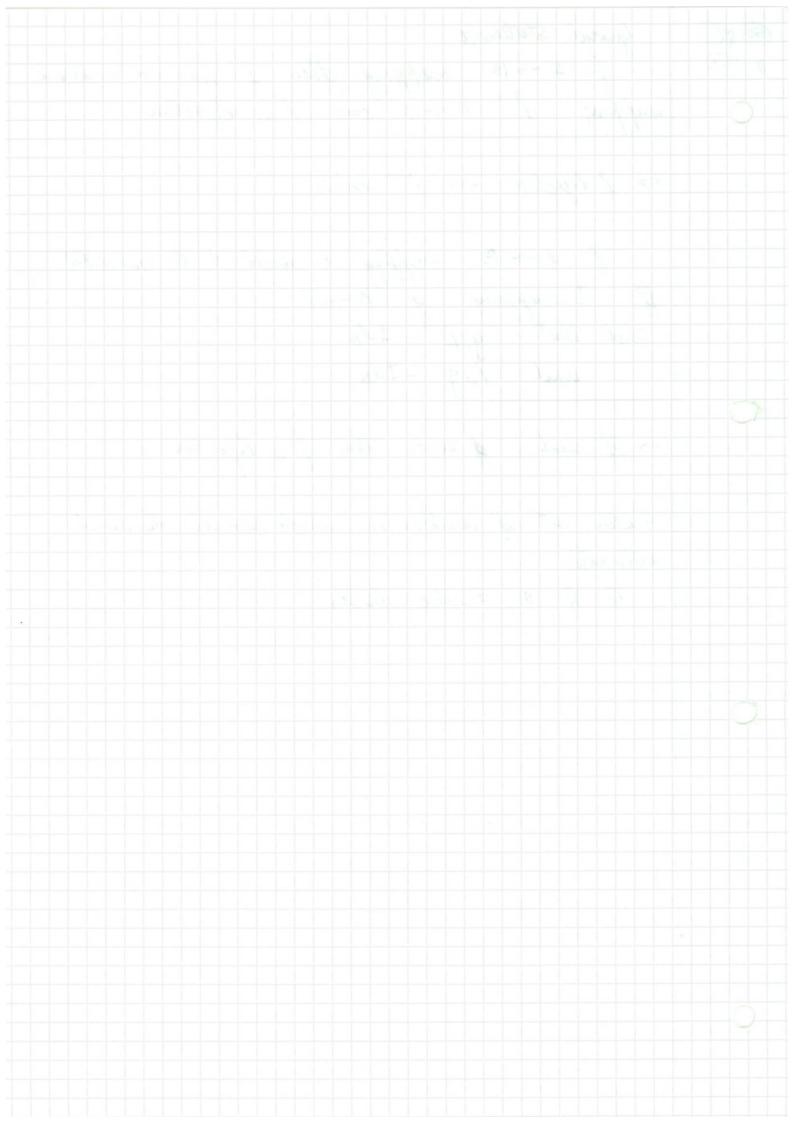
(i)' low for (iv) for f Conolin on (ii) for f- => (iii) for f (iii) for f => (ii) for f (iv) for f' (i) for f Pap. If f' is mapping then f is ligeotime.

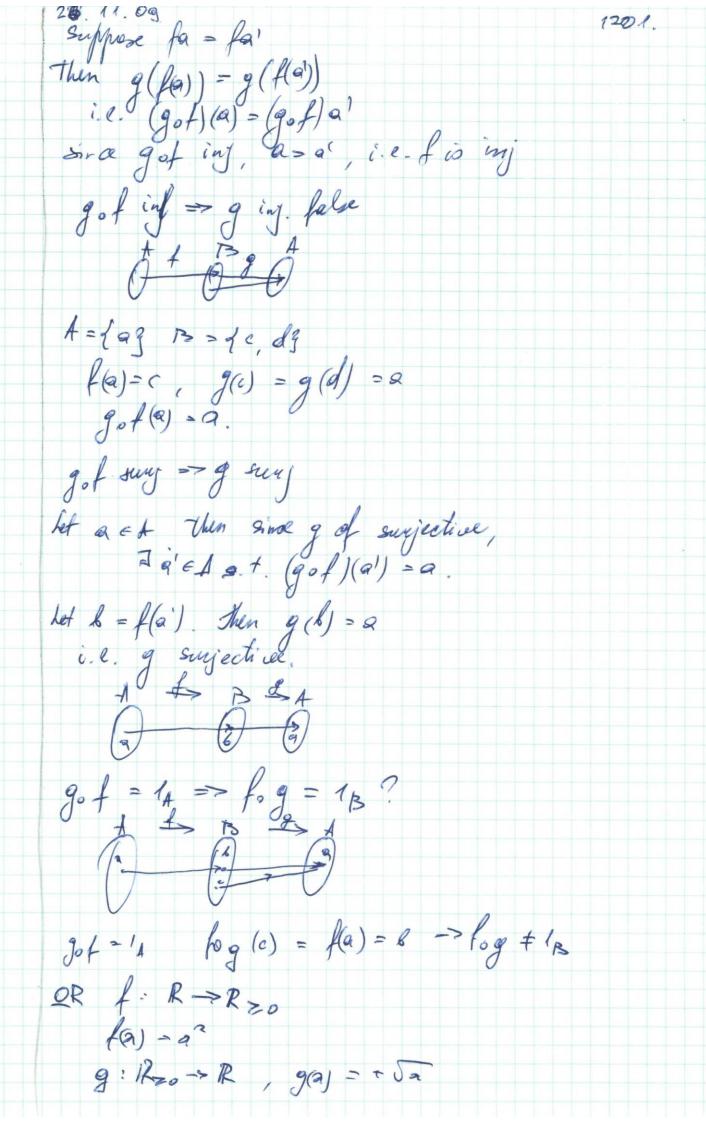
If f is a mapping then f' is hijectime theorem Let f: A > 13 le a mapping of is Exective <>> f is a lijective Observe If f is Rejective BFA AFB (fof) a) = a fof = IdH (fof)(b) = 6 fof = IdB Enough Sin: R > [-1; 1] is surjective not subjective Sin (#) Sin (5t) Sin: [# 3t] -> [1; 1] is Rijectivel sin' : (-1, 1) -> [4 3.47

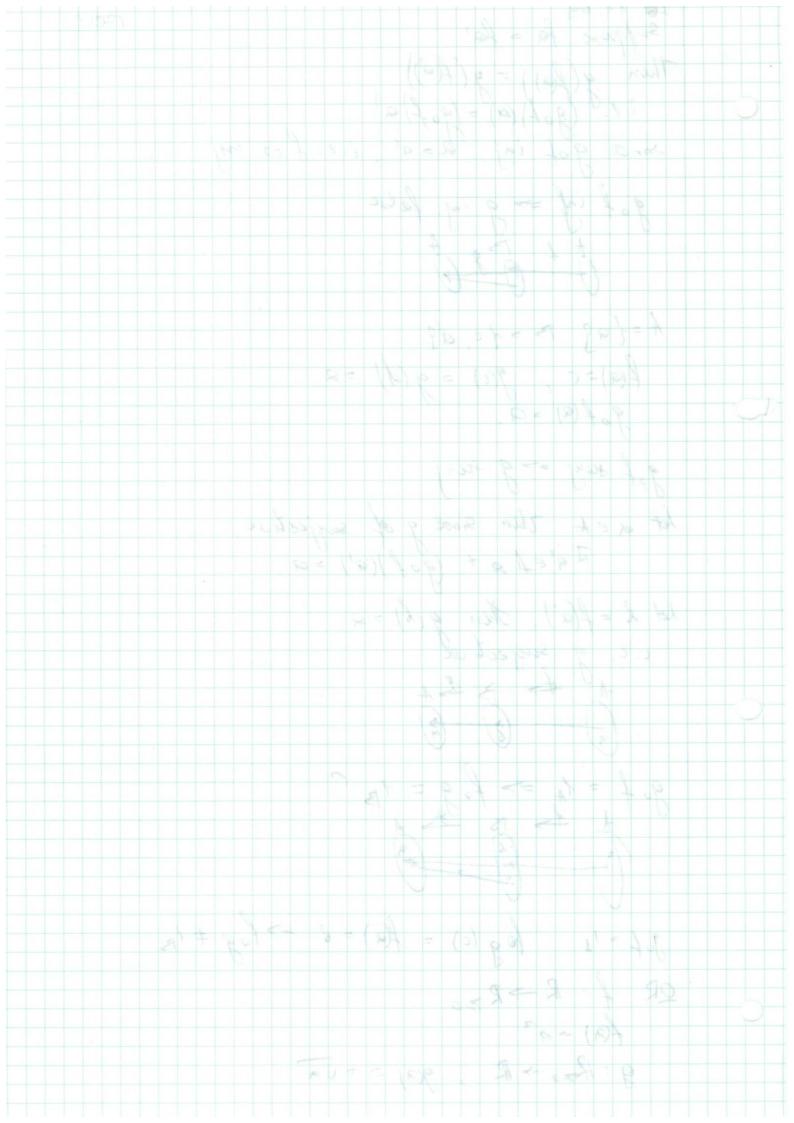


General Statement

f: 4 > 13 mapping. Then f has sen universe
mapping f": 4 > 13 (=> f is lighted) 50 8 ET 8 52 => f lijecture => f " exists f: $A \rightarrow B$ mapping is said to be invertible iff. I mapping $g: B \rightarrow A$ such that $g \circ f = \pm olp$ and $f \circ g = \pm olp$ => If such a of exists them f is bijective Fields set of munkers in which can do standard aith metic: Q, R., C, tinite fields.

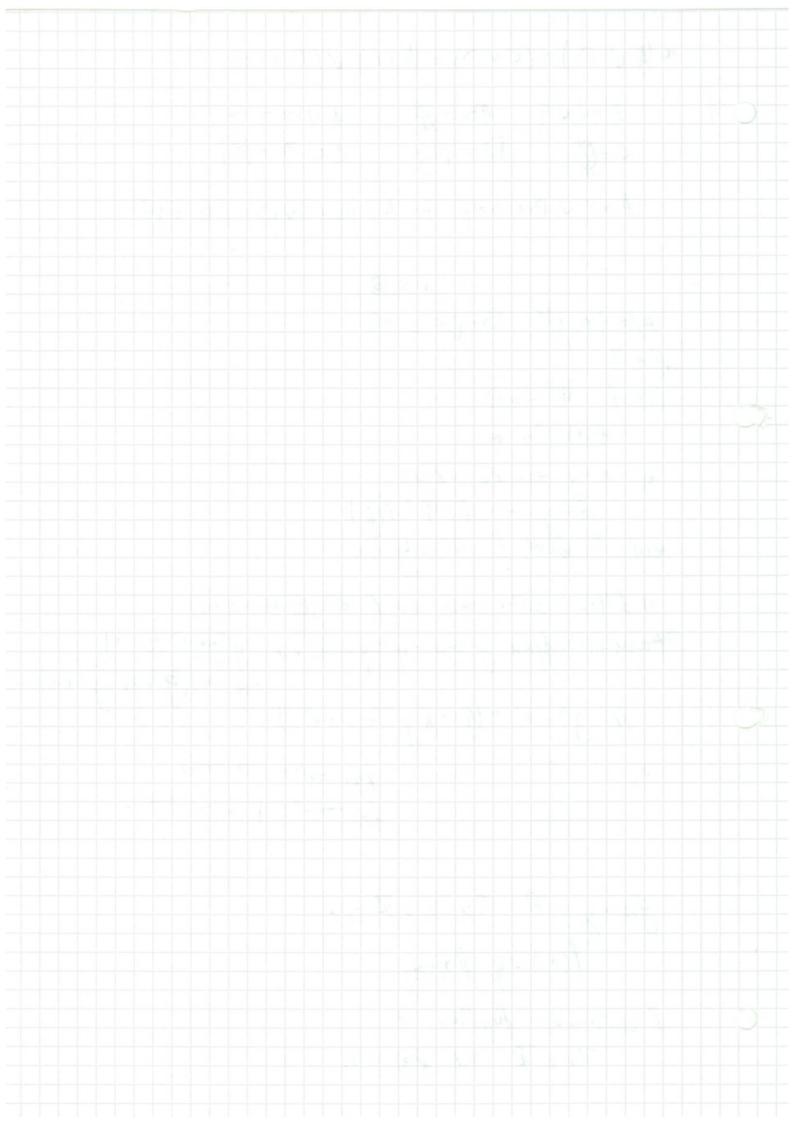




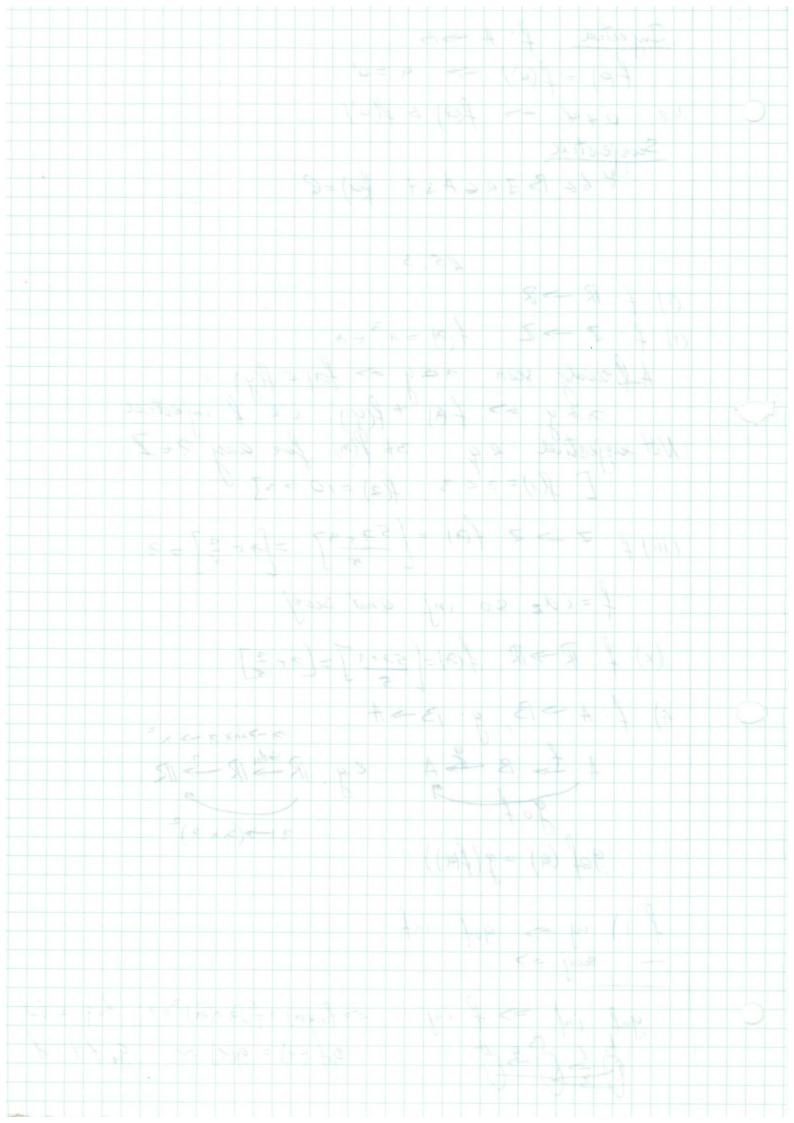


2 (A V 13) x (CUD) = (AxC) V (B ND) $A = \{ e_3^2 \mid B = \emptyset \}$ $A \cup B = Q$ $C = \emptyset$, $D = \{ e_3^2 \mid C \cup B = \{ e_3^2 \mid C \mid B = \{ e_3^2 \mid C \mid B = \{ e_3^2 \mid B = \{ e_3^2$ AxCV 13x1)=4 + AV13xCVD-78,613 A/= 31,29, B=31,2,33 $(i) f : \mathbb{R} \rightarrow \mathbb{R}$ fa) = 3+ a inf $a = y \implies fa = f(y)$ $a \le y \implies f(a) = f(y)$ need to solve f staidy inc. i) $f'(a) = 3a^2 + 1 > 0$ so f strictly increasing

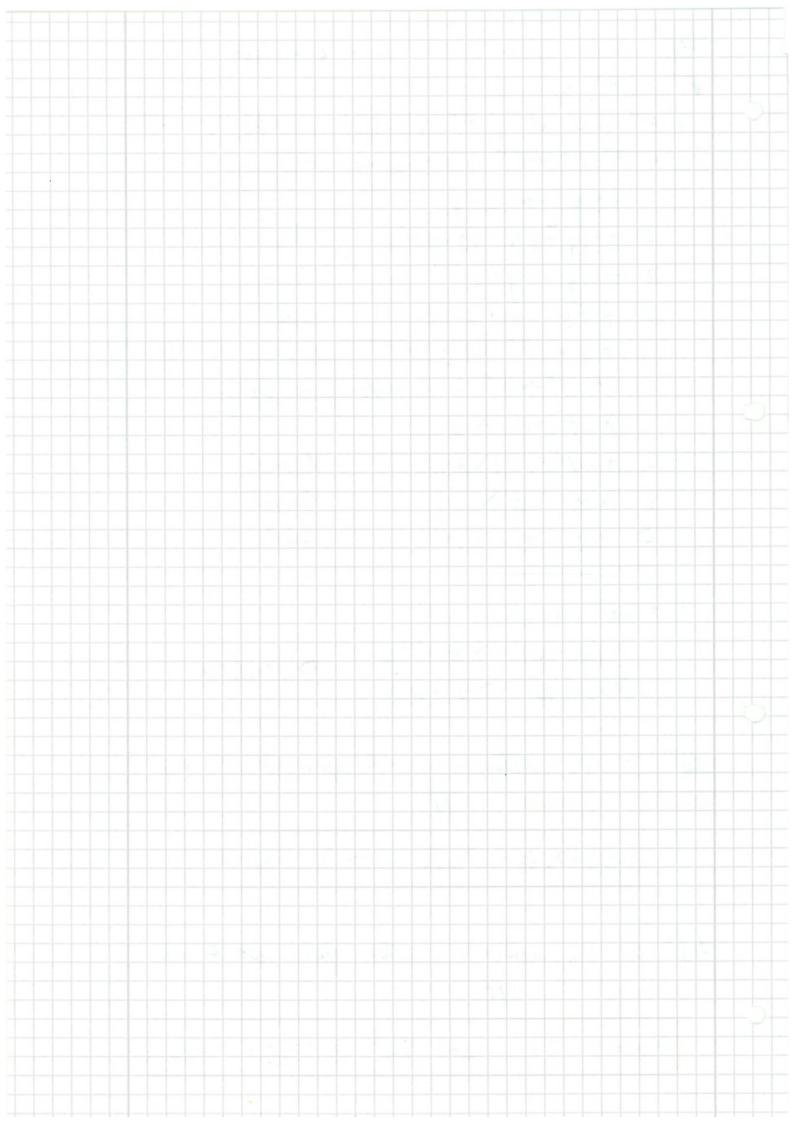
Fractii) Suppose $y > x : y^3 + y - x^3 + x = y^3 + 3^2 + (y - x)$ $= (y - x) (q^2 + 2y + y^2 + 1) > 0$ $= (y - x) (q^{n-1} + 2^{n-1})$ \$(a) = 00 2 = 00 \$(a) = 00 \(\pi = 0 \) green y = R. Ja, 2 6 R 3. + f(a,) < y, f(a)>y I continuous function o Jz ER S.f. fg) = 4.



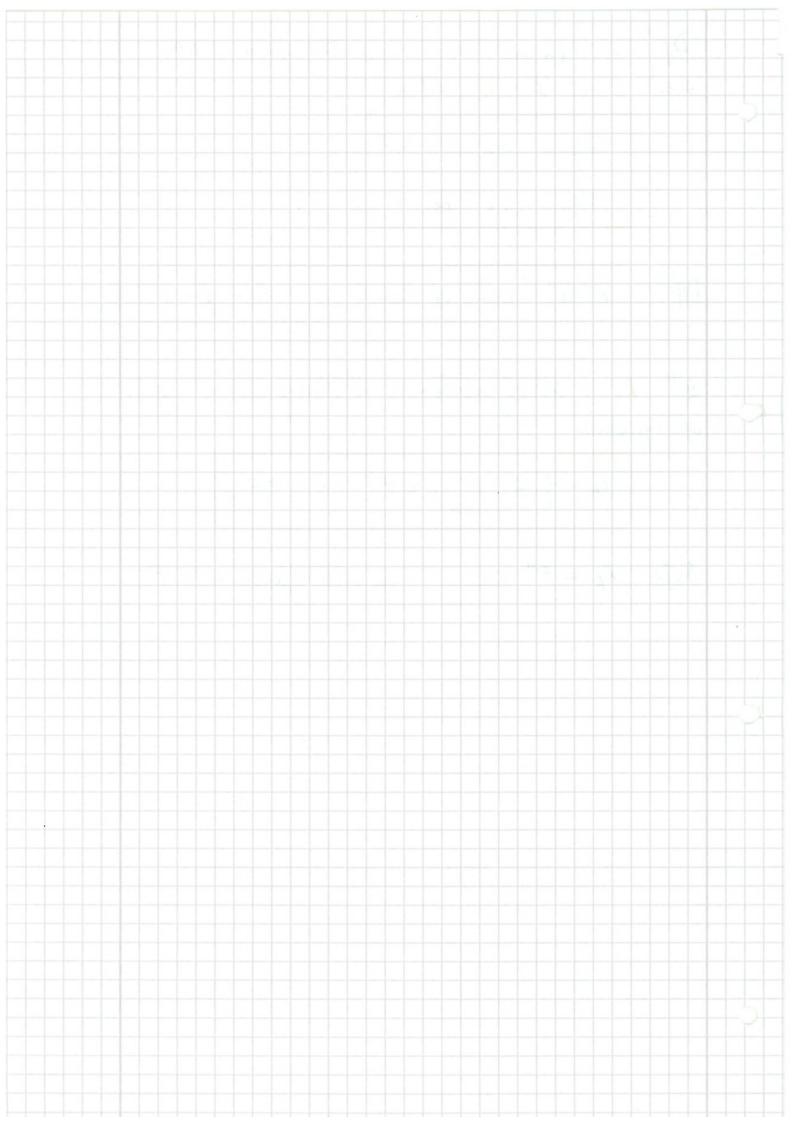
Injectial: f: A >B fa) = f(a') -> a = q' i.e. a+a -> fa) + f(a) Surjectile Of 6 c B I a c As. + (a) = 8 (1) f: R -> R (1) $f: \mathbb{Z} \to \mathbb{Z}$ $f(3) = a^3 + a$ A leady seen $a \leq y \Rightarrow f(a) \leq f(y)$: $a \neq y \Rightarrow f(a) \neq f(y)$ i.l. f injective Not surjective e.q. $3 \neq f(a)$ for any $2 \neq \mathbb{Z}$ $f(a) = 2 \leq 3$, f(a) = 10 > 3(iii) f: 7 -> 7 fa) = [52+37 = [2-3] = 2 : f=idz so inj. and sevej. (x) $f: \mathbb{R} \to \mathbb{R}$ $f(3) = \left(\frac{52+3}{5}\right) = \left(2x + \frac{3}{5}\right)$ 4) $f: A \rightarrow B$ $g: B \rightarrow A$ $A \stackrel{?}{=} B \stackrel{?}{=} A$ $g : R \rightarrow R \stackrel{?}{=} R$ $g : R \rightarrow R \rightarrow R$ gef(a) = g(f(a)) $2 \mapsto (3 + 2)^2$ f 1) in > gof inf - surj. => gat, in => fing => fog(e) = f Ja = (Ja) = a , fog = id 25036 got (1) = g(1) -1 got + id



Def sector space ouer # is a quantiple F" = (F, +, 0 .) 1. If is a set $(F^n = \{x = (x_n) : x_i \in F\})$, $\varphi \in F^n$ 2. $+ : F^n \times F^n \to F^n$ is a mapping satisfying: (2,y) -> 2+4 I x+(y+3) = (x+y)+3 Asse. $\begin{array}{lll}
\overline{u} & 2x + y & = y + 2 \\
\overline{w} & 2x + 0 & = 0 + 2 & = 2 \\
\overline{v} & 4x & 6 & \text{ff} & 3(2) & \text{ff}^{2}
\end{array}$ Comm. Ident. 2+(-2)=0 Ine. 3. a : F x F" > F" is a auffing ratifying (*,2) -> >2 IX.(MZ)=(XM)2 Assoc. 72 = 27 Communit. Ident. ID 1.7 = 2 = 2 -1 4. Final aniem: 1(2+4)=>2+>4 Distribution (x+M) 2 = >2 + M 3 De J. J. oectors in a vector space ober It are liniarly independent iff. > 1 + 1 = 12 + ... In In = 0 => 1 = . = /n = 0 Def " J. .. Im , cectors in a cector space order # ace spanning V iff. tael Ix, ... xm ef that 2 = x, o, + ... xm om



Def E. En sectors in a sector space VIFF
are basis for V, when 1) 6, ... En ade L I 2) E, ... En span V Def n Dim (V) = number of elements in a lasis for V of equations $K_{A} = \begin{cases} 2i = (2i, 1) \in \mathbb{F}^{h} : A \approx 0 \end{cases}$ Note KA CFM, i.e. it is a certar space over IF



06 100 09 FIE L D3 1701. (53) M - 10, 1, 2 ..., n n +1... 3 - have many things in } + : W × / N -> / N $(21, y) \longrightarrow 2+y$ 0+n=n=2+0 $Z = \{0, \pm 1, \pm 2, - \pm n\} \rightarrow \text{integers}$ Now add & outtract

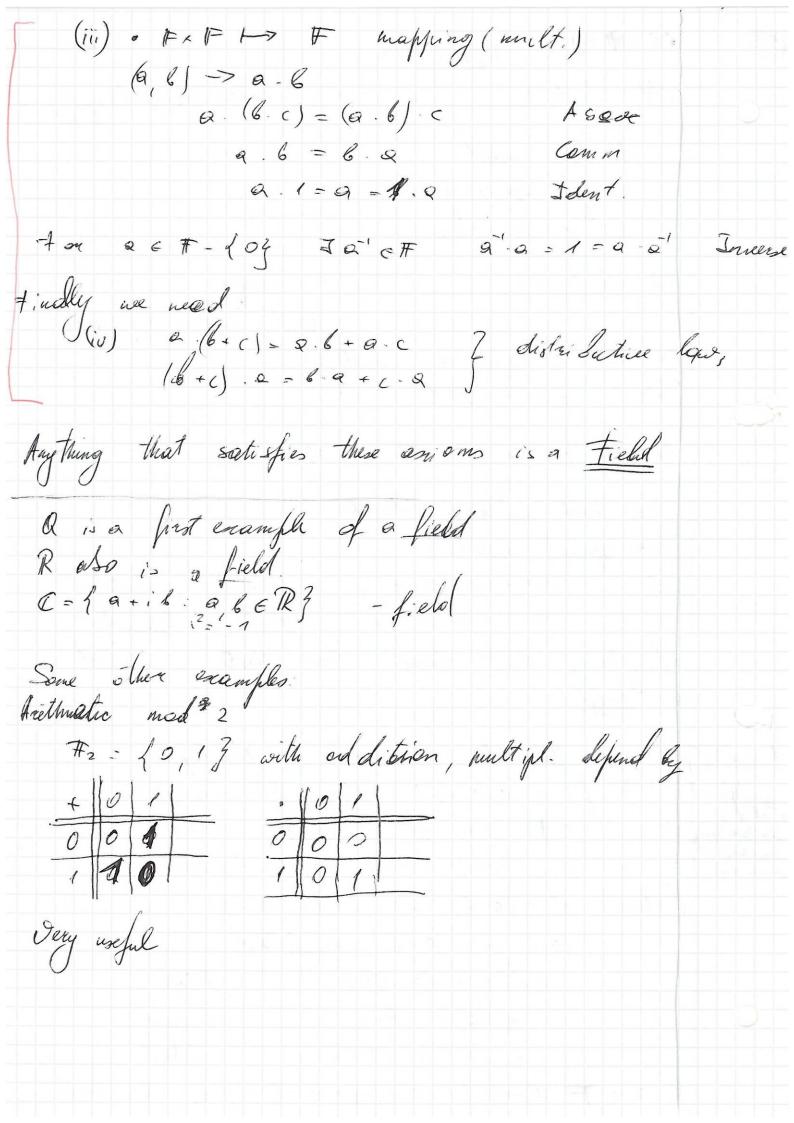
In M Z you can multiple

Dut con't dleids. $Q = d \frac{m}{n} \cdot m, n \in \mathbb{Z}, n \neq 0$ Aughring that looks line this is called framstift: By & filled #, we mean & quintuple."

gurtiple:

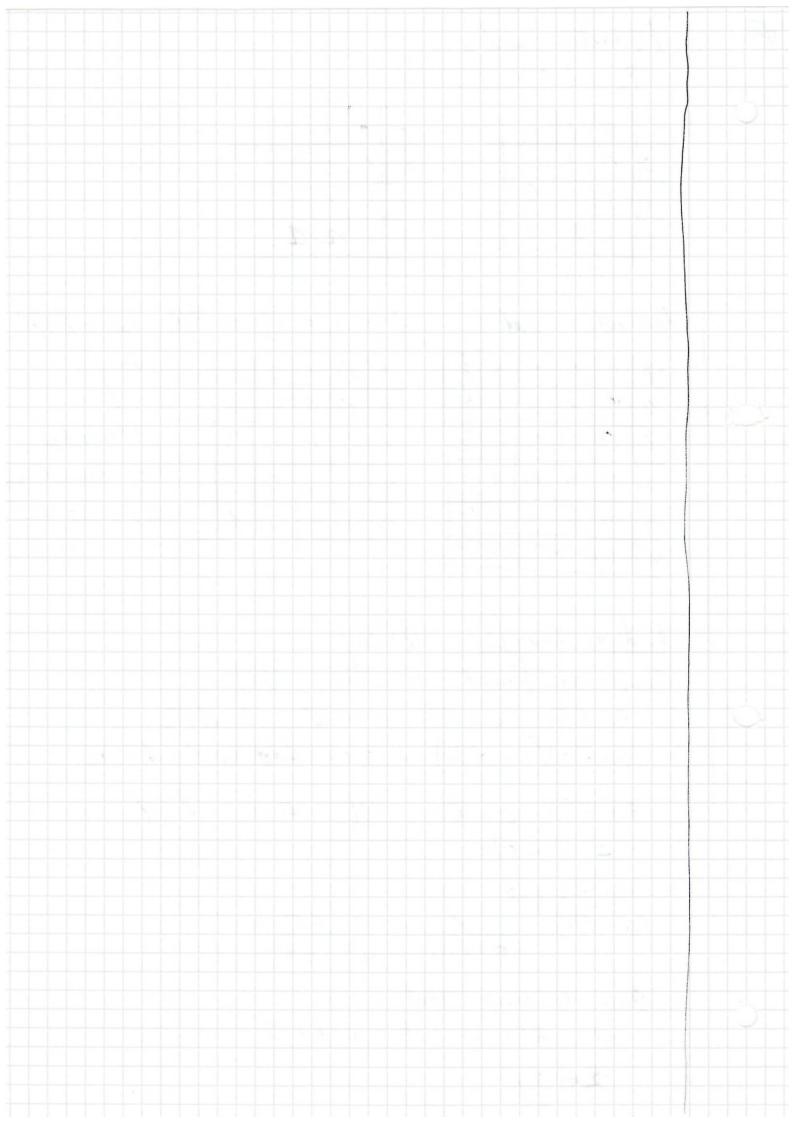
att of 5 a set of 5 1. # is & set 0, 1 & F 0 \$1

2. + IFXIF -> F mapping (additive) similar thing, os a unit. Instead of + (Q, 6) were write @ + & $(9,6) \leftarrow 79+6$ such that 2+(6+c)=(2+6)+c A soc. 2+6=6+9 Comm 2+0=9=0+9 Ident. ₩ Q E # 3(-a) E/F Q+(a) = 0 = (a) + Q Inverse

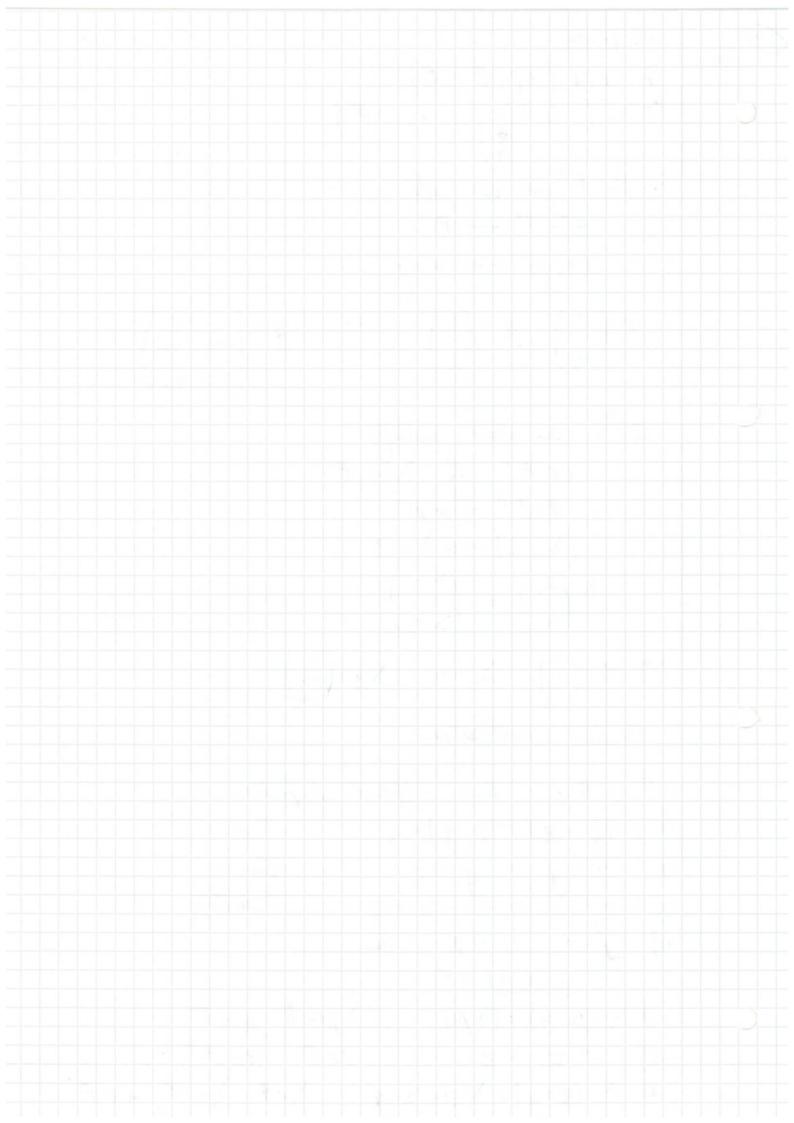


(54) Arithmetic mod 3 F3 = {0,1,2} + 0 1 2 0 0 1 2 0 1 2 000 120 1 0 1 2011 {0,1,2,3} = 1/4 - not or field Anotheritic and 4 0 0 1 2 3 8 0 0 1 2 3 8 1 0 2 3 0 3 2 2 3 0 1 2 3 3 0 1 2 3 4 1 1 2 3 00123 00 10123 horaverse 20202 12 does not enis 10230 1 2/2.2 = 0 and 2 3 2 × 0. Andher Example: Q (52) Elements are formed a + 6/2 (52)=2 2+652+1+d52 = 9+4+16+d152 (Q+652)("+0(52) = QC+26de+(Qd+6c)52 2+652=C+d52 iff. a=c, b=d 1=1+052 9 + B52 + 0 $(a + b52)' = \frac{1}{(a + b52)} = \frac{2 - b52}{a^2 - 2b^2}$ Sail to know that 92-287 + 0 if a, b & Q

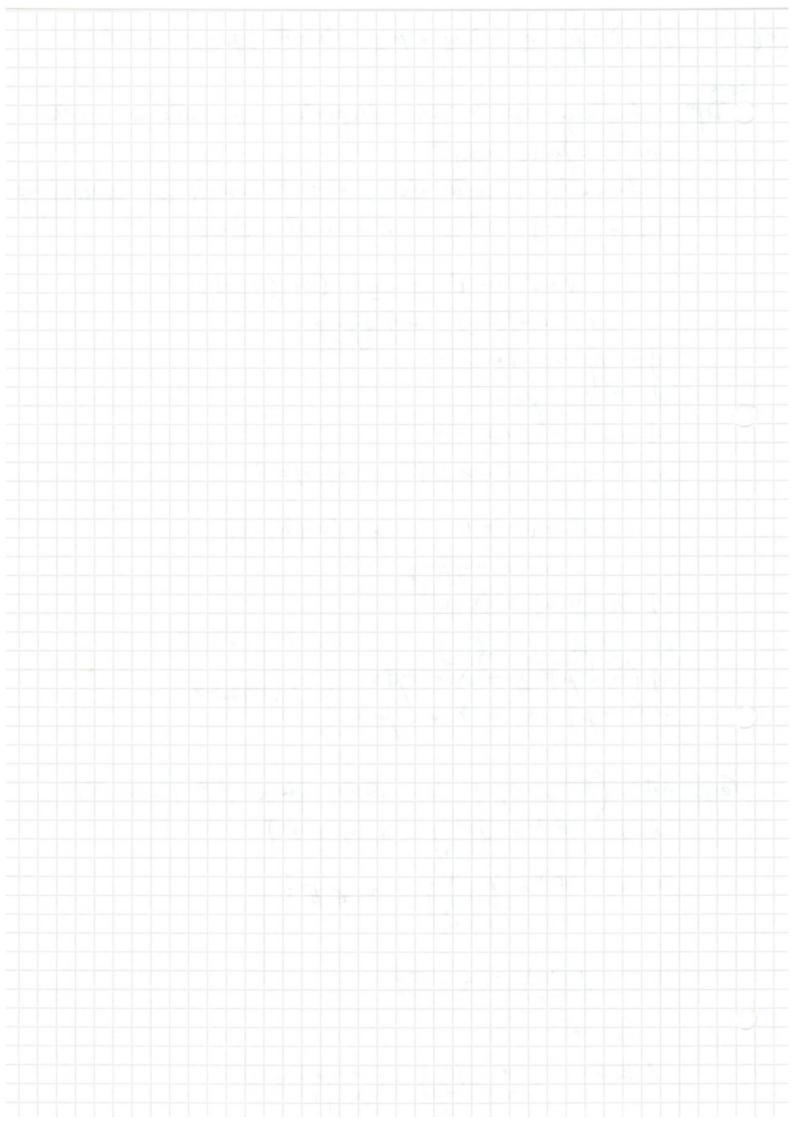
2+19/



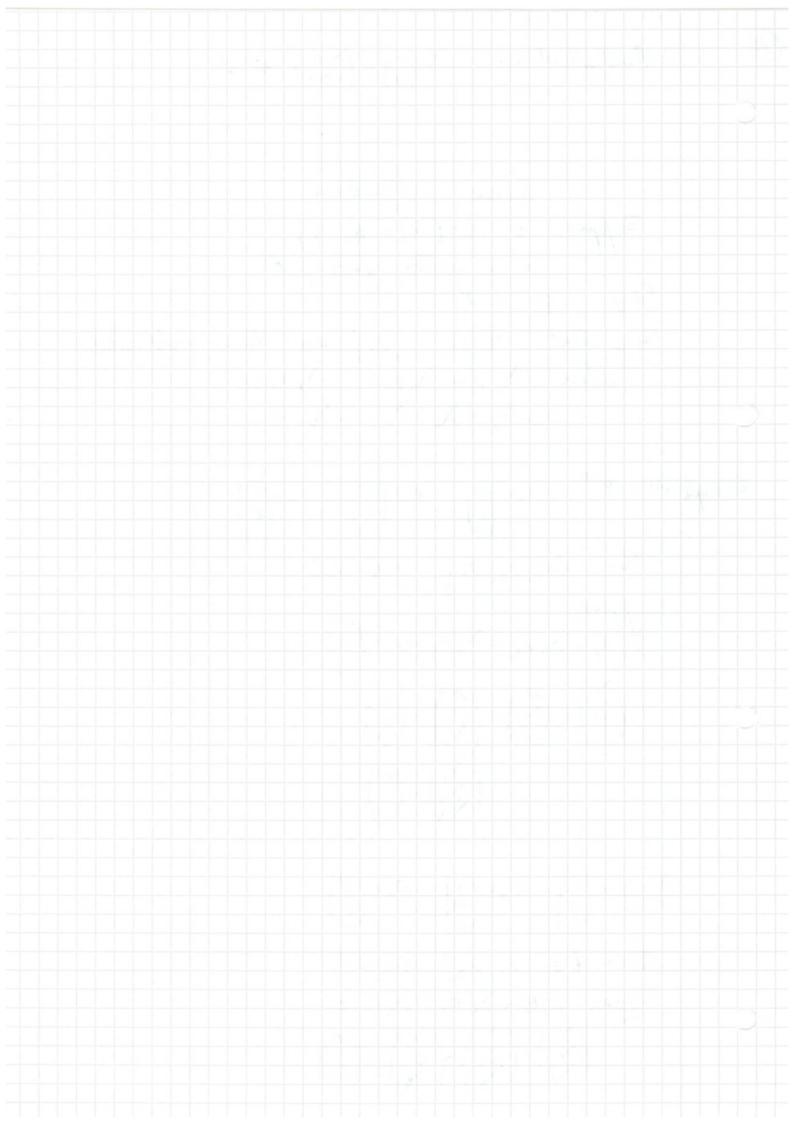
14.11.09 (35) intrues 1201 # field (eg IF = Q) $F' = \{ 2 = \{ a_i \} : a_i \in F_j^2 \}$ I In F" we can add + F" x F" -> F" $(x,y) \longrightarrow x + y$ $\mathcal{Z} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \gamma_n \end{pmatrix} \qquad \mathcal{Y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \qquad \Rightarrow \qquad \mathcal{X} + y_1 = \begin{pmatrix} \gamma_1 + y_1 \\ \gamma_2 + y_2 \\ \vdots \\ \gamma_n + y_n \end{pmatrix}$ I we can also multiply $2 \in \mathbb{F}^n$ by $\lambda \in \mathbb{F}$ $f \times \mathbb{F}^n \longrightarrow \mathbb{F}^n$ $(\lambda, z) \longrightarrow \lambda \cdot z$ $\begin{pmatrix}
x \\
\vdots \\
x_n
\end{pmatrix} = \begin{pmatrix}
x_1 \\
\vdots \\
x_n
\end{pmatrix}$ e.g. $a = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ $\lambda = 5$ $\lambda = \begin{pmatrix} 5 \\ 10 \\ 15 \end{pmatrix}$ Scalar multication F" with + . have different properties Assoc 1) 2+(4+3)=(2+4)+ 3 Comm. 2) 2 + y = y + 23) 2 + y = 0 + 3 = 2I dentity 4) if - 2 = (-1) 3 then a + (-a) = 05) $\lambda \cdot (\mu_{2}) = (\lambda_{1}) \cdot \pi$ $\lambda_{1} \mu \in \mathbb{F}$ $\chi \in \mathbb{F}^{n}$ 6) $1 \cdot \chi = \chi$ $1 \in \mathbb{F}$ $7 \in \mathbb{F}^{n}$ 1. (2+4) = 1. 2- x-4 NEF, JHEF, XEF



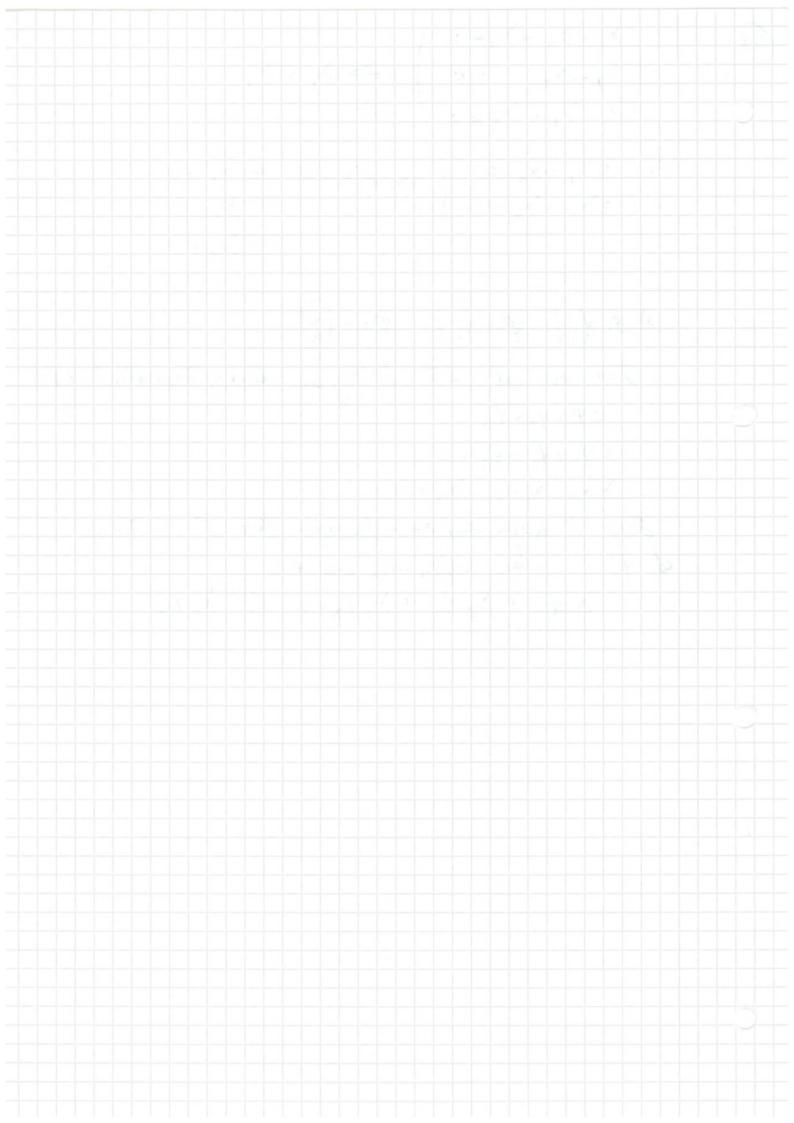
8) (1+p) = = 2 + ma x = #, 2 m = #, 2 = F" Defor Anything with then properties in called a acctor sector space over # Formally a sector space over # consists of following (V,+,0,.) where V is a set, OEV $+: V+V \rightarrow V \approx + q (=+ (\alpha, y))$ is a mapping satisfying 1) 2 + (4+ 2) = (2+4)+2 $\frac{1}{3} = \frac{1}{3} = \frac{1}$ a) + 261 I-x61: x+(x)=0 • : # $\times V \rightarrow V \quad \lambda \quad \not \chi \quad (= \cdot (\lambda, n))$ is a mapping s.t. 5) $\lambda \cdot (M n) = (\lambda \cdot \mu) n$ 6) 1. $\frac{\pi}{2}$ = $\frac{\pi}{2}$. 1 1 = $\frac{\pi}{2}$ × $\frac{\pi}{$ Earple 1)#" = (F" + 0,.) is a dertor space / F (=over F) 1=2 F2 = d(21): 2, 2, EF} h=3 $H^3=\left(\begin{array}{c} \chi_1\\ \chi_2\\ \chi_2 \end{array}\right), \chi_1 \in H^2$ $2) V = \begin{cases} 2 \\ -2 \end{cases} : \alpha \in \mathbb{F}_3^2$ A oldi tion $\begin{pmatrix} x \\ x \end{pmatrix} + \begin{pmatrix} y \\ -y \end{pmatrix} = \begin{pmatrix} x + y \\ (x - y) \end{pmatrix} \in V$

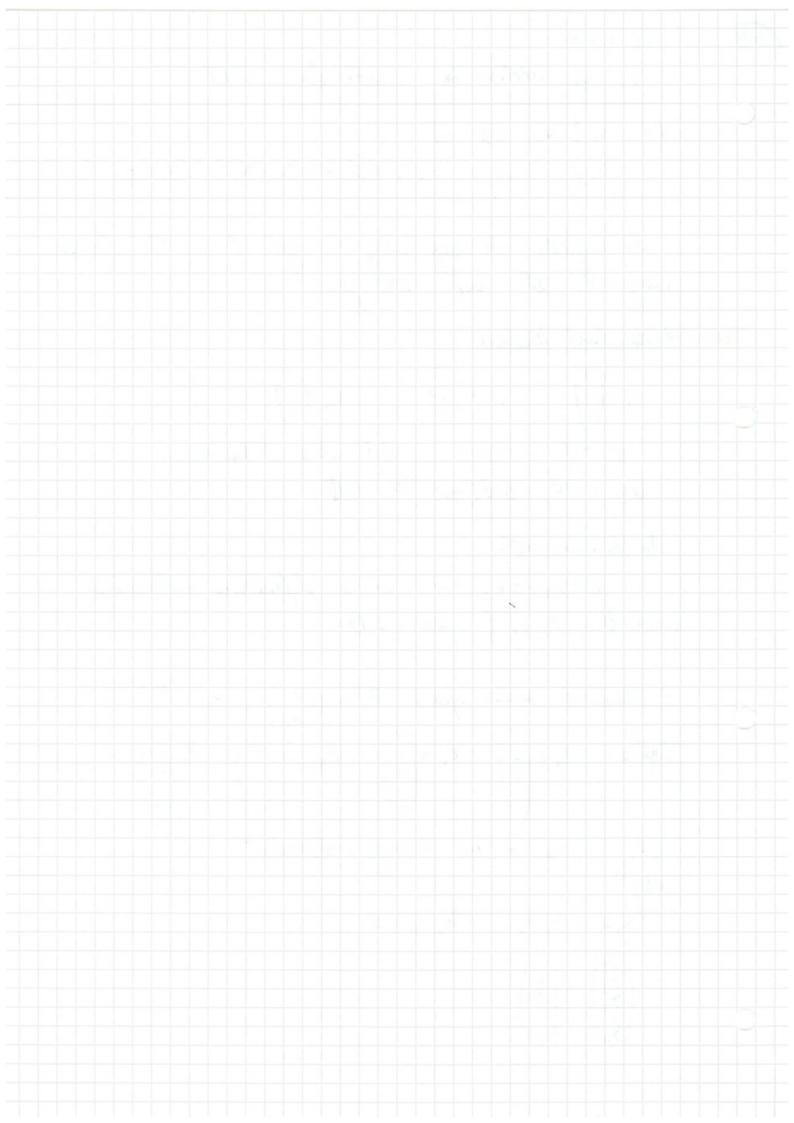


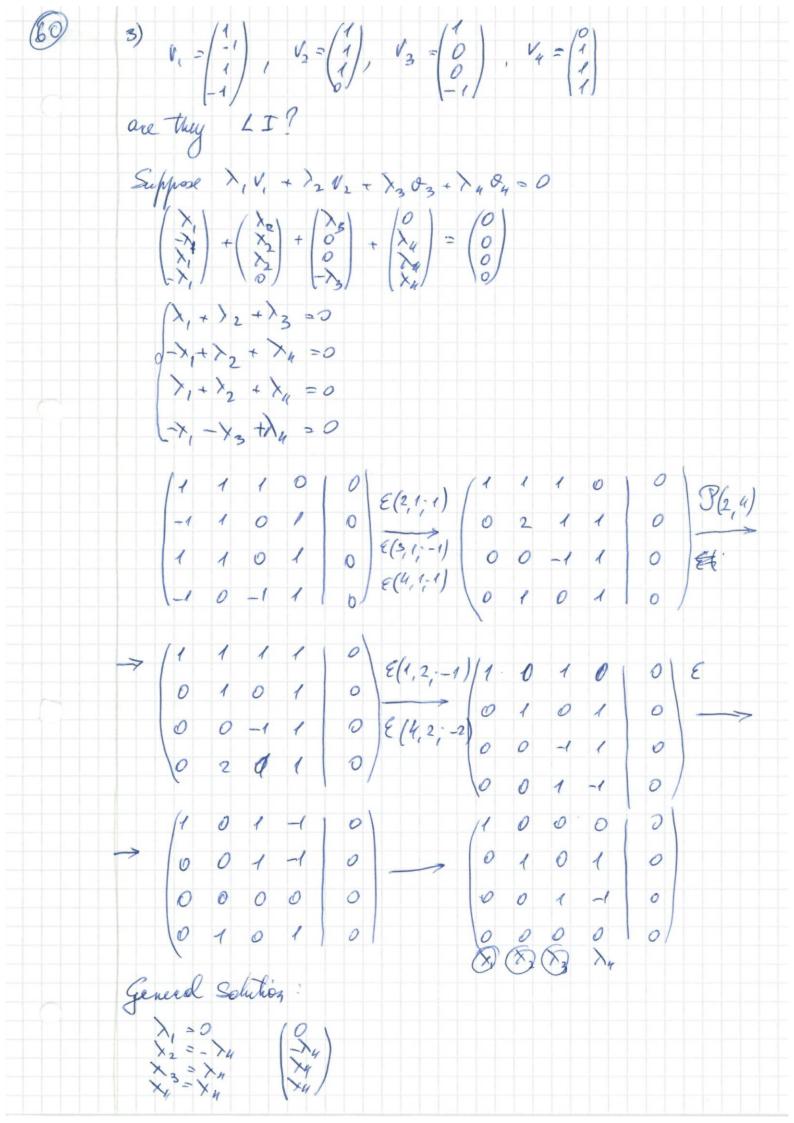
(59) S. Multiplication $\lambda \cdot (x) = (\lambda x) \in V$ Linear independence Suppose V (= (V,+,0,.))
is a sector space / # Let $X_n \in V$ Sony that $2 \cdot V_1$, $V_n f$ are linear independent when $\lambda_1 V_1 + \lambda_2 V_2 + \dots + \lambda_n V_n = 0$ $\Rightarrow \lambda_1 = \lambda_2 = \lambda_3 \dots = \lambda_n = 0$ Example $1/V = \mathbb{F}^3$ $e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ $e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ Then $\{e_{1}, e_{2}, e_{3}\}$ are L.I. Suppose $\{e_{1}, e_{2}, e_{3}\}$ $\{e_{3}\}$ $\{e_{1}, e_{2}, e_{3}\}$ $\{e_{3}\}$ $\begin{pmatrix} \lambda_1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \lambda_2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $2) \mathcal{E}_{1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \mathcal{E}_{2} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \qquad \mathcal{E}_{3} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ Claim & E, , 62, 633 and LI Suppose >, E, + >2 E, -1>3 Es=0 $\begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} + \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} + \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

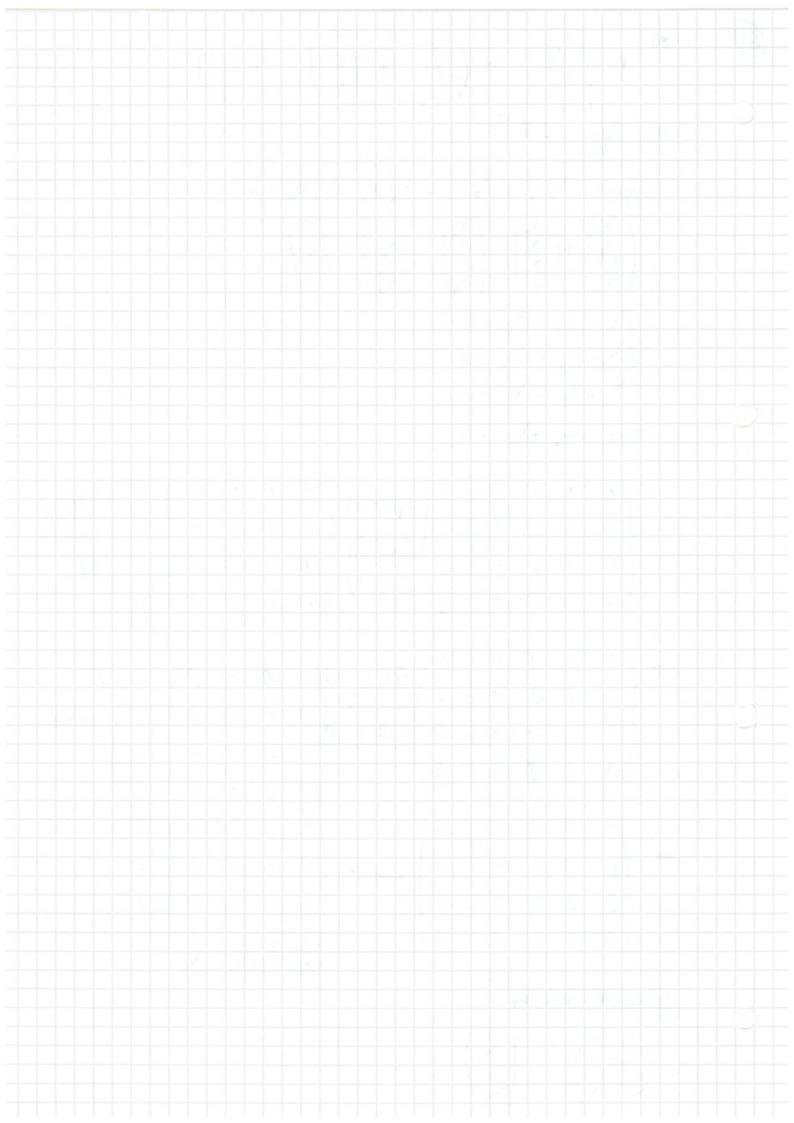


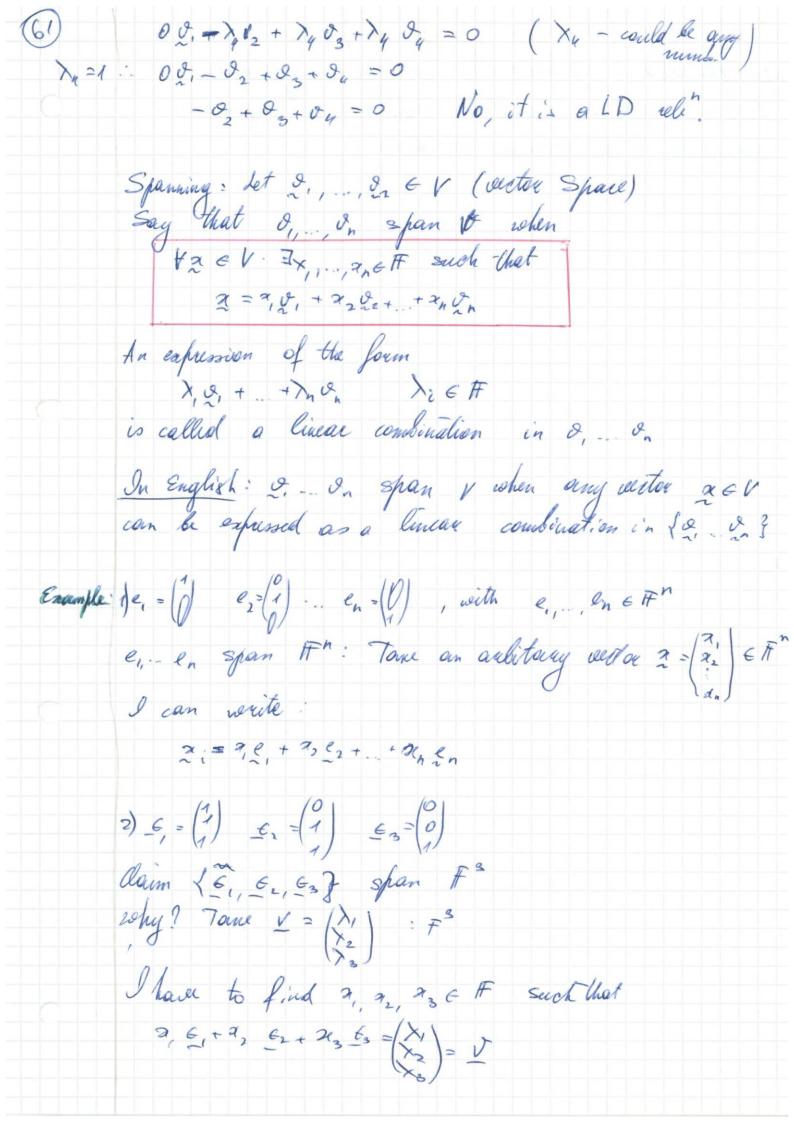
(x,+>2+>3=0 => > > > > 12->2 =0 $\Rightarrow 2\lambda_1 - \lambda_3 = 0 \qquad 2 \Rightarrow 4\lambda_1 = 0 \Rightarrow \lambda_1 = 0$ $2\lambda_1 + \lambda_3 = 0 \qquad \Rightarrow \lambda_2 = 0$ 3) $\mathcal{P}_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ $\mathcal{P}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ $\mathcal{P}_3 = \begin{pmatrix} 3 \\ 4 \\ 3 \end{pmatrix}$ These are not LI (= they are lineary Dependent=LD) 29,+42-93 24,+6,-43=0 $\lambda_1 = 2$ $\lambda_2 = 1$ $\lambda_3 = -1$ Here I have expansion for O in terms of P's where coefficients are +0 X, cl, + X2 /2 + X3 /3 = 0 But X, +0











Pecter speice (bernafnee apocupancado) - enveniros apocupación - enorseembo secuencio nagodiaciones berniafasia, del comofina supersecento onepayon. cioncenas a gunascence na acosto

GD
$$\binom{a_1}{a_2} + \binom{o}{a_3} + \binom{o}{0} = \binom{a_1 + a_2}{a_1 + a_3} + x_3$$

I want $x_1 = \lambda_1$
 $x_1 + x_2 = \lambda_2$
 $x_1 + x_3 = \lambda_3$

Put $a_1 = \lambda_1$
 $a_2 = \lambda_3 - \lambda_1$
 $a_3 = \lambda_3 - \lambda_2$

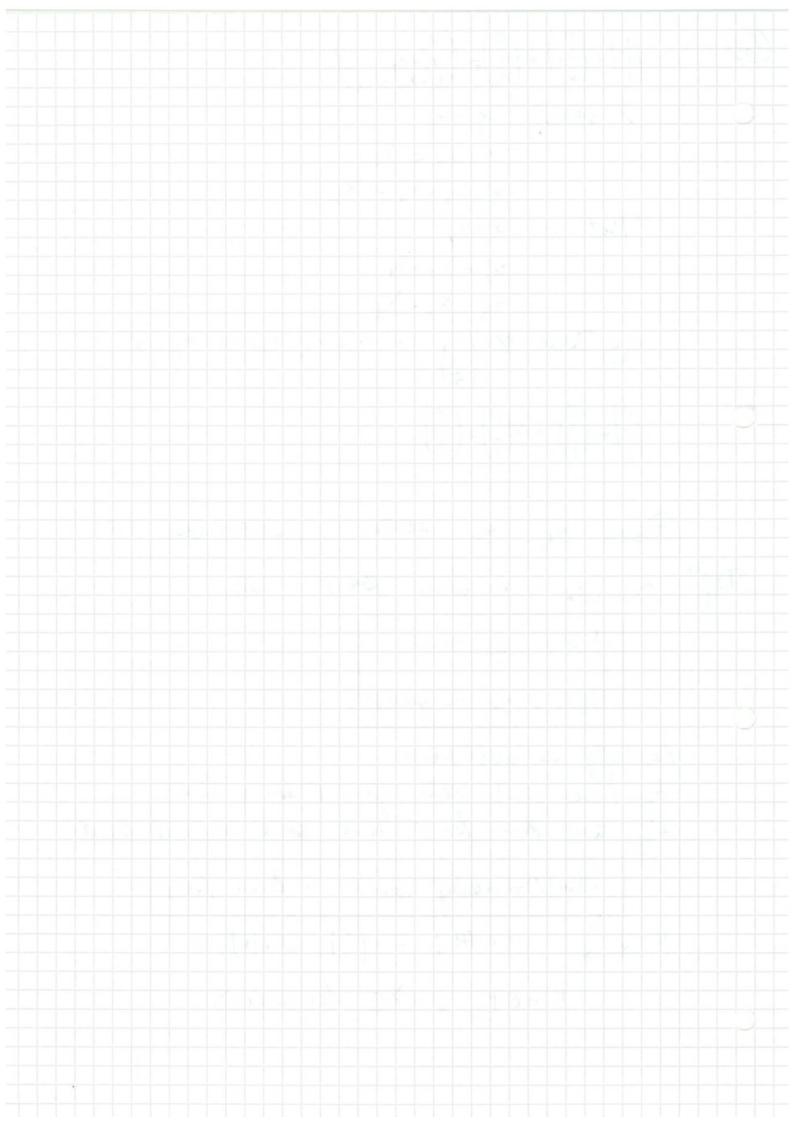
e.g. Touch $Y = \binom{1}{2} = 3, = 1, 3, = 1, 3, = 3$
 $\binom{1}{1} + \binom{o}{1} + 3\binom{o}{0} = \binom{1}{2}$

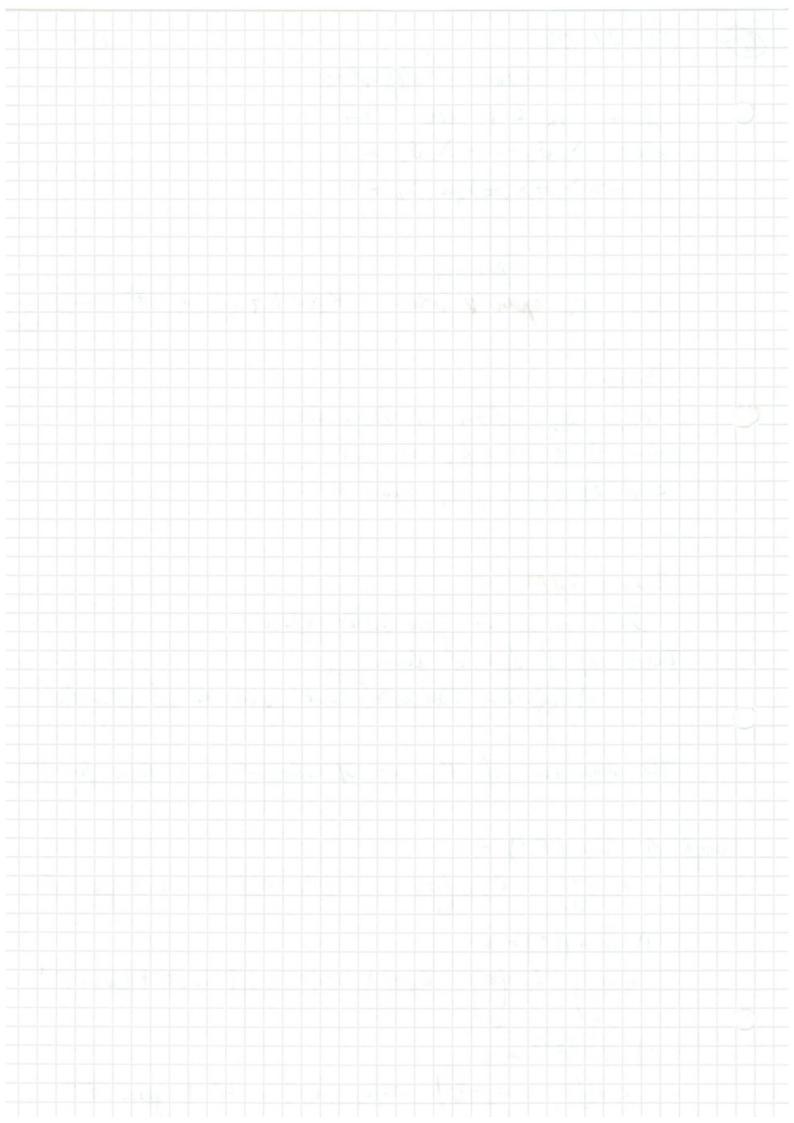
Def $\binom{o}{1} + \binom{o}{1} + 3\binom{o}{0} = \binom{1}{2}$

Def $\binom{o}{1} + \binom{o}{1} + 3\binom{o}{0} = \binom{1}{2}$

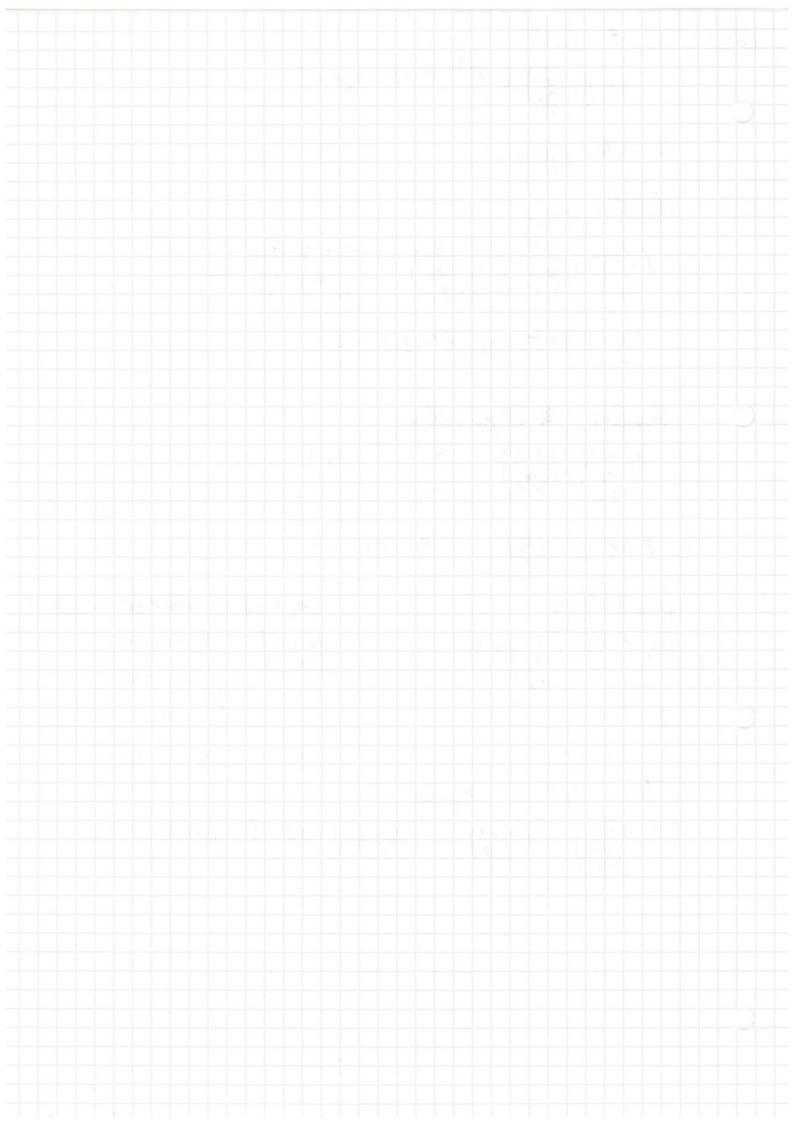
Def $\binom{o}{1} + \binom{o}{1} + 3\binom{o}{0} = \binom{1}{2}$

Exercisely use will prove that $\binom{o}{1} = \binom{o}{1} + \binom{o}{1} = \binom{o}{1} = \binom{o}{1} + \binom{o}{1} = \binom{o}{1} = \binom{o}{1} = \binom{o}{1} + \binom{o}{1} = \binom{o}{1}$





4) # field (64) V= (2 (3) 6 #3, 9, 192793=0} V-vector space Addition on V (a,+y,)+(22+y2) (954/3) =0 Scalar Multiplication: $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_{\alpha_3} \\ x_{\alpha_3} \end{pmatrix} \qquad \begin{cases} x_1 \\ x_{\alpha_3} \\ x_{\alpha_3} \\ x_{\alpha_3} \end{cases} = 0$ Zero 0 = (0) 0 +0+0=0 (1,1,1) is already in R.F. F dim(V)=2(111) $x_1 = x_2 - x_3$ $(-x_2 - x_3)$ x_2 $\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 & 2 \\ 2 & 2 & 3 \end{pmatrix} = 0$ Tome 2,= 1 23=2

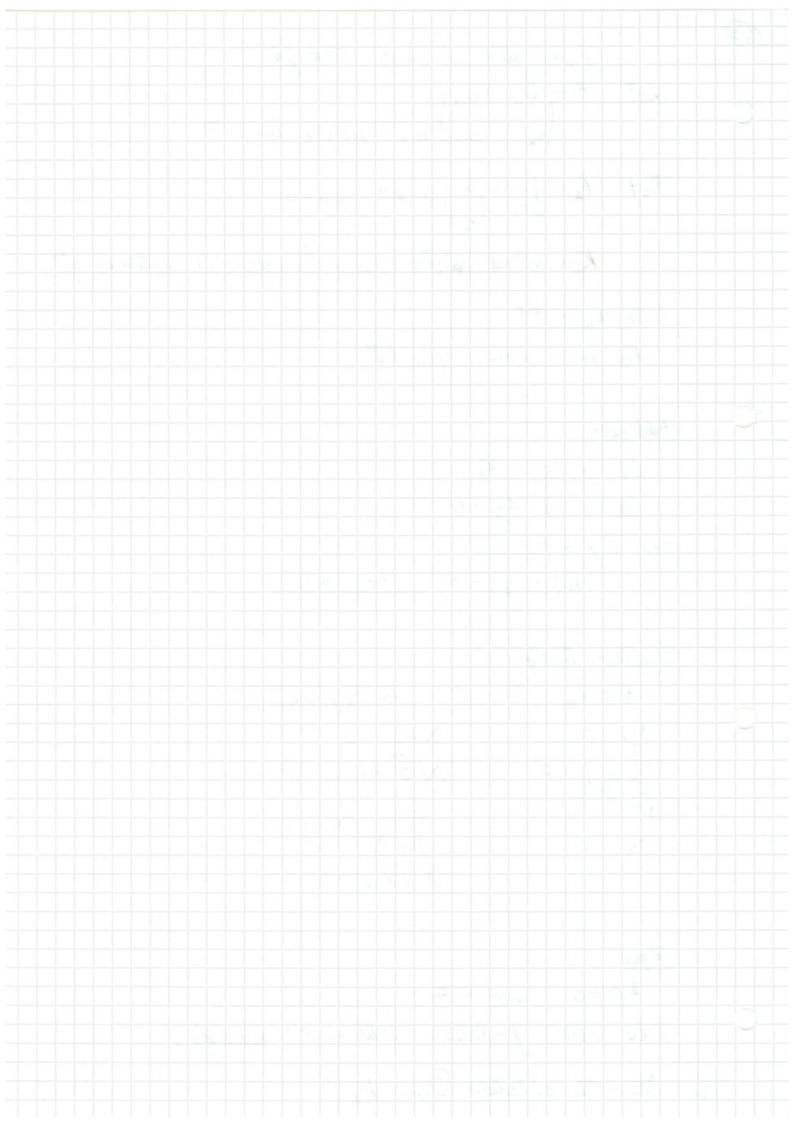


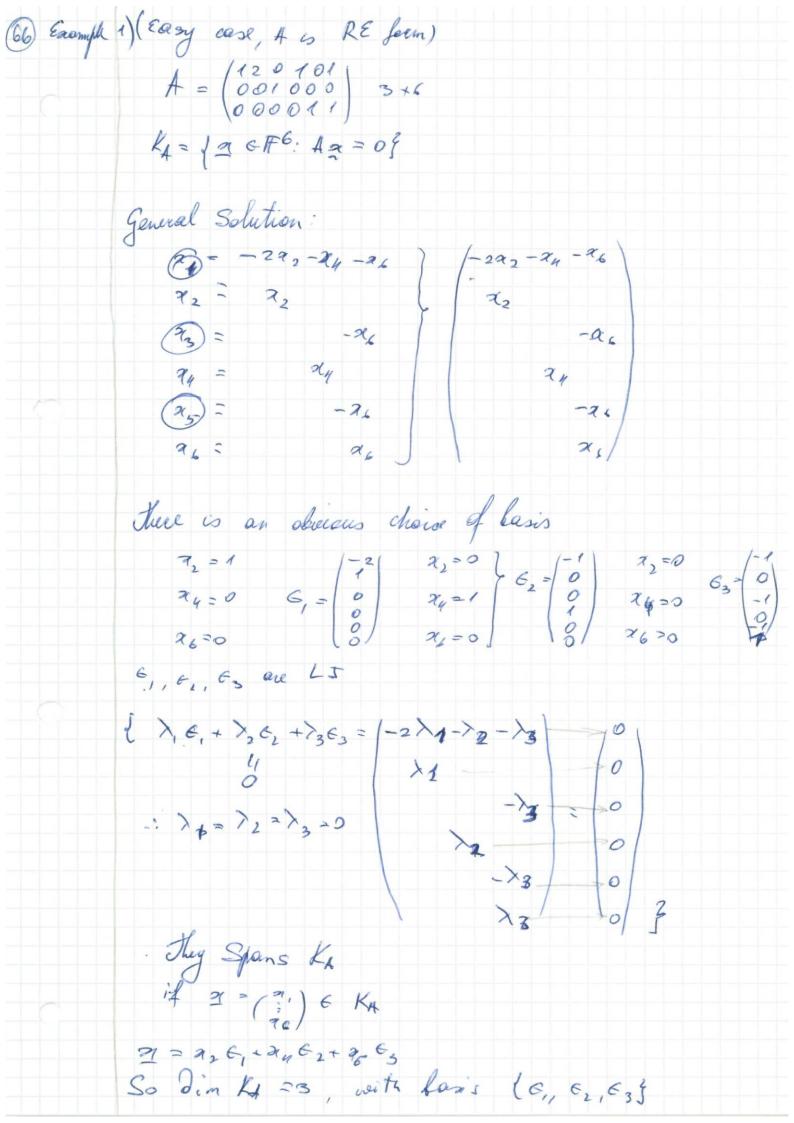
65) Generalization of Last Example.

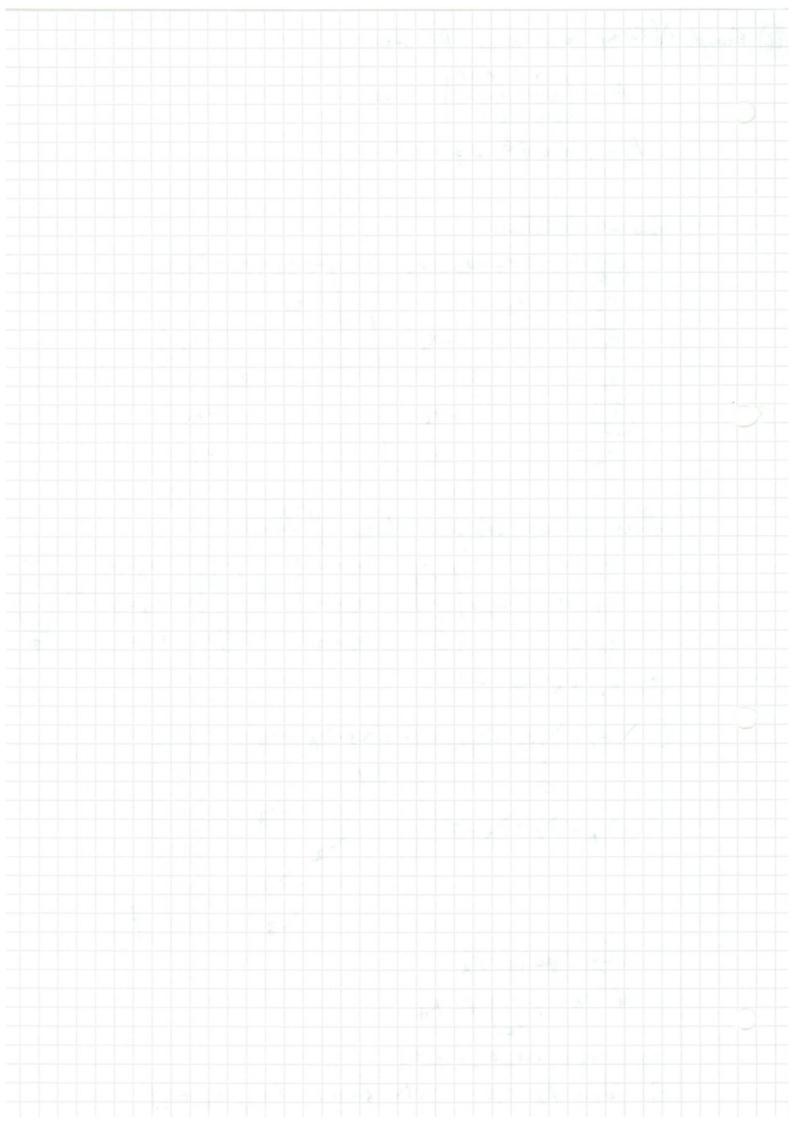
Let A = (a, ... a, n)

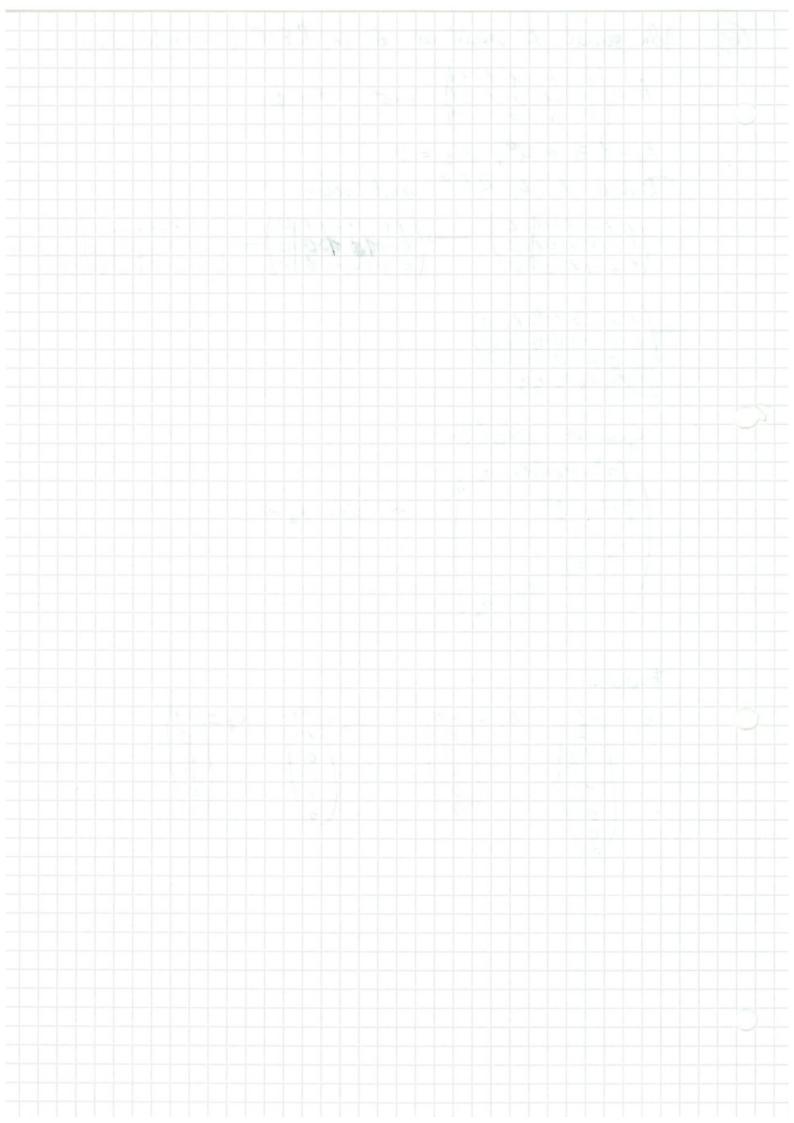
(an, ... amn) men motive occur F Pat = 2 = (21) & #1: Aa = 0} KA = set of solutions of (homogenious) system of eq" Note KACF"

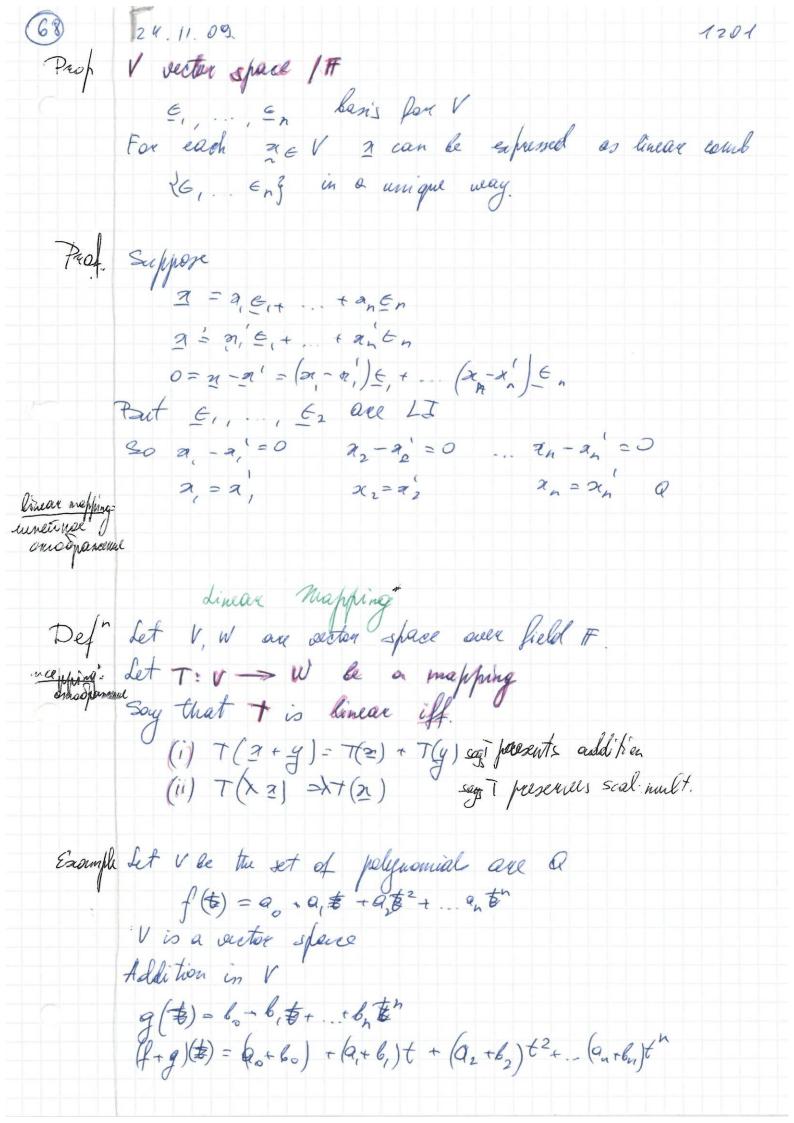
KA is a seider spore / IF Addition: It a, y e K AR=0 & Ay=0 H(2+4)=0 (2+4) 6 KA Scalar Multipl. 26 PH, XEF => Xa EKA A 2 = 0 N & aji aj =0) $\sum_{j=1}^{n} a_{ji} x_{j} = 0$ > ejc (23) =0 A (x)=> A0=0, 500 64 All other properties hold in A" already Q Flow to coelacter din KA?

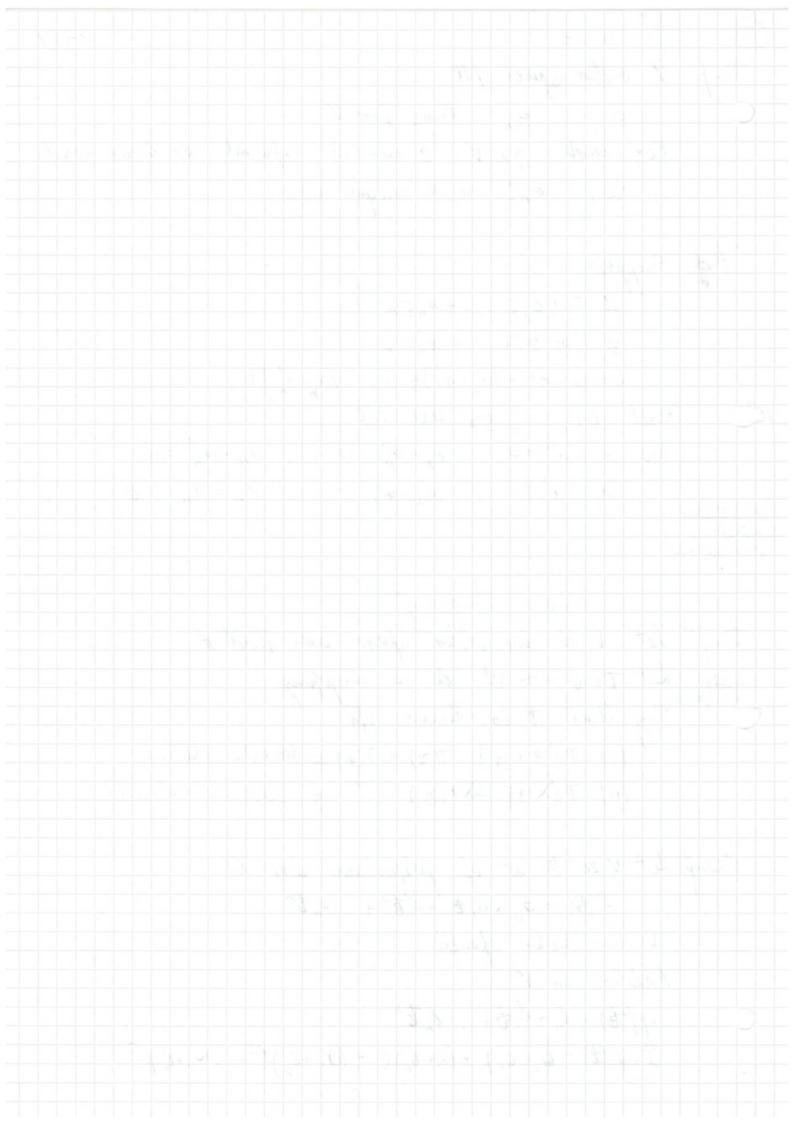












```
69
                                                                            Scalar mot.:
                                                                                          Xft) = xao + xa, t + xa, t + ... xa, to
                                                                          zerco:
                                                                                        0(t)=0+ot+ot2+...+oth
                                                                         Consider differentiation:
                                                                    D: V \rightarrow V D(f) = gf

So D(t) = ? D(t) = 1 D(f) = 2t etc.

D is linear:
                                                                                                     D(f+g) = D(g) + D(f)
D(xf) = \times D(f) \times - const
                    Enample V=Fh W=Fn
                                                                      and let # = (ais) 1 \le s \le n mon matrix / F
            Define T_A: F^n \to F^m by T_A(2) = A \times (matrix product)
                                                                                    TA (2 + 4) = A (2+4) = A 2 - Ay = TA(2) + TA(y) => TA - Cinear
TA (x2) = A(x2) = x Az = x TA(2)
  Exemple: Te'll show that the standard example is "typical"

also story Tore standard lasis for F"
                                                                                            e_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} e_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix} e_3 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}
                                                                        Let A = \a_1 \quad \quad
                                                                    Mult coech basis stolor e, en on left
                                                                                             Ae_1 = \{a_1, ..., a_{1,n}\} 
\{a_{1,n}\} = \{a_{1,n}\} 
\{a_{2,n}\} = \{a_{1,n}\} 
\{a_{2,n}\} = \{a_{1,n}\} 
\{a_{2,n}\} = \{a_{2,n}\} 
\{a_{2,n}\} = \{a_{2,n}\} 
\{a_{2,n}\} = \{a_{2,n}\} = \{a_{2,n}\} 
\{a_{2,n}\} = \{a_{
```

Ae; = 2 aji ej = TA(e)

XHI = XO - XO t + XQ t - XQ T "to ... + to + to + a = (1)0 So D() = 2 Dt) = 1 D(2) = 2t DK+ (DG) = (P+)) a Jenes - X DAS = 1820 Felica TA F" F" By Ta (2-4) = + (24) = + 2 - + = Ta (4) (=> Ta Escape Ve Il shew that the standard consumple is top cal hered Tax standard lass for 4 e; = \ 2 = 1 = 7 ed

e, =(1) e2=(0) e3=(0) i (2) = Q e1+ 6 e2+ ce3

General Consention:

E, en lans for V} +: V > W linear

4. Im. w

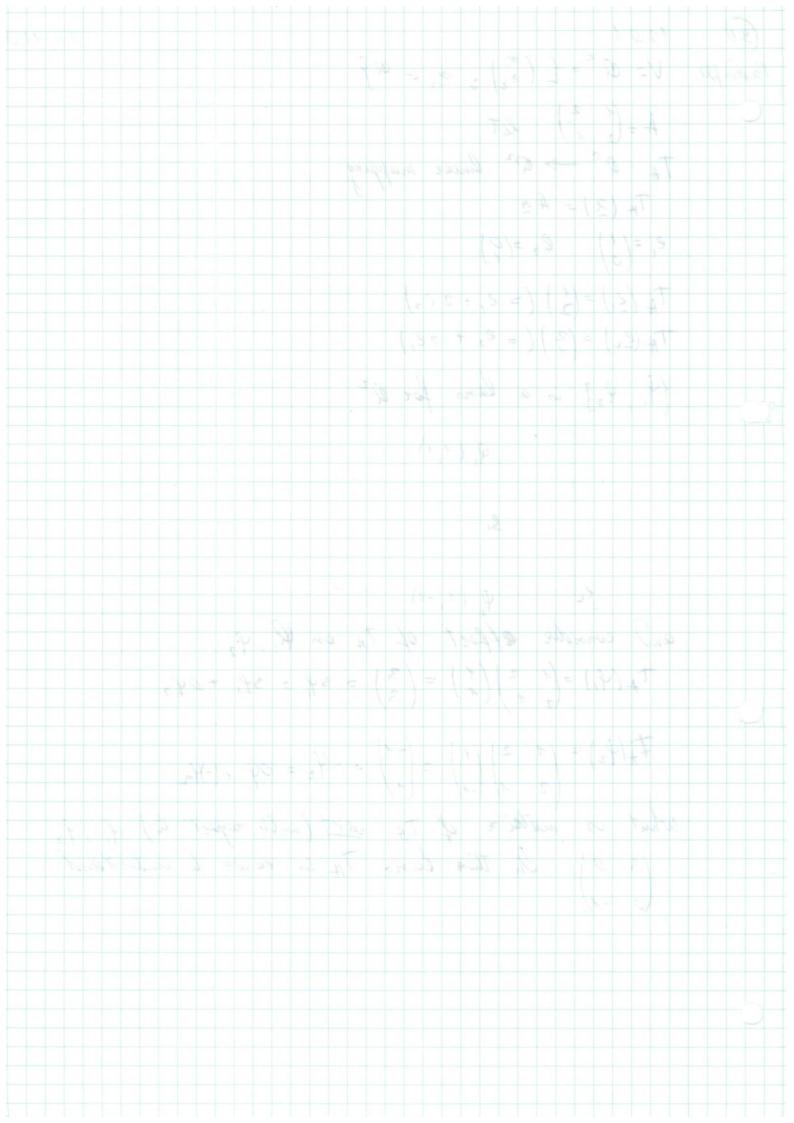
T(5)= = 9ji4j = 9,0, + 0,0, + 0,0, + 0,0, + 0,0, + 0,0, =

T(Ei) = & ajilj = (ali) = ali €, + Qhi €, + Qhi €,

T(Ei) = 210 = apil, +azile + . anilm

Apply to arms of to each of on the male of the TENTON POTONIE - CONTE TEN :0.24, +0.292+ 1 1000 12 1000 T(E) = R. A. + B. = (-3) T) e, e, lam for V } VX-VIT

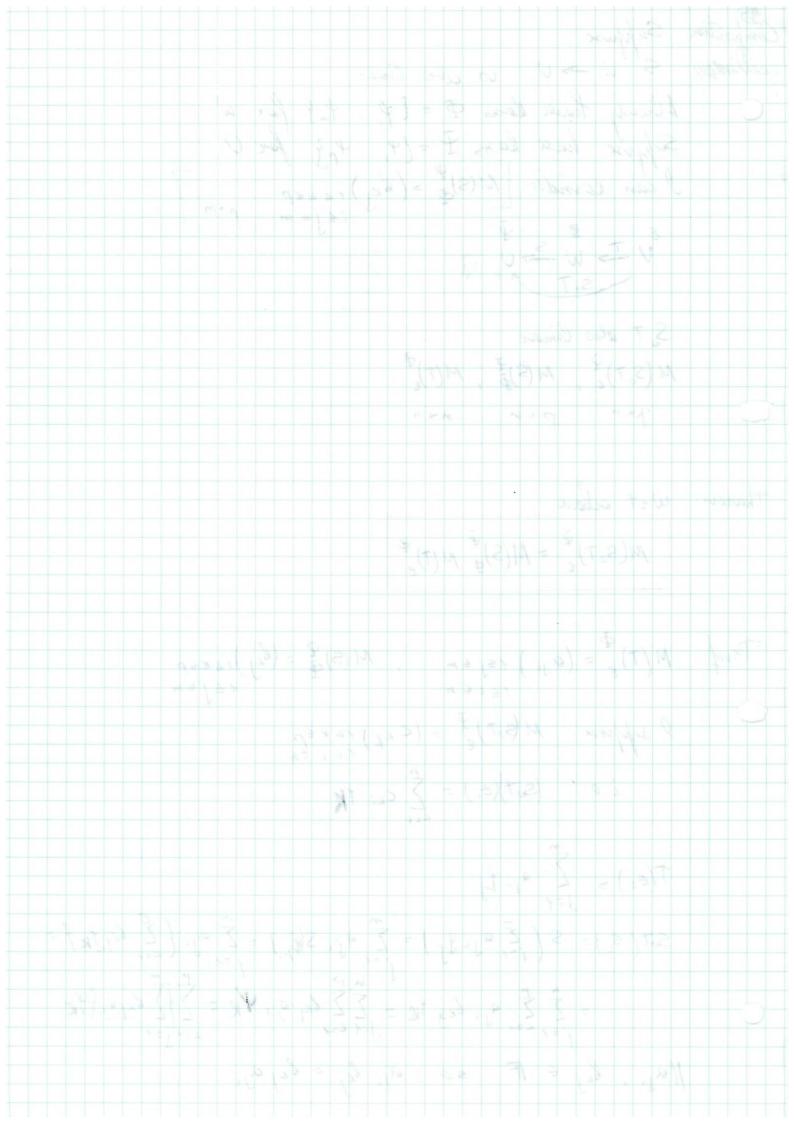
(4) 26.11.0. V= Q2 = { (2) ; 2: 4 = Q3 Example $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ let TA : Q2 -> Q2 linear mapping TH (2) = 42 $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ TA (e1) = (2) (= e, +2e2) TA(er) = (2) (= e2 + 2e1) II, Iz is a lasis for Q2 Q (1,1) (1,-1) and consider effect of TH on Q1, 42 $T_{+}(4,) = \begin{pmatrix} 1 & 2 & | & 1 \\ 2 & 1 & | & 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \end{pmatrix} = 34, = 34, + 042$ $f_{+}(q_{2}) = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = -q_{2} = oq_{1} + (-)q_{2}$ what is note in of TA cert (with respect to) f, 192 (30) In this lass. THE is easer to understand.



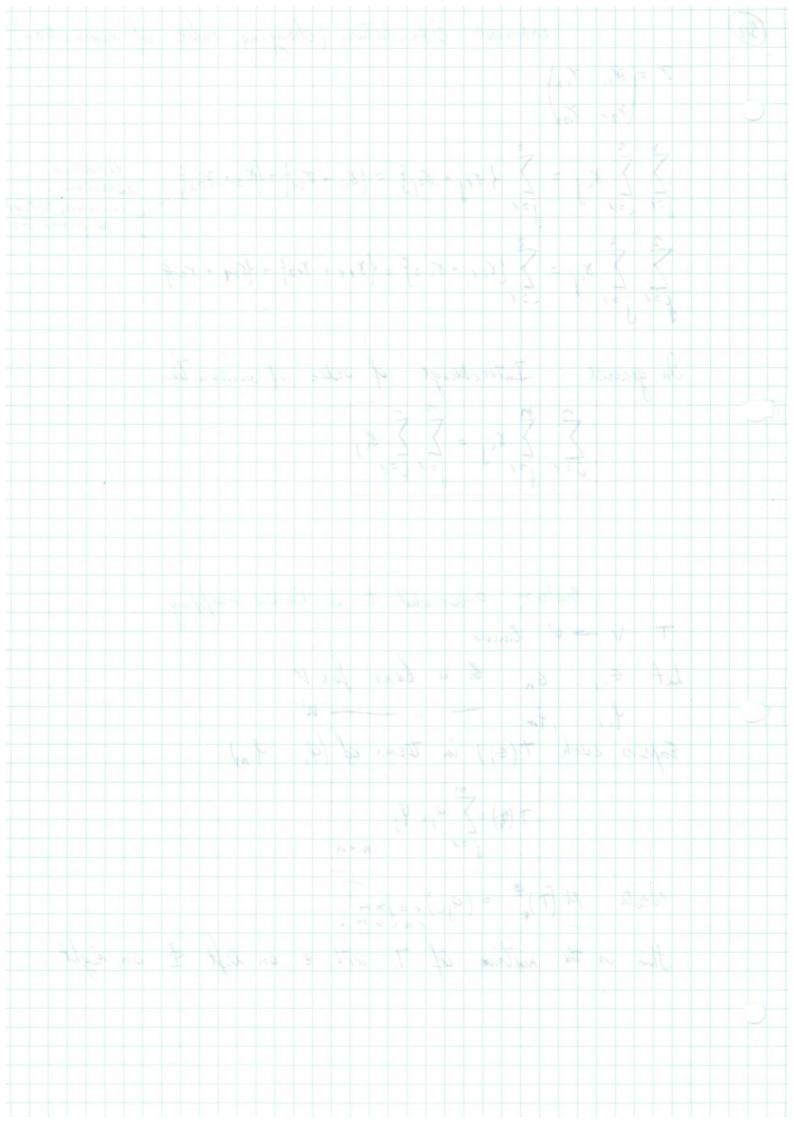
Composition Suppose

accompanie S: W > V is also lines Already have lasis $\Phi = \{\varphi, q, q, g\}$ for ω Suppose have lasis $T = \{\varphi, q, q, g\}$ for ω I can sounds $M(S)_{\Phi} = (B_{Ej})$ (2 & ep $V \xrightarrow{} W \xrightarrow{} U$ So $V \xrightarrow{} W \xrightarrow{} U$ So $V \xrightarrow{} W \xrightarrow{} U$ So $V \xrightarrow{} W \xrightarrow{} U$ $V \xrightarrow{} W \xrightarrow{} W$ $V \xrightarrow{} W$ han ban wan ma Theorem: Wat ochoul $M(S_0T)_{\varepsilon}^{\mathscr{L}} = M(S)_{\mathfrak{A}}^{\mathscr{G}} M(T)_{\varepsilon}^{\mathfrak{A}}$ Proof $M(T)_{\varepsilon} = (a_{ji})_{1 \le j \le m}$, $M(S)_{\overline{\Phi}} = (b_{kj})_{1 \le k \in p}$ $1 \le i \le m$ 2 suppose M(Sot) = (exi) 16 K = p

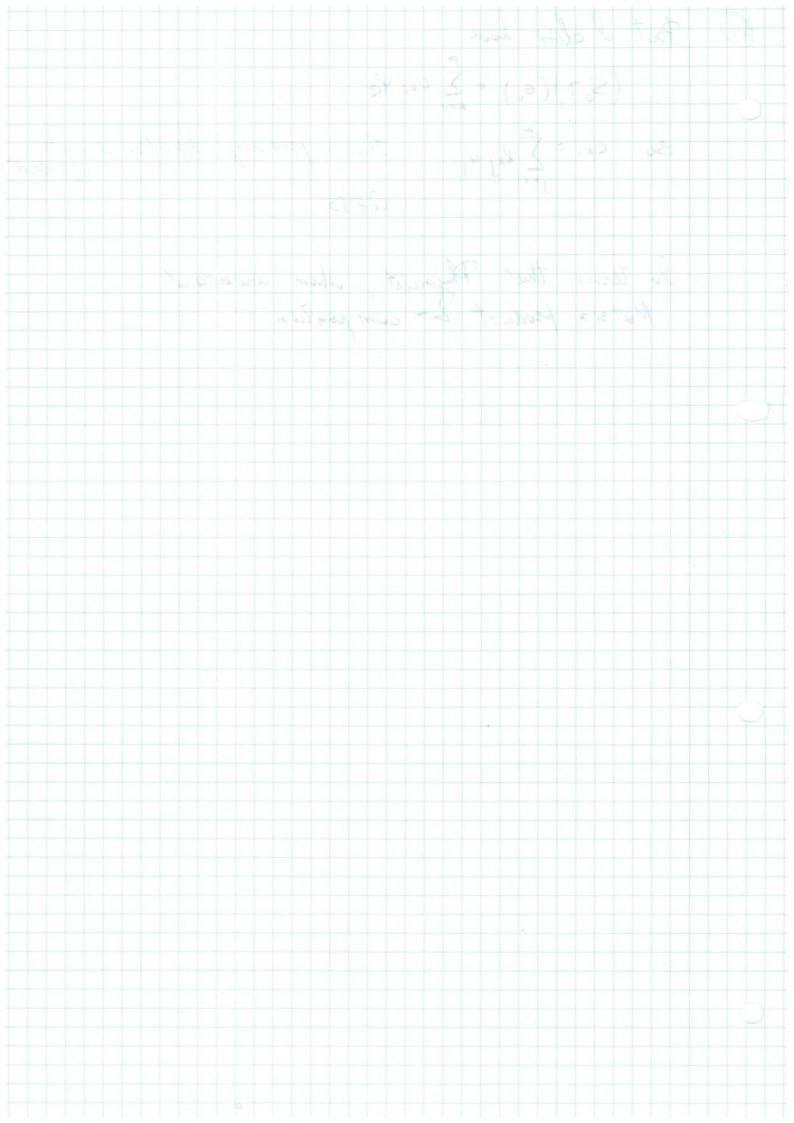
i.e. (Sot)(ei) = E Chi TK T(e:) > \(\sum_{i=1}^{\infty} \langle_{i} \langle_{j} | = \frac{\pi}{2} \frac{\pi}{2} a_{ji} beg \(\pi = \frac{\pi}{2} \frac{\pi}{2} \pi \frac{\pi}{2} \f



Technical Observation (changing order of summation) (42) $\sum_{j=1}^{2} \sum_{i=1}^{2} x_{ij} = \sum_{j=1}^{2} \{x_{ij} + x_{2j}\} = \{x_{ij} + x_{2i}\} + \{x_{12} + x_{22}\}$ $= \{x_{ij} + x_{2j}\} = \{x_{ij} + x_{2i}\} + \{x_{12} + x_{22}\}$ $= \{x_{ij} + x_{2j}\} = \{x_{ij} + x_{2i}\} + \{x_{12} + x_{22}\}$ $= \{x_{ij} + x_{2j}\} = \{x_{ij} + x_{2i}\} + \{x_{12} + x_{22}\}$ $= \{x_{ij} + x_{2i}\} + \{x_{2i} + x_{2i}\} + \{x_{2i$ $\sum_{i=1}^{2} \sum_{j=1}^{2} x_{ij} = \sum_{i=1}^{2} \{x_{i,1} + x_{i,2}\} = \{x_{i,1} + x_{i,2}\} + \{x_{2,4} + x_{2,3}\}$ In general: Interchange of order of summation $\sum_{i=1}^{m}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{j=1}^{n}\sum_{j=1}^{n}\sum_{i=1}^{n}\sum_{j=1}^{$ matrix associated to a linear mapping T: V -> W linear Let E, ... En le a bois for V Express each t(e;) in terms of (4, 9m) 7 ()= = = qji 4; mxn Write M(T)= (aji)+=j=m This is the matrice of T wil & on left on right.

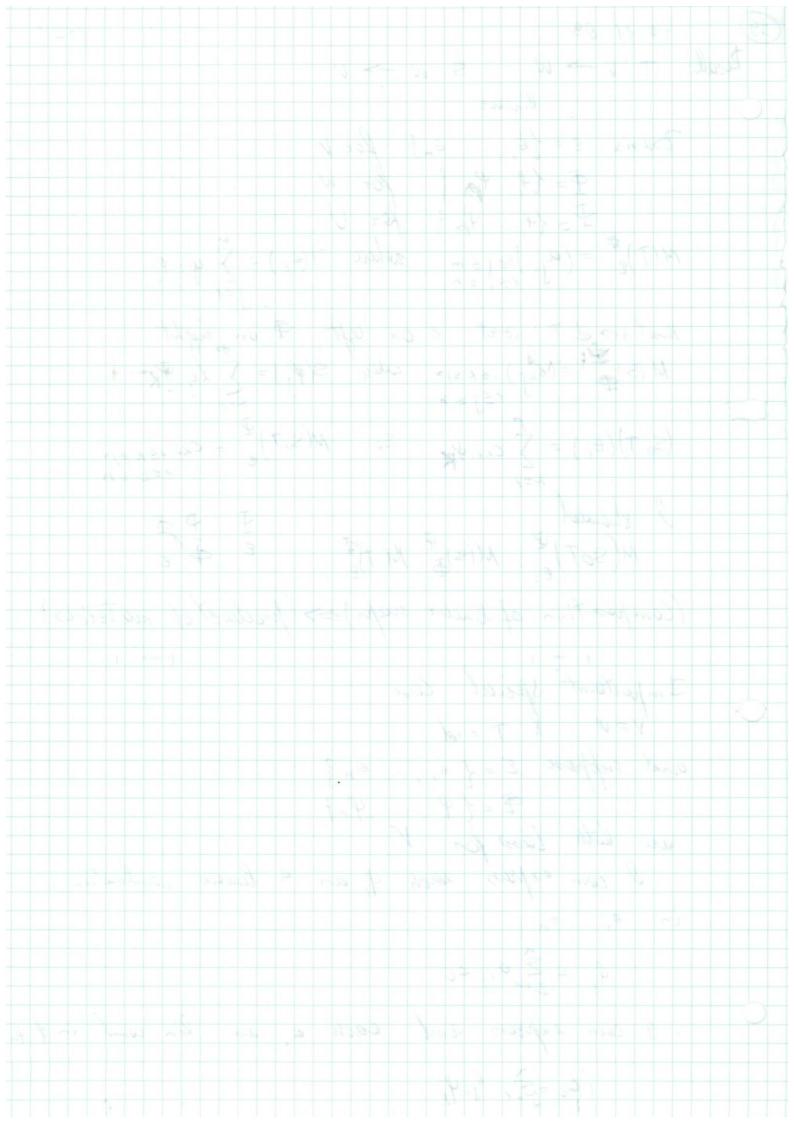


(4) But I also have (S,7)(G;) = \(\sum_{k=1}^{P} C_{ki} \mathcal{Y}_{R} \) This is preciply definition of matrix So CKi = \sum ley aj: QFD. In terms that Physicist whom unsustand Matria product 2- composition.



1201 Recall: $T:V \rightarrow W$ S: $W \rightarrow V$ Basis E= 26, ... En 3 for V $\Phi = \{ \varphi, \varphi_m \} \quad \text{for } W$ $\Phi = \{ \psi, \psi_p \} \quad \text{for } U$ Matria of T wat ε on left \mathfrak{P} on right $M(S)_{\mathfrak{P}} = (\mathcal{S}_{\mathcal{L}_{S}})_{, \leq K \leq J^{>}}$ when $S(\mathfrak{P}_{S}) = \sum_{K=1}^{J} \mathcal{L}_{K} \mathfrak{P}_{K}$ $(S_0T)(E_i) = \sum_{k=1}^{p} C_{ki} Y_k \qquad S_0 \qquad M(S_0T)^{\frac{q}{2}} = C_{ki} I \le K \le p$ I = 1 I Showed $M(S_0T)^{\frac{q}{2}} = M(S_0T)^{\frac{q}{2}} M T_0^{\frac{q}{2}} = 0$ $M(S_0T)^{\frac{q}{2}} = M(S_0T)^{\frac{q}{2}} M T_0^{\frac{q}{2}} = 0$ (Composition of linear maps) (product of materices.) Important special Case: and suppose E= { &, . . 6 , 3 are both lass for V

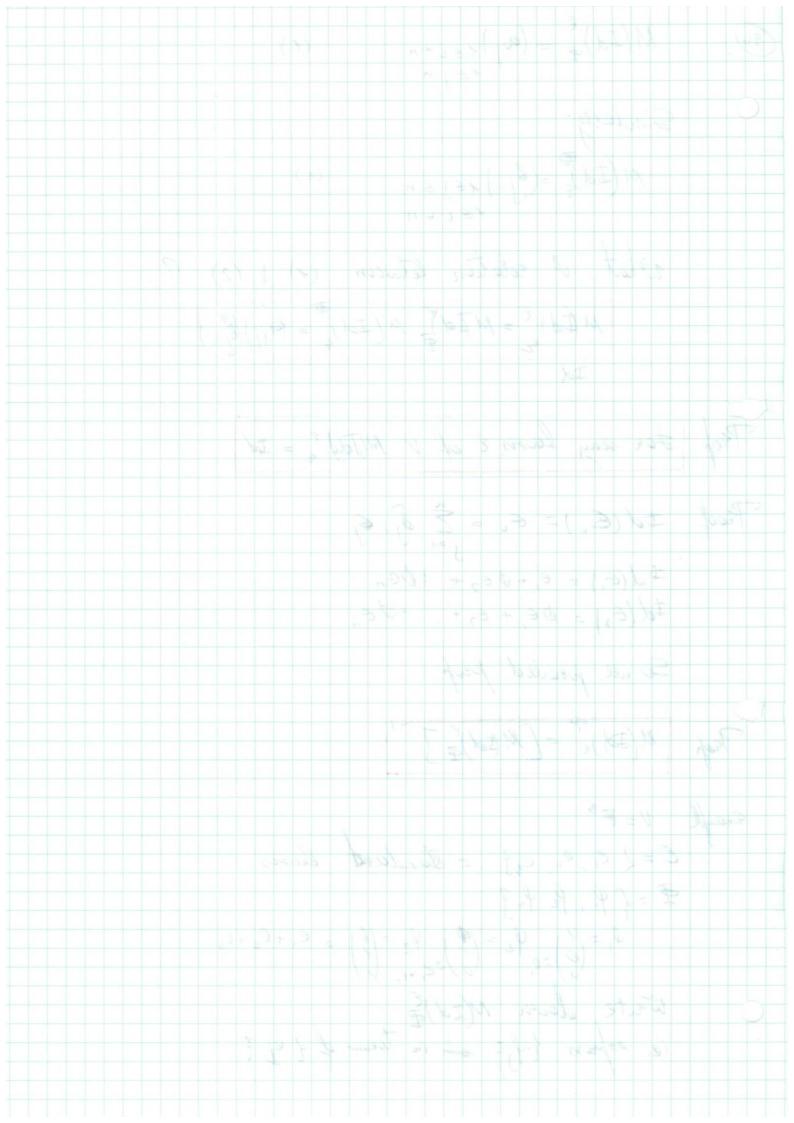
I can express each f, as a linear combination 9. = Zaij &i 4 cour express and each a as lin comb in q. q. 60 = 5, Gilj



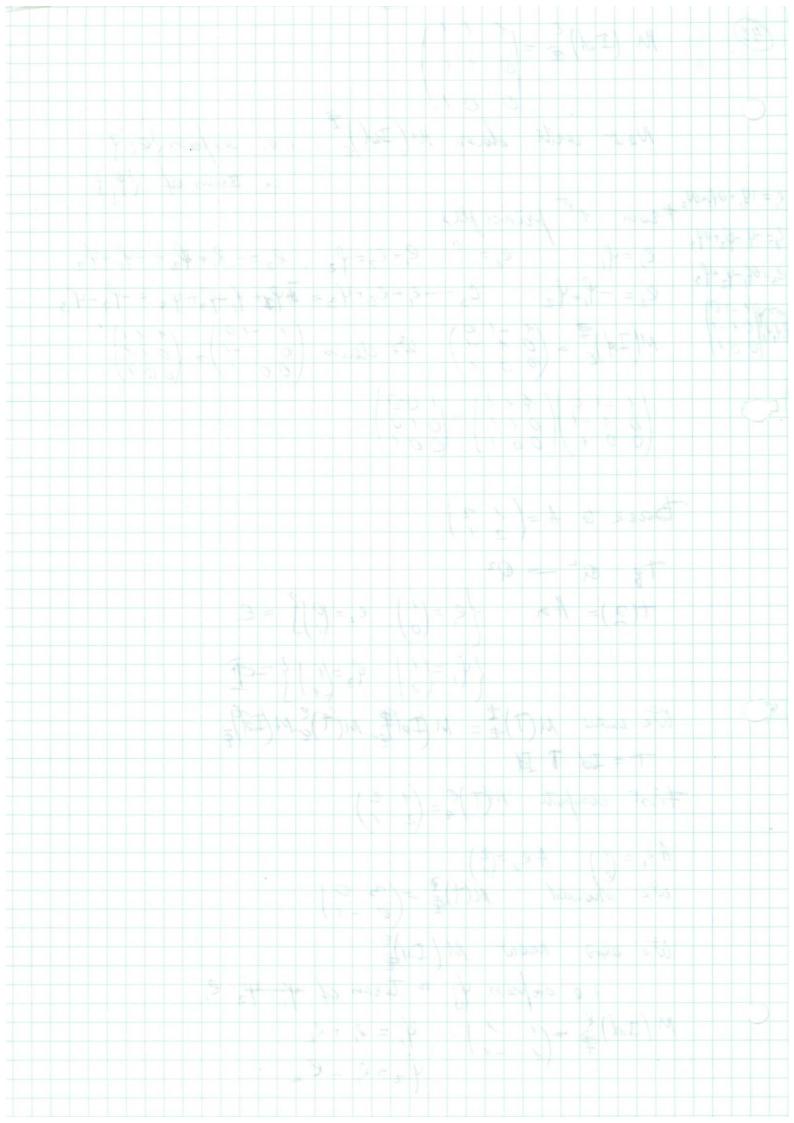
 $M(Jd)_{\mathbb{Z}}^{e} = (\omega_{j})_{1 \leq i \leq n}$ (46) (1) Similarly M(Id) = (bji) 1=15n (2) what is relation between (1) & (2)?

M (Id) = M (Id) = (ij) bji)

Id Prof. For any lasis & of V MJdd = Id Freed Id(Ei)= Ei = Zojie, So we proved prop. They M(Jd) = [Mtd)=] -1 Example $V = F^3$ $C = 2 \ e_1, e_2, e_3 = \text{standard lasis}$ F= { P, P, P, P, 3 $Q_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = Q_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = Q_1 + Q_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = Q_1 + Q_2 + Q_3$ ie. eapress { 4; 3 of in terms of { ej ?

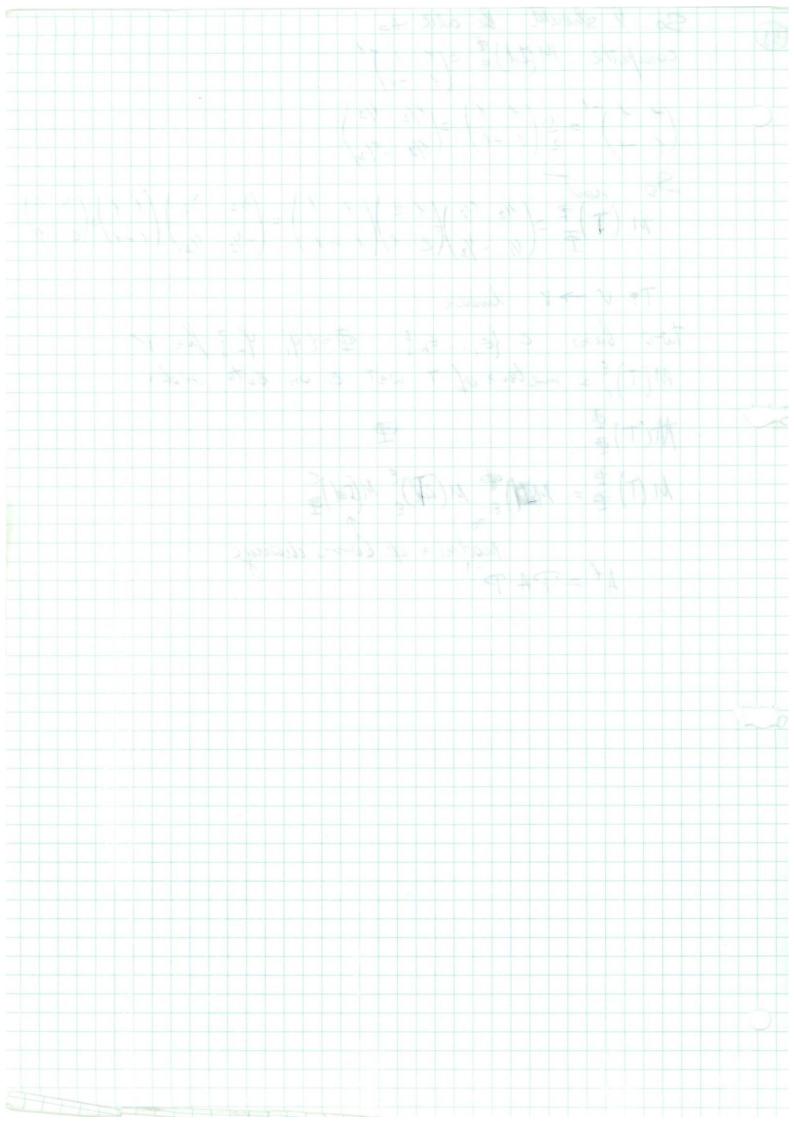


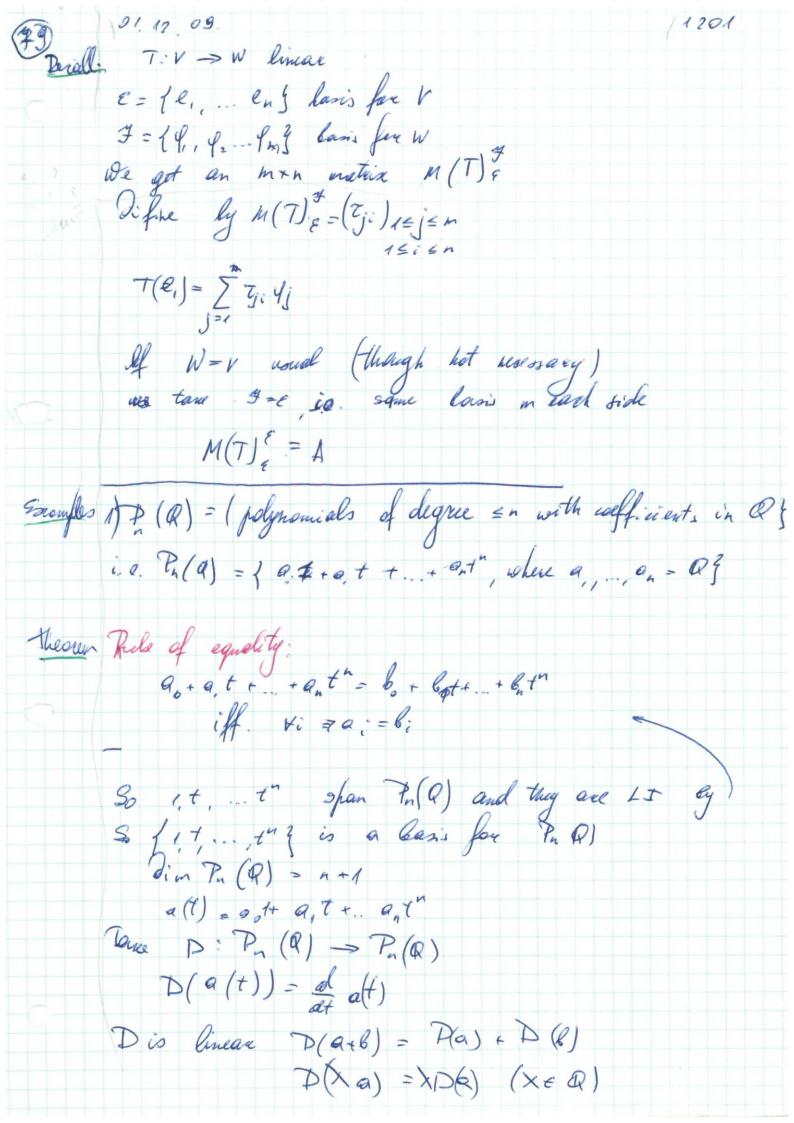
 $M (Id) = \begin{bmatrix} 1 & 1 & 1 \\ \hline & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$ New write down M(Id) ? i.e. express lei ?
in terms of \quad \earlighters ? $e_1 = 14 + 04 + 04 = 7$ $e_2 = 14 + 04 = 14$ $e_3 = 14 + 04 = 14$ $e_4 = 14 + 04 = 14$ $e_5 = 14 + 04 = 14$ $e_6 = 14 + 04 = 14$ $e_7 = 14 + 04 = 14$ $e_8 = 14 + 04 = 14$ $e_9 = 14 + 04$ $e_9 = 14$ ez=-P,+42 e3=-e,+ez+43= #4+4,-92+43=-12+43 => (1 -10) $M(Id)_{e} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$ we claim $\begin{pmatrix} 1 & -10 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ Bank to A = (1 2) T8: Q - - Q2 +(2)= An fe = (1) e = (1) = E $\left\{ \begin{array}{ccc} \ell_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} & \ell_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\} = \overline{P}$ We man M(T)= M(Id= M(T) & M(T) & M(T) & T = Id . T . Id First compute M(T) = (1 2) He, = (1) $Ae_2=(2)$ We haveld M(t)=(30)We also know M(Id)?
1. e. capress of in terms of of the e. $M(Id) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \begin{cases} q_1 = l_1 + l_2 \\ 2 = l_1 - l_2 \end{cases}$

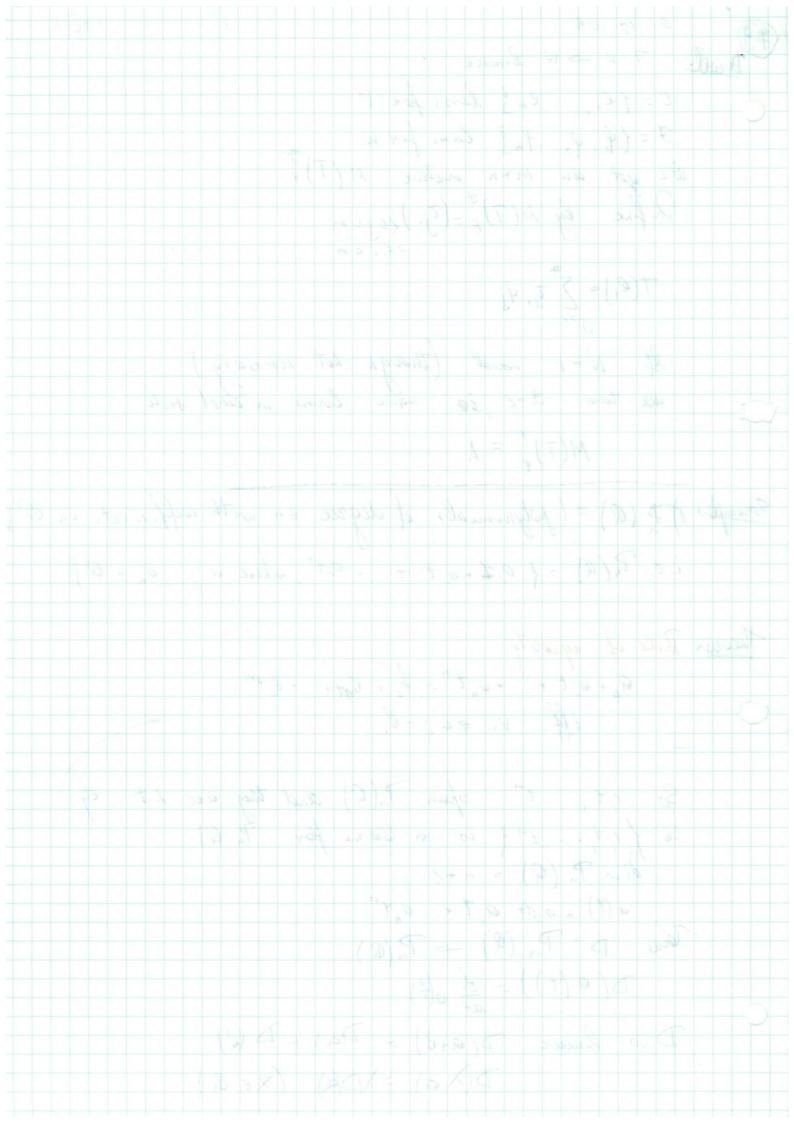


So I should be able to (48) compute $M(td)^{\frac{1}{2}} = \begin{pmatrix} 1 & 1 \end{pmatrix}^{1}$ $\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & -1/2 \end{pmatrix}$ To V > V linear Two basis C. {E, ... En } \$= { 9, ... 9, 3 for V

M(T) = mateix of T wet e on both sides M(T) = MINE M(A)E M(Cd)E At = PAP

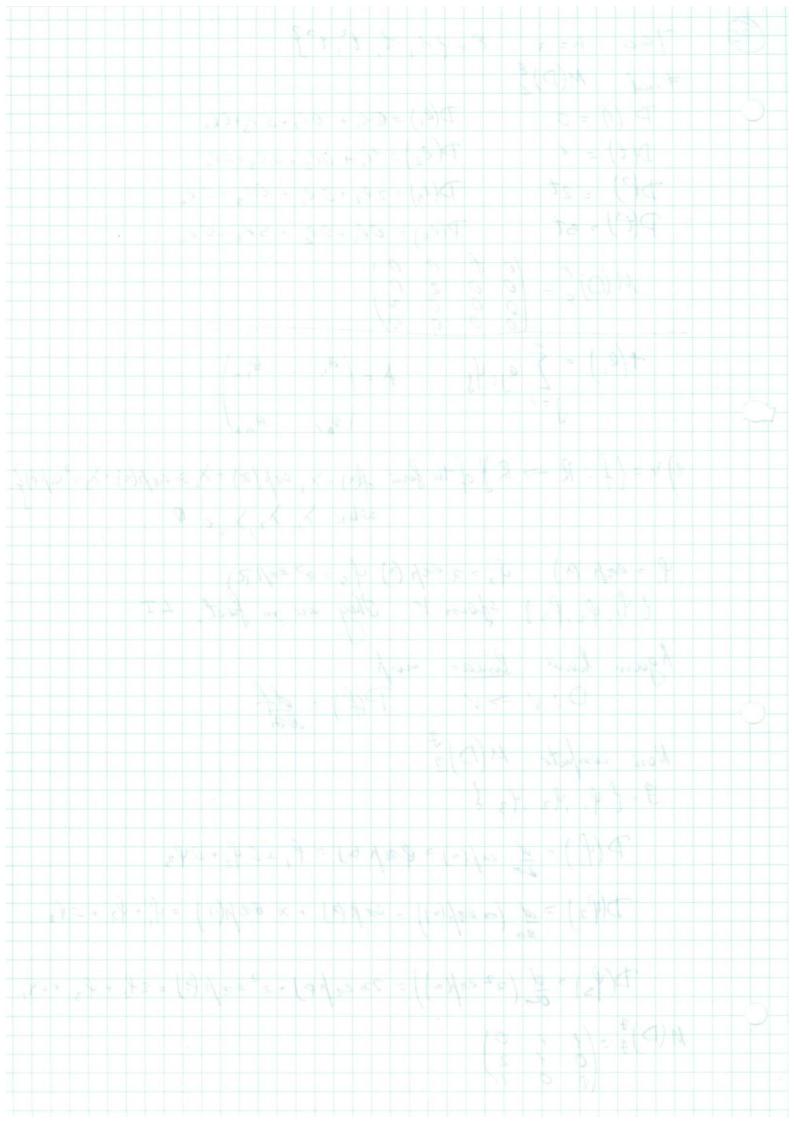


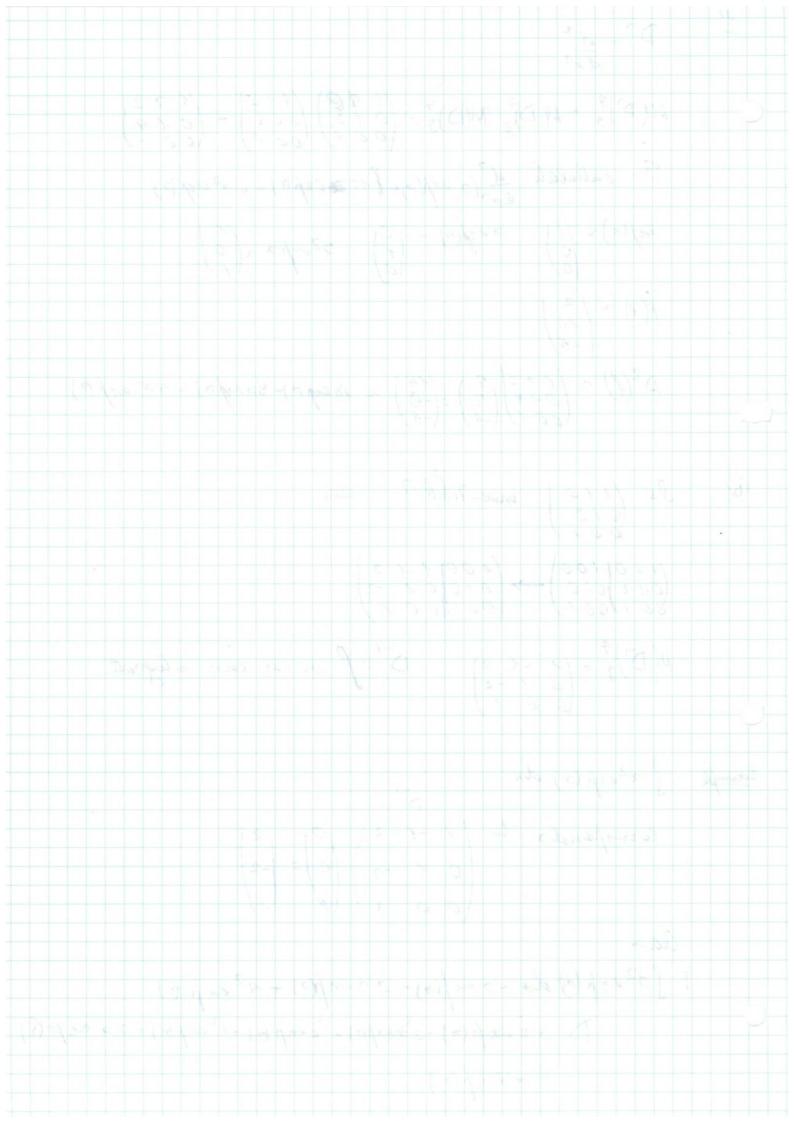




(89 Taxe n=3 8= {1, t, t, t3} Find M(P) & D(e,) = Ol, + Ol2 + Ol3 + Ol4 D (1) = 0 D(t) = 1 D(l2) = 11, + 012 + 015+014 D(2) = 2t D(13) = 2 l2 + 0 l, + 0 l3 + 0 l4 P(t3) = st P(e4) = 00, +00 + 303 +0004 $M(D) = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ $f(e_i) = \sum_{j=1}^{n} e_{ji} f_j$ $A = \begin{pmatrix} e_{ii} & \cdots & e_{in} \\ e_{ji} & \cdots & e_{jn} \end{pmatrix}$ 2) V = {f: R -> R } of the form fa) = x, exp(21) + x, 21 exp(2) + x, 22 exp(5)} where x, x2, x3 + P f, = enh (a) f, = a enh (a) fs = a enh (b) fs = a enh (c) fs = a enh (c) fs = a enh (c) foot, LI Again have linear map

D: V -> V P(f) = df Now compute M(D) 3 9- (y, 1/2, 1/3 } P(4,) = d esp(0) = Posp (0) = P, +0 92 +0 43 D(P2) = d (a enp(0)) = cap(a) + 2 exp(a) = P, + P2 + OP3 D(93) = d (22 en/(a)) = 2 n en/ p) + 2 en/ (2) = 29, + 93 + 04, $M(D)_{\frac{3}{2}} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$





1) (Q,12, + ... Q, x, = 6, Q,12, 1... Q, x, = 6, System of linear eq."

OLP Que + ... Que x = 6m

A = A $A = \begin{pmatrix} a_{i1} & a_{in} \end{pmatrix} = \begin{pmatrix} a_{ij} \end{pmatrix}_{1 \le i \le n}$ $\begin{pmatrix} a_{n1} & a_{nn} \end{pmatrix}$ $\begin{pmatrix} a_{n1} & a_{nn} \end{pmatrix}$ $\begin{pmatrix} a_{n1} & a_{nn} \end{pmatrix}$

<1840

NEW => linear mapping < 1870

=THE

T: #" -> #"

standard basis e, ... en

£, ..., c n T(ei) = \(\sum_{j: E_j} \) i=1 ... n

Prop Prop. It T: U > V Cincar over #

then S.T: U -> W is also linear onle F

Proof 'T linear' means T(z = y) = Tx + T(y) $T(x = y) = \lambda T(z)$

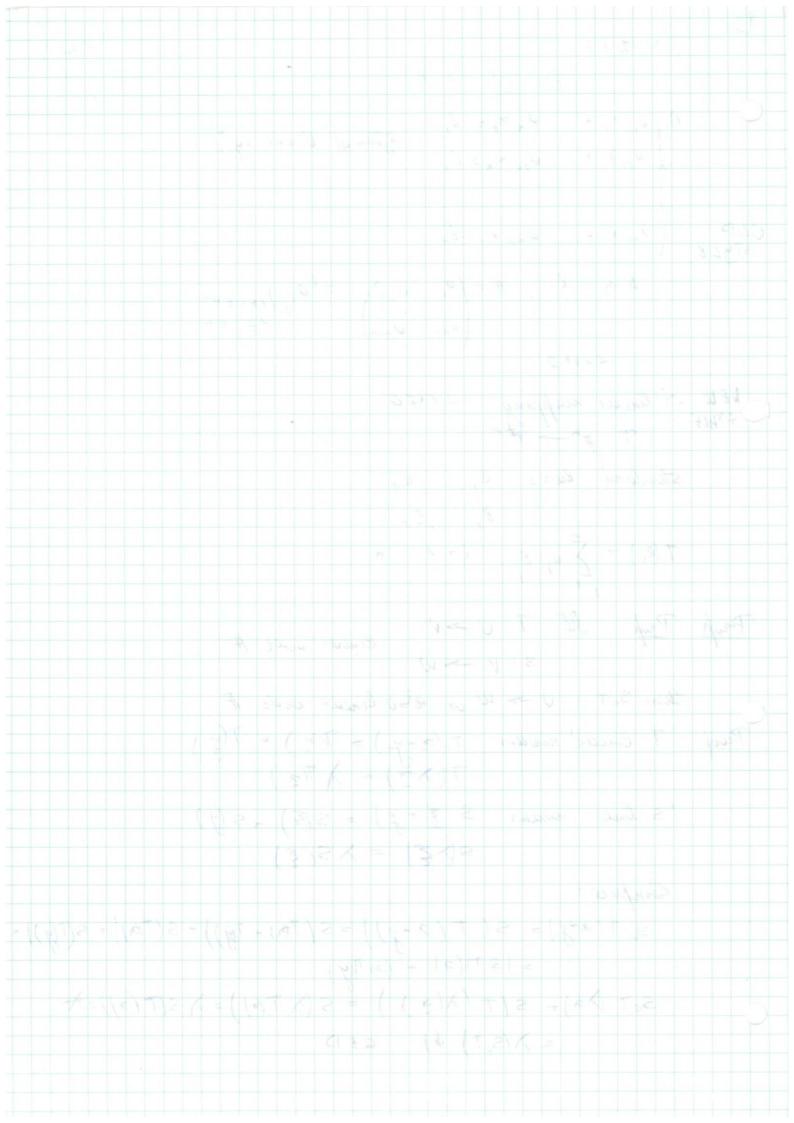
's liner means S = + y) = S(E) - S(y) ·s(\\ \xi\) = \\ s(\xi\)

Compare:

So T(24g) = S(T(2+g)) = S(T(n)+T(g)) = S(T(n))+S(T(y))=

= (st)(a) + (sot)(y) $sot (\lambda a) - s(t(\lambda(a))) = s(\lambda T(a)) = \lambda s(t(a)) = \lambda$

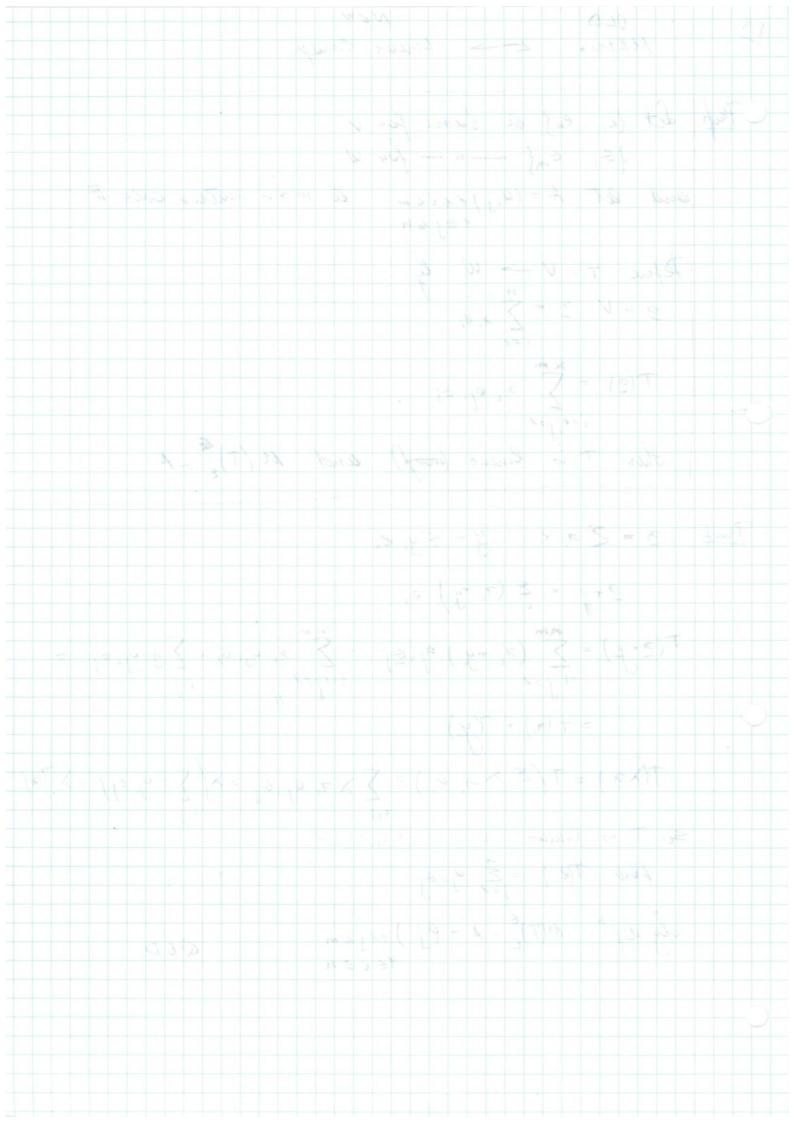
= >(SOT) \$) Q F D.



OLD MAtrix => Linear amap. Prop Let Le, ... en g be basis fou v

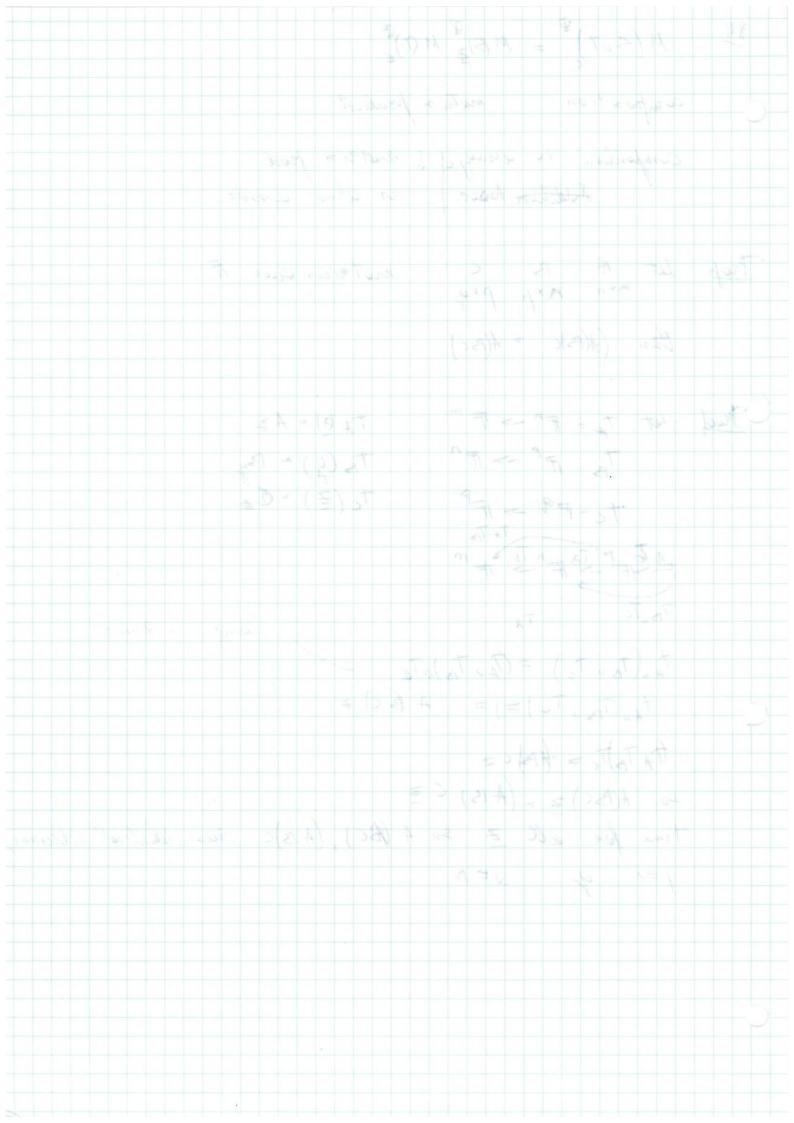
Le, ... en g - n - fan w and let A = (aij) 1 \(i \) i = m be m \(n \) mateix over \(T \) \(1 \) = j \(1 \) n Fefine T. V -> W by

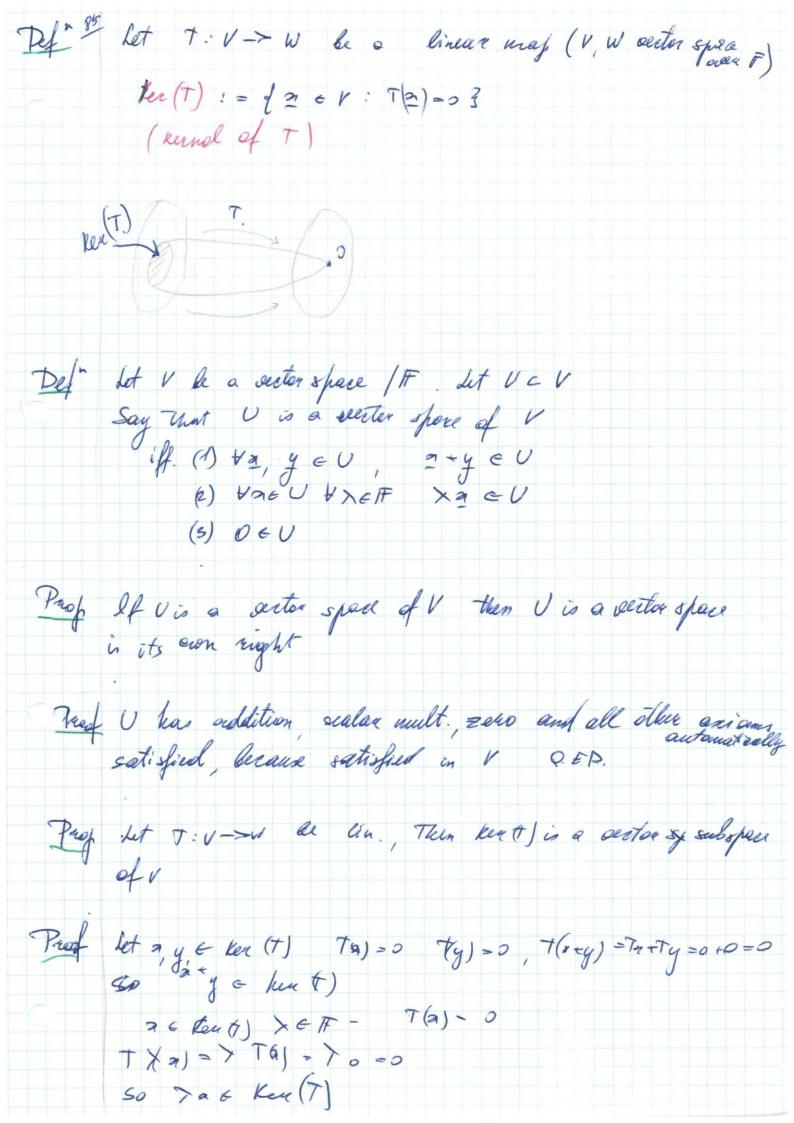
3 = V = - \(\sum_{x_i e_i} \) $T(\underline{a}) = \sum_{i=1, j=1}^{n \text{ m}} \chi_i \, \underline{a}_j : \underline{c}_j$ Then T is linear (wasp) and $M(T)_{\epsilon} = A$ Proof 2 = Zaili y = Eyili 2-y = E (7: +y.) e: $T(x+y) = \sum_{i=1}^{n} (x_i + y_i) a_{ji} \in j - \sum_{i=1}^{n} x_i a_{ji} \in j - \sum_{j=1}^{n} y_j a_{ji} \in j = i$ = + (a) + (y) $T(\lambda z) = T(\Xi \times z; e;) = \sum_{i,j} \lambda z_i e_j : e_j = x(\sum_{i,j} z_i e_j) = \lambda T(x_i)$ So T is linear $e_i : 0 + 1 \cdot e_i + ... \circ$ Also $T(e_i) = \underset{j=1}{\overset{m}{\succeq}} q_j \cdot e_j$ oby def h $M(T)_{\varepsilon}^{\varepsilon} = A = (j)$ $1 \le j \le m$ $1 \le i \le n$ QED.

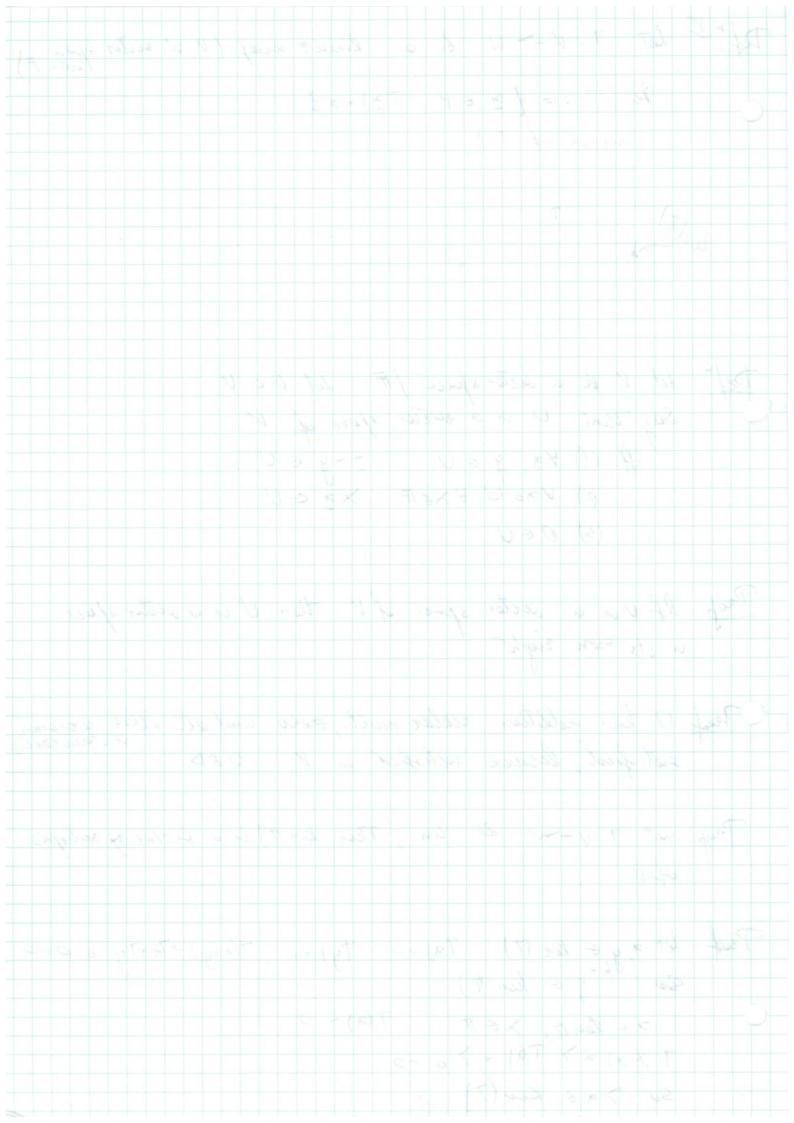


84 M(SOT) = MB) M(T) = composition matrix product comfortion is always & matrin prod.

Addition Assoc. is also assoc. Prop Let A B C matrices occur A then (A(B)C = A(BC) Proof Let TA = F" > F" TA 61 = A= TB: IF -> IF Trs (4) = 134 Tc (Z) = 02 Te-P9 > IFP AF TO HATE M TroTc TA Comp. is asse. TA. (TBOTC) = (TAOTB)OTE L TAO(TBOTC) = A (3 C) Z TATATE = ABCZ 40/ H(BC) = (AB) C = time for all Z 30 A (BC), (A 13)c have identical column, J=1 ... 9 Q= A

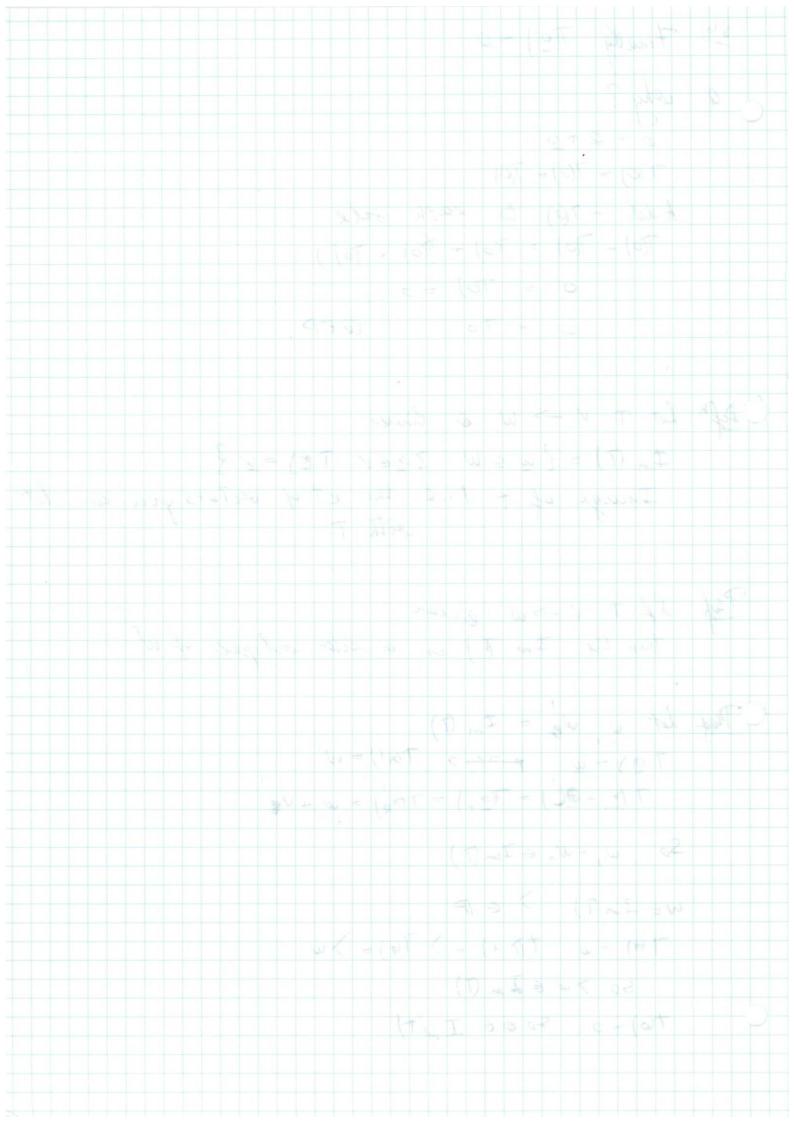




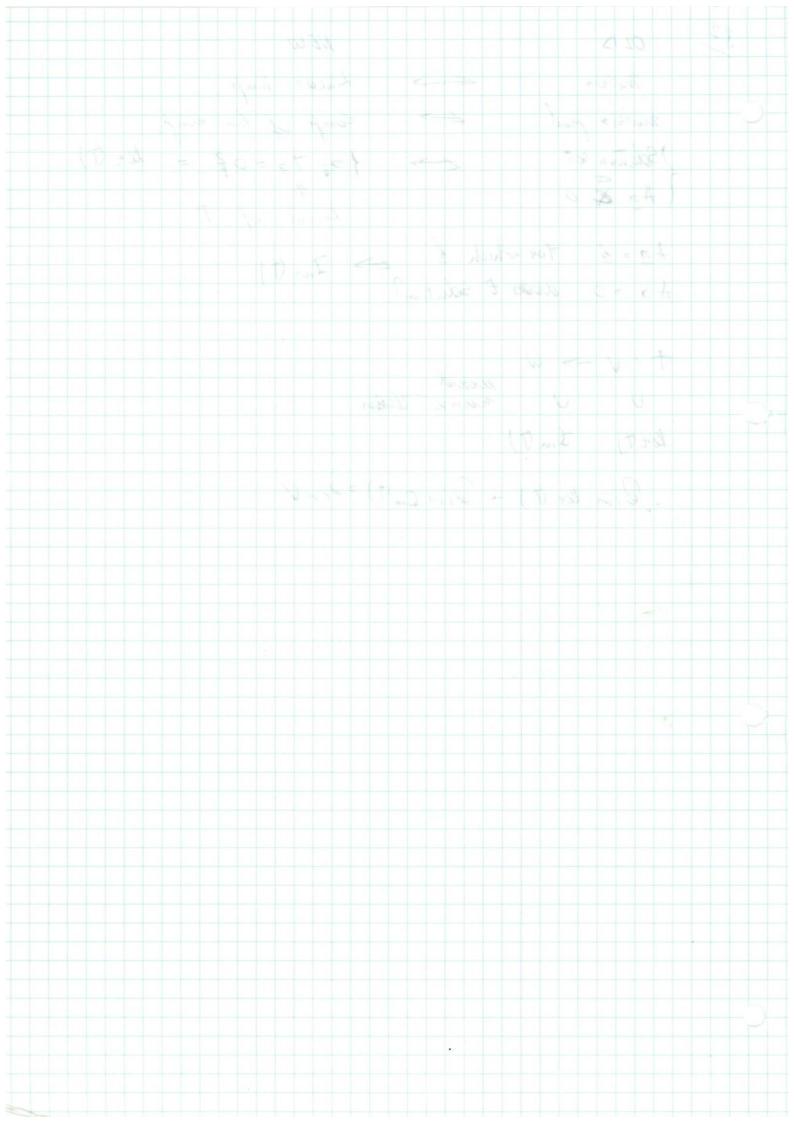


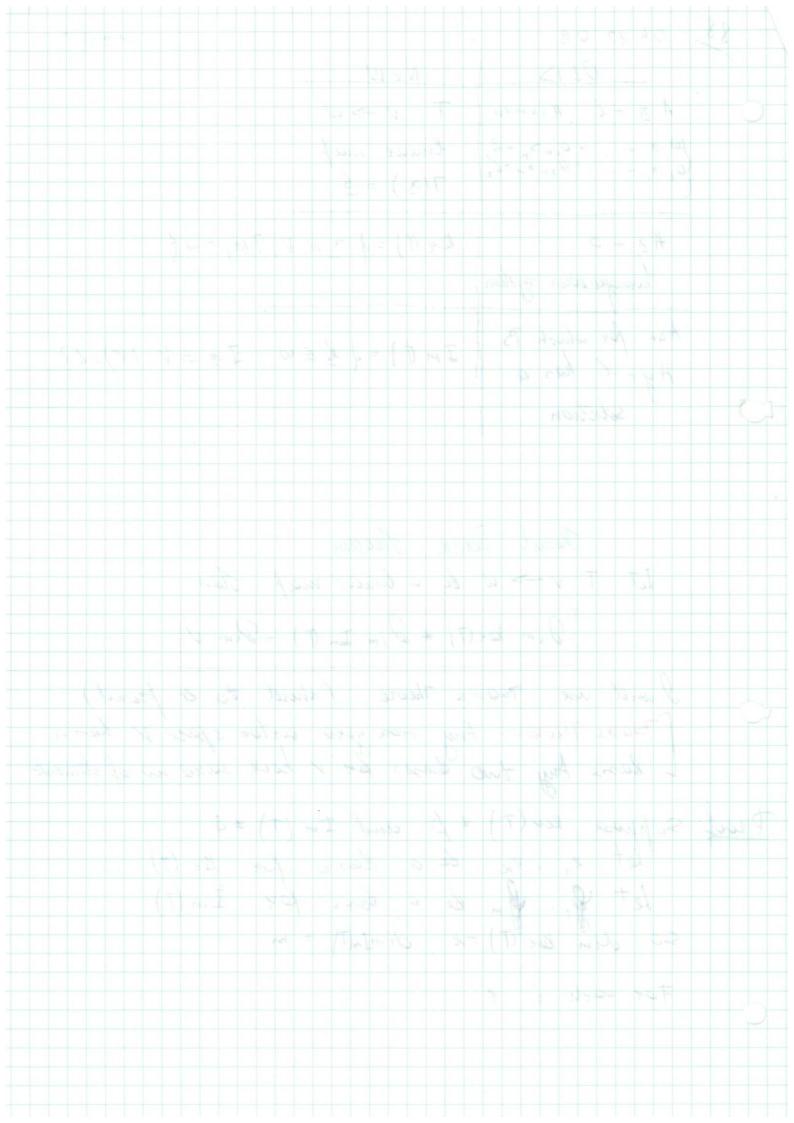
86 Finally To) -0 a why? 0 = 2 + 0 7(0) - 7(0) - 7(6) Add - 76) to each side T(0) - T(0) = T(0) + T(0) - T(0)) 0 = T(6) = 0 0 = T(6) = 0 0 = T(6) = 0Defn Let T: V -> W & lineau In (T) = 2 w & W : 3 a & V : TE) = w 3

Image of T 1 i.e. the set of sectors you can hit
with T Prof If T: V -> W linear then the In T) is a sector subspace of W Pref let w w = = Im (7) 7 (9) = w + = + 2 761) = w' T 6, + 2() = T(9,) = T(0) = w = U $S_0 \quad \omega_1 + \omega_2 \in I_m(T)$ we Inti) > e IF 76) = w + (xa) = > 76) = > w So >w & Im (T) 16)-0 SO O E I M(T)

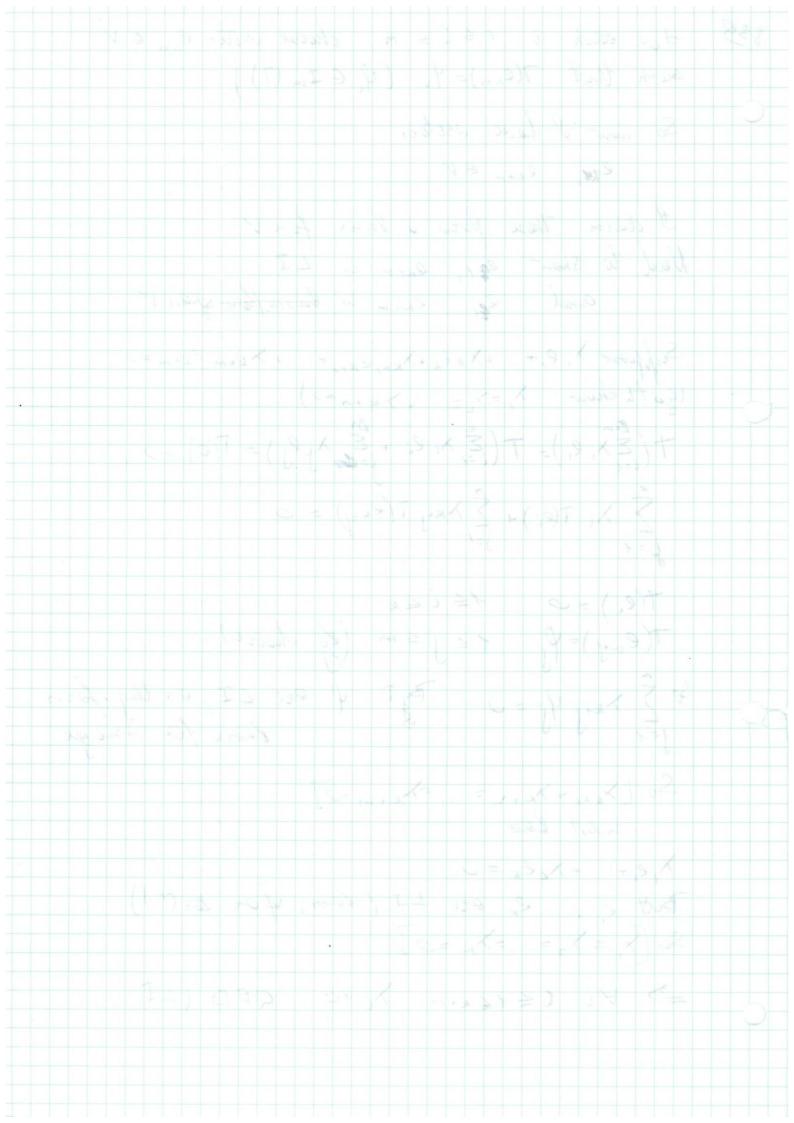


87 NEW OLD Linear krap Watria comp. of lin map. matrin prad. { 2: 72 = 0} = ker (T)) Solution set (Aa & o Kernol of T +2=6 ton which & > Im () Aa = 0 doso t solution? t:V > W U vank Wan Kert Im () Sim Ker (T) + Dim Sm (t) = Dim V





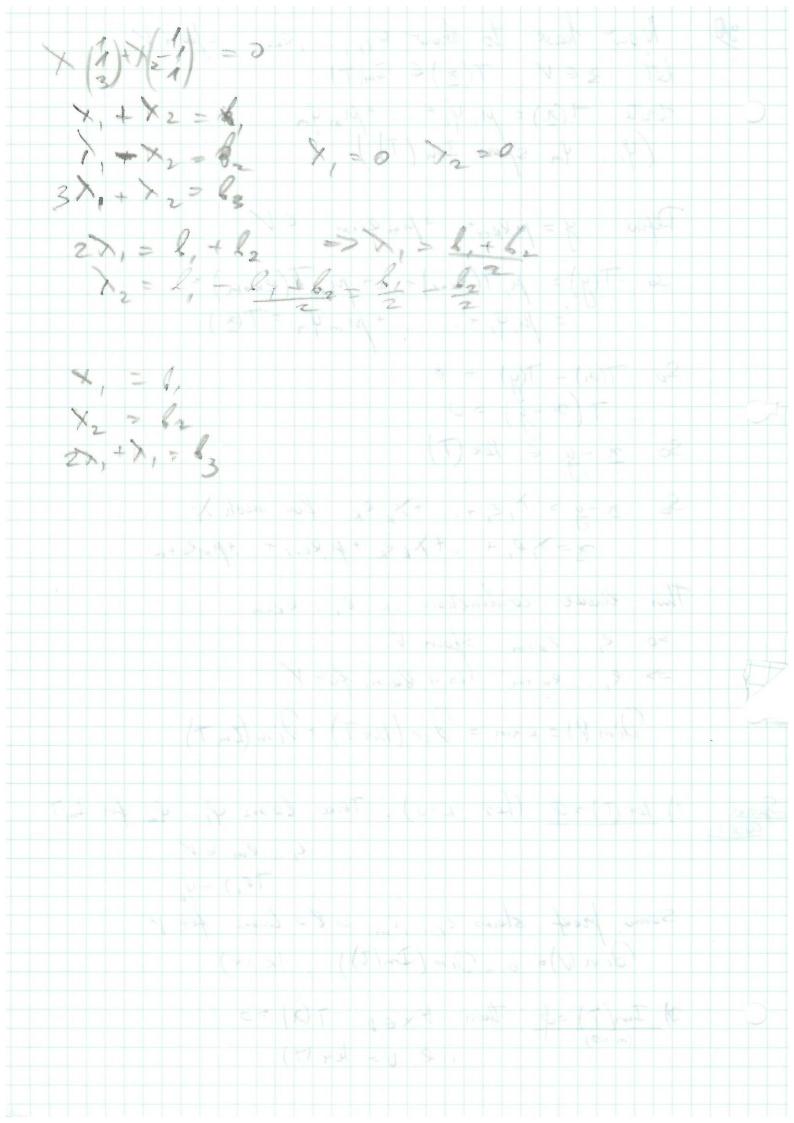
don each i 15 i 5 m choose actor exi 6 V 800 such that T(exxi)= fi (fi & Im (7)) So now I have certees e. ... ex+m eV I claim these form a basis for V Need to Show e, exem is LI
and e, exem is bans for span V Suppose >, e,+..+Xxex+Xxx,exxx 1 xxem ex+m=> $\sum_{j=1}^{\infty} \lambda_i T(e_i) + \sum_{j=1}^{\infty} \lambda_{R+j} T(e_{R+j}) = 0$ j=1 $T(e_{i}) = 0$ $1 \le i \le k$ $T(e_{i}) = \emptyset$ $1 \le j \le m$ (by chaid) of one LI as they form So > xxy 4, = 0 Byt So [xxx = xxx = ...=) subst. lac. MIRIT ... + XERR = 0 But e, ex one LJ (lasis of on ter (T)) So (x, = /2 = ... =) => Vi 1 < 1 < 1 < 20 QED (LI.



90 Now have to show $Q_{1,...}, Q_{kem}$ span VLet $z \in V$ $T(z_1) \in I_m(T)$ Write +(2) = M, G, + ... + Mm fm (4,, - 4m sporn Im (T)) Define y = prepert - . + pens exem EV so T(y) = p, T(RK+1) + . - + pen & (ex+m) = = p, f, + + pm fm = Ta) So T(x) - T(y) = 0 T(x - y) = 0So $x - y \in \text{Ken}(T)$ So m-y = 1, e, +. + x ex for such x: 3= 7, e, -... + xkex + plent thement This linear combination in e, exem So e, exem Sporn V e, exten lis a basis for V dim () = x+m = dim (ker T) + dim (Im T) Special 1) per (T) = \$\phi\$ (here \$k=0). Take basis \$\ell_1 \cdot \ell_m \in T\$ e, lan EV TE() = 40 Some pred shows e, la is & a basis for y

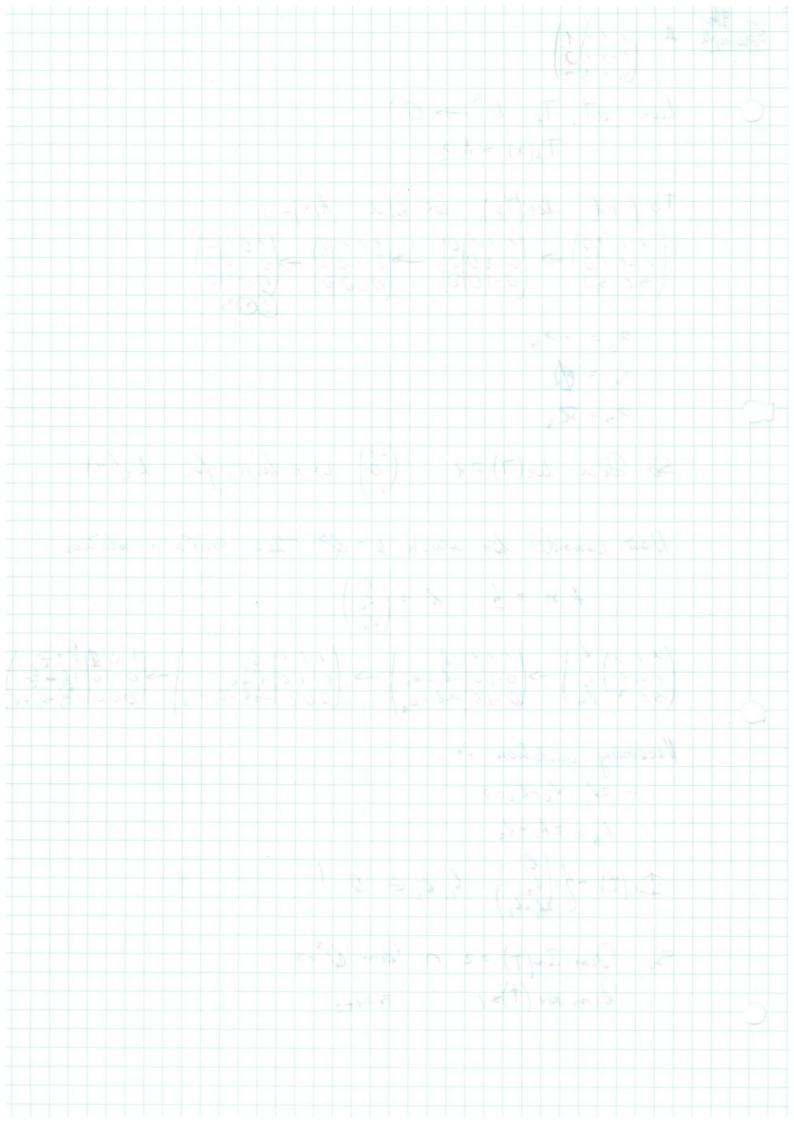
ain ()= o . Dim (In(7)), (K=0) 2) Im(T) = \$ then tx EV T(a) = 0

(m.0) i.e. V= ker(t)



Lock at Ty: Q3 -> Q3 $T_A(a) = A x$ To find ker (1) we solve A(2)=0 $\begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 & 0 \\ 3 & 1 & 3 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & (1 & 1) & 0 \\ 0 & -2 & 0 & 0 \\ 0 & -2 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & (1 & 1) & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$ 2, = -25 2, = 0 95= R3 So Din lex (7) = 1 (0) is a basis for kex (1) Now consider for which u = Q3 there exists a solution An = 6 = (2) $\begin{pmatrix}
1 & 1 & 1 \\
1 & -1 & 1 \\
3 & 1 & 3 & 6 \\
3 & 1 & 3 & 6 \\
3 & 1 & 3 & 6 \\
\end{pmatrix}
\xrightarrow{\left(\begin{array}{c} 1 & 2 & 1 \\ 0 & -2 & 0 \\ -3 & 1 & 4 \\ 0 & -2 & 0 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 0 \\ -2 & 1 & 4 \\ 0 & 0 & 0 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 0 \\ -2 & 1 & 4 \\ 0 & 0 & 0 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 0 \\ -2 & 1 & 4 \\ 0 & 0 & 0 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 0 \\ -2 & 1 & 4 \\ 0 & 0 & 0 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & -2 & 1 \\ 0 & 0 & 0 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & -2 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & -2 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\ 0 & -2 & 1 \\
\end{array}\right)}
\xrightarrow{\left(\begin{array}{c} 1 & 1 & 1 \\$ Necessary audition is $\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = 0$ - 2h, - h2+b3=0 b3 = 26, + b2 $I_{m}(T) = \begin{cases} \begin{pmatrix} \xi_{1} \\ \xi_{1} \end{pmatrix} & \xi_{1}, \xi_{2} \in Q \end{cases}$ So Dim In(T) = 2 1 Dim Q3=3

Bin Key (+)=1 3=1+2

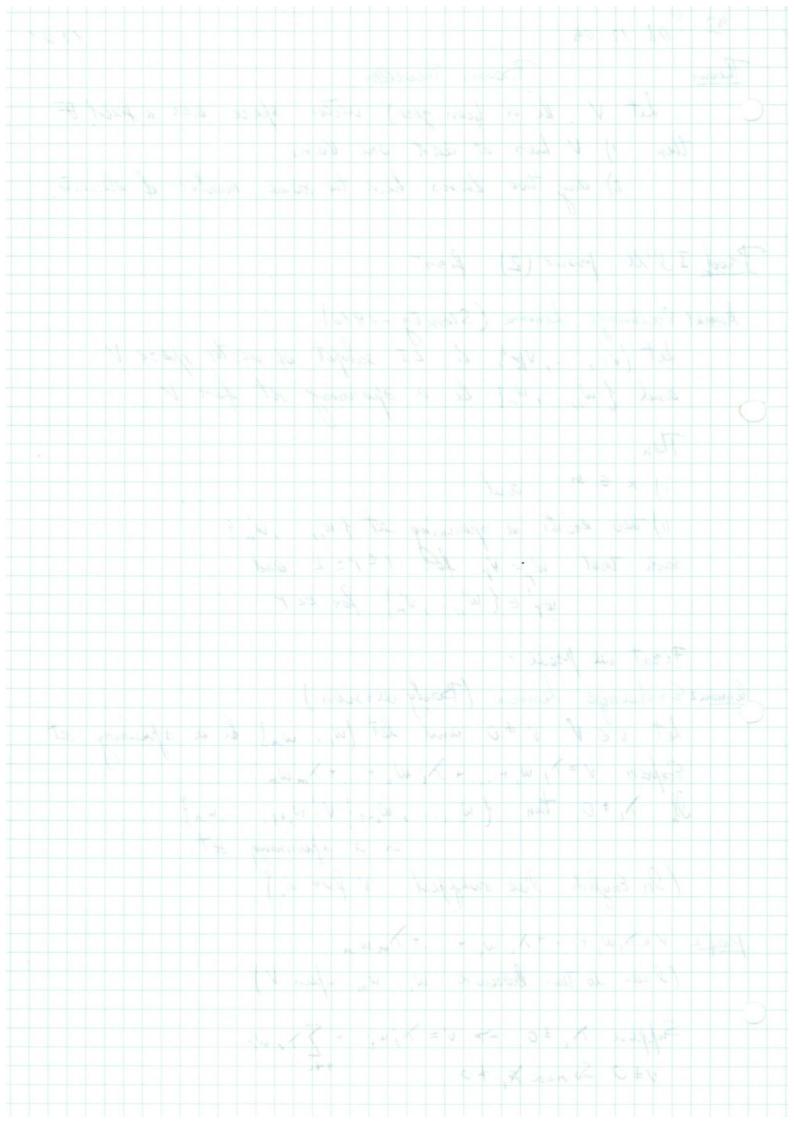


92 08.12.09. 1201 Theorem Let V be a (non yero) vector spece aux a field F then 1) V has at least one lans
2) any two lasis have the same number of elements. Proof I I'll proved (2) first luma 1 Exchange Lemma (Steinity -1910)

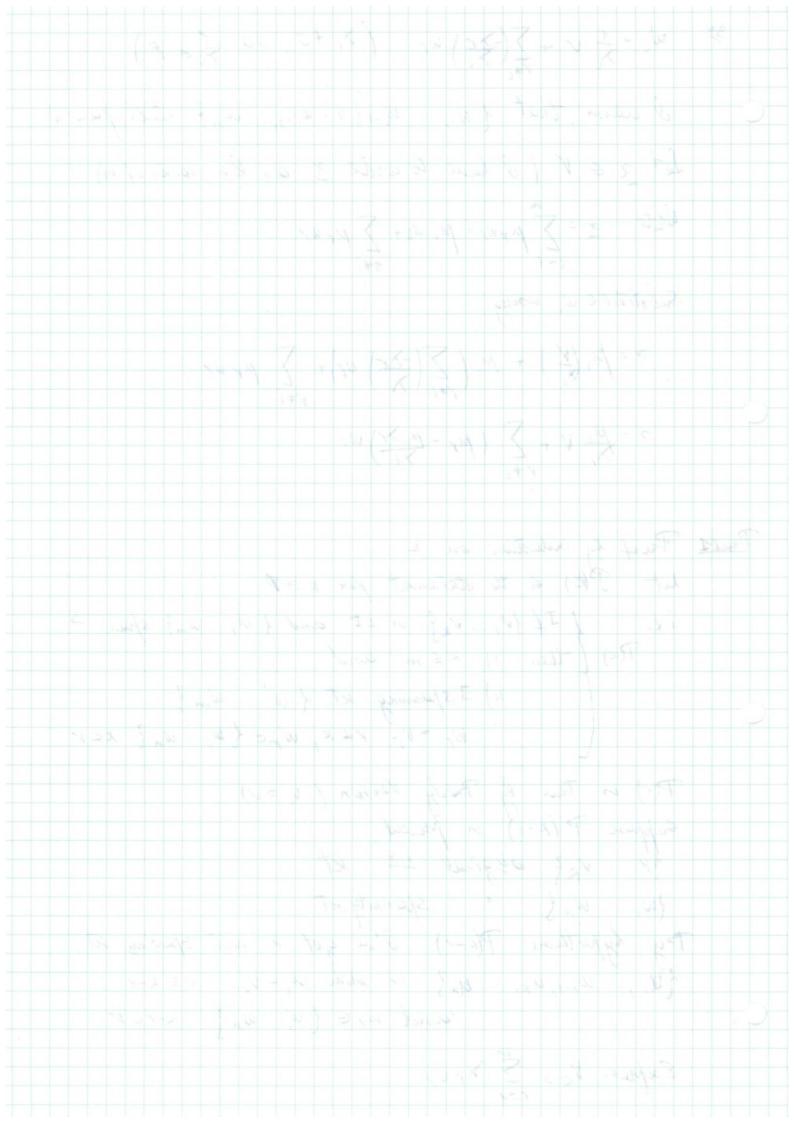
Let {v, ..., vp3 le 25 endopet of celeter space V

and {w, ..., w, } lee a spanning set for V i) R = m and ii) there exists a spanning set 1 wi, ..., win 4 such that w = vr for 1 = r = k and wy'e { w', ..., w'm} for KZ r First we peak : lumaz Exchange Lemma (Body version)
Let $v \in V$ $V \neq 0$ and let $\{w, w_m\}$ be a spanning set. Express V= >1 W, + ... + >i Wi + ... + >m Wm If hi + 0 then of w, ..., wing V; wing, ..., wing is a spanning set. (In English I've sweepped V for wi) proof 2 V= X, W, + ... + X; W; + ... + mw, (I can do this browner w, um span V)

Suppose X; +0 => V= X; W; + \(\frac{1}{2} \) \text{in wr} \\
V + O So mine \(\frac{1}{2} \) +0 \(\frac{1}{2} \)



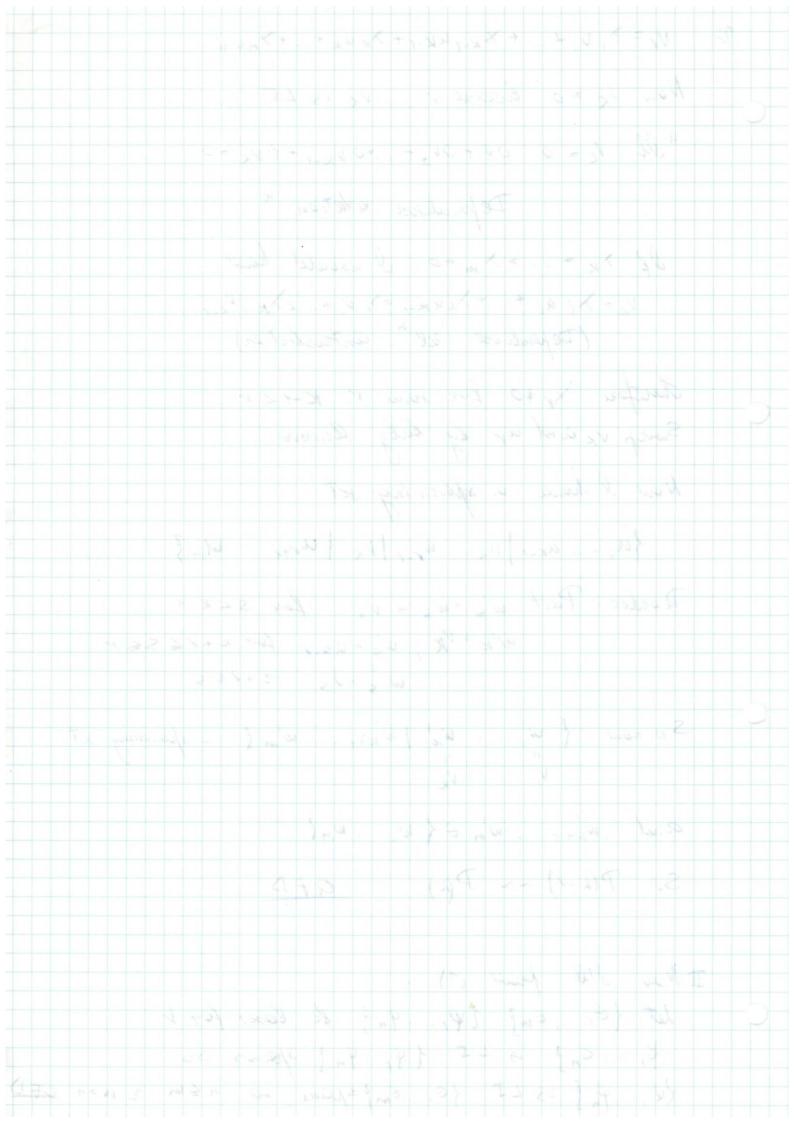
32 Wi = 1 V + [->r) WI (xi +0, 50 = Fi = F) I claim that { w, ... , win; v : with with with still pan v Let z & V (I have to write z as lin. comb. of m) Write x = \ mrwr = Mi wit \ mr wr Substitut e wi using == Mi(xi) + Mi(Z(-xr) wir) + Z Mrwr 2 = Mi V + E (pr - mixr) wr Prof Proof by induction on K Let PK) be the statement for a 20 Re) [-thun i) K & m and (w) = spanning set { w' ... wm } W, = vr r < k, w' r ∈ { w, ... wm } K < r P(1) is true by Berly Version (v = v) Suppose P(x-1) is proceed. 1. .. vez original LI set {w, ... wm } " spannity set Try hypothesis P(k-1) l'ul got a new spanning set. Let, ... u_{k-1} , u_k , ... u_n ? in which $u_i = v_i$ $i \leq k-1$



2" Vx= >, u, + ... + xx-1 ux-1 + >xux + ... +>mum Now Vx * 0 because v, ... Vx is L5 " If Vc = 0 OV, + OV2+ ...+ 1 VK =0 Dependence relation " If > k - . - > x m = o I would have VK = > i ai + ... + > kur-, = >; v, +... + > K-, VK-1

(Dependence rel ... Contradiction) Therefore xr +0 for some v x-12 v Swap vx and ur by baby aumo. Now I have a spanning set {u, ... un | ux ... ur 1 | Vx | urts ... wm } Deorder Purt w's = ws = vs few SCR-1

w'k = VK; w's = us-1 for K+1656 F W 5 = US 2+1= 8 So now $\{w', ..., w'_{k} \mid w'_{k+1} ..., w'_{m} \}$ - spanning set V'_{k} V_{k} and war ... won & w, ... won? So P(k-1) -> P(k) QF.D. II Now I'll prove (1): Let LE: .., Em3 { \$1, ... 4n & le Boses for 1 6, .. En } is LI { q, . yn } spans so (l, ... fuß is LI {E: .. Emgspans, so h = m 32 m=n OED



Poasis Theorem

Let V be a non-gluo serter space / IF ther

1) V has a basis

2) Any two lases have same number of elements.

Proof(2) Suppose $1 \in \ldots \in m_3$, $2 \notin 1, \ldots \notin n_3$ are letter lasts $1 \in \ldots \in m_3 \text{ is } L \neq 1, \ldots \notin n_3 \text{ spans so } m \leq n$ $1 \notin \ldots \notin m_3 \text{ is } L \neq 1 \text{ and } 2 \notin \ldots \in m_3 \text{ spans so } m \leq m$ $1 \notin \ldots \notin m_3 \text{ is } L \neq 1 \text{ and } 2 \notin \ldots \in m_3 \text{ spans so } m \leq m$ $1 \notin m_1 \text{ so } m_2 \text{ so } m \leq m_3 \text{$

Proof 1 Let s(m) be the flow following the bount

"If V + 0 and V is spanned by a set $\{\ell_1, \ell_m\}$ with an elements. * Then $\{\ell_1, \ell_m\}$ contains a basis for VI'll proble each s(m) is true $(m \ge 1)$ i) $s(\ell) = i$ If ℓ_1 spans V + 0, then ℓ_1 is a basis for Vclaim ℓ_1 is LIotherwise if $\lambda, \ell_1 = 0$ and $\lambda, \ell_2 = 0$ so $\ell_1 = 0$ so accepting in V is zero

i.e. V = 0 contambiation

so $s(\ell)$ is true

2) $s(m-\ell) \Rightarrow s(m)$ $m \ge 2$

So suppose f. Im is a spanning set for V

and I'm finished.

If 9,,..., Im is LI then { 9, ..., 9 m ? is a lasis

85 I have a sel X 4 - X m 4 - 0 had at least one welficient say Xr, i 19 E Z - 40 17 = 18 18 3 - 18 10 x 3 + 0 (Kx-) 3 = E a this year that still a least 50 mas (4) ... 4-11911 ... 14 1 mas 14-1 eliment To & y . You deathout a dans all a

BB I have a sel X, 4, 4 - Xm 40m - 0 had at least one wifficiant way Xr is non-good 7 (5-) 7- - 1-1 沙菜 3 = 11 00 1 2 2 - 4 4 1 = 14 1 3 - x B12 3+ B(K-18-) 13=6 To fy. I'm] deatherists a dans de FT

so I have a rel x, 4, 4... > m /m - 0

And at least one coefficient say xr, is non-gers > ugr = 5+x (->) g I claim that {4, ...4r-1 | 4r-1 - ...4m} is a expansing set (I've exhaded 4r).

to say this, take $z \in V$ and write 2 = = xy9; = 2,9,7 = 2,9i 2 = 2 (-2r)) \$1 + 2 xy \$1 2 = 57 (25 - 27) PS i.e. 44, ... 4r-1 19r41...9 n 3 still a lasis has (19-1) element So now { 4, ... fr-1/9r+1 ... 4m } By industion hypothesis S(m-1)
Ly, ... Yru | Yru ... Ym 3 containts or lans. So dy, .. Im3 containts a banis QFD

I somorphism.

I neo noto are essentially the same (have the name wedinel),
weben -there is a lijective mapping between them. Def' Let V, W le certer spares once F. V, W are isomorphic when there is a lijective linear map T: V > W Theorem Let V, W be vector spaces over F. Then V= w => dim V = dim w Proof Let Din V=n I'll first show that # = V. Jane lans { f, ... In 3 for V het 28, ... en 3 le steindard basis for #" Construct linear mapping T: #" -> V. 2 = (91) = 9, P, + ... + 9, Pn & Fh e, e, e, t y, e, e, t t e, e, en 7(a) = a, f, + ...+ 2n fn y = y, 4, + . tyn fr t(y) = y, e, + ... + yn en T: F" - V is bijective lin exapping (hijective as it has inverse) than Fh ~ V shown if dim V=n Suppose Jom Wan
s: F" -> W Charese isomorphism

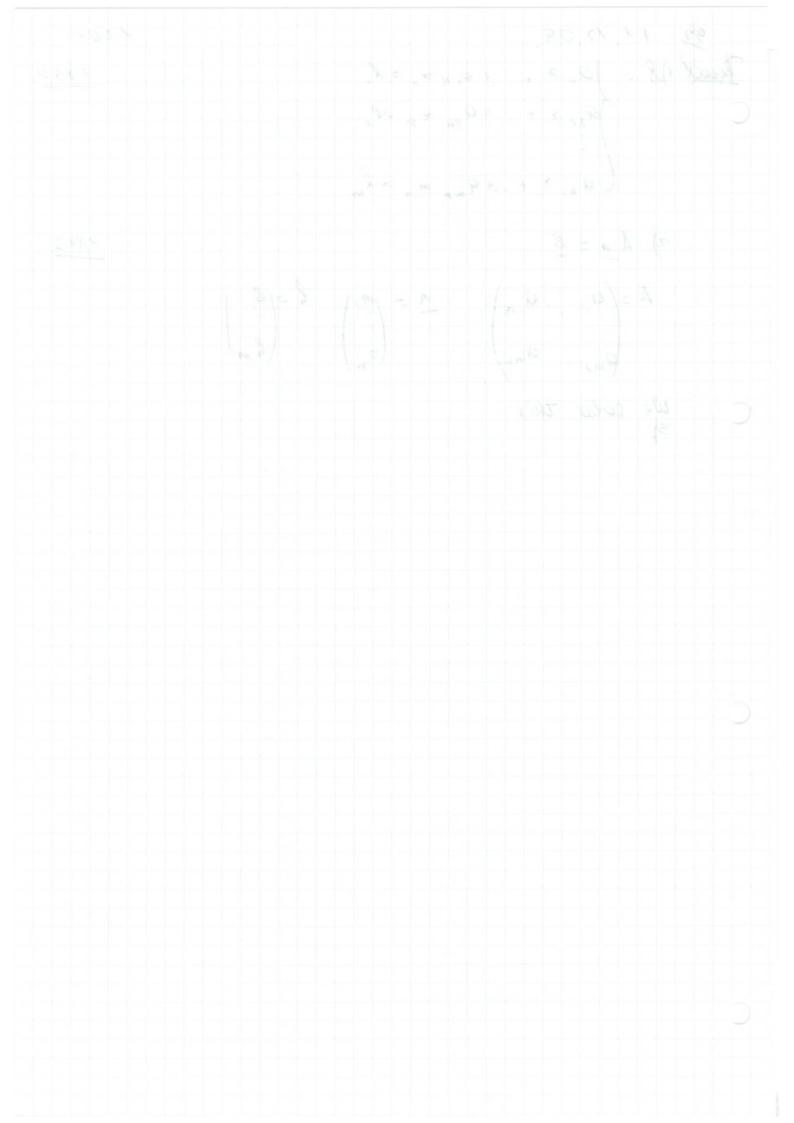
There not are describedly the war I have the war were last !

3,7": V -> W: SoT" is linear & lightness 7-1 Fn 75 So span Qim V - dim W => V = W Conversally soppose V= W Let T: V > W be a ligertiel linear maj. Need to show Dim V = Dim W let e, in a lasis for V dain T(E,) ..., T(En) is a lass for W II. Suppose: X, T(U,) + ... + /n T(En) - 0 and linear so T(7, 6, + . . + > n & n) = 0 man but T(0) tacko heat. & T is injective so 70)=0 7,6,+ ... +>n &n =0 But &, ... on ou LI So $\gamma_1 = \gamma_2 = \dots = \gamma_n = 0$ i.e. T(E) ... T(En) is LI + (,) T(E) sporn W : T(v) = w (surjective) Chesse wew. Chesse veV white V=7,6,+...+> , En W=T(V) = >, T(E)+...+ >n T(En) i. C. 76, ... TEn span W QFD 1.0. V= ((2) = 2 + 1R 9 1- Dimen sional

= IR

Warm T(a) T (an) in a leason face le I. T. Trappose + E) TE, spen W

We solve this



```
In the non-homogeneous cerse
         A 2) = 6
   If I know at hast one solution. (Particular odutia, 2)
say > 7 A Z = 6
   Then any other solution to A 3 = & has the four
        2=2+3
   where 4x'=0 solution of homogeneous system i.e. x \in K_A
   A Z = 6
     A(n-=)=6-6=0
    SO D(-2 6 KA
    Write 7-2=21ekp =7 7=21+2
Remarining Question:

Q robondees A_2 = b have a solution?

Write T(A)_3 - A_3
    when does le In (TK)?
    Original system | Reduced

A_{20} = 6 | E A_{20} = E 6
    KA = KEA
```

Beneger In (TA) = Im (TEA)

Rowinger In (TA) = Im (TEA)

after A > D retet on at Augustin specia

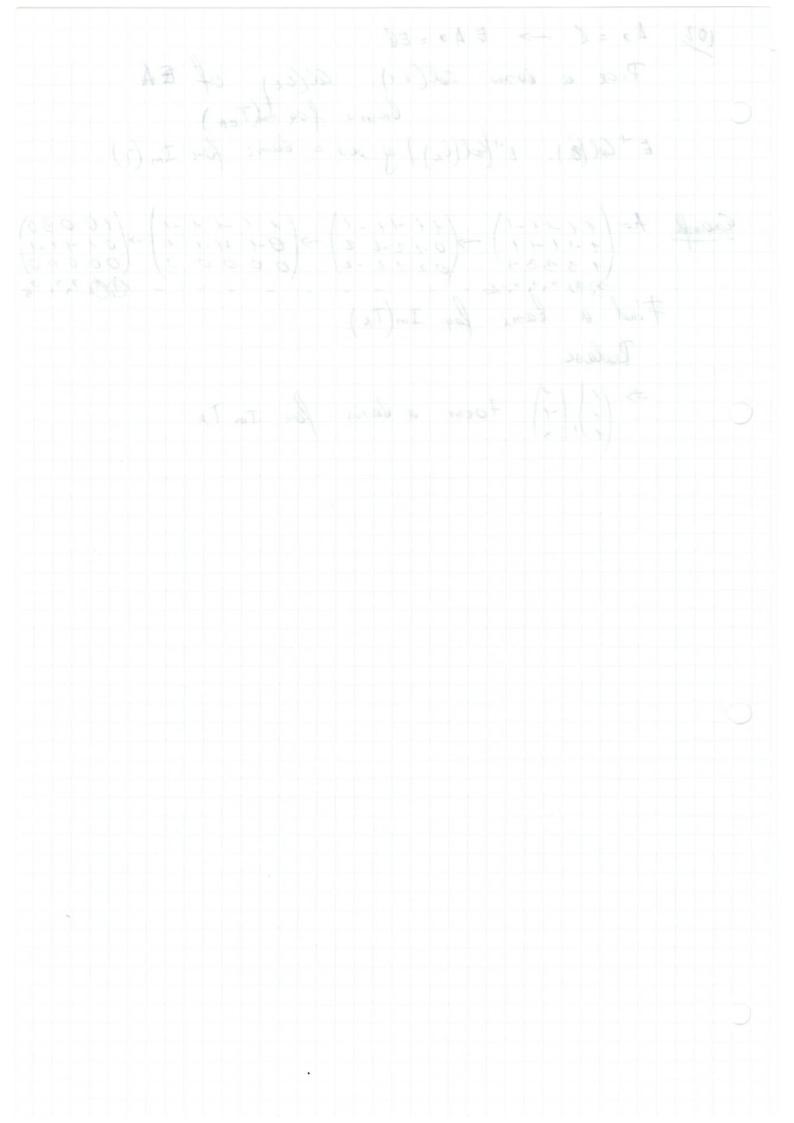
Property let
$$H = (Q_1^2)_{14}$$
 is an experimental set of columns.

Freed when what we you doing?

A 2 = (Q_1, Q_12...Q_1) (R_1) = 2, 42, +2, 42, +2, 42, -2, 42, ... And a set of final a maximal languary indipendint set of columns.

That A = 12 p 1/ 0-14 = (12010-14) (1000-12

To Kind a land for In Till I so charage a front (1) 100 - (1) 100 - - [c]



Subspaces $U \subseteq V$ vector space (u+1) + w = u + (y+w) $u \neq 0$ Conditions are: $U, u \neq 0 \Rightarrow u, +u \neq 0$ $u \neq 0 \Rightarrow u \neq u \neq 0$ $u \neq 0 \Rightarrow u \neq u \neq 0$

Sul sprices 1 meter sprice (44) + w = 4 - 1/10) NED YEF - YHED

Permutations

A permutetiens en n letters is lijestiel mapping f. {1,..., ng > {1,..., ng Consentual to site of $f = \begin{pmatrix} 1 & 2 & 3 & ... & h \\ f(1) & f(2) & f(3) & ... & f(n) \end{pmatrix}$

Example 1) n = 2

There are two permutations Id: { 1, 2 } -> {1, 2 }

 $Jd = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}$

7 = 11, 29 -> {1, 2}

T(1) = 2

T(2) = 1

2) 4 = 3

There are six permutations

A mapping f: {1... 23 > {1... 23 is ligistive iff. f is invertable. If g: {1...ng > {1...ns is bijective

(gof) = fog 10 ft = (got)

Bewere Composition of permutation is highly mon commutative However, as we'll see, there are permutation that commits

Example n = 5

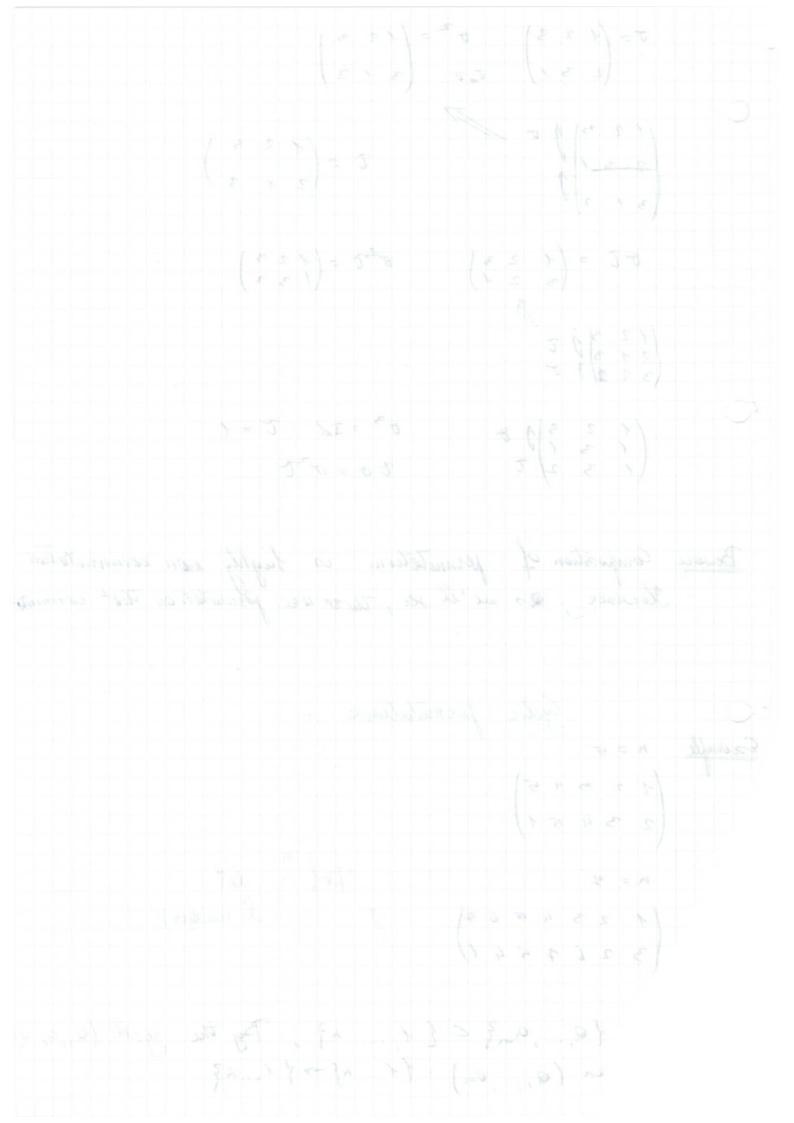
\[\begin{pmatrix} 2 & 3 & 4 & 5 & 1 \end{pmatrix}
\]

Def n let...

I næan)

1 næan.

20, ..., an3 < { 1, ... 13, By the yell (a, q, a)
20 (a, , an) · 41... 13 - 11... 23



(9, 92 - an) (Q1) = 92 (a, a, ... am)(a) = a3 and (1, ... 9,)(2) = 2

if 2 \$ { a, ... 9, 3} (a, a2 ... an) (am) = am
(a, a2 ... an) (am) = a, (a, a, an) is a cycle of length m. Defⁿ Let (a, ...a_n), (b, ...b_n) le disjoint rehen be cycles they raid to 8 a, ... am & a & 6, ... (n 3 = 4 Example h=10

(1,3,5,8,4) (2,46,10) There are disjoint oycles? Proposition Let (a, ..., an), (k, ... kx) be disjoint

thun (a, ... am) · (b, ... kx) = (b, ... bx) · (aa, ..., an)

"Disjoint cycles communite" $\frac{4}{4} \left(\frac{1}{3}, \frac{5}{5}, \frac{8}{5}, \frac{2}{2} \right) \cdot \left(\frac{2}{4}, \frac{6}{5}, \frac{10}{0} \right)$ $\frac{1}{4} \left(\frac{1}{4}, \frac{3}{6}, \frac{5}{10}, \frac{1}{4}, \frac{8}{9}, \frac{10}{2}, \frac{1}{2}, \frac{2}{3}, \frac{5}{6}, \frac{4}{6}, \frac{10}{4}, \frac{10}{9}, \frac{1}{2}, \frac{10}{3}, \frac{10}{3}, \frac{10}{3}, \frac{10}{3}, \frac{10}{4}, \frac{10}{9}, \frac{10}{2}, \frac{10}{4}, \frac{10}{9}, \frac{10}{2}, \frac{10}{4}, \frac{10}{9}, \frac{10}{2}, \frac{10}{3}, \frac{1$

Proposition toy permutation is a product of disjoints gycles. Prof Do it! Exercis n = 14 (+23456489101121314) 5891441011123412613) (1,5,4,11)(2,8,12)(3,3)(4,14,13,6,10) Q roby we are doing this?

(a, a, a, R, - (k,) $\begin{cases} q_{11} x_{1} + a_{12} x_{2} = b_{2} & q_{22} \\ q_{21} x_{1} + a_{22} x_{2} = b_{2} & q_{12} \end{cases}$ - \(\alpha_{11} \alpha_{1} + \alpha_{12} \alpha_{12} \alpha_{2} = \alpha_{12} \beta_{1} \\
 \alpha_{12} \alpha_{1} + \alpha_{12} \alpha_{22} \alpha_{2} = \alpha_{12} \beta_{2} \\
 \alpha_{12} \alpha_{12} \alpha_{2} = \alpha_{12} \beta_{2} \\
 \alpha_{12} \alpha_{12} \alpha_{2} = \alpha_{12} \beta_{2} \\
 \alpha_{12} \beta_{12} \alpha_{22} \alpha_{22} \alpha_{22} \\
 \alpha_{12} \beta_{12} \beta_{12} \\
 \alpha_{12} \beta_{12} \\
 \alpha_{12} \beta_{12} \\
 \alpha_{12} \\
 \alpha_{12} \beta_{12} \\
 \alpha_{12} \ 9,1922 - 9,2921 21 = ? (9,1 922 - 9,2921) A, =? det (a, a,) = a, a22 - a, a21 = 2, sd(1) a25d(1) a25d(2) (T(1)=2, TK)=1)

$$\frac{1}{2} \qquad \frac{1}{2} = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

$$\frac{1}{2} \qquad \frac{1}{2} \qquad \frac{1}$$

(4,402-624) det (" " = 2" = 2" = - 1 + 1 = - 1 + 1 = - 1 + 1 = - 1 + 1 = - 1 + 1 = - 1 + 1 = - 1 + 1 = - 1 =

14.12.09 Permutations i) true permutations is a product of disjoint upoles.

I) Disjoint cycle commute.

II) hay eyole com le written as a product of to ansposition It telentaposition is a cycle of length 2 eg (25)]

IV) I cycle of length m is a product of (m 1) transposition is a product of an odd rumble of adjustent transposition (i,i-1)] VII) The Identity cannot be written a product of an ODD humber of adjecent transpositions Proof of in, ir (a, az, ..., an) = (a, am) (a, am) ... (a, az) (m-1) am-1 am | 9, 92 93 ... 9 m-1 am 9, 92 93 a_{m} a_{1} a_{2} a_{3} a_{m-1} a_{1} a_{m} a_{2} a_{3} a_{m-1} a_{m} a_{m} Define gap (i,j) = 1j-il eg. gap (2, 5) = 3 ordjecent transpositions has gaper

I'll proce if gap(i, i) = e

then (i, i) is a prod of 2 e - 1 adjecent transpositions

OK for k=1. Nothing to from. Suppose tua for 1 (i, j) = (i, i+1) (i+1, j) (i, i+1) Style 11 5 By industion (i+1j) is a product of 2K-3 adj. Thans. so (i,j) is a prod. of 14 (2E+3)-1, adj. 720ms

2KM QTD. D

10 10 10	VI Any permutations is product of cycles
	try yells is a product of transportions
	Any transportion is adj. trans
	so any permutation is a preduct of adj transpositions
	VIII A Operantation o is sither a product o = 7, m. Trn (Evem) 7, 2 adjust
	Homming \overline{V} A permutation σ is either a product $\sigma = 7$, m . τ_{2N} (τ_{2N}), τ_{2N} endjecent σ_{2N} σ_{2N} .
') -	Suppose $\sigma = \tau_1 \tau_{2N}$ where τ_i , p_j and trans.
	So o' - Top to (ti= Ty =1
	50 = p prw+1trn T, ZM+2N+1 ODD
	· I Tyle day to the first
Defin	(-1 when o is a product of an even mind of obj. trans.
•	sign of -1 -11 - 11 - 11
	Competing ign is Dead early ! (prod. of 2x-1 ady trans)
	2) $\pm l$. $\sigma = (a_1, a_m)$, cycles of length in $s:gn(\sigma) = (1)^{n-1}$ ($\sigma \in (a_1, a_m)$. $-(a_1, a_2)$
	A cycle of edd length is an even permutation
	to cycle of even length is an old permutation
	He cycle of wen length is an odd premutation

L, (08) = L,(0) (0T) = 600) $L_{3}(\sigma T) = L_{2}(\sigma)$ $L_{4}(\sigma T) = L_{4}(\sigma)$ $L_{4}(\sigma T) = L_{4}(\sigma)$ $L_{6}(\sigma T) = L_{6}(\sigma)$ $L_{6}(\sigma T) = L_{6}(\sigma)$ So if L(T, ...Tp) = (-1) " L(Id) if Ti. .. The are adj trans if Woold I,... Th + id (otherwise (L (d) = - L(d) L(d) = 0) QED