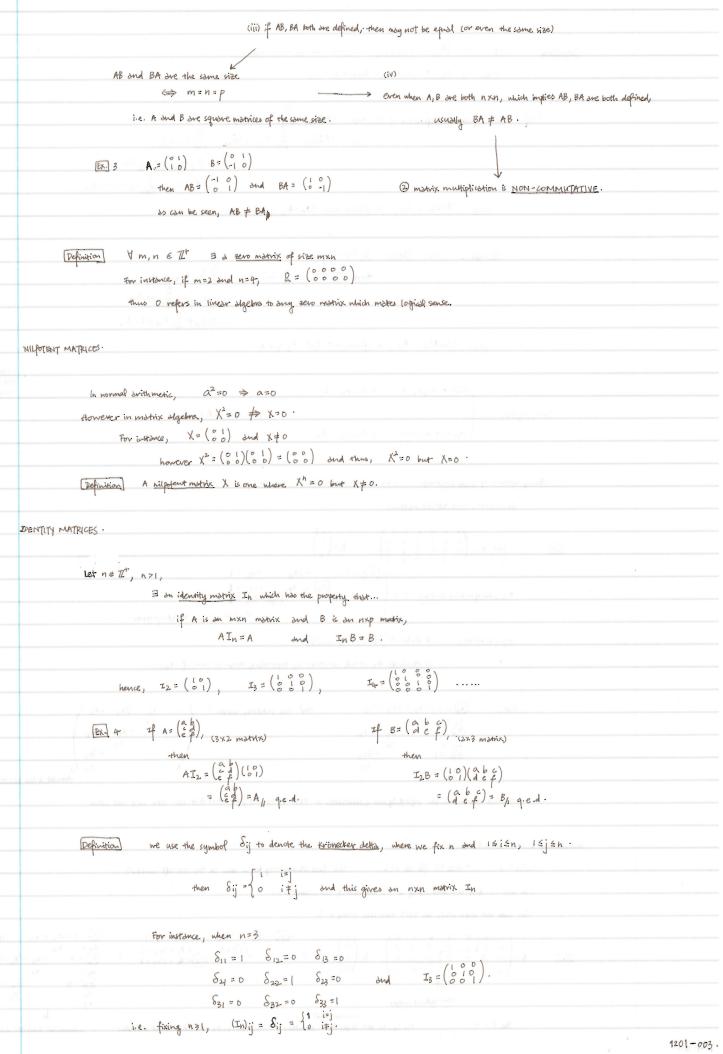
1201 Algebra 1 Notes


Based on the 2011 autumn lectures by Prof F E A Johnson

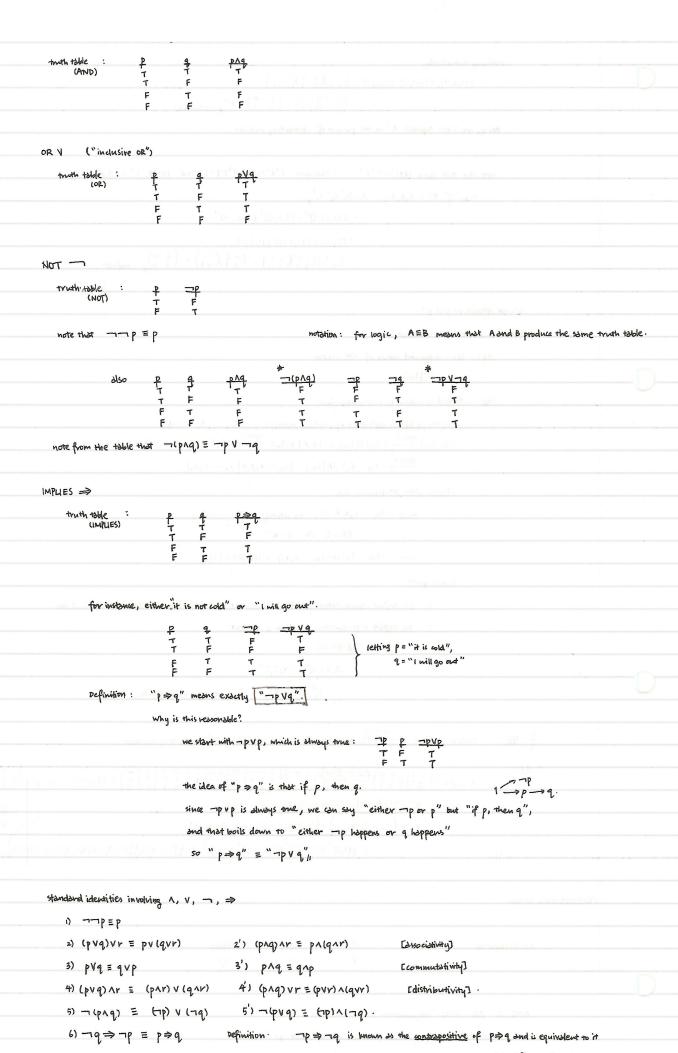
The Author has made every effort to copy down all the content on the board during lectures. The Author accepts no responsibility what so ever for mistakes on the notes or changes to the syllabus for the current year. The Author highly recommends that reader attends all lectures, making his/her own notes and to use this document as a reference only.

MATH1201	: Algebra 1.								4 October 2011 Prof FEA Johnson Darwin UT
JOWING E	QUATIONS.								L.
3001110	con (for 2								
	2×+3=0	linear in one va	werde						
	3×2+2++3=0								
		~							
	3x+ xy + y=	0	NI O						
	xıf								
	44 7 P Å								
LINEAR AI	REDAN								
	V du - 1	livear in th				X+y+ = = 1	linear in this	e variables	
	X + y= 1 4	integr in th	10 NOALOANS						
	1					1 1 1 1 1		(la la la companya
		geometric is	depretation -			,	-		to describe its motion
	+	× represents	a straight line in the x-	y plane	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	3	of position	3 of momentum	
					1 <u>15</u> 1 X 18) [1]		(X, Y, Z)	(a, b, c)	
-								(*1)	
	we represent variables b	y using single variable				asi dan	and a bitrar con	(X1) (X2) (X2) (Xw)	
	e.g. 2	$y = (X_1, X_2, X_3, X_4)$	V Data service	represents 7	independent	coordinates	. × =	X2 X4 X5 X6 X7 Rolwing ve	
_		Tow	vedor					1X7/ Column ve	idor
hor	uto mite a single linear e	•	ns (vəniəbles) 3+ a4x4+ a5 x57	- a6×6+	az ×z = b	n ng k			
			$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$						
		az,, an)	$\chi = \begin{pmatrix} \chi_1 \\ \chi_n \end{pmatrix}$	"variable" ve					
	604	(now vector)		(column					
			1. (1 17 17) = (6 p. 4) 5	e paper ¹⁰ 13-1	A Prover Ch	XI X2	n Sairi		
Ī	efinition 1 a.x = a,	$X_1 + A_2 X_2 + \cdots +$	anxn i.e.	(a, a2	an)	$\left x_{n} \right ^{=}$	-1		
		1.18	16 613 - (3 7 10		A Jama Magg	2 ₁₂ (8A)			
	so 2 singl	le linear equation in	n variables becomes	g.x=6.		(A6)			
							[if necessary	we can septendte them	by a commo]
	impose we require a syste	in of 2 equations.			uhi je na k	in Lugar	7 aij	-> equation i, variable j	$a_{i,ii} \neq a_{ii,i}$
					we use doub	ole indices to	/	uts in multi-equation	n system)
		$2x_1 + x_2 =$	1	Sec. i. A. L				$+ a_{in} x_n = b_i$	
		×1 + ×2 =	3		azy x.	1 + a12 ×2	+ a23 ×3 + ····	$\cdots + a_{2n} \times n = b_2$	
		† †					3		
		2 unknowns			ami	x1 + am2 x2	t amaxa t	···· + amrixn = b	n
								system of <u>M linear</u> in <u>n varia</u>	
	國1 4	nsider the following a	ystem of linear equations					in <u>n vana</u>	oles.
	18-131 · · · · · · · · · · · · · · · · · ·				au = 1	a12 = 1	a13 = -1		
		1	$x_{2} - x_{3} = 1$ $x_{2} - x_{3} = 1$ $+ 2x_{3} = 3$	then	a21=1	Q22=-1	a23 = 1		
			+ 24 - 2		Q.31 = 1	a32 = 0	a33 = 2		
		1 M	1 413 - 7		- 24	196		- apouto - opoupela	
	this notation was developed 1	y Ardmur caryley, circa	1840	angala si da	WAT- 9X P	1 3 B Los			

Acres & AS Stor Andre & M.

 $a_{11} \times_1 + a_{12} \times_2 + \dots + a_{1n} \times_n = b_1$ Reconsidering the system S, where S = amixi + amix2 ++ amixn = bm then we can isolate the coefficient matrix, A and variable vector, X. $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{1m_1} & a_{m_2} & \dots & a_{m_n} \end{pmatrix}$ $\chi = \begin{pmatrix} \chi_1 \\ \chi_2 \\ \vdots \end{pmatrix}$ where the first index is the row index -> represents the equation no. second index is the column index. -> corresponds to the vector it preceds. then Ax = b, mich is a motivix product. recall that by Def. 1, for $Q = (a_1, a_2, \dots, a_n)$ and $X = \begin{pmatrix} x_2 \\ x_n \end{pmatrix}$, then $Q_{i} \times = \sum_{i=1}^{n} a_{i} \times i = a_{i} \times i + \cdots + a_{n} \times n$. now consider two matrices $A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} b_{11} & \cdots & b_{1p} \\ \vdots & \vdots \\ b_{N1} & \cdots & b_{Np} \end{pmatrix}$ $m_{Nn} m_{Nn} m_{Nn$ Definition 2 if and only if n=N Lie AB is a sensible matrix product], then if A is mxn and B is nxp $2^{k+1} \alpha_{ik} b_{kj}$ AB mill wield 2 mm and 1 AB will yield a mxp matrix, and (AB); = (ith row of A) · (ith column of B) $[EX]_2$ let $A = \begin{pmatrix} 1 & 0 & l \\ -l & 2 & 3 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & -l \\ 0 & 2 \\ -l & 1 \end{pmatrix}$ \Rightarrow AB is a 2x2 matrix. then $(AB)_{11} = (1^{bt} \text{ now of } A) \cdot (1^{bt} \text{ column of } B) = (1 \text{ o } 1) \cdot \begin{pmatrix} 0 \\ -1 \end{pmatrix} = 0$ $(AB)_{12} = (1^{st} \text{ now of } A) - (2^{nd} \text{ column of } B) = (1 \ 0 \ 1) \cdot (\frac{1}{2}) = 0 \qquad \text{and so} \quad AB = \begin{pmatrix} 0 & 0 \\ -4t & 8 \end{pmatrix}$ $(AB)_{24} = (2^{hd} \operatorname{row} of A) \cdot (1^{44} \operatorname{cohumn} of B) = (-123) \begin{pmatrix} 1 \\ -1 \end{pmatrix} = -4$ (AB) 22 = (2rd row of A). (2rd column of B.) = (-1 2 3) (-1/2) = 8 so, remember that AB is defined (> no. of columns of A = no. of rows of B. [EX] 2 (control) since B is 3×2 and A is 2×3, thus BA is also defined and is a 3×3 matrix. then $(BA)_{11} = (1 - 1) \cdot (-1) = 2$. etc..... so $BA = \begin{pmatrix} 2 & -2 & -2 \\ -2 & 4 & 6 \\ -2 & 2 & 2 \end{pmatrix}$ $(BA)_{12} = (1 - 1) \cdot {\binom{0}{2}} = -2$ $(BA)_{13} = (1 - 1) \cdot {\binom{1}{2}} = -2$ note that AB is a 2×2 matrix, but BA is a 3×3 matrix. ASPECTS OF MATRIX MULTIPLICATION . If A is mxn and B is N xp → (i) AB is defined when n=N, BA is defined when p=m. (ii) AB is defined \Rightarrow BA is defined.

(REDUCED) ROW-ECHLON MATRICES .


we wont to obtain the elementary vor operations vid matrix multiplication EX We see that $A \stackrel{\Xi(1,2;1)}{\longrightarrow} A'$. $\begin{array}{c} (1 \ 0) \\ (\lambda \ 1) \\ (d \ e \ f) \end{array} = \begin{pmatrix} \alpha & b & c \\ \lambda \ a \ d & b & c \end{pmatrix} \\ \text{we see that} \quad A \xrightarrow{E(2,1;\lambda)} A''. \end{array}$ Hence, we see that the matrix for transformation E(i, j;) = Im + in (i, j)th position ? investigate Basic matrices - only a single non-zero term For m=2, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ e(1,1) e(1,2) e(2,1) e(2,2)E(2,2) For m=3, $\left(\begin{array}{ccc}
\circ & 1 & 0\\
\circ & \circ & \circ\\
\circ & \circ & \circ\end{array}\right)$ $\begin{pmatrix} 0 & 0 & l \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\begin{pmatrix} \circ & \circ & \circ \\ \circ & \circ & \circ \\ \circ & \circ & 1 \end{pmatrix}$ e (1,1) E(3,3) · E(1,2) €(1,3) 6(2,1) $\begin{array}{c} \left(\begin{array}{c} \circ & \circ & \circ \\ \circ & \bullet & i \end{array}\right) \left(\begin{array}{c} a & b & c & d \\ e & f & g & h \end{array}\right) = \left(\begin{array}{c} \circ & \circ & \circ \\ k & l & m & n \end{array}\right) \\ \left(\begin{array}{c} k & l & m & n \end{array}\right) \\ A \end{array} \right)$ this shows that $\leq (2,3)$ A causes all nows to be zero except now 2; and now 2 = old now 3. Proposition } Fix m 22. Let A be mxn . We then take Elij) A Then (ith now of E(i, j)). A = jth now of A. (kth now of G(i,j)) A = 0 if ++1. i.e. take it now of A dud put it in it now of produce. Kill everything else. Read. $[e(i,j)A]_{rt} = \sum_{s=1}^{\infty} e(i,j)_{rs} \cdot A_{st} = \sum_{s=1}^{m} \delta_{ir} \delta_{js} \cdot A_{st}$ = Sir Sjj Ajt + Stj Sir Sjs Ast = $\delta_{ir} A_{jt} + 0 = \delta_{ir} A_{jt}$ [$\epsilon_{(i,j)} A_{irt} = \delta_{ir} A_{jt} = \begin{cases} A_{jt} & \text{if } r=i \\ 0 & \text{if } r\neq i \end{cases}$ Hence or attensitively [e(i,j).A] rx = { Ajx r=i o r=i > it how of G(ij) A = it how of A, and it now of e(i,j) A = 0 if rain ged. Ex. let A be a 3x3 motivix, $[e(2,3) \cdot A]_{H} = \sum_{1}^{2} e(2,3)_{15} A_{SHE}$ = E(2,3) 11 A16 + E(2,3) 12 A2t + E(2,3) 13 A3t = S21 S31 Ant + S21 S32 A2t + S21 S33 A3t = 0. [G(2,3)·A] It = 0 for all tell => 1t now of G(2,3)·A=0 (by the same logic, 3th now of G(2,3)·A=0). [e(2,3)· N] 2+ = = E(2,3)25 · Ast = $\epsilon(2,3)_{21}A_{1t} + \epsilon(2,3)_{22}A_{2t} + \epsilon(2,3)_{23} \cdot A_{3t} = \delta_{22}\delta_{31}A_{1t} + \delta_{22}\delta_{32}A_{2t} + \delta_{22}\delta_{33}A_{3t} = A_{3t}$ => 2nd now of E(2,3). A = 3nd now of A.

1201-00h.

 $E(i,j;\lambda) = Im + \lambda E(i,j).$ Petinition where m=44; $E(2,3;5) = I_4 + 5 \in (2,3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 5 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ Exi E(iij j)) is the matrix obtained from A by performing operation E(iij j h). Roposition : i.e. it now of E(i,ji) A = (it now of A) + X (it now of A), mile kth now of E(i,j;)) A = kth now of A if k # i. Roof - E(iiji)) A = [Im + N G(iij)] A = Im $A + \lambda \in (i,j) A = A + \lambda (the matrix where kth new = 0 if k + i)$ Hence, for the it's row of the product, The now of ImA + le(i, j)A = (ith now of A) + h(jth now of A) for k+i, Kth now of ImA+ NG(ij)A = (Kth now of A) + 0/ q.e.d. $A = \begin{pmatrix} a & b \\ c & d \\ e & f \\ g & h \end{pmatrix}$ let m=4, Ex. we multiply E(2,3,5) before A, a b 05 1 c+5e d+5f e f 3 $\mathsf{E}(i,j;\lambda)\cdot\mathsf{E}(i,j;\mu)=\mathsf{E}(i,j;\lambda\tau\mu)$ [Proposition] $(\mathtt{I} + \lambda \in (\mathtt{i}, j))(\mathtt{I} + \mathtt{M} \in (\mathtt{i}, j)) = \mathtt{I}^2 + \lambda \in (\mathtt{i}, j) \mathtt{I} + \mathtt{I} \mu \in (\mathtt{i}, j) + \in (\mathtt{i}, j) \in (\mathtt{i}, j)$ Proof -= I + $(\lambda + \mu) \in (i, j) + \in (i, j)^2$ - Roposition: (in homework) if i=0, e(i,j)e(i,j)=0. and more generally, = I+ (1+p) e(ij) + 0 = $I + (\lambda + \mu) \in (ij) = E(i,j; \lambda + \mu)_{\mu}$ q.e.d. $= (i,j) \in (k,l) = \begin{cases} e(i,l) & \text{if } j = k \\ 0 & \text{if } j \neq k \end{cases}$ if j#K note then, that for inhance, E(i,j; 2) E(i,j; -2) = E(i,j; 0) = In hence, $E(i,j;\lambda)$ is invertible, and $E(i,j;\lambda)^{-1} = E(i,j;-\lambda)$ Roposition Proof - E(i, j;). E(i, j;) = E(i, j; o) = I g. e.d. . 1. operation of Eci, ji 2) on A = E(i, j; 2) A, and E(i, j;)) is invertible. we now examine $\mathcal{D}(i, \lambda)$: So it appears that D(2,5) is transformed by $\begin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ Definition $D(i, \lambda) = I_m + (\lambda - 1) \in (i, i)$ recall that it now of e(i, i) A= it now of A k+i, kt now of e(i, i) A = 0 $D(i,\lambda)A$ is the matrix obtained from A by the operation $D(i,\lambda)$. Proposition $morf - D(i,\lambda) \cdot A = [I + (\lambda-1)G(i,i)] A = A + (\lambda-1)G(i,i) A$ by shore, it's row of D(i, N) A = it's row of A + (1-1) (it's row of A) = 1 (it's row of A) where $k \neq i$, k^{th} now of $D(i,\lambda)A = k^{th}$ now of $A + (\lambda - i)(k^{th}$ now of $A) = k^{th}$ now of A_{ij} g.e.d. 1201-007

13 October 2011 Rof PEA John AND If $\lambda \neq 0$, $\mathcal{D}(i, \lambda)$ is invertible and $\mathcal{D}(i, \lambda)^{-1} = \mathcal{D}(i, \chi)^{-1}$ Proposition Proposition D(i,) D(i, µ) = D(i, λ, μ). $Roof = [I + (\lambda - 1) \in (i, i)] [I + (\mu - 1) \in (i, i)] = I + (\lambda + \mu - 2) \in (i, i) + (\lambda - 1)(\mu - 1) \in (i, i)^{2}$ $e^{(i_1i_2)^2} = e^{(i_1i_2)^2}$ = It (1++-2+++ -+-++1) e(1,1) = I + (AH-1) = (1,1) = D(i, X, W), ge.d. (corollary) $D(i,\lambda) \cdot D(i, \chi) = D(i, \lambda, \chi) = D(i, 1) = I + (1-1)e(i,i) = I_{H}$ g.e.d. Proof. :. (2). openation of D(1, 1) = D(1, 1)A and D(i.N) is reversible. we now examine Prinj): Paip - Phip -? swapping it and it row guess : take P(i,j) to be the matrix obtained by swapping it and it nows of I. for instance, where many, $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\mathbb{P}(3,1)} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\mathbb{P}(3,1)} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\mathbb{P}(3,1)} \mathbb{P}(3,1)^2$ we try: $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & a \\ c & b \\ g & h \end{pmatrix} = \begin{pmatrix} e & f \\ c & d \\ g & h \end{pmatrix}$, which does note. Hence, $P(i,j) = I_{M} - \left[\mathcal{E}(i,i) + \mathcal{E}(j,j) \right] + \left[\mathcal{E}(i,j) + \mathcal{E}(j,i) \right].$ Definition Proposition P(ij) A is the matrix obtained from A by swapping it and it rans. Proof - P(i,j) A = IA - E(i,i) A - E(j,j) A + E(i,j) A + E(j,i) A For the it now of A, it is = it now of A - it now of A - 0 + jt now of A + 0 = it now of A For the jth vow of A, it is = jth vow of A - 0 - jth wow of A + 0 + ith vow of A = it now of A For the Kth now of A, KEij, it is = Kth now of A - 0 - 0 + 0 + 0 = Kth now of A , g.e.d. P(i,j) is invertible and P(i,j)" = P(i,j) Roposition $\mathbb{P}(i,j)\cdot\mathbb{P}(i,j) = [I - e(i,i) - e(j,j) + e(i,j) + e(j,i)] - \begin{pmatrix} -e(i,i) \\ -e(i,j) \\ -e(i,j) \\ -e(i,j) \end{pmatrix}$ moof $= \mathbb{I} - \mathbb{G}(\mathfrak{i}\mathfrak{i}\mathfrak{i}) - \mathbb{G}(\mathfrak{i}_j\mathfrak{j}) + \mathbb{G}(\mathfrak{i}_j\mathfrak{j}) + \mathbb{G}(\mathfrak{i}_j\mathfrak{i}) - \mathbb{G}(\mathfrak{i}\mathfrak{i}\mathfrak{i}) - \mathbb{G}(\mathfrak{i}_j\mathfrak{j}) + \mathbb{G}(\mathfrak{i}_j\mathfrak{i}) + \mathbb{G}(\mathfrak{i}_j\mathfrak{i}) + \mathbb{G}(\mathfrak{i}_j\mathfrak{i}) - \mathbb{G}(\mathfrak{i}_j\mathfrak{i})$ + e(i,i) + e(j,j) - e (i,j) + e(j,i) - e (j,i) = It 0 + 0 + 0 + 0 = I/ g.e.d. FINDING AT with ELEMENTARY ROW OPERATIONS. For example, let $A = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}$. Write $(A_{1}|\mathbf{I}_{m})$ and find Gaussian form on the left. $(A_{1}|\mathbf{I}_{m}) = \begin{pmatrix} 3 + 1 & 0 \\ 2 & 5 & 0 & 1 \end{pmatrix} \xrightarrow{\mathcal{E}(1,2j-1)} \begin{pmatrix} 1 & 1 & -1 \\ 2 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{\mathcal{E}(2,1j-2)} \begin{pmatrix} 1 & 1 & 1 & -1 \\ 0 & 1 & -2 & 3 \end{pmatrix} \xrightarrow{\mathcal{E}(1,2j-1)} \begin{pmatrix} 1 & 0 \\ 0 & 1 & -2 & 3 \end{pmatrix} = (\mathbf{I}_{m}|A_{1}).$ verify that $AA^{-1} = I$ (Mothie, $A = \left(\begin{array}{c} 1 \\ 2 \end{array}\right) \left(\begin{array}{c} 3 \\ -2 \end{array}\right) \left(\begin{array}{c} 3 \\ -2 \end{array}\right) = \left(\begin{array}{c} 1 \\ 0 \end{array}\right)$. $(A[I_{2}) \longrightarrow E(1,2j-1)(A[I_{1n}) \longrightarrow E(2,1j-2) \cdot E(1,2j-1) \cdot (A[I_{n}) \longrightarrow E(1,2j-1) \cdot E(2,1j-2) \cdot E(1,2j-1) (A[I_{n}) = (I_{2}|A]) \cdot E(1,2j-1) \cdot E(1,2j-1) \cdot (A[I_{n}) = (I_{2}|A|) \cdot E(1,2j-1) \cdot E(1,2j-1) \cdot E(1,2j-1) \cdot (A[I_{n}) = (I_{2}|A|) \cdot E(1,2j-1) \cdot E(1,2j-1) \cdot (A[I_{n}) = (I_{2}|A|) \cdot E(1,2j-1) \cdot E(1,2j-1) \cdot E(1,2j-1) \cdot (A[I_{n}) = (I_{2}|A|) \cdot E(1,2j-1) \cdot$ How do we know that A" is produced on the right? On the left, we see that E(1,2;-1). E(2,1;-2). E(1,2;-1)A = I2, so by defaition, since A-1A = Im, A-1= E(1,2;-1). E(2,1;-2). E(1,2;-1), q.ed.

verifying numerically, $\mathbb{E}(1,2;1) \cdot \mathbb{E}(2,1;-2) \cdot \mathbb{E}(1,2;-1) = \binom{1}{0} \binom{1}{-1} \binom{1}{-2} \binom{1}{-2} \binom{1}{-1} \binom{1}{-1}$ $= \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & -4 \\ -2 & 3 \end{pmatrix} = \Lambda^{-1}$ (shown). thence, we have expressed A-1 as the product of elementary matrices. Hote also that since (XY) = Y - X - (because Y X (XY) = Y IY = I and (XY) Y X - = X I X - = I). then if A1 = X1X2X3, A=X2 X2 X1 = E(1,2;-1)" E(2,1;-2)" E(1,2;-1)" = E(1,2,1) E(2,1,2) E(1,2,1) $= \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}_{f} \text{ (verified)}$ 18 October 2011 Rof FEA Johnson General approach to find A-1: Parmin LT. let A be an inventible man matrix. step 1: Form anguented matrix of size mx 2m (AIm) Step 2: Proceed to reduce to row-echlor form · Do this by left multiplication by suitable matrices X1, X2, ..., Xn in order $(A|I_m) \xrightarrow{\text{openl}} X_1(A|I_m) = (X_1A|X_1I_m) \xrightarrow{\text{openl}} X_2(X_1A|X_1I_m) = (X_2X_1A|X_2X_1) \rightarrow \cdots$ $\xrightarrow{\text{oper.n}} X_N \cdots X_2 X_1 (A | I_m) = (X_N \cdots X_2 X_1 A | X_N \cdots X_2 X_1) \cdot$ · Finish when LHS becomes Im since XN X2X1A=I; by letting B=XN X2X1, $BA = I \Rightarrow B = A^{-1}$ Huns $(X_N \cdots X_2 X_1 A | X_N \cdots X_2 X_1) = (BA|B) = (I|B)$. so this gives i. In explicit representation for At as a product of elementary invertible matrices, and also ii. Sun explicit representation for A as a product ·: (A-1)-1 = A ⇒ $A = (X_N - X_2 X_1)^{-1}$ = X_1 X_2 ... X_N < note the revenses of order. Find A", where A= (2 2). Also express A" and A as a product of elementary matrices. $(A|I_{m}) = \begin{pmatrix} 2 & 0 & 0 \\ 1$ order! Hence, $A^{-1} = D(1, \frac{1}{2}) \cdot D(2, \frac{1}{2}) \cdot E(3, 1; -\frac{1}{2}) \cdot E(1, 3; -1) \cdot D(3, 2)_{1/2}$ der should $A = (A^{-1})^{-1} = \left[P(1, \frac{1}{2}) \cdot P(2, \frac{1}{2}) \in (3, 1; -\frac{1}{2}) \in (1, 3; -1) P(3, 2) \right]^{-1}$ be reversed!!! = $p(3,2)^{-1} E(1,3;-1)^{-1} E(3,1;-\frac{1}{2})^{-1} D(2,\frac{1}{2})^{-1} D(1,\frac{1}{2})^{-1} = D(3,\frac{1}{2}) E(1,3;1) E(3,1;\frac{1}{2}) D(2,2) D(1,2)$ PROPOSITIONAL LOGIC. IMPLIES Logical Keywords: OR AND NOT V \Rightarrow ٨ AND A Colso colled "conjunction") For instruce, let proposition p = "it is raining", and q = "it is cold". Then we can construct a truth table as follows:

 $q \Rightarrow p$ is known as the converse of $p \Rightarrow q$ and is different from it.

$ \begin{array}{c} \label{eq:contrast} & [(pvg)\Rightarrowr]\Rightarrow[p\Rightarrowr] + \sigma \ [(p^{4}q)\Rightarrowr]\Rightarrow (p\Rightarrowr] \\ \hline \\ & \begin{array}{c} P & p & r & pAq & (p,q)\Rightarrowr & p\Rightarrowr & [p,q)\Rightarrowr]=(p\Rightarrowr) \\ \hline \\ & T & T & T & T & T & T \\ \hline \\ & T & T & F & F & T & T \\ \hline \\ & T & F & F & F & T & T \\ \hline \\ & T & F & F & F & T & T \\ \hline \\ & F & T & F & F & T & T \\ \hline \\ & F & T & F & F & T & T \\ \hline \\ & F & F & F & F & T & T \\ \hline \\ & F & F & F & F & T & T \\ \hline \\ & F & F & F & F & T & T \\ \hline \\ & F & F & F & F & T & T \\ \hline \\ & S & which exactly are taucadagies + contradictions? \\ \hline \\ & \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		
$\begin{array}{c c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$F \neq F = F T$ $F \neq F = T$ $F \neq F = T$ $F = F = F$ $F $		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$\frac{1}{2} \frac{1}{2} \frac{1}$		
$\begin{array}{cccccc} \vdots & \vdots & \vdots & \vdots & \vdots \\ Hence q = 0 (p \Rightarrow q) is showly true: \\ \end{array} A subcover which is showly T is called a substituting. A subcover which is showly T is called a substituting. So subcover which is showly T is called a substituting. Box subcover which is showly T is called a substituting. Box subcover which is showly T is called a substituting. Box subcover which is showly T is called a substitution. Box subcover which is showly T is called a substitution. Box subcover which is showly T is called a substitution. Box subcover which is showly T is called a substitution. Box subcover which is showly T is called a substitution. Box subcover which is showly T is called a substitution. Box subcover which is showly T is called a substitution. Box subcover which is showly T is called a substitution. Box subcover which is showly true. For if $		
Hence $q \neq (p \Rightarrow p)$ is showing trie. A subserved which is showing F is called a subset(q_1 , a provide which is showing F is called a control distance. For instance, $p = \frac{q}{p} = \frac{q}{p} = \frac{p}{p} = \frac{p}{p}$ most empowed thereases are softer soluting to control distance. For instance, $p = \frac{q}{q} = \frac{q}{p} = \frac{p}{p} = \frac{p}{p} = \frac{p}{p}$ most empowed thereases are softer soluting to control distance. For instance, $p = \frac{q}{q} = \frac{q}{p} = \frac{p}{p} $		
A systemeter skille is showed T is which a sametalized. A systemeter skille is showed T is which a constantiation. For instance, pump p to the part of part of part of the		
A statute which is showed? T is called a statuteding. A statute which is showed? T is called a contradiction. For integrate, proof P or proof P or proof P or P		
A spectra while is showny T is which a saturability, a systemet while is showny F is called a <u>endereditation</u> . For instance, prop <u>P</u> T <u>P</u> <u>P</u> <u>P</u> Institute control control control defines . For instance, <u>P</u>		
For instants, phop p $\frac{1}{p}$ $\frac{\pi}{q}$ $\frac{p^{2}}{p}$ not compared distances are notified in a contradiction p^{2} . For instance, $p = \frac{\pi}{q}$ $\frac{\pi}{q}$ $\frac{p^{2}}{q}$ $\frac{p^{2}$		
For instants, phop p $\frac{1}{p}$ $\frac{\pi}{q}$ $\frac{p^{2}}{p}$ not compared distances are notified in a contradiction p^{2} . For instance, $p = \frac{\pi}{q}$ $\frac{\pi}{q}$ $\frac{p^{2}}{q}$ $\frac{p^{2}$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
Most compand there notifies not contridiction: The instance, $p = q = r = p = r = p = r = r = r = r = r = r$		
Pre-instants, p , q , x , p_{2} , p_{3} , $(p_{2})p_{1}$, p_{2} , $(p_{2})p_{2}$, p_{3} , $(p_{2})p_{2}$, p_{3} , $(p_{2})p_{2}$, p_{3} , $(p_{2})p_{2}$, p_{3} , $(p_{2})p_{3}$, p_{3} , $(p_{2})p_{3}$, $(p_{3})p_{3}$,		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
$[\Box] (autust) [(pvq) \Rightarrow r] \Rightarrow [p \Rightarrow r] \Rightarrow [pq] \Rightarrow [pq] \Rightarrow r] \Rightarrow [pq] \Rightarrow [pq] \Rightarrow [pq] \Rightarrow r] \Rightarrow [pq] \Rightarrow [pq$	=> tsutology.	
$ \begin{array}{c} [\Box (antropher] \Rightarrow [p \Rightarrow r] \Rightarrow$		1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Prof FE,	ober 2011 A Johnson
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Parvin	14
$\frac{1}{1} \frac{1}{1} \frac{1}$	i	
F = T = F = F = T = T = T = T = T = T =		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
So what exactly are tausdogies + constradictions? • a tautology is a LOGICALLY correct ARGUMENT. Consider the following arguments: (a) If it is odd and wet then the elephaner will not dance. However it is not wet and the elephaner is d \Rightarrow it is not cold. (b) If it is odd are then the elephaner will not dance. However it is not wet and the elephaner is d \Rightarrow it is not cold. (b) If it is cold are wet then the elephant will not dance. However it is not wet and the elephaner is d \Rightarrow it is not cold. (c) If it is cold are wet then the elephant will not dance. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold or wet then the elephant will not dance. However it is not wet and the elephant is d \Rightarrow it is not cold. (c) $([(p nq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $([(p nq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$. $p = q + r = pnq or pnq (pnq) (pnq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p$. $p = q + r = pnq or pnq (pnq) (pnq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p$. $p = q + r = pnq or pnq (pnq) (pnq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p$. $p = q + r = pnq or pnq (pnq) (pnq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p$. $p = q + r = pnq or pnq (pnq) (pnq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p$. $p = q + r = pnq or pnq (pnq) (pnq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p$. $p = q + r = pnq or pnq (pnq) (pnq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p$. p = q + r = pnq or pnq (pnq) = r = n + r = r = r = r = r = r = r = r = r = r		
So what exactly are tauadagies + crutradictions? • a tautology is a LOGICALLY CORRECT ARGUMENT. Consider the following arguments: (a) If it is odd and wet then the elephaner will not dance. However it is not wet and the elephaner is d \Rightarrow it is not cold. (b) If it is cold are then the elephaner will not dance. However it is not wet and the elephaner is d \Rightarrow it is not cold. (b) If it is cold are then the elephaner will not dance. However it is not wet and the elephaner is d \Rightarrow it is not cold. (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow rr]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow rr]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow rr]) \Rightarrow \neg p (c) ([(p Aq) \Rightarrow r] \land [\neg q \Rightarrow rr] \uparrow r \downarrow r	> but art always	
So which exactly are tautologics + contradictions? • I tautology is I LoGICALLY correct ARGUMENT: (a) (f it is add and wet then the elephane will not dame. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold as wet then the elephant will not dame. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold as wet then the elephant will not dame. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold as wet then the elephant will not dame. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold as wet then the elephant will not dame. However it is not wet and the elephant is d \Rightarrow it is not cold. (c) ([(p nq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p. (b) ([([pVq]) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r]) \Rightarrow \neg p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r]) \Rightarrow \neg p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r]) \Rightarrow \neg p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(pNq) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c) ([(PNQ) \Rightarrow r] \land [\neg q \Rightarrow r] \land p. (c)	-> not a	stantology.
• Is therefolding is a LOGICALLY CORRECT ARGUMENT: Consider the following arguments: (a) If it is odd and wet then the elephant will not dance. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold or met then the elephant will not dance. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold or met then the elephant will not dance. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold or met then the elephant will not dance. However it is not wer and the elephant is d \Rightarrow it is not cold. (b) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (b) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \Rightarrow \neg r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \land [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \neg [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \neg [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \neg [\neg q \rightarrow r] \Rightarrow \neg p (c) ([(pAq) \Rightarrow r] \neg [\neg q \rightarrow r] \Rightarrow		
Consider the following arguments: (a) If it is add and wet then the elephant will not dance. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold as wet then the elephant will not dance. However it is not wet and the elephant is \Rightarrow it is not cold. (b) If it is cold as wet then the elephant will not dance. However it is not wet and the elephant is \Rightarrow it is not cold. (c) If $[FAISE]$ (d) If it is cold as wet then the elephant is not dance. However it is not wet and the elephant is \Rightarrow it is not cold. (e) $[I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (b) $([(p \lor q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $([(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (b) $([(p \lor q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (b) $([(p \lor q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg r$ (c) $(I(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg $		
Consider the following arguments: (a) If it is odd and wet then the elephant will not dance. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold as wet then the elephant will not dance. However it is not wet and the elephant is d \Rightarrow it is not cold. (b) If it is cold as wet then the elephant will not dance. However it is not wet and the elephant is d \Rightarrow it is not cold. (c) If it is no		
(a) if it is odd and wet then the elephaner will not dance. However it is not wet and the elephant is d $\Rightarrow \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (b) if it is cold as wet then the elephant will not dance. However, it is not wer and the elephant is $\Rightarrow \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (b) if it is cold as wet then the elephant will not dance. However, it is not wer and the elephant is $\Rightarrow \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (b) if it is cold as wet then the elephant will not dance. However, it is not wer and the elephant is $\Rightarrow \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (b) if it is cold as wet then the elephant is not dance. However, it is not wer and the elephant is $\Rightarrow \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (b) if it is cold as the elephant is not dance. However, it is not wer and the elephant is $\Rightarrow \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (b) if it is cold as the elephant is not dance. However, it is not wer and the elephant is $\Rightarrow \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ is not cold}. \qquad \overrightarrow{FAISE}$ (c) if it is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold. $= \frac{1}{1} \text{ it is not cold}. \qquad \overrightarrow{FAISE}$ (c) if is not cold.		
$\Rightarrow it is not cold.$ $FAISE$ $(b) If it is cold as wer then the elephant will not dance. However, it is not wer and the elephant is d \Rightarrow it is not cold. let p = it is cold, q = it is wet, r = the elephant is not dancing. (a) ([(p nq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (b) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (b) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \rightarrow \neg r]) \Rightarrow \neg p (c) ([(pVq) \Rightarrow r] \land [\neg q \rightarrow \neg r]) \Rightarrow \neg p (c) ((pVq) \Rightarrow r] \land [\neg q \rightarrow \neg r]) \Rightarrow \neg p (c) ((pVq) \Rightarrow r] \land [\neg q \rightarrow \neg r]) \Rightarrow \neg p (c) ((pVq) \Rightarrow r] \land [\neg q \rightarrow \neg r]) \Rightarrow \neg p (c) ((pVq) \Rightarrow r] \land [\neg q \rightarrow \neg r]) \Rightarrow \neg p (c) ((pVq) \Rightarrow r] \land [\neg q \rightarrow \neg r]) \Rightarrow \neg p (c) ((pVq) \Rightarrow r] \land [\neg q \rightarrow \neg r]) \Rightarrow \neg p (c) ((pVq) \Rightarrow r] \land [\neg q \rightarrow $		
(b) If it is cold or met then the elephant mill not dance. However it is not wet and the elephant is \Rightarrow it is not cold: Let $p = it$ is cold, $q = it$ is not, $r = the elephant is not dancing. (a) ([(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p(b) ([(p \lor q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p(b) ([(p \lor q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg pp = q = r = p \land q = or = p \land q = or = p \land q = or = p \land q = r = p \land q = or = p \land q = r = p \land q = or = p \land q = r = p \land q \to q = r = p \land q \to q$	is dducing.	
$\Rightarrow it is not cold$ $let p = it is not, q = it is not, r = rhe elephont is not domaing.$ $(a) ([(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ $(b) ([(p \lor q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ $(b) ([(p \lor q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ $S_A \qquad S_B \qquad T$ $T \qquad T \qquad T \qquad T \qquad T \qquad T \qquad T \qquad F \qquad F \qquad F \qquad $		
Let $p = it is odd, q = it is net, r = the elephont is not doncing.$ (a) $([(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ $p = q = r = p \land q = or p \land q = (b) ([(p \lor q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ $p = q = r = p \land q = or p \lor q = (p \land q) \Rightarrow r = r \land f = f = f = f = f = f = f = f = f = f$	dancing.	
Let $p = it is odd, q = it is net, r = the elephont is not doncing.$ (a) $([(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ $p = q = r = p \land q = or p \land q = (b) ([(p \lor q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ $p = q = r = p \land q = or p \lor q = (p \land q) \Rightarrow r = r \land f = f = f = f = f = f = f = f = f = f$		
(a) $([(p \land q) \Rightarrow r] \land [\neg q \Rightarrow \neg r]) \Rightarrow \neg p$ $p q r p \land q \circ r p \land q \circ r p \land q \land r r s \land \Lambda I \circ r s r \uparrow r$ $T T T T T T T T r q \uparrow r r q \land \neg r s \land \Lambda I \circ r s r \uparrow r$ T T T T T T T r r r r r r r r r r r r r		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
T T T T F	AT ((A AT)	K. Atha -
T T T T F T	Ŧ	f or <u>(58∧1)⇒7</u> F T T
# T F T		ר ד
and a first from Frank Frank Frank Frank Frank and T T T T	F	T T
and a first from Frank Frank Frank Frank Frank and T T T T	Ť F	Т
thus, (d) is contingent but (b) is a tautology.		T T
	1201-	011 10-105

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$(c \le f(c)c = - c \le itilizers(is) \longrightarrow A. Turing.$ $(b that wit all f septeds are necessary!$ $(c \le f(c)c = - c \le itilizers(is) = - (-p \lor - q)$ $(c \ge f(c)c = - (-p \lor - q)$	
Note there and it is specified are necessary! $PA = TTP \land TT = T(TP \lor Tq) \qquad while PVq = T(TP \land Tq) . Hildwise, p \Rightarrow q = TP \lor q.PVq = T \Rightarrow q PVq = T $	
$\begin{array}{c} p \land q \equiv \neg \neg p \land \neg \neg q \equiv \neg (\neg p \lor \neg q) \text{while } p \land q \equiv \neg (\neg p \land \neg q) \\ \text{Howise, } p \land q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv \neg p \land q \\ p \lor q \equiv q \land q \\ p \lor q \Rightarrow q \\ p \lor q \equiv q \land q \\ p \lor q \Rightarrow q \\ p \lor q \equiv q \land q \\ p \lor q \Rightarrow q \\ p \lor q \equiv q \land q \\ p \lor q \Rightarrow q \\ p \lor q \equiv q \land q \\ p \lor q \Rightarrow q \\ p \lor q \mapsto q \mapsto q \Rightarrow q \\ p \lor q \mapsto q \mapsto q \Rightarrow q \Rightarrow q \lor q \mapsto q \lor q \mapsto q \mapsto q \mapsto q \mapsto q \mapsto q \mapsto q \mapsto$	
ikkerké, p⇒ 9, Ξ = τρ ∨ 9, p∨ 4, Ξ = τρ ⇒ 9; v = or ∧ · · · · In fact, jet me symbol sufficion; using sheffer's state function. allo, where 1 implies that all one not <u>both</u> erace. $\begin{array}{c} P & 4 & pdq & pll(plq) & p & plp \\ \hline T & E & T & F & & F & T \\ F & T & T & Pl(PH) = p ⇒ 9 \\ \hline LOGIC OF VARABLE Explorestall's (Producese contine) Thinks of experiment which using just between o or 1. For essangle, PED is "soo" where x is eithe o or 1. Then P(O) is strat, and P(D) is false. Then P(O) is strat, and P(D) is false. Then propositional about, we take \Lambda, V_1 \Rightarrow T_1 is well ab V (universal qualifier) and ∃ (existence symbol Quithedd) a(Va) P(D) = for M = X = D, P(D) is T.Describers to consider:· then d V, 3 in determine of Empositional columba3.Extended is 1. Strate with \Lambda_1 V_1 = \Rightarrow ?· cannot integrate with \Lambda_2 V_1 = \Rightarrow ?· cannot integrate with \Lambda_1 V_1 = \Rightarrow ?· cannot integrate with \Lambda_1 V_1 = \Rightarrow ?· cannot integrate with \Lambda_1 V_1 = \Rightarrow ?· cannot integrate V_1 3 in terms of Empositional columba3.Extinguing, if X = 0 \text{ or } 1, YX \in (b) medhas both Q(D) is true and Q(D) is true.\Rightarrow for D = f(0,1)^2, (Vx) A = = A(D) A = (D) A = ($	
$p \vee q \equiv rp \Rightarrow q$ $p = p = p = p$ $p = p = p = p = p$ $p = p = p = p = p$ $p = p = p = p = p$ $p = p = p = p = p = p$ $p = p = p = p = p = p = p$ $p = p = p = p = p = p = p$ $p = p = p = p = p = p = p = p$ $p = p = p = p = p = p = p = p = p = p$ $p = p = p = p = p = p = p = p = p = p =$	
$\begin{array}{c} y \vee q \equiv \tau p \Rightarrow q \\ y \vee q \equiv \tau p \Rightarrow q \\ y \vee q \equiv \tau p \Rightarrow q \\ y \vee q \equiv \tau p \Rightarrow q \\ y \vee q \equiv \tau p \Rightarrow q \\ y \wedge q \wedge \tau \cdot \cdot \\ h fort, just me symbol suffixer; using shellfills strate forwation allo, where 1 implies start allo are not builts ence. \begin{array}{c} \downarrow q q q q q q p \Rightarrow q \\ \hline \qquad \qquad$	
In fact, just me symbol suffice; using shellfur's state forwater allo, where 1 implies that all one not both more. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$F T T T P(4) = p \Rightarrow q$ $Logic of VARIABLE Expressions which vary jure between 0 or 1. Think of expressions which vary jure between 0 or 1. The change, P(b) is "x=0" where x is either 0 or 1. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of x is called the down D. Starting with D = \{0,1\}. The possible range of variation of the possible range range of the possible range of the possible range of the pos$	
$F = T = T = T = P(P(4) = p \Rightarrow q)$ LOGIC OF VARIABLE BARRESSIGNS (Available Logic). Think of cappedians which using just between 0 or 1. For example, P(b) is "soo" where x is either 0 or 1. For example, P(b) is "soo" where x is either 0 or 1. Then P(D) is true, and P(D) is fulle. The possible range of rariation of x is called the domain D . Stationg with $D = \{0,1\}$. From propositional calculus, we take $\Lambda, V, \Rightarrow, \neg;$ as well as V (universal qualifier) and \exists (existence symbol) distorted of $(Vx) P(k) = \frac{free all }{x \in D}, P(k)$ is T . $\exists x P(k) = \frac{free all }{free all } x \in D, P(k)$ is T . Observices specified with $\Lambda, V, \neg, \pi, \Rightarrow ?$ $can we interpret V, \exists in terms of Brogositional Calculus? for interpret V, \exists in terms of Brogositional Calculus is true and Q(D) is true and Q(D) is true. go for P = \{0,1\}, (\Psix)Q(x) = Q(D) \land Q(D).$	
$F = T = T = T = P(P(4) = p \Rightarrow q)$ LOGIC OF VARIABLE EXPRESSIONS (Indicate Logic). Think of expressions which vary just between 0 or 1. For example, P(b) is "x=0" where x is either 0 or 1. For example, P(b) is "x=0" where x is either 0 or 1. The possible range of tarietim of x is called the domain D. Stationg with $D = \{0,1\}$. From propositional calculus, we take $\Lambda, V, \Rightarrow, \neg$; so well so V (universal qualifier) and \exists (existence symbol) distorted of $(Vx) P(k) = \frac{free all }{x \in D}, P(k)$ is T . $\exists x P(k) = \frac{free all }{free all } x \in D, P(k)$ is T . But only on some the $\Lambda, J, J, \neg, \Rightarrow ?$ $(answe interpret V, \exists in terms of Bropositional Calculus? For interpret V, \exists in terms of Bropositional Calculus? (b) \wedge Q(l) = Q(b) \wedge Q(l); litensite (\exists x) Q(k) \equiv Q(b) \vee Q(l).$	
F = T + (1+v = P+r) LOGIC OF VARIABLE EXPRESSIONS which worry just between 0 or 1: Think of expressions which worry just between 0 or 1: For example, P(6) is "x=0" where x is either 0 or 1. The possible range of randomin of x is called the domain D. Starting with $D = \{0,1\}$. From propositional calculus, we take $\Lambda, V, \Rightarrow, \neg i$ so well so Ψ (universal qualifier) and \exists (existence symboli Quistential of $(Yx) P(u) = \frac{fr \cdot ut}{2} \times e^{D}$, $P(u)$ is τ . $\exists x P(u) = \frac{fr \cdot ut}{2} \times e^{D}$, $P(u)$ is τ . Questions to consider: . then do Ψ, \exists intervent of Repositional calculus. $for intervent \Psi, \exists in terms of Repositional calculus.for methods = 0, \Psi = (0, 1), (\Psi x) Q(x) = Q(0) \land Q(1).$	
LOGIC OF VARIABLE EXPRESSIONS (Predicable Logic). Think of expressions which vary just between 0 or 1. For example, P(5) is "x=0" where x is either 0 or 1. Then P(0) is true, and P(1) is false. The possible range of variation of x is called the domain D. starting with $D = \{0,1\}$. From propositional calculus, we take $\Lambda, V, \Rightarrow, \neg i$ as well as V (universal qualifier) and \exists (existence symbol) subtantial of $(V_X) P(\omega) = \frac{f_{0X} \cdot M}{K} \times c D$, $P(\omega) \in \tau$. $\exists X P(\omega) = \frac{f_{0X} \cdot M}{K} \times c D$, $P(\omega) \in \tau$. Deventions to consider: $\cdot there do V, \exists in dense with \Lambda, v, \neg, \Rightarrow ?\cdot can we indepret V, \exists in terms of Bropositional calculus? For P=\{0,1\}, (V_X) P(\omega) = a(c) \land a(U); iitemite (\exists X) a(\omega) = a(c) \lor a(U).$	
Think of expressions which vary just between 0 or 1. For example, P(4) is "x=0" where x is either 0 or 1. Then P(0) is true, and P(1) is fille. The possible range of variation of x is called the domain D. stating with $D = \{0,1\}$. From propositional calculus, we take $\Lambda, \forall, \Rightarrow, \neg, \Rightarrow$ so well as \forall (universal qualifier) and \exists (existence symbol) differible of $(\forall x) P(a) = \{ber all \ x \in D, \ P(a) \in T.$ $\exists x P(b) = \{ber all \ x \in D, \ P(a) \in T.$ Buestions to consider: • there do \forall, \exists interdet with $\Lambda, \forall, \neg, \neg, \Rightarrow$? • can we interpret \forall, \exists in terms of Bropositional calculus. For $D = \{br, h, \forall x \in A, \ V, \exists h, \forall x \in A, \ V, $	
 For example, P(b) is "x=0" where x is either 0 or 1. Then P(0) is true, and P(1) is fulle. The possible range of variation of x is called the domain D. starting with D= {0:1}. From propositional calculus, we take 1, V, ⇒, ¬; is well as V (universal qualifier) and ∃ (existence symbol? distential of (Vx) P(u) = for all x ∈ D, P(u) is T. ∃ x P(u) = for all kebst one x ∈ D, P(x) is T. Questions to consider: . those do V, ∃ interver with 1, V, ¬, ⇒ ?. . can be interpret V, ∃ in terms of Expositional calculus. for interpret V, ∃ in terms of Expositional calculus. go for D={0;1}, (Vx)Q(u) ; (itervice (∃x)Q(u) = Q(u) v Q(1). 	
 For example, P(b) is "x=0" where x is either 0 or 1. Then P(0) is true, and P(1) is fulle. The possible range of variation of x is called the domain D. starting with D = {0:1}. From propositional calculus, we take 1, V, ⇒, ¬; is a well as V (universal qualifier) and ∃ (existence symbol? aistended a (Vx) P(x) = for all x ∈ D, P(x) is T. ∃ x P(k) = for all x ∈ D, P(x) is T. Buertions to consider: . those do V, ∃ interset with 1, V, ¬, ⇒ ?. . can we interpret V, ∃ in terms of Engestitional calculus. for interne, if x = 0 or 1, Vx Q(x) = Q(0) ∧ Q(1); literwise (∃x)Q(x) = Q(0) ∨ Q(1). 	
 Then P(O) is true, and P(I) is false. The possible range of variation of x is called the domain D. starting with D= {0:1}. From propositional calculus, we take ∧, V, ⇒, ¬; as well as V (universal qualifier) and ∃ (existence symbol) diffected a (Vx) P(N = for all x ∈ D, P(N) is T. ∃ × P(N) = for at least one x ∈ D, P(N) is T. Questions to consider: thow do V, ∃ interast with ∧, V, ¬, ⇒ ? can we interpret V, ∃ in terms of Propositional calculus. for interne, if x = 0 or 1, Vx Q(N) is true and Q(U) is true. so for D={0,1}, (4x)Q(x) = Q(O) ∧ Q(U); literaise (∃x)Q(x) = Q(O) ∨ Q(U). 	
The possible range of restriction of x is called the domain D. starting with D={0,1}. From propositional calculus, we take ∧, V, ⇒, ¬; so well so V (universal qualifier) and ∃ (existence symbol) aistential a (Vx) P(x) = for all x ∈ D, P(x) is T. ∃ × P(x) = for at least one x ∈ D, P(x) is T. Buertions to consider: • How do V, ∃ interact with ∧, V, ¬, ⇒ ? • conver inderpret V, ∃ in terms of Propositional calculus? For interact, if x = 0 or 1, Vx Q(x) means both Q(0) is true and Q(V) is true. so for D={0,1}, (4x)Q(x) = Q(0) ∧ Q(1); likewise (∃x)Q(x) = Q(0) ∨ Q(1).	
starting with \$= {0,1}. From propositional calculus, we take ∧, V, ⇒, ¬; as well as V (universal qualifier) and ∃ (existence symbol) existential end (V×) P(N) = for all × ∈ D, P(N) is T. ∃× P(N) = for at least one × ∈ D, P(N) is T. Exertions to consider: • How do V, ∃ interver with ∧, V, ¬, ⇒ ? • can we interpret V, ∃ in terms of Propositional calculus? For interver, if ×= 0 or 1, V× Q(N) means both Q(0) is true and Q(1) is true. 50 for P={0,1}, (V×)Q(N) = Q(0) ∧ Q(1); litervise (∃x)Q(x) = Q(0) ∨ Q(1).	
starting with \$= {0,1}. From propositional calculus, we take ∧, V, ⇒, ¬; as well as V (universal qualifier) and ∃ (existence symbol) existential end (V×) P(N) = for all × ∈ D, P(N) is T. ∃× P(N) = for at least one × ∈ D, P(N) is T. Exertions to consider: • How do V, ∃ interest with ∧, V, ¬, ⇒ ? • can we interpret V, ∃ in terms of Propositional calculus? For interance, if x = 0 or 1, V× Q(N) means both Q(0) is true and Q(1) is true. 50 for P={0,1}, (V×)Q(N) = Q(0) ∧ Q(1); literate (∃x)Q(x) = Q(0) ∨ Q(1).	
From propositional calculus, we take ∧, V, ⇒, ¬; is uncert as V (universal qualifier) and ∃ (existence symbol) existential a ((∀x) P(x) = for all x ∈ D, P(x) is T. ∃ × P(k) = for at least one x ∈ D, P(x) is T. Quertions to consider: • thow do V, ∃ interest with ∧, V, ¬, ⇒ ? • can we interpret V, ∃ in terms of Propositional calculus? For interpret, if x = D or 1, Vx Q(x) means both Q(o) is true and Q(1) is true. So for D = {0,1}, (∀x)Q(x) = Q(0) ∧ Q(1); likewise (∃x)Q(x) = Q(0) ∨ Q(1).	
 (∀x) P(x) = for all x ∈ D, P(x) is T. ∃ × P(k) = for all kabot one x ∈ D, P(x) is T. Ourentions to consider: thow do ∀, ∃ interact with ∧, v, ¬, ⇒ ? conve interpret ∀, ∃ in terms of Bropositional columbo? for interace, if x = 0 or 1, ∀x Q(x) means both Q(o) is true and Q(1) is true. so for D={0,1}, (∀x)Q(x) = Q(0) ∧ Q(1); likewise (∃x)Q(x) = Q(0) ∨ Q(1). 	Parts -
$\exists X P(k) = \underbrace{\text{for at least one } X \in \mathcal{D}, P(x) \text{ is } T.$ Quertions to consider: • How do \forall, \exists interast with $\land, \lor, \neg, \Rightarrow ?$. • conve interpret \forall, \exists in terms of Propositional establish? For initione, if $X = 0 \text{ or } 1$, $\forall X Q(x)$ means both $Q(0)$ is true and $Q(1)$ is true. 50 for $D = \{0,1\}, (\forall X)Q(x) = Q(0) \land Q(1)$; likewise $(\exists X)Q(x) \equiv Q(0) \lor Q(1)$.	logicities ,
Quertions to consider: • How do \forall, \exists interact with $\land, \lor, \neg, \Rightarrow ?$ • can we interpret \forall, \exists in terms of Propositional calculus? • can we interpret \forall, \exists in terms of Propositional calculus? • can we interpret \forall, \exists in terms of Propositional calculus? • for interact, if $x = 0$ or 1 , $\forall x \ Q(x)$ means both $Q(o)$ is true and $Q(l)$ is true. • so for $\mathcal{D} = \{0, l\}, (\forall x) \ Q(x) \equiv Q(o) \land Q(l)$; literwise $(\exists x) \ Q(x) \equiv Q(o) \lor Q(l)$.	
• How do \forall , \exists interest with $\land, \lor, \neg, \Rightarrow ?$ • can we interpret \forall , \exists in terms of Bropositional catulus? • for initiance, if $x = 0$ or 1, $\forall x \ Q(x)$ means both $Q(0)$ is true and $Q(1)$ is true. • for $D = \{0,1\}, (\forall x) \ Q(x) \equiv Q(0) \land Q(1)$; likewise $(\exists x) \ Q(x) \equiv Q(0) \lor Q(1)$.	
• Now do \forall , \exists interact with \land , \lor , \neg , \Rightarrow ?. • converse interpret \forall , \exists in terms of Bropositional columns? • for initione, if $x = 0$ or 1, $\forall x Q(x)$ means both $Q(0)$ is true and $Q(1)$ is true. • for $D = \{0,1\}$, $(\forall x)Q(x) \equiv Q(0) \land Q(1)$; likewise $(\exists x)Q(x) \equiv Q(0) \lor Q(1)$.	
· convert interpret $\forall_1 \exists in terms of Bropositional columns1. For initiance, if x = 0 or 1, \forall x \ Q(x) means both Q(0) is true and Q(1) is true.so for D = \{0,1\}, (\forall x) \ Q(x) \equiv Q(0) \land Q(1); likewise (\exists x) \ Q(x) \equiv Q(0) \lor Q(1).$	
For in House, if $x = 0$ or 1, $\forall x Q(x)$ means both Q(0) is true and Q(1) is true. so for $D = \{0, 1\}$, $(\forall x)Q(x) = Q(0) \land Q(1)$; likewise $(\exists x)Q(x) = Q(0) \lor Q(1)$.	
For in House, if $x = 0$ or 1, $\forall x Q(x)$ means both Q(0) is true and Q(1) is true. so for $D = \{0, 1\}$, $(\forall x)Q(x) = Q(0) \land Q(1)$; likewise $(\exists x)Q(x) = Q(0) \lor Q(1)$.	
so for $\mathcal{D}=\{0,1\}$, $(\forall x) a(x) \equiv a(0) \land a(1)$; likewise $(\exists x) a(x) \equiv a(0) \lor a(1)$.	
Contributions a suggestation of the provident of the	
Institute if D=20.1.27 then He DNI = PINAPINADAN	25 October 201 Prof FEA Johns
module it a - failed and an ten = induition (15)	Parmin 47.
then if \$\$ = 11 U for = 20,1,2,}, then \$\$ P(x) = P(0) ~ P(1) ~ P(2) ~ P(n) ~ P(n+1) ~	
his is the redoon why we adopt a symbol ".	
if $\mathcal{D} = f_0(1/2)$, then $\exists x P(x) = P(0) \vee P(1) \vee P(2)$.	
then if $D = \mathbb{N} \cup \{0\} = \{0, 1, 2,\}$, then $\exists x P(x) \equiv P(0) \vee P(1) \vee P(n) \vee P(n) \vee P(nt1) \vee$	
Fors domain of infinite length, I behaves like a repeated A (logical product), I behaves like a repeated V (logical si	um).
Negotion of Quantifiers.	
It + (Ever + prishlat (eVG)) (D) an a (Interest I have (engl)) (D)	
Take $D = \{0, 1\}$; then $\forall k P(x) = P(0) \land P(1)$.	
$\neg (\forall x) P(x) \equiv \neg [P(0) \land P(1)] \equiv \neg P(0) \lor \neg P(1) \equiv (\exists x) \neg P(x).$	
\Rightarrow we take it axiomatically that $\neg (\forall X) P(X) \equiv (\exists X) \neg P(X)$	
likewise, since $LEXP(x) = P(0) \vee P(1)$	
$\neg (\exists x) P(x) \equiv \neg [P(o) \vee P(i)] \equiv \neg P(o) \land \neg P(i) \equiv (\forall x) \neg P(x)$	
\Rightarrow we take it axiomatically that $[\neg(\exists x) P(x) \equiv (\forall x) \neg P(x)]$ maximum d (a)	
-012	

interchange of order of quantifiers

((YX)(Yy) P(xy) = (Yy)(Yx) P(xy) } there is convertent statements - use one to prove the other.	
 (HXX(Hy) P(Xy) = (Hy)(HX) P(Xy) these are equivalent statements - use one to prove the other. (HXX(Hy) P(Xy) = (Hy)(HX) P(Xy) 	
Suppose we assume @. Then NTP @=>(D:	
$(3\chi)(4\chi)^{2}(\chi_{4}) = (3\chi)(4\chi)^{-1} P(\chi_{4}) = (3\chi)^{-1} P(\chi_{4}) = (4\chi)(4\chi)^{-1} P(\chi_{4}) = (4\chi)(4\chi)^{-1} P(\chi_{4})$	
= (=y)(=x) -77P(x,y) = (=y)(=x)P(x,y), provon.	
and a second sec	
thence, the order is unimportant when quantifiers are the same.	
However, (3x)(Vy) is not the same do (Vy)(3x)	
for instance, take \$= {0,1} and P(x,y) be "x=y".	
(4x)(=y)P(x,y)= (4x){P(x,0) V P(x,1)} = [P(0,0) V P(0,1)] ~ [P(1,0) V P(1,1)]	
$= [T \vee F] \wedge [f \vee T] = T \wedge T = T.$	
thence (trailing) place) is true; but flipping the order,	
(=y)(4x) P(x,y) = (=y) { P(0,y) ~ P(1,y)} = [P(0,0) ~ P(1,0)] ∨ [P(0,1) ~ P(1,1)]	
$\equiv [T_{A}F] \vee [F_{A}T] \equiv F \vee F \equiv F.$	
-thus, (3y)(th) P(xy) is fake.	
so such, it follows that (YX)(Zy) = (Zy) (YX)?(Xy);	
No in general, (VX)(=y)P +> (=y)(VX)P.	
d b c c c	
SET THEORY	
the ordered set is one in which order is important - there is a first term, second term etc.	
$+1e_{1}(1,0) + (1,0)$	
(Wat v Gd AS & Gd and &	
In set theory, order is not important as <u>unordered</u> sets are considered.	
10,1,2} = 11,2,0; in contrast to (0,1,2) = (1,2,0)	
For small, finite sets, elements can be listed out individually. But for large sets? Infanite sets?	
लाजी ≜ लाजन में अ ज	
The symbol "e' means belongs to, and thus 'XEA' means 'X is a member of set A'.	
large sets need to be described by their "defining property".	
for instance, X= 12n=n E M), informally 12,4,6,}	
1=1ne(N: <u>n=3</u>), informally 13,4,5,}	
-> here, "n > 3" is the defining products of set ?.	
Z= (n ∈ N), (n > 3) ∧ (n ≤ 10)}, informally 13,4,5,6,7,8,9,10}.	
Sets are defined by their elements what comes within the curry backets, ignoring order.	
general form of a set A is	
$A = \{x : P_A(y)\}$	
Typicst element defining predicate	
No if Ebil means "x is an elephant" and P(x) means "x is pint",	

then for A= {x: E(x) ~ P(x)}, we doin that:

A is the set of pint elephonts.

M.H. Aby interdened the perform of functions

Reputinal						
	let A be a set with di	efining predicate PA(x), a	and B be a set with	defining predicate PB	69;	
- (neto p Ja nadera Ja agenterlanatus	
	or, informally, if x					
	or' alowed' 1 :					
E	104 02/012245	, 6} and B={1,3,5}			Notation: Do NOT CONFU	SE "C" And "G"
(140)						of conde
	men bon, com	s crow crower in p	is sumplimently on ele	ment in n	<u>n - El amendo an acceptión</u> 11 - Grant Carlotter	
E A	Cha Link Ardola	} and B={1,2}; Then	P CALIFA CO			
(EN	Now take C= {0,1,2		DCA.			
		-	+ El anti ada ad			
						** *
	Thus, we can say	subset with	n lizisin C	the sinele element h	Net of the Constant of	
	1					
	put while 2011	CC is true; f subset with oil is in C	ho such et	ement exitie in C		
151	Second contain		shire all grigpits and :			
E.		13, {1,2}}. Then we h	9			
	20,15 E D	10,13 CD,	$\{1,2\} \in D$	T	{{0,1}}, {1,2}} CD.	
			1.5 40	the elements 1,2 are n		
	16D		117年D,500			
		notation error	"1" is not a set, an	a so obviously connot !	be a subset!	
Predicates of set	s.					
	B be sets, then	3 and heaters are much her				
the wh	ion of A and B, Al	JB, consists of those		A or in B.		
		> PAUBEN = PAEN				
			(x) V PB(x)}. London		si sahara getadi 183 ni	
		f and B= {2,3,4},				
the i	intersection of A and B,	ANB, consists of those		A dual in B.	19 Asi Mart Mare at	
		> PAOB(x) = PAIX	$0 \wedge l_{B}(x)$			
		-} and B={2,3,4}, -	then ANB={2}		r Sk. si. A. Isan Asz Agala	
the.		2) and B={2,3,4}, A-B or A\B, consists	then ANB= {2}		r Sk. si. A. Isan Asz Agala	
the,		b) and B={2;3;4}, → A=B or A\B, consists \Rightarrow P _{A-B} (h) = P _A	then AAB={2} of those elements which ((x) A -== PB(Q)	have in A but not	in B.	
	difference. of A and B,	b) and $B=\{2,3,4\}$, → <u>A-B</u> or <u>A\B</u> , consists $\Rightarrow P_{A-B}(h) \equiv P_A$ A-B = 1x	then $A \cap B = \{2\}$ of those elements which $h(x) \land \neg P_B(x)$: $P_A(x) \land \neg P_B(x)$ }	h she in A bust soot ⁴⁴ note that whike	in B. U and n , \setminus is not commutative	e.
	difference. of A and B,	b) and $B=\{2,3,4\}$, → <u>A-B</u> or <u>A\B</u> , consists $\Rightarrow P_{A-B}(h) \equiv P_A$ A-B = 1x	then $A \cap B = \{2\}$ of those elements which $h(x) \land \neg P_B(x)$: $P_A(x) \land \neg P_B(x)$ }	h she in A bust soot ⁴⁴ note that whike	in B.	č.
	difference. of A and B,	b) and $B=\{2,3,4\}$, → <u>A-B</u> or <u>A\B</u> , consists $\Rightarrow P_{A-B}(h) \equiv P_A$ A-B = 1x	then $A \cap B = \{2\}$ of those elements which $h(x) \land \neg P_B(x)$: $P_A(x) \land \neg P_B(x)$ }	h she in A bust soot ⁴⁴ note that whike	in B. U and n , \setminus is not commutative	č.
	difference. of A and B,	b) and $B=\{2,3,4\}$, → <u>A-B</u> or <u>A\B</u> , consists $\Rightarrow P_{A-B}(h) \equiv P_A$ A-B = 1x	then $A \cap B = \{2\}$ of those elements which $h(x) \land \neg P_B(x)$: $P_A(x) \land \neg P_B(x)$ }	h she in A bust soot ⁴⁴ note that whike	in B. U and n , \setminus is not commutative	e.
these	difference of A and B, can be expressed by Ve A D B	→ and $B=\{2_{13},4\}$, A=B or A\B, consists ⇒ P_{A-B} (x) = P_{A} $A-B = \{x\}$ even diagrams, but these $A\cup B$	then AAB = {2} of those elements white ((x) ~ -7PB(6) : PA(6) ~ -7PB(60) : diagnours are useful o	th due in A door not the note that white why for up to 3 sets white D	in B. U and n , is not commutative here represented on a plane.	ε.
these	difference. of A and B,	→ and $B=\{2_{13},4\}$, A=B or A\B, consists ⇒ P_{A-B} (x) = P_{A} $A-B = \{x\}$ even diagrams, but these $A\cup B$	then AAB = {2} of those elements white ((x) ~ -7PB(6) : PA(6) ~ -7PB(60) : diagnours are useful o	th due in A door not the note that white why for up to 3 sets white D	in B. U and n , i is not commutative hen represented on a plane. $C \square$ B-A	٤.
these FUNCTIONS (the	$\frac{difference}{de}$ of A and B, can be expressed by Vi A D B e two words are interch	→ and $B=\{2_{13},4\}$, A=B or A\B, consists ⇒ P_{A-B} (N) = P_{A} $A-B = \{x$ even diagrams, but these $A\cup B$ $A\cup B$ angeottle)	then AAB = {2} of those elements white ((x) A PB(W) : PA(x) A PB(W) : disgnows one useful o (D) ANB	there in A burroor * note that whike why for up to 3 sets while A-B	in B. U and n , i is not commutative hen represented on a plane. $C \square$ B-A	e.
these FUNCTIONS (the	$\frac{difference}{de}$ of A and B, can be expressed by Vi A D B e two words are interch	→ and $B=\{2_{13},4\}$, A=B or A\B, consists ⇒ P_{A-B} (x) = P_{A} $A-B = \{x\}$ even diagrams, but these $A\cup B$	then AAB = {2} of those elements white ((x) A PB(W) : PA(x) A PB(W) : disgnows one useful o (D) ANB	there in A burroor * note that whike why for up to 3 sets while A-B	in B. U and n , i is not commutated hen represented on a plane. IB B-A B	e.
these FUNCTIONS (the	$\frac{difference}{de}$ of A and B, can be expressed by Vi A D B e two words are interch	→ and $B=\{2_{13},4\}$, A=B or A\B, consists ⇒ P_{A-B} (N) = P_{A} $A-B = \{x$ even diagrams, but these $A\cup B$ $A\cup B$ angeottle)	then AAB = {2} of those elements white ((x) A PB(W) : PA(x) A PB(W) : disgnows one useful o (D) ANB	there in A burroor * note that whike why for up to 3 sets while A-B	in B. U and n , i is not commutated hen represented on a plane. IB B-A B	e. >X

The idea of a function is that...

Two sets A, B and a "rule" f, which associates to each XEA a single well defined element f(X) EB.

then f: A -> B. bill domain codomain

A function/mapping must consist of a

(i) set A, the domain

(ii) set B, the codomain

(iii) 2 rule which associates each a EA a single well-defined element flatEB.

for it to be considered a "function"

Remember: a function is not the same as a formula.

Examples of functions \rightarrow f: $\mathbb{R} \rightarrow \mathbb{R}$, f(x) = x+1 f: $\mathbb{R} - [-1] \rightarrow \mathbb{R}$, f(x) = $\frac{1}{x+1}$ instead on the exclude of \mathbb{R} , f(x) = $\frac{x^4 - 1}{x^2 - 1}$ f: $\mathbb{R} - U\{0\} \rightarrow \mathbb{R} + U\{0\}$, f(x) = $-\sqrt{x}$.

consider the folloning -

let
$$q: \mathbb{R} \to \mathbb{R}$$
, $q(x) = x^{2+1}$
 $h: \mathbb{R} \to \mathbb{R}$, $h(x) = \begin{cases} x^{2-1} \\ x^{2-1} \\ x^{2-1} \end{cases}$ if $x \neq \pm 1$
 x^{2+1} if $x = \pm 1$

Here, g and h have different formulae, but revertheless represent the same function.

Products of sets.

The idea of AxB is that a point in each space can be represented by coundinates (a, b) such that	ae A and beb.
given ordered psirs (a, b), (a',b').	<u>↑</u> ()
the rule for equality states that (a,b) = (a',b') (=> a=a' and b=b'.	(a,b) ·
Definition. The product of sets A and B,	en collabear
	A

$A \times B = \{(a,b): a \in A' \land b \in B'\}.$

f(x)=x ²	two	let $f: \mathbb{R} \to \mathbb{R}_+$.
· \		the the graph of f is given by $h(x, f(x)): x \in \mathbb{R}^{3}$.
		remember a later of Ack a) review Message &
		in this case this represents a subset of
		x R× R+.

Definition Let A, B be sets.

By a mapping of function $f:A \rightarrow B$, we near a subset $f \in A \times B$ satisfying the following conditions: i) $\forall a \in A, \exists b \in B \text{ s.t. } (a, b) \in f.$ hence f(a) is defined for all $a \in A$.

[when (a,b) of we write f(a)=b]

ii) $(a,b) \in f$ and $(a,b') \in f \Rightarrow b=b'$ hence f(a) is a single element.

20

injective

ED Describe →11 functions a: {0,1} → {1,0}.

i) a(0)=0, a(1)=1 ii) a(1)=1

0-0

1->1

injective .

ii) a(0)=1, a(1)=0

iii) a(0)=0, a(1)=0 $0 \longrightarrow 0, 1$

not injective

iv) a(0)=1, a(1)=1. 0 0. 1-31 not injective not surjective

27 October 2011 Prof FEA Johnson Dornin LT.

1201-015.

	Definition A mapping $f: A \rightarrow B$ is said to be injective when $f(a) = f(a) \Rightarrow a = a'$.	
	There is contropositive: $a \neq a' \Rightarrow f(a) \neq f(a')$	
	menter, is complexite, out of the prices	
-	Befinition Let f:A→B be & response.	
100	we say that f is <u>swjective</u> when $\forall b \in B$, $\exists a \in A \text{ st. } f(a) = b$.	
	we say that if it <u>surgestive</u> when the ev, such such that be	
	EX Take $f: \mathbb{R} \to \mathbb{R}$. Is f injective and or surjective? $f(x) = x^2$.	т
	EX Take $f: \mathbb{R} \to \mathbb{R}$. Is f injective and or surjective? $f(x) = x^2$. NOT injective : $f(1) = f(-1)$	
	NOT surjective: -1 E R connot be ottained.	
	NOT SUFFICIATE TO BE CONTROL BE OFFICIA	
-	EEI Take g: IN → IN. Is g injective and/or surjective? g(x) = 2x.	
	·	
Inter -	injective: $g(x_1) = g(x_2) \implies x_1 = x_2$. $\in \mathbb{N}$. NOT surjective: 1 connot be attained	
	Nor surjuniter i service de chance	
	EX Toke h: R→R. 15 h injective and or surjective? h(x)=2x	
	$injective: h(x_1) = h(x_2) \implies x_1 = x_2$	
	surjective: 24 R can be attained to h(2)=y.	
	· · · · · · · · · · · · · · · · · · ·	I November 2011 Phof FEA Johnson.
	Formally, if A, & are sets, then	Damin LT.
	a mapping f: A+>B is a subset f < A>B such that the following two properties are defined .	
	I) Vaca, I beb; (a,b) ef. (then we write befas).	
_	I) if a & A, bb' & B are such that (a, b) & f and (a, b') & f, then b=b' (i.e. f(a) is uniquely defined)	·
_		
	In addition, f may or may not have the following properties.	
	III) if a, a'ek, bee mest. (a, b) ef and (a', b) ef, then a=a'	
	i.e. $f(\alpha) = f(\alpha') \implies f$ is injustive	
-	II-) ∀b ∈ B, ∃ a ∈ A; (a, b) ∈ f. (i.e. b has form flaw for some a ∀b ⇒ f is surjective).	
	in general a subset fc AxB need not have any of these properties.	
	A general subset f c Axis is called a relation.	
	provide a manager site and the	
-	Definition if f C AXB then f ⁻¹ C BXA is the set {(b, a) & f ⁻¹ (a, b) & f}.	
_		
-	(Ex) 1p p= exp then p-1: lage. y= exp x	
	and the second second second and the second se	
	$y = \log x$. $\exp : \mathbb{R} \longrightarrow \mathbb{R}^+ = \{z \in \mathbb{R}, z > 0\}$.	
	$log: R^+ \rightarrow R$	
	Question: let $f: A \rightarrow B$. Let a mapping. When is f^{-1} also a mapping?	
1.1	fCAXE. f-CBXA.	
10	(I) VaGA Zbet: (a, b) of. (I) Yb EB Back: (b, a) of. Observe that.	
-1	$(II) (a,b) \in f \text{ and } (a,b') \in f \Rightarrow b = b'. (II') (b,a) = p^{-1} \text{ and } (b,a') \in f^{-1} \Rightarrow a = a'. (III) \text{ for } f \equiv (II) \text{ for } f^{-1}$	1
t tas	$(a,b) \in f$ and $(a',b) \in f' \Rightarrow a = a'$. (12) for $f \equiv (1)$ for f'	1

1201-016.

[Covollany] If f: A+>B is a mapping and is both injective and surjective, then for B+>A is a mapping ...

[Definition] A rapping is bijective if it is both injective and surjective . complete [Gnollam]: let of CAXB be a subset. Then of its a bijective mapping () f⁻¹ is a bijective mapping.

COMPOSITION OF MAPPINGS.

let A, B, C bc sets, and let f: A+> B and g: B+> C be mappings. Define gof: A+> C by (gof)(a) = g[f(a)] * first f then g: order of composition mokes a difference!

 $\begin{array}{c} \hline F: \mathbb{R} \to \mathbb{R} & g: \mathbb{R} \to \mathbb{R} \\ & f(x) = x^2 & g(x) = \sin(\omega) + 1 \\ & g_0 f(x) = \sin(x^2 + 1) & f_0 g(x) = \left(\sin(\omega + 1)^2\right) \end{array}$

hote that gef \neq fog; show by taking a counterexample e.g. X=TT. then fog(π)=1, but gof(π) = sin $\pi^2 + 1 \neq 1 = fog(\pi)$.

** It and provolves the last is not adjusted to a strand private in the following the following the

 $[EK] f(x) = exp(x) \quad f: \mathbb{R} \leftrightarrow \mathbb{R}^+ ; \qquad g(x) = \log \infty; \qquad g: \mathbb{R}^+ \mapsto \mathbb{R}^+$

 $g \circ f(x) = x$ and $f \circ g(x) = x$, but $g \circ f \neq f \circ g!$ because $g \circ f: \mathbb{R} \mapsto \mathbb{R}$ but $f \circ g: \mathbb{R}^+ \mapsto \mathbb{R}^+$ $\Rightarrow g \circ f = Id_{\mathbb{R}} : \mathbb{R}^{+} \Rightarrow \mathbb{R}$, $f \circ g = Id_{\mathbb{R}^+} : \mathbb{R}^+ \mapsto \mathbb{R}^+$

(Definition) If A is a set, the identity mapping on A, IdA is given such that.

IdA: A H> A, IdA(a) = a Va∈A.

[Pefinition] A mapping f: A+> B is said to be invertible when = & mapping g: B+>A s.t. g of = ldA and fog = ldB (note the different domains!).

[EX] exp: $R \rightarrow R^+$ is invertible i.e. $\log \cdot exp = 1d_{R} \cdot d_{R}$. likenise,

Ing: Rt+ -> R is invertible i.e. expolog = ld Rt.

The composition of mappings is associative: $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ $h \circ (g \circ f) = (h \circ g) \circ f.$

Proof - concepter, for some $a \in A$, $h \circ (g \circ f)(a) = h[(g \circ f)(a)] = h(g(f(a)))$ (HS = AHS - $(h \circ g) \circ f(a) = h \circ g(f(a)) = h(g(f(a)))$

[Proposition] If f: A+> B is an invertible mapping, then its inverte is unique. Roof - suppose (gof) = IdA and (hof) = IdA ; (fog) = IdB and (foh) = IdB, we doin h=g.

ho(fog) = holds = h => holds(b) = h(b); (hof)og = (dAog = g but ho(fog) = (hof)og > h=g/, q.e.d.

Ruthing evenything together ... Theorem If f: At 3 B is a bijective nappily, then f is invertible with inverse f.1. Proof - f is bijective => f-1 is a mapping . deamy fof-1 = id, f-1 of = id / q.e.d. Thus far, we have shown that if is bijective => if is invertible. conversely, Theposition Let f: A +> B be an invertible mapping, then f is bijective . Proof -- we know = mapping g: B -> A s.t. gof = IdA, fog= IdB. f is injective . suppose fla) = fla') . then gefus = gofla') = idr(a) = idr(a') = a=a', so a=a'. f is surjective : let be B, we need to find a EA st. f(a)=b. take a=g(b), then f(a) = f (g(b)) = b => fog= 1d1, q.e.d. Hence, the complete result is that... Theorem of f. A+>B is a mapping, then f is invertible () f is bijective. $f:\mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is not injective, f(1) = f(-1) but $|\pm -1|$ EX. in this case, we can make f injective by restricting domain; we now get. f: Rt(1) → R. is injective, but it is not surjective. : -1 @ R, codancin, but \$ x ∈ Rt s.t. x2=-1. in this case, we can make fisinjective by realizing codomain; we now get. f: Rt v lof -> Rt v lof. now f is bijective, which makes it invertible, and : f-1: Rt ulos -> Rtohos, fly= Ty. PERMUTATIONS. A mapping f: {1,2,..., n} -> {1,2,..., n} is said to be a permutation on n <> f is bijective. equivalently, <=> f is invertible. For instance, where n=2, all mappings {1,2} -> {1,2} include: 1-→1 2-→2 Id constant constant T where T(1)=2, T(2)=1 (bijective!) to 1 to 2. (hicrorive!) hence there are 2 permutations of (1,2), $1d = (\binom{2}{1,2})$, $T = (\binom{2}{2,1})$. where n=3, 31 mappings $1_{12,3}$ -> $1_{12,3}$ include: at 27 possibilities. however, for bijerive ones, there are only 6=3! $id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$ $\times = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ $\times y = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$ $xy = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$ $xy = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$ hence there die 6 permutations of 11,2,3}. $y_{X} = xy^{2} \cdot No.$ $y_{X} = y_{0} \times = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 2 & y & z \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix} = x^{2}y.$ $(x^3 = 1d y^2 = 1d yx = x^2y)$ in general, there are n' permutations of 21,2,...,n} -> 21,2,...,nf. Convention: if f: 11,2,...,n} ~ f1,2,...,n} is a mapping, then we write $f = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ f(u) & f(2) & f(3) & \dots & \dots & f(n) \end{pmatrix}$.

1201-018.

Created product (1997)
The (
$$4_{1,1,1,2}$$
 ($a_{1,1}$) ($a_{1,2}$

if o is a permutation,	
+1 if o is a product of an EVEN no of adjacent transportions	
Sign $(\sigma^2) = \{-1, i \notin \sigma \text{ is a product of an CDD no. of adjacent transpositions}$	
then, sign (where of even length) = -1	
sign (cycle of odd length) = +1	
(1,5,11)(2,10,6)(3,7,12,9)(4,8)·	
3 3 4 2 lengths t1 t1 -1 -1 signs	
⇒ sign (5) = +1 .	
[policition] order (o) = min 2×>1; o'= ld].	
	15 November 2017 · Rof FEA Johnson ·
we describe Q is the set of numbers where Q= 1 = p, q = IL, q = 0 }.	Dowin 47.
nulle of equality: $\frac{1}{2} = \frac{1}{2}' \iff pq' = p'q$	
R is a system in which one can add, subtract, multiply and divide (\$0)	
Any suptan which has these properties is called a field	
Definition A field IF convicts of the -following data.	
$\mathbf{F} = (\mathbf{F}_1 + \mathbf{i} \circ \mathbf{i} \cdot \mathbf{i})$	
where It is a set.	
0,1 6 开; 0 ≠1	
	addition .
(x,y) ~~> x+y. [we write this radius than t(x,y) polisin]	
and · is also a mapping ·: IFX IF ← > IF	multiplication
(x,y)> x.y	rdhaen
such that the following properties hold	
	·(y·Z) = (X·y)·Z ∀X,y,ZeF.
the book of the second s	
and a dru and a manual and	·y=y·x Vx,yeF·
3) X+0=X X×eff (additive identity)· 3) X.	
4) If x EF = (-x) E (F; x+(-x)=0 (additive inverse). 4) 4	I= x VXEF (multiplicative identity)
a free street, accure and the means of the	effot, 3x'effst. xx'=1.
5) $(X+Y) \cdot Z = X \cdot Z + Y \cdot Z ; Z \cdot (X+Y) = 2X \cdot ZY$ (distributivity).	
5) $(X+Y) \cdot Z = X \cdot Z + Y \cdot Z$; $Z \cdot (X+Y) = 2X \cdot ZY$ (distributivity).	effot, 3x'effst. xx'=1.
5) $(x+y) \cdot z = x \cdot z + y \cdot z$; $z \cdot (x+y) = 2x \cdot zy$ (distributivity). So \mathbb{Q} , \mathbb{R} , \mathbb{C} due fields. However, z is not a field as 40' does not hold.	effot, 3x'effsit. xx'=1.
5) $(X+Y) \cdot Z = X \cdot Z + Y \cdot Z$; $Z \cdot (X+Y) = 2X \cdot ZY$ (distributivity).	effot, 3x'effst. xx'=1.
5) $(x+y)\cdot z = x \cdot z + y \cdot z$; $z \cdot (x+y) = 2x \cdot zy$ (distributivity). So \mathbb{Q} , \mathbb{R} , \mathbb{C} size fields. However, z is not a field as 40' does not hold. Let \mathbb{F}_2 be a field with two elements $j = 0$, $\mathbb{F}_2 = \{0, 1\}$.	effoi, 3x'eff st. xx'~1 (mutiplicative inverse).
5) $(x+y)\cdot z = x \cdot z + y \cdot z$; $z \cdot (x+y) = 2x \cdot zy$ (distributivity). So \mathbb{Q} , \mathbb{R} , \mathbb{C} size fields. However, z is not a field as 40' does not hold. Let \mathbb{F}_2 be a field with two elements $j = g$. $\mathbb{F}_2 = \{0, 1\}$.	eff(0), 3×1eff sit. ××1,>1. (muttiplicative inverse).
5) $(x+y) \cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot \overline{z}y$ (distributivity). 50 Q, R, C sine fields. Nowever, z is not a field as 40' does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}$. $\frac{1}{0} \underbrace{0}_{1} \underbrace{0}_{0} \underbrace{0}_{0} \underbrace{0}_{0}$ $1 \underbrace{0}_{1} \underbrace{0}_{1} \underbrace{0}_{1} \underbrace{0}_{1} \underbrace{0}_{1}$ we let 0,1 represent even and odd numbers $1 \underbrace{0}_{1} \underbrace{0}_{1} \underbrace{0}_{1} \underbrace{0}_{1} \underbrace{0}_{1} \underbrace{0}_{2} \underbrace{0}_{$	eff(0), 3×1eff sit. ××1,>1. (muttiplicative inverse).
5) $(x+y)\cdot z = x \cdot z + y \cdot z$; $z \cdot (x+y) = 2x \cdot zy$ (distributivity). 50 Q, R, C are fields thowever, z is not a field as 40' does not hold. Let \mathbb{F}_2 be a field with two elements; e.g. $\mathbb{F}_2 = \{0,1\}$. t 0 0 0 0 0 0 0 0 0	eff(0), 3×1eff sit. ××1,>1. (muttiplicative inverse).
5) $(x+y)\cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot \overline{z}y$ (distributivity). 50 Q, R, C are fields thowever, \overline{z} is not a field as $\frac{1}{2}$ does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}$. $\frac{\pm 0 }{0 0 }$ we let $0,1$ represent error and odd numbers $\frac{\pm 0 }{0 0 }$ to 1 we let $0,1$ represent error and odd numbers $1 0 $ to $1 0 $ so $\overline{F_2}$ is obtained from \overline{z} by forcing '2=0' by extension, we examine $\overline{F_3} = \{0,1,2\}$; introduce rule '3=0'.	eff(0), 3×1eff sit. ××1,>1. (muttiplicative inverse).
5) $(x+y)\cdot z = x\cdot z+y\cdot \overline{z}$; $\overline{z}\cdot (x+y) = 2x\cdot \overline{z}y$ (distributivity). 50 Q, R, C sine fields therefore, Z is not a field as 40' does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}^2$. $\frac{t}{0} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ we let $0,1$ represent even and odd numbers $1 \mid 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \end{pmatrix}$ so $\overline{F_2}$ is obtained from Z by forcing '2=0' by extension, we examine $\overline{F_2} = \{0,1,2\}$; instructure rule '3=0'. $\frac{t}{0} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$ i.e. $2^{-1} = 2$ in $\overline{F_3}$.	eff(0), 3×1eff s.t. ××1~1 (mutiplicative inverse).
5) $(x+y) \cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot \overline{z}y$ (distributivity). 50 Q, R, C sine fields therefore, \overline{z} is not a field as 40' does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}$. $\frac{1}{0} \stackrel{()}{0} \stackrel{()}{1} \stackrel{()}{0} \stackrel{()}{0}$	eff(0), 3×1eff s.t. ××1~1. (mutiplicative inverse).
5) $(x+y)\cdot z = x\cdot z+y\cdot z$; $\overline{z}\cdot (x+y) = 2x\cdot zy$ (distributivity). 50 Q, R, C she fields: Alemener, z is not a field as 49' does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}^2$. $\frac{t}{0} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ we let 0.1 represent erron and odd numders $1 \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$ so $\overline{F_2}$ is obtained from Z by forcing '2=0' by extension, we examine $\overline{F_2} = \{0,1/2\}$; introduce rule '3=0'. $\frac{t}{0} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 &$	eff(0), 3×1eff st. ××1×1. (mutiplicative inverse).
5) $(x+y) \cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot \overline{z}y$ (distributivity). 50 Q, R, C she fields therefore, z is not a field as 40' does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}$. $\frac{t}{0} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 1 & 2 & 0 \\ $	eff(0), 3×1eff st. ××1×1. (mutiplicative inverse).
5) $(x+y) \cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot \overline{z}y$ (distributivity). 50 Q, R, C she fields therefore, z is not a field as 40' does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0, 1\}^2$. $\frac{t}{0} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix} = 0$ $1 \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 1$ we let $0, 1$ represent even and odd numbers $1 \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix} = 1$ so $\overline{F_2}$ is obtained from Z by forcing '2=0' by extension, we examine $\overline{F_2} = \{0, 1, 2\}$; instructure rule '3=0'. $\frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 1 & 2 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac$	eff(0), 3×1eff sit. ××1,>1. (muttiplicative inverse).
5) $(x+y) \cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot \overline{z}y$ (difficientivity). So \mathbb{Q} , \mathbb{R} , \mathbb{C} since fields therefore, \overline{z} is not a field as $4p'$ does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}^2$. $\frac{t}{0} \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 \\ 1 & 0 \\ 1 \\ 1 & 0 \\ 1 \\ 1 & 0 \\ 1 \\ 1 & 0 \\ 1 \\ 1 \\ 1 & 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	eff(0), 3×1eff sit. ××1,>1. (muttiplicative inverse).
5) $(x+y) \cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot zy$ edistributivity). 50 R, R, C she fields: Aleverer, Z is not a field as 49' does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0, 1\}^2$. $\frac{t}{0} \stackrel{()}{0} \stackrel{()}{1} \stackrel{()}{0} \stackrel{()}$	eff(0), 3×1eff s.t. ××1~1 (mutiplicative inverse).
5) $(x+y) \cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot zy$ edistributivity). 50 R, R, C she fields. However, Z is not a field as 49' does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0, 1\}^2$. $\frac{t}{0} \stackrel{()}{0} \stackrel{()}{1} \stackrel{()}{0} \stackrel{()}{2} \stackrel{()}{0} \stackrel{()}{0} \stackrel{()}{0} \stackrel{()}{2} \stackrel{()}{0} \stackrel{()}{$	ethor, 3x ¹ eff st. xx ¹ =1 (multiplicative inverse). respectively. i.e `It1=0'.
5) $(x+y) \cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot zy$ edistributivity). 50 R, R, C she fields: Alevener, \overline{z} is not a field as 49' does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}^2$. $\frac{t}{0} \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$ Nelet 0.1 represent even and odd numlexs. $\frac{1}{0} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Nelet 0.1 represent even and odd numlexs. $\frac{1}{0} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ Nelet 0.1 represent even and odd numlexs. $\frac{1}{0} \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 \end{pmatrix}$ introduce rule '3=0'. $\frac{t}{0} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix}$ is obtained from \overline{z} by forcing '2=0' by extension, we examine $\overline{F_3} = \{0,1,2\}$; introduce rule '3=0'. $\frac{t}{1} \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix}$ i.e. $2^{-1} = 2$ in $\overline{F_3}$. $\frac{t}{1} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}$ i.e. $2^{-1} = 2$ in $\overline{F_3}$. $\frac{t}{2} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}$ i.e. $2^{-1} = 2$ in $\overline{F_3}$. $\frac{t}{2} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}$ i.e. $2^{-1} = 2$ in $\overline{F_3}$. $\frac{t}{2} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}$ i.e. $2^{-1} = 2$ in $\overline{F_3}$. How we true true $\overline{F_3} = 40, 1, 2, 3, 4^2$ $\frac{t}{4} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix}$ i.e. $2^{-1} = 2$ in $\overline{F_3}$. However, note that this does not apply for . $\frac{10,112,3}{4}$ where '4=0'	ethor, 3x ¹ ett st. xx ¹ =1 (multiplicative inverse). respectively. i.e `(t1=0'.
5) $(x+y) \cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot zy$ (distributivity). 50 Q, R, C size fields: showever, z is not s field as h)' does not hold. Let $\overline{F_z}$ be a field with two elements ; e.g. $\overline{F_z} = \{0,1\}^2$. $\frac{t}{0} \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{pmatrix} = 0$ No let 0.1 represent even and odd numbers $1 \mid 1 = 0$ 1 0 1 so $\overline{F_z}$ is obtained from Z by forcing 'zeo' by extension, we examine $\overline{F_z} = \{0,1,2\}$; introduce rule '3=0'. $\frac{t}{0} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{t}{0}$ how we true $\overline{F_z} = \{0,1,2,3,4\}$ $\frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \frac{t}{0} \begin{pmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \end{pmatrix} = $	eff(o); 3x ¹ eff sit. xx ⁽² 1. transhiplicative inverse). respectively. i.e '1t1=0'.
5) $(x+y)\cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot zy$ (diffibultivity). So R, R, C she field is however, \overline{z} is not a field as $\frac{1}{2}d$ does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}^2$. $\frac{1}{0} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ We let 0,1 represent even and odd numbers $1 \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ so $\overline{F_2}$ is obtained from \overline{z} by forcing '2=0' by extension, we examine $\overline{F_3} = \{0,1,2\}$ i introduce rule '3=0'. $\frac{1}{0} \begin{bmatrix} 0 & 1 & 2 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 0 & 1 & 2 \\ 1 & 2 & 0 & 1 & 2 & 0 & 2 \end{bmatrix}$ i.e. $2^{-1} = 2$ in $\overline{F_3}$. $\frac{1}{2} \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 0 & 1 \\ 0 & 1 & 2 & 3 & 4 & 0 \\ 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 & 0 & 1 & 2 & 0 & 2 & 4 & 1 & 3 \\ 3 & 3 & 4 & 0 & 1 & 2 & 3 & 2 & 0 & 2 & 1 \\ 4 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 0 & 2 & 4 & 1 & 3 \\ 3 & 3 & 4 & 0 & 1 & 2 & 0 & 2 & 4 & 1 & 3 \\ 3 & 3 & 4 & 0 & 1 & 2 & 0 & 2 & 4 & 1 & 3 \\ 4 & 4 & 0 & 1 & 2 & 3 & 4 & 0 & 4 & 3 & 2 & 1 \\ However, note that this does not apply for \frac{1}{0} \cdot \frac{12}{2} \cdot \frac{3}{2} \cdot \frac{1}{1} so this is not a field, because \frac{1}{2} \cdot \frac{1}{0} \cdot \frac{3}{2} \cdot \frac{2}{1} so this is not what we$	eff(o); 3×1eff st. x×1. (nuutiplicative inverse). respectively. i.e 1(t)=0'.
5) $(x+y)\cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot zy$ editributivity). 50 R, R, C are fields: Absence, I is not a field as 19' does not hold. Let \overline{T}_2 be a field with two elements ; e.g. $\overline{T}_2 = \{0,1\}^2$. $\frac{t+0}{0} \frac{(1-0)1}{0}$ We let 0.1 represent even and odd numbers $1 = 10$ 1 0 1 so \overline{T}_2 is obtained from I by forcing '2eo' by extension, we examine $\overline{T}_3 = \{0,1,2\}$; introduce rule '3=0'. $\frac{t+0}{0} \frac{(1-2)}{2} \frac{(1-2)}{0} \frac{(1-2)}{2}$ i.e. $2^{-1} = 2$ in \overline{T}_3 . $\frac{t+0}{1} \frac{(1-2)}{2} \frac{(1-2)}{2}$	eff(o); 3×1eff st. x×1. (nuutiplicative inverse). respectively. i.e 1(t)=0'.
5) $(x+y)\cdot z = x \cdot z + y \cdot \overline{z}$; $\overline{z} \cdot (x+y) = 2x \cdot zy$ (diffibultivity). So R, R, C she field is however, \overline{z} is not a field as $\frac{1}{2}d$ does not hold. Let $\overline{F_2}$ be a field with two elements; e.g. $\overline{F_2} = \{0,1\}^2$. $\frac{1}{0} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ We let 0,1 represent even and odd numbers $1 \begin{bmatrix} 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$ so $\overline{F_2}$ is obtained from \overline{z} by forcing '2=0' by extension, we examine $\overline{F_3} = \{0,1,2\}$ i introduce rule '3=0'. $\frac{1}{0} \begin{bmatrix} 0 & 1 & 2 & 0 & 0 & 2 \\ 0 & 1 & 2 & 0 & 0 & 1 & 2 \\ 0 & 0 & 1 & 2 & 0 & 1 & 2 \\ 1 & 2 & 0 & 1 & 2 & 0 & 2 \end{bmatrix}$ i.e. $2^{-1} = 2$ in $\overline{F_3}$. $\frac{1}{2} \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 0 & 1 \\ 0 & 1 & 2 & 3 & 4 & 0 \\ 1 & 2 & 3 & 4 & 0 & 1 & 2 & 3 & 4 \\ 2 & 2 & 3 & 4 & 0 & 1 & 2 & 0 & 2 & 4 & 1 & 3 \\ 3 & 3 & 4 & 0 & 1 & 2 & 3 & 2 & 0 & 2 & 1 \\ 4 & 0 & 1 & 2 & 3 & 4 & 0 & 1 & 2 & 0 & 2 & 4 & 1 & 3 \\ 3 & 3 & 4 & 0 & 1 & 2 & 0 & 2 & 4 & 1 & 3 \\ 3 & 3 & 4 & 0 & 1 & 2 & 0 & 2 & 4 & 1 & 3 \\ 4 & 4 & 0 & 1 & 2 & 3 & 4 & 0 & 4 & 3 & 2 & 1 \\ However, note that this does not apply for \frac{1}{0} \cdot \frac{12}{2} \cdot \frac{3}{2} \cdot \frac{1}{1} so this is not a field, because \frac{1}{2} \cdot \frac{1}{0} \cdot \frac{3}{2} \cdot \frac{2}{1} so this is not what we$	eff(0), 3×1eff st. x×1,-1. (nuutiplicative inverse). respectively. i.e 1(t = 0'.

At has the following properties : $\begin{array}{ccc} t : & \mathbb{F}^{n} \times \mathbb{F}^{h} & \longrightarrow & \mathbb{F}^{h} \\ & \begin{pmatrix} \chi_{i} \\ \vdots \\ \chi_{n} \end{pmatrix} + \begin{pmatrix} y_{i} \\ y_{n} \end{pmatrix} = \begin{pmatrix} \chi_{i} + y_{i} \\ \vdots \\ \chi_{n} + y_{n} \end{pmatrix}$ i.e. adding coordinates. $\cdot : (F) \times F^n \longmapsto F^n$ note that we multiply here only by a scalar $\lambda \in F$; not a vector F^n . $\lambda \cdot \begin{pmatrix} x_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_2 \end{pmatrix}$ there exists a zero vector $Q = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ which has the following properties. additive. 1) ×+14+定)=(×+4)+ 三 (×,4,26円) $(X, Y, \in \mathbb{F}^n)$ 2) X+4 = 4+X 3) 茶十皇= 為 (太 ∈ 平") 4) VX= F =(-x) ∈ F st. X+(-x)=0 5) $\lambda(\mu, z) = (\lambda, \mu), z$ ($\forall \lambda, \mu \in \mathbb{F}$; $\forall z \in \mathbb{F}^n$) multiplicative. (AZEF") 6) 1.3 = 3 7) $(\lambda + \mu) \cdot \Xi = \lambda \cdot \Xi + \mu \cdot \Xi$ $(\forall \lambda, \mu \in F; \forall \Xi \in \mathbb{F}^{n})$.] distributive laws. 8) No(12+3)= N·12 (YXEF; YW, HEEF") Definition Let IF be a field. Suppose that i) V is a set i) QeV iii) +: VXV > V is a mapping iv) .: IF X V -> V is a mapping then we say that (V, t, O, ') is a vector space over IF when the analogous properties () - 8) hold. or, restating it ... Let IF be a field; then V= (V, +, 2, .) is a vector spice over IF. Petintion when i) V is a set and DEV is +: VXV ~> V is a mapping such that. a) 各十(4十至)= (五十g)+王 6) ×+4 = 4+× c) $\frac{X}{X} + 0 = X$ d) 3 K E V, 3 (- K) E V : K+ (-K)= Q. iti) . IF X V ~ V is a mapping such that e) 入·(川·三) = (入·川)·三 alteriar fi 1.2 = Erech g) (A+ル)·呈 = Xを+州主 h) $\lambda(\Psi + \Xi) = \lambda \Psi + \lambda \Xi$ It is a vector space over IF; in the special case where n=1, we regard IF= IF', so IF is also a vector space. EN Constructional examples; take IF = Q; and take V= { (-a) : a & Q }; so V C Q2 EL addition in V: $\binom{a}{-a} + \binom{b}{-b} = \binom{a+b}{-(a+b)} \in V$ sublar multiplication: $\lambda \begin{pmatrix} a \\ -a \end{pmatrix} = \begin{pmatrix} \lambda a \\ \lambda \begin{pmatrix} -a \end{pmatrix} \in V$ so we have addition +: VXV -> V; scalar multiplication .: QXV -> V; and 2 zero vector 2= (~) E.V. all the other axioms hold because they already hold in \mathbb{R}^2 ; and $V \subset \mathbb{R}^2$. however; $V \neq \mathbb{R}^2$ - use counter-example (i) $\in \mathbb{R}^2$; (i) $\notin V$. Take IF to be any field; let $W = \left\{ \begin{pmatrix} X_1 \\ X_2 \end{pmatrix} \in \mathbb{F}^3 : X_1 + X_2 + X_3 = 0 \right\}.$ Ex Whas an addition $x, y, \in W$; $x + y_{k} = \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} + \begin{pmatrix} y_{1} \\ y_{2} \\ x_{3} + y_{3} \end{pmatrix} = \begin{pmatrix} x_{1} + y_{1} \\ x_{2} + y_{3} \end{pmatrix} (x_{1} + y_{1}) + (x_{2} + y_{3}) = 0 \Rightarrow x + y_{1} \in W$ W has scalar multiplication $\chi \in W$; $\lambda \in \mathbb{F}$; then $\lambda \chi = \begin{pmatrix} \lambda \chi_1 \\ \lambda \chi_2 \end{pmatrix} \quad \lambda \chi_1 + \lambda \chi_2 + \lambda \chi_3 = \lambda (0) = 0 \implies \lambda \chi \in W.$ remaining axioms already hold : they hold for Fz, and WCFz. however; W = + - use counter-example (3) & W.

1201-021.

PIMENSIONAUTY OF A VECTOR SPACE.

We consider the spikes
$$\mathbb{P}^n$$
.
We consider the spikes \mathbb{P}^n .
We consider the spikes \mathbb{P}^n .
The balance terms the spike of the spike spikes \mathbb{P}^n is the spike spike spike spike spike spikes \mathbb{P}^n is the spike spike spike spike spike spikes \mathbb{P}^n is the spike spike spike spike spike spikes \mathbb{P}^n is the spike spike spike spike spike spike spike spikes \mathbb{P}^n is the spike spike spike spike spike spike spike spike spikes \mathbb{P}^n is the spike spike

The standard vectors fer, ez, ..., en's form a basis for It. EX Theorem BASIS THEO REM . i) Any non-zero vector space V has a lassis. ii) Any two bases for V have the same number of elements . * Roof see 1201-031. The dimension dim (V) of V is the number of elements in a hanis for Y. Definition From the above, we observe that dim (IF") = n- Also, we can ite, E2, ..., Ent a standard basis for V over F". W= 1 ×= (x) = (x) = 10 : x, + x2 + x3 = 0}; then dim W=2. EX we need to find & leavis. for W with examply 2 elements. take $\varphi_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and $\varphi_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$; $\varphi_1, \varphi_2 \in W$. to show that P. P2 is a basis, it must fulfil the two conditions of the basis theorem. · { (, () } is LI. $\lambda_1 P_1 + \lambda_2 P_2 = \begin{pmatrix} \lambda_1 \\ -(\lambda_1 + \lambda_2) \end{pmatrix}$, so if $\lambda_1 P_1 + \lambda_2 P_3 = 2$; then $\lambda_1 = \lambda_2 = 0$, q.e.d. · Ly, 1/2 } spons W. take $\chi = \begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \end{pmatrix} \in W$; then $\chi_3 = -(\chi_1 + \chi_2)$. then $\chi_1 \varphi_1 + \chi_2 \varphi_2 = \begin{pmatrix} \chi_1 \\ -\chi_2 \end{pmatrix} + \begin{pmatrix} \chi_2 \\ \chi_2 \end{pmatrix} = \begin{pmatrix} \chi_1 \\ -\chi_2 \end{pmatrix} = \begin{pmatrix} \chi_1 \\ -\chi_2 \end{pmatrix} = \begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \chi$. hence, dim W= 2-11. TER Let A be a man matrix (a; s #) homogeneous Define $K_n = \{ X \in F^n ; A X = 0 \}$ i.e. the solution for to system of linear equations. Proposition - KA is a vector space a Ft. Proof - of X, y, e Ka; then AX=0, Ay=0 => A (Sty.) = A S + Ay = 2; so Sty E KA. (addition). $x \in K_A$, $\lambda \in \mathbb{F} \Rightarrow A(\lambda X) = \lambda(A X) = \lambda Q = Q$; so $\lambda X \in K_A$ (soder multiplication). all remaining axioms are already satisfied in It's so KA is a vector space. computing dim (KA). let $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & -2 & 1 \end{pmatrix}$; then $K_A = \{ X \in \mathbb{H}^4 : A X = 2 \}$. to find K1, we reduce to melt: $\begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 1 & 3 & -3 & 1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 & -1 & 1 \\ 0 & -2 & 2 & 0 \\ 0 & 2 & -2 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & (-1 & 1) \\ 0 & -1 & (-1 & 1) \\ 0 & 0 & 0 & 0 \end{pmatrix}$ as such, $K_A = \{\begin{pmatrix} \lambda \\ k \\ k \end{pmatrix}\}$; $\dim(K_A) = 2$. to obtain a basis, we take obvious choices: $x_3 = 1$, $x_{\varphi} = 0 \Rightarrow E_1 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$; $x_3 = 0$, $x_{\varphi} = 1 \Rightarrow E_2 = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$. X & KA = X = X3E1 + X4 E2; so (E1,E2) span KA and are LI; forming a basis for KA. 22 November 2011 Rof PEA Johnson. Danin 47. FFM is a standard vector space. First example of a non-standard reator space is something. like this . take field F: take man matrix A over F. consider homogeneous linear cyclem AZ=2, then we define KA={XEF": AX=2}. Phoposition (necdo) - KA forms a vector space over AF. noof - her xiy = 44 i.e. AS=2 and My=2 . Mary) = ASTAY = 2; so xiy = 4A > 2ry = 4A. let $X \in K_A$, $\lambda \in F$; then $\Lambda X = Q$ and $\Lambda(\lambda X) = \lambda(A X) = \lambda \cdot Q = Q \cdot \Rightarrow \lambda X \in KA$. finally, since A.2=Q, then QEKA all other axioms are automatically satisfied since KA CIF", and they hold in F" => all axioms are fulfilled, KA is a verticed 12-01-023

The main field with first
$$\mathbf{t}_{\mathbf{t}}_{\mathbf{t}__{\mathbf{t}_{1}}_{\mathbf{t}_{\mathbf{t}_{\mathbf{t}_{1$$

why are bases useful?

Roposition - Suppose IEI, E2, ..., En) forms a basis for V; a rector space over IF.

then any $x \in V$ can be expressed in a unique way as a linear combination $\chi = \lambda_1 \in [+\lambda_2 \in$

the uniqueness of the expression follows as a consequence of linear independence.

Since $\chi_{-\chi=0}$, $\Sigma\lambda_{i}E_{i}-\Sigma\mu_{i}E_{i}=0 \Rightarrow \Sigma(\lambda_{i}-\mu_{i})E_{i}=0$.

we know that IEI, E2, ..., En) & linearly independent to only solution is the trivial solution. hence,

λi=μi=0 ∀i≤n; λi=μi for all i≤n, representation is unique, g.e.d.

this is a fundamental property of linear maps!

Reposition -- let T: V→ W be linear, and {E1, E2, ..., En} form a basis for V. Then T is entirely determined by the values T(E1), T(E2);..., T(En).

Proof - suppose I have $T(E_i) = w_i \in W_i$ then we can calculate the value of $T(\Sigma)$ uniquely.

 $X = \lambda_1 E_1 + \lambda_2 E_2 + \dots + \lambda_m E_n$

 $T(\underline{S}) = T(\underline{\lambda}, \underline{E}_1) + T(\underline{\lambda}, \underline{E}_2) + \dots + T(\underline{\lambda}, \underline{E}_n) = \underline{\lambda}_1 T(\underline{E}_1) + \underline{\lambda}_2 T(\underline{E}_2) + \dots + \underline{\lambda}_n T(\underline{E}_n) = \underline{\lambda}_1 \underline{w}_1 + \underline{\lambda}_2 \underline{w}_2 + \dots + \underline{\lambda}_n \underline{w}_n \neq q.e.d.$

A linear map is determined by, and determines, a matrix.

let T be a linear mapping, and T: V -> W

we let $\{E_1, E_2, ..., E_n\}$ be a boos for V, and $\{E_1, E_2, ..., E_m\}$ be a boos for W.

we know that T is determined by $T(E_i)$; then $T(E_1) \in W$ is a linear combination — note the order of the indices... a_{mn} , not a_{nm} ? $T(E_i) = a_{i1} \in I$ + $a_{24} \in I$ + ... + $a_{m1} \in M$

$$T(\underline{E}_{2}) = a_{12} \underline{e}_{1} + a_{22} \underline{e}_{2} + \cdots + a_{m2} \underline{e}_{m} + T(\underline{E}_{i}) = \sum_{j=1}^{m} a_{ji} \underline{e}_{j}$$

$$T(\underline{E}_{i}) = a_{in} \underline{e}_{i} + a_{2n} \underline{e}_{2} + \cdots + a_{mn} \underline{e}_{m} .$$

[Depinition] Let T be linear, T: V -> W.

40 W

let $\mathcal{E} = \{1E_1, 1E_2, ..., En\}$ be a basis for V, $\overline{\mathcal{D}} = \{2E_1, 1E_2, ..., 2En\}$ be a basis for W. we obtain a matrix $\mathcal{M}(T) = (a_j i)_{i \leq j \leq m}, 1 \leq i \leq n$ $[m \times n \mod i \times]$. defined by $T(E_i) = \int_{i=1}^{m} a_{ii} \cdot \mathcal{L}_j$

this is the matrix of T with respect to E on the left, Φ on the right.

$$\begin{array}{rcl} \overline{\text{Let}} & V = W = P_{3}(\mathbb{Q}) &= \int R_{0} + R_{1}x + A_{2}x^{2} + A_{3}x^{3} &: & a_{1} \in \mathbb{Q} \\ \\ & \text{then} & \mathcal{E} = \bar{\Phi} = \int I_{1} \times_{1} \times_{2}^{2} \times_{2}^{3} \int \\ \end{array}$$

$$T(x^2) = \frac{1}{2} \sqrt{x} (x^2)^2 = \sqrt{$$

Recap if T: V- W is a linear map, and E = (E, E, ..., En) form a basis rectors for V and IE is a basis for W. Damin UT.

than T is determined precisely by the values of T(E1); T(E2), ..., T(En).

Eads T(Ei) is uniquely a linear combination in 1911 far. ..., for).

e write
$$T(b_i) = \sum_{j=1}^{n} a_{ji} P_j$$
 (sansible convention) = $\sum_{j=1}^{n} P_j a_{ji}$

steenstive collorention: T(Ei) = . F. (ij P; (he coreful of element and indices) -> formed by right-multiplying transformation notrix.

we take MIT) = (aji) is in , is is n: MIT) is the notice of T with respect to E on the left to all the sight.

24 November 2011

$$\begin{aligned} & \text{comparison}, \text{ for MACH, is MACH, in the form a mathematical form, if M_{1}^{2} , M_{2}^{2} , $M_{$$$

$$\begin{array}{c} \label{eq: 1.5} \quad \forall \nabla V \; Ad \; T: [A, V = V] \; j \; des \\ \label{eq: 1.5} \\ \$$

Let A=(aji) 16 j 5m, 15i 5n be min mohit over IF. Special case II: consider the linear map TA: F"-> F"; TA (w) = A3. Take E= 1=1,..., En) we the standard basis for IF"; E= 1=1,..., Em) be the standard basis for IF". what is matrix M(TA) &? columble $T_A(\underline{e}_i) = A \underline{e}_i = \begin{pmatrix} a_{11} & \cdots & a_{2n} \\ a_{21} & \cdots & a_{2n} \\ a_{11} & \cdots & a_{2n} \end{pmatrix} \begin{vmatrix} \underline{e}_i \\ \underline{e}_i \end{vmatrix} = R_{11} \underline{e}_i + A_{21} \underline{e}_2 + \cdots + A_{2n} \underline{e}_{m} = \sum_{j=1}^{n} a_{jj} \underline{e}_j \cdot \underline{e}_j + \underline{e}_{m} \underline{e}_{m} = \sum_{j=1}^{n} a_{jj} \underline{e}_j \cdot \underline{e}_j + \underline{e}_{m} \underline{e}_{m} \underline{e}_{m} = \sum_{j=1}^{n} a_{jj} \underline{e}_j \cdot \underline{e}_j + \underline{e}_{m} \underline{e}_{m} \underline{e}_{m} \underline{e}_{m} + \underline{e}_{m} \underline{e}_{m} \underline{e}_{m} + \underline{e}_{m} \underline$ so 1th column of M(TA) = it column of A. STO MITA) = A. consiliony - motive multiplication is associative. Broof - Let A be an mixin matrix over IF; B be my and C he prog. We now to show (AB)C = A(BC). Then we define: $\mathsf{T}_{A}: \operatorname{F}^{n} \to \operatorname{F}^{m} \ (\mathsf{T}_{A}(\underline{s}) = A\underline{s}) \ ; \quad \mathsf{T}_{B}: \operatorname{F}^{p} \to \operatorname{F}^{m} \ (\mathsf{T}_{B}(\underline{s}) = B\underline{s}, \underline{s}) \ ; \quad \mathsf{T}_{C}: \operatorname{F}^{1} \to \operatorname{F}^{p} \ (\mathsf{T}_{C}(\underline{s}) = C\underline{s}) \ .$ It' TE F' TE, IF' TA, IF''. then TAO(TBOTC) = (TAOTE)OTC since competition is associative. M(TA o (TE o Tc)) std = M(TA) std M(TE o Tc) std = A [M(TE) std M(Tc) std] = A(TC). M((TAOTE)OTC)) and = M(TAOTE) and M(TO) and = [M(TA) and M(TO) and] C = (AB)C. thus, A(BC) = (AB) < 1, q.e.d. 1 December 2011 Rof FEA Johnson Darwin LT. PANCIPLES OF ABSTRACT ALGEBRA. let V be a vector space over field IF; y1, Y2, ..., Yn E V. we say that (Y1, Y2, ..., Ynt is II when St hi Yi = Q. () Vi, hi = 0. 1 × 1, X2, ..., Xn' spors V when, given suy & eV, we can write x = 1, X1 + ... + in Xn for some 1, ..., In eF. (VI, X2, ..., Kut forms a basis for V when both (Y1,..., Yut is LI and spans N. Main neoutt : BASIS THEOREM . Theorem BASIS THEOREM - proof for later. of V is a non-zero vector space then i) V has a hanis, and ii) any two bases for Y have the same number of elements . dim (V) = no. of elements in a basis. Definition hence, by convention, dim (0) =0. KERNEL - RANK THEOREM . Suppose T: V -> W is linear. we associate to T two additional vector spaces. · Kennel of T: Ker(T) = 1 V. E V: T(X) = 2. } · image of T: Im (T) = { W & W: for some Y & V, T(Y) = W} ire. Intr) consists of all elements in W which are hit by the mapping T. Proof that ker(T) and Into) are vector spaces; and also the relation dim[Ker(T)] + dim [Im(T)] = dim (V) suppose V is a vector space over IF and UCV, we say that U is a vector subspace of V when Perintipul i) Q e U, ii) X, y e U then X ty e U (dosure oversaddition), iii) X e U and he IF then h X e U. since all other axioms are dueady solvified in parent subset V, U is itself also a rector space " ⇒ a vector subspace is itself a vector space. 0 € Ker (T) ·: T(2) = 2 and 2 € V. If 2, y € Ker (T), then T(x) = T(y)=2 ⇒ T(2+y) = T(2)+ T(y)=2, so 2+y, € Ker(T). 1201-028

	If x & Ker(T) and h & IF, then T(hx) = AT(x) = 2.0 = 0, so hx & Ker(T). All these conditions are fulfilled = Ker(T) is a rector subspace of V	⇒ Ker(T) is a vector space
<u> </u>	also, since Wisd rector space, Q = Im(T) since T(Q)= Q. If W1, W2 = Im(T), then W1 = T(Y1) and W3 = T(Y3) = T(Y1 + Y2) = T(Y2 + Y2) = T(Y1 + Y2) = T	$(Y_2) = W_1 + W_2 \in Im(T).$
	if we lim (T) and helf, then we T(X) so T(hX) = hT(X) = hy, and hyde lim (T), gread.	
	To prove the kernel-rank theover, we consider the generic case where both ker(T)=0, lm(T)=0.	
	We use the basis theorem to construct a basis $h_{i_1} \dots f_{i_k} $ for ker(T), dim [ker(T)] = k.	
	We also construct a baris 1 fir,, first for butt), dim [brit] = m.	
	we show E K+1 E V, then T(EK+1)= \$1	
	EK+2 GV, then T(Spr2)= f2 (a) 15,, Spermit is a book for V, i.e. need to show.	
	Ekrne V, then T(Sprn)= Pm	
(A)	a) suppose that the rectors have coefficients $\lambda_1, \lambda_2, \ldots, \lambda_{KTM}$ s.t.	
	λigitin t λkgt + λight Skell t ···· + λ keyn Skern = 0, then we must show that each λi = 0.	
128 2		
- Cm3-ro -	No $\sum_{i=1}^{\infty} \lambda_i T(\mathfrak{S}_i) = 0$; but since $\{\mathfrak{S}_1, \ldots, \mathfrak{S}_k\} \in kor(\tau)$, $T(\mathfrak{S}_i) = \mathfrak{S}$ for $1 \leq i \leq k$.	
	$krm = \frac{1}{2} \left[1$	
	$\sum_{i=k+1}^{\infty} \lambda_i T(\mathcal{G}_i) = \mathcal{Q} \implies \sum_{i=1}^{\infty} \lambda_{k+1} \mathcal{G}_i = \mathcal{Q}_i \text{for ince } \{\mathcal{G}_1, \dots, \mathcal{G}_k\} \text{ is a basis for IntT}, it is LI;$	
	so $\lambda_{KT} = \lambda_{KT} = \dots = \lambda_{KT} = 0$; so now $\sum_{i=1}^{k} \lambda_i \in i = 0$, but $\{e_1, \dots, e_k\}$ form a basis for Kerlt.	and is LI.
	hence, Vi, 1≤i≤ frm; h;=0 ⇒ set is LTA q:e-d.	
	b) let X + V. we must produce $\lambda_1, \cdots, \lambda_{Krim} \in \mathbb{T}$ st. $X = \sum_{i=1}^{K} \lambda_i \in i$	
. No	spplying T to X, then T(X) & Im (T)	
	we write $T(X) = \mu_1 \cdot \mu_1 + \cdots + \mu_m \cdot \mu_m \cdot (\mu_1, \cdots, \mu_m \in \mathbb{H})$ because $\{\mu_1, \dots, \mu_m\}$ spans by (T) .	
	consider X' EV defined by X'= M. Ext + ··· + Mm Extm. Applying T again. T(V')= M. G. + ··· + Mm Y	m -
	NO $T(\chi) = T(\chi')$ and hence $T(\chi - \chi') = Q$ i.e. $\chi - \chi' \in Ker(T)$.	
	we write y-y' = hig, + + higk, so X= hig, + + hight fill SHI + Him Show.	
	NO LEL, E2,, Skemit spans V& q.e.d.	
	an All the Million is the second of the second of the second of the second of the	6 December 2011.
	have been provide the known in the devolution in the known in the known in the known in the here is th	Prof HEA Johnson . Danih LT
	we have proven the ternel-rank-theorem for the generic case : i.e. ker(t) \$0, Im(t)\$0.	Rof HEA Johnson .
	Now, we consider special cases -	Rof HEA Johnson .
	Now, we consider special cases -	Rof HEA Johnson .
	Now, we consider special cases - $abse 1: \mu er(t) = 0$. we want dim $(v) = dim (zmT)$, then e_1, \dots, e_m maps here q_1, \dots, q_m for all zm(t).	Rof HEA Johnson .
	Now, we consider special cases - able 1. (ap.(t) = 0. $we want dim (v) = dim (Im.t), then e_1, \dots, e_m maps bein f_1, \dots, f_m for all Im(t).-(v-v') = 2 \Rightarrow v-v' \in for(t) = 0.$	Rof HEA Johnson .
	Now, we consider special cases - able 1: kar(t) = 0. $we watch dim (V) = dim (ImT), then E_1, \dots, E_m maps benic \Psi_1, \dots, \Psi_m for all Im(t).-(V-V') = 0 \Rightarrow V-V' \in for(T) = 0.for V = V' = h_1 E_1 + \dots + h_m E_m \Rightarrow dim V = m = dim (ImT).$	Rof HEA Johnson .
	Now, we consider special cases - able 1: par(t) = 0. $ble watch dim (V) = dim (ImT); then e_1, \dots, e_m maps benic \varphi_1, \dots, \varphi_m for all Im(t) --t(V-V') = 0 \Rightarrow V-V' \in par(t) = 0.ble V = V' = \lambda_1 e_1 + \dots + \lambda_m e_m \Rightarrow dim V = m = dim (ImT).con v = v' = \lambda_1 e_1 + \dots + \lambda_m e_m \Rightarrow dim V = m = dim (ImT).$	Rof HEA Johnson .
	Now, we consider special cases - $able 1. \ ker(tt) = 0$. $we want dim (v) = dim (ImT), then e_1, \dots, e_m maps benic \psi_1, \dots, \psi_m for all timett).\tau(v-v') = 0 \Rightarrow v-v' \in ker(tt) = 0.f_0 v = v' = k_1 e_1 + \cdots + k_m e_m \Rightarrow dim V = m = dim (ImT).conc 2: \ lm(tt) = 0.Then T = 0 so ker(tt) = v, so dim V = dim ker(tt).$	Rof HEA Johnson .
	Now, we consider special cases - able 1: par(t) = 0. $ble watch dim (V) = dim (ImT); then e_1, \dots, e_m maps benic \varphi_1, \dots, \varphi_m for all Im(t) --t(V-V') = 0 \Rightarrow V-V' \in par(t) = 0.ble V = V' = \lambda_1 e_1 + \dots + \lambda_m e_m \Rightarrow dim V = m = dim (ImT).con v = v' = \lambda_1 e_1 + \dots + \lambda_m e_m \Rightarrow dim V = m = dim (ImT).$	Rof HEA Johnson .
	Now, we consider special cases - $able 1. \ ker(tt) = 0$. $we want dim (v) = dim (ImT), then e_1, \dots, e_m maps benic \psi_1, \dots, \psi_m for all timett).\tau(v-v') = 0 \Rightarrow v-v' \in ker(tt) = 0.f_0 v = v' = k_1 e_1 + \cdots + k_m e_m \Rightarrow dim V = m = dim (ImT).conc 2: \ lm(tt) = 0.Then T = 0 so ker(tt) = v, so dim V = dim ker(tt).$	Rof HEA Johnson .
	Now, we consider special cases - cbe1: perct) = 0. we want dim $(V) = dim (IgnT);$ then e_1, \dots, e_m maps bond q_1, \dots, q_m for all Ignt): $-r(V-V') = 0 \Rightarrow V-V' \in kor(T) = 0$. $co V = V' = h_1 e_1 + \cdots + h_m e_m \Rightarrow dim V = m = dim (InnT)$. cbne 2: hm (T) = 0. Then TED so ker(T) = V; so dim V = dim ker(T). $canes: ker(T) = lm(T) = 0 \Rightarrow trivial.$	Rof HEA Johnson .
	Now, we consider special cases - $able 1. \ \mu er(tt) = 0$ $we want dim (v) = dim (ImT), then e_1, \dots, e_m maps beni \psi_1, \dots, \psi_m for all Im(tt) ·\tau(v-v') = 2 \Rightarrow v-v' \in \mu r(t) = 0.f_0 v = v' = h_1 e_1 + \dots + h_m e_m \Rightarrow dim V = m = dim (ImT).conc 2: \ lm(tt) = 0.Then T = 0 so kar(tt) = v_1, so dim V = dim ker(tt).conc 3: \ ker(tt) = lm(tt) = 0 \Rightarrow thinker.$	Rof HEA Johnson .
	Now, we consider special cases - cbe1: perct) = 0. we want dim $(V) = dim (IgnT);$ then e_1, \dots, e_m maps bond q_1, \dots, q_m for all Ignt): $-r(V-V') = 0 \Rightarrow V-V' \in kor(T) = 0$. $co V = V' = h_1 e_1 + \cdots + h_m e_m \Rightarrow dim V = m = dim (InnT)$. cbne 2: hm (T) = 0. Then TED so ker(T) = V; so dim V = dim ker(T). $canes: ker(T) = lm(T) = 0 \Rightarrow trivial.$	Rof HEA Johnson .
	Now, we consider special coses - d > 2 d > 2 d > 2 d = d = d = d = d = d = d = d = d = d =	Rof HEA Johnson .
	Now, we consider special coses - cose 1: partition (w) = dim (Imit); then $\mathcal{L}_1, \dots, \mathcal{L}_n$ maps book $\mathcal{L}_1, \dots, \mathcal{L}_n$ for all Imit); $\tau(v-V') = 0 \Rightarrow v-v' \in ker(T) = 0$. $\tau(v-V') = 0 \Rightarrow v-v' \in ker(T) = 0$. $\tau_0 = v = v' = \lambda_1 \mathcal{L}_1 + \dots + \lambda_m \mathcal{L}_m \Rightarrow dim V = m = dim (Imit)$. conc 2: $\lim_{t \to 0} (T) = 0$. Then $T = 0$ so $ker(T) = V$, so $dim V = dim ker(T)$. <i>Earle</i> 3: $ker(T) = \lim_{t \to 0} (1) = 0 \Rightarrow trivial.$ <i>How does the peake to what we already keron</i> ?. <i>How does the peake to what we already keron</i> ?. <i>How does the peake to make me already keron</i> ?. <i>Then</i> $T = 0$ <i>is intermarking one of F</i> . $T_A : F^A \to F^A$ is intermal and $T_A(s) = A_A^A$ (matrix product).	Rof HEA Johnson .
	Now, we consider special cores - core 1: parts = 0. We wave dim (V) = dim (ImmT); then \leq_1, \ldots, \leq_m maps boris q_1, \ldots, q_m for an ImmT). $r(V-V') = 9 \Rightarrow V-V' \leq partT = 0.$ $row V = V = k_1 \leq_1 + \cdots + k_m \leq_m \Rightarrow dim V = m = dim (ImT).$ con $V = V' = k_1 \leq_1 + \cdots + k_m \leq_m \Rightarrow dim V = m = dim (ImT).$ con $Z = im(T) = 0.$ Then T=0 is ker(T) = V, so dim V = dim ker(T). cone 3 : ker(T) = lon(T) = 0 \Rightarrow thinks. for does the part to shart me already burns? (for dues the part to shart me already burns? (for dues the part to the intermediate order F. Ta: $F^{2n} \Rightarrow F^{2n}$ is linear and Table AS counties product). Here, dim ker(Ta) + dim br(Ta) = n = dim F^{2n} . (in divisione, Ker(Ta) = $\{I \leq E^{2n}; AS = 0\}$ i.e. the solution set (in former notation, ka).	Rof HEA Johnson .
	Now, we consider special cases - $abst 1: partot = 0 \cdot \dots \dots$	Boli Aish Johnson · Danin LT ·
	Now, we consider special cases - $abst 1: partot = 0 \cdot \dots \dots$	Boli Aish Johnson · Danin LT ·
	Now, we consider special cases =	Boli Aish Johnson · Danin LT ·
	Now, we consider special cases - $abst 1: partot = 0 \cdot \dots \dots$	201 Ale Johnson · Danin LT · Danin LT · Alij Alij

Definition The columnization of man motivia A is the set of linear combinations in columns of A ie. MAXI + h2 Ax2 + ... + hn Axn As such, we see that Im (TA) = column space of A. Computing dim Im (TA) and dim Ker (TA). · When A is in reduced row earlow form, it is simple. note the columns with the leading 1s. Crentlying in the adminispace can be expressed as a linear combination of these. 50 { Age, Ages, Ages, Ages} formo a natural basis for the columnspace = a basis for Im(TA) e.g. Ax7 = Ax1 + 2 Ax3 - Ax6. ⇒ dim Im(TA)=3 so, in a reduced vow-ention matrix, dim Im(TA) = no. of dependent variables = no. of non-zero rows = no. of leading is. then also, dim Ker (TA) = no. of dependent windles = n-dim Im (TA) (as per out knowledge of the kennetwork theorem). # dependent variables + # independent variables = dim Im (TA) + dim Ker (TA) = n " When A is not in reduced form ... in general, A is an man motion over F. This gives us a linear map: $(A') \longrightarrow (A') \longrightarrow$ e ----> Pe * Pyr. Let f.,....P+ be a bisis for (a) space N); then we doin that P' f. ..., P' ft is a basis for (a) space A). (itensise, if 41, 42, ... 4'q is a basis for contespace A), then P.4., ..., P.4q is a basis for cost space A') i.e. t=q; and dim (col space A) = dim (col space A') = t=q. suppose $\lambda_1 P^{-1} q_1 + \dots + \lambda_t P^{-1} q_t = 0$ $P^{-1}(\lambda_1 \varphi_1 + \dots + \lambda_t \varphi_t) = 0$ \Rightarrow $PP^{-1}(\lambda_1 \varphi_1 + \dots + \lambda_t \varphi_t) = P \cdot 0 = 0$ so hight ... ht gt = 0; but these are it > hi=hz=...=ht=0. > (P = 1,..., P = 1; is it. let y E col space to By $\delta \cdots A^{1}$ write $ly = \lambda_{1} \varphi_{1} + \cdots + \lambda t \varphi_{1}$, so $\psi = \lambda_{1} l^{-1} \varphi_{1} + \cdots + \lambda_{t} l^{-1} \varphi_{t}$. so http: ..., P ft & spans the column space of A. so if dim (col space of A')= to then (col space of A) has a basis with t elements. so dim (ut space A) = dim (cot space A') = q=t. $\begin{array}{c} \overline{ES} \quad \mbox{for } F=\mathbb{Q}, \ \mbox{nerve} \ \mbox{nork} \ \mbox{that} \\ A=\begin{pmatrix} 1&1&1&1\\ -1&-1&-1\\ 1&1&-1\\ -1&$ > 2 Ax1, Ax2, Ax4 = {(1), (1), (2), (2)} form a boris for col-space of A' => boris for Im (TA), General solution for hX = 0 = general solution for $A^{-1}X = 0$. general solution is $\begin{pmatrix} -x_3 \\ x_5 \\ x_5 \\ x_6 \end{pmatrix} \Rightarrow X = X_3 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + X_5 \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + X_6 \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} + X_$ BASIS THEOREM We start by considering a simplified version of the EKCHAINGE LEMMA. Theorem let V be a vector space over field IF. Let (f1, ..., fn) be a sponning set for V. Let XEV (X \$ 2). Suppose &= hifi + ... + hr. fr-1 + hrfr+ ... + hnfn = where hr =0, then ifi, 12, ..., fr-1 & from fri still spans V.

1201-030 .

	Proof - since XEV, X=0, then X= X+ 4++++++++++++++++++++++++++++++++	
	No for= (tr) & + Experite (= rica field, Nr exists)	
	we doin that (f	
S. manh	so if we let $X \in V$, then we need to be able to express X as a linear combination in $\overline{\mathbb{D}}'$	
AST GOUT	we also know that we can express ξ s.t. it is a linear combination in Φ .	
	NO X = Mrgr + Fr Hefe , and by substitution,	
	$\chi = \mu_r \left[\left(\frac{1}{\lambda \mu} \right) \chi + \frac{1}{\lambda r} \frac{\lambda r}{r} \left[\frac{1}{2} t_{\ell} \right] + \frac{1}{\lambda r} \frac{1}{r} \left(\frac{1}{\lambda r} \right) \chi + \frac{1}{\lambda r} 1$	
	thus, we have seen that is can indeed be expressed as a linear combination in $\overline{\mathcal{D}}' \Rightarrow \overline{\mathcal{D}}'$ spans V_{β} give d	
	a service of a policity of the service of the servi	
	two can help us understand the full exchange lannes.	
	Refore dust, we note that if $\frac{1}{2}W_{11}, \dots, W_{n}$ is a set of rectors, if any $W_{1} = 0$, then set is not linearly independent.	
	because if $W_r = Q$, we can write $Q = 0.W_1 + 0.W_2 + \dots + 0.W_{r-1} + \#.W_r + \dots + 0.W_k$ for $\mu \neq 0$. Gostall coefficients in	war be 0).
	Theorem Full Erchange LEMMA. (by STEINITE)	
	Let V be a vector space, and 14,, 4at is a spanning set. Suppose 14,, Vet is a LI set in V, then	
<u></u>	(i) K ≤ n and (ii) there exists a spanning set if, the for V such that fi= Ii for i≤ k, and	Tt c 1 fi,, fu) for
	Proof - by induction on k.	12176
	we've already shown the case for k=1 (simplified orchange (cmma).	
	so suppose we have proven it for k-1; that means we have constructed a opaming set 4',, In such that .	
	$q_1' = y_1, q_2' = y_2, \ldots, q_{k-1} = y_{k-2}, \text{ and beyond past, for } n \ge t > k-1, q_2' \in \{1, \dots, q_n\}.$	
	we express Xk as a linear combination in fir firm. I'm	
	$Y_{k} = \sum_{t=1}^{k} \lambda_{t} \varphi_{t}^{\prime} = \sum_{t=1}^{k} \lambda_{t} \varphi_{t}^{\prime} + \sum_{t=k}^{k} \lambda_{t} \varphi_{t}^{\prime}$	
	where $\{Y_1, Y_2, \dots, Y_k\}$ is LI , $Y_k \neq 0$, so some $\lambda_t \neq 0$, we doin that $\lambda_t \neq 0$ for some $t \geqslant k$.	
	while p_1, p_2, \dots, p_k is a product of the solution of the	
	doorse r, $k \leq r \leq n$ s.t. $\lambda_r \neq 0$, by the simplified lemma,	and st
	$\{ \underline{\forall}_{1}, \dots, \underline{\forall}_{k-1}, \underline{\forall}_{k} \} = \{ \underline{\forall}_{1}, \dots, \underline{\forall}_{k-1}, \underline{\forall}_{k} \} = \{ \underline{\forall}_{1}, \dots, \underline{\forall}_{k-1}, \underline{\phi}_{k+1}, \dots, \underline{\forall}_{k} \} $	spans V.
	hence, by re-lindexing,	
	1 YI,, YEI, XE' PEN Philip Free Philip gread.	
		8 December 2011 Prof FEA Johnson.
	BASE THEOREM. Contraining ments another produces when we provide a safety product it we contrained and	Dornin LT.
	Etheorem let V be a nonzero vector spice over field IF; then had an harden to approve the harden the harden	
	(i) (existence) V has at least one basis	
	(ii) (uniqueers) sug to bases for V have the same number of elements.	
	grath wall was that for plan for solo	
	Proof of (ii) - suppose 14, 62,, Empt is a bisis for U, and also {14,, Par is another bisis for V.	
	the there is a set on the barry man is the set of the set	
	Applying the exchange lemma, we see that is,, Emp is it, and if	
	and also, we see that 14,, for is it, and 16,, End spans V = n = m	
	thus, m ≤ n ≤ m = m=n, q.e.d	
	Roof of (i) - V has at least one spanning set, namely. V itself.	
		which also erran).
	let X be a minimal operating set (i.e. a spanning set with the property that it has no proper subsets a	and the start of t
	we down that X is LI, so X is a basis. Begin by surviving otherwise, proof by contradiction	all where V
	i.e. X is not lz, so we must find a relation $\lambda_1 \otimes_1 + \lambda_2 \otimes_2 + \dots + \lambda_p \otimes_p = 0$ for some $\lambda_1 \neq 0$, $\lambda_p \otimes_p = -(\lambda_1 \otimes_1 + \dots + \lambda_{p-1} \otimes_{p-1}) \Rightarrow \otimes_p = \sum_{i=1}^{p-1} (-\frac{\lambda_i}{\lambda_p}) \otimes_i$, Define $X = X \setminus \{ \otimes_p \}$: As X optims, X's	
	$\lambda_P \stackrel{\text{def}}{=} = -(\lambda_1 \cdot w_1 + \dots + \lambda_{P-1} \cdot w_{P-1}) \Rightarrow W_P = \inf_{i=1}^{P-1} \cdot \lambda_P r^{-1} \cdot \lambda_P r^{-1} \cdot \lambda_P \cdot $	uo sours.
	holder and the second of the second second second the second seco	1201-031

note: the existence proof we have covered is simple if we assume that V has a finite spanning set. However, for some vector spaces, they have infinite spanning sets (will be covered in "FUNCTIONAL ANALYSIS"). 13 December 2011 Prof FEAJohnson PERMUTATIONS (control). Dowin IT. A germutation on a letters is a bijective mapping o: 11,2,...,n) -> (1,2,...,n). We have shown that 1) Any permutation or is a product or = C1... Cm. where each ciris a nucleic permutation, and ci, cj are digiont for it j. In partimeter cicj = cjci Viij. Definition The order of or = the least N=1 such that on = 1d. (by convention, o"= Id). Because $C_i C_j = GC_i$, then $o^{-k} = C_i C_2 \dots C_m$, each C_i^k is a cycle. In order for ot = 1d, we need each Ci=id. The order of Ci= length of Ci. Proposition - and (0) = law (length Ci), where $\sigma = C_1 ... cm (product of diginar cycles).$ $\overrightarrow{BR} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\ 4 & 12 & 1 & 3 & 13 & 5 & 7 & 6 & 2 & 10 & 9 & 11 & 8 \end{pmatrix}$ then o = (1,4,3)(2,12,11,9)(5,13,8,6)(9)(10), c4 = C5=1d or = ch ck ck Ck = ld only where h is a multiple of 3 ; likewise ck - 4 and ct - 4 as so. in order to get or t= 1d, we need to be a multiple of both 3 and 4. and (0) = lam (3,4) = 12/1 We have also shown that i) a cycle of length m is a product of m-1 transpositions. ii) & transposition is a product of an odd number of adjacent transpositions ii) when length (c) = m is odd, then c is a product of an even number of adjacent nempositionswhen length (C) = m is even, then c is a product of an odd number of adjacent transportitions. Definition sign of o, sign (o) is defined such that · if t is a product of an even number of adjacent transportions, sign () = 1. · if o is a product of an odd number of adjacent transportions, sign (o) = -1. this only makes sense if we can show that: Theorem It is impossible to write a permutation or as a product of both an even and odd number of adjacent transpositions. Loplace's Formula for the sign of a permutation. $\sigma : \{1, \dots, n\} \longrightarrow \{1, \dots, n\}$ $\xrightarrow{\text{TT}} \left[\frac{1}{|\sigma_i|^2} - \frac{1}{|\sigma_i|^2} \right] \xrightarrow{\text{TT}} \left[\frac{1}{|\sigma_i|^2} - \frac{1}{|\sigma_i|^2} \right]$ $\text{then there are } \underline{n(n-1)} \xrightarrow{\text{terms in each product.}} \xrightarrow{\text{terms$ then we will show that sign (0) = TT (0) : this is a theoretical took, not a practical method. refine $L(\sigma) = \prod_{i \in i, j \in N} \sigma(j) - \sigma(i) \left[also dust <math>T(\sigma) = \frac{L(\sigma)}{L(d)} \right]$ Proposition - If I is an adjacent transposition, then L(o-T) = -L(o-T); -Br some permitistion o.

Roof - we fix the transposition T do T= (p, p+1). we distinguish several sets i seven in total): 1212 于(1)={(1,j):1≤1≤1≤1≤1= is jy F(2)={(ij): 1≤i<j=p} V KJ F(3)= {(1,j): 15 isp(jarl) IN KJ F(4)={(i,j): i=p,j=p+1} in in 57(5)={(i,j): :=p<p+1<j} Ki Ki 3(6)= { (i,j): i=p+1 < j } 443 F(7) { (1,j): pri<i < j } Pt Refine $L_{\Gamma}(\sigma) = \prod_{i,j) \in \overline{f}(j)} (\sigma(j) - \sigma(i))$, so $L(\sigma) = \prod_{i=1}^{T} L_{\Gamma}(\sigma)$. only places where a swap occurs . now we check . $L_1(\sigma \tau) = L_1(\sigma)$, $L_2(\sigma \tau) = L_3(\sigma)$, $L_3(\sigma \tau) = L_2(\sigma)$, $L_4(\sigma \tau) = -L_4(\sigma)$. L5 (0T) = 46 (0), 46 (0T) = 45 (0), 47 (0T) = 44 (0). so, $\vec{T}_1 \perp_r(\sigma \tau) = -\vec{T}_1 \perp_r(\sigma)$, and thus $\lfloor (\sigma \tau) = -\lfloor (\sigma) \rfloor_r$ q.e.d. Corollony - let a be a permutation, T1, ..., The be adjacent transpositions then $L(\sigma T_1 \cdots T_k) = (-1)^k L(\sigma)$. Proof - Each time we perform a I operation, we change the sign by -1. conditions - if Ti, ..., The are adjacent transpositions, then TT (T1 Tk) = (-1)k. Corollony - Sign of permutation is well-defined, and sign (0) = TI(0). Corollony - TT(po) = TT(p) TT (0). Roof - wite p= TI ... TK., o = Tktl ... TKtm. then TT(po) = (-1) K+M = (-1) K (-1) = TT(p) TT(0), g.e.d. corollony - sign (po) = sign (p) sign (o) How to compute the sign - in practice. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 6 & 3 & 2 & 1 & 4 & 9 & 16 & 5 & 13 & 7 & 11 & 8 & 12 \end{pmatrix}$. Find sign (0). EX o= (1, 6, 9, 5, 4) (2, 3)(7,14, 12, 11) (8, 10, 13) $sign(\sigma) = \prod_{r=1}^{4r} sign(c_r) = \prod_{r=1}^{4} (-1)^{lorgth} (c_r)^{-1} = (-1)^{5-1} (-1)^{2-1} (-1)^{2-1} = (-1)^{4} (-1)^{1} (-1)^{3} (-1)^{2} = (+1)(-1)(-1)(+1) = +(-1)^{3} (-1)^{2} (-1)^{2} = (+1)(-1)(-1)(-1)(+1) = +(-1)^{3} (-1)^{2} (-1)^{$ order (0) = (cm (5,2,4,3) = 60. DIMENSION what exactly do we mean by the "dimension" of 2 vector space? by definition, dim (V) = number of elements in a basis. suppose dim (V) = m = 1 and let {9, 9m} be a basis. we know that T^{-m} also has dimension m, and T^{-m} has a standard basis $\{e_1, \dots, e_m\}$, where $e_i = \binom{n}{2}$ are. Any vector XEV can be expressed uniquely in the form X = X, Li + ... + Xn for XiE FF likewise any vector & e IF can be expressed uniquely as i = x, e, + ... + ×m =m consider the mapping Y: F" -> V, where of (in) = x; 4; + x242+... + xm4m. then we have: Proposition - I' is a linear map, and I is bijerive.

Proof - 3 (x+y) = 3 (x+y) = (x+y) = (x+y) fi + ... + (x+y) fin = x+fi + ... + x+ fin + sifi + ... + y+fm = 2(2)+ 2(4). likenice, & () = & r(y) / ged. & is surjective because 141, ..., 9m3 spons V. i.e. VY EV we can write X= X, 97+...+ my fm = 8(X). D is injerive ··· { f., fm) is II. 8(x) = D(y) → (x-y) fi + ... + (xm - ym) fm = Q → xi=y; ·· II of @ → x=y. so 8 a hjertive, ged This means that I has an inverse map c: V -> Ft, called the coordinate map. $c(\chi) = (\chi_m) \iff \chi = \chi_1 f_1 + \chi_2 f_2 + \dots + \chi_m f_m$ so if X= X, g, + ... + Xm fm, then (X, ..., Xm) are the "coordinates" of V with reference to (g, ..., Pm). coordinates were a mainstay of 19th annung mathematics, until D. Hilbert's innovation of geometric notation: using X = X12, +... + Xm 2m so, we deduce that a vector space of dimension in behaves ensuring like II. Not every V is an IF" but it does where are IF". EN consider V= { & e [3 e [3 : x1 + x2 + x3 = 0]. V has dimension 2. quick method to domanthate: write T: F3 -> F, where T(X2) = X1 + X2+X3. Tic linedr X e V 👄 T(X)=0. T is surjective . T(3)=λ for any λ, V= ker(T). → dim ker(T) + dim Im(T)=3, so dim(V) +1=3 so dim(V)=2. standard method gives baris for V. motives of T w.r.t. chamberd loses. (1,1,1) $\Rightarrow x_1 = -x_2 - x_3$, $f_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$, $f_2 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$. any KEV has from N= X+P1 + X2 P2; so V # #2. Handrer V behaves exactly like IF? (1) The (1) (notation: V=W). [Definitional Let V. W be vector spaces over IF. We say that V and W are isomorphic if I bijertive linear map T: V - a W isomorphic Theorem V≅ ₽^m dim (V) = m $V \cong W \iff \dim(V) = \dim(W)$ If $T\colon V\to W$ is linear bijective, then T is said to be an isomerphism. Proposition - if T: V -> W is linear bijective, then T': W -> V is also linear bijective. Proof - bijection of T sutomstickly shown by existence of T for T; so we only need to show linearity. T'(W, + W2) - T'(W1) - T'(W2). Then if we apply T, since T is linedr, T [T-1 (W1+ W2)-T-1(W1)-T-1(W2)] = TOT-1 (W1+W2)-TOT-1(W1)-TOT-1(W2)= W1+W2-W1-W2=2. but T is injective, so $T^{-1}(w_1 + w_2) - T^{-1}(w_1) - T^{-1}(w_2) = 0$, and $T^{-1}(w_1 + w_3) = T(w_1) + T(w_3)$. likewise, we consider. T[T'(1))- NT'(1)]=0, so T'(1)= NT'(1) by sublegous degenerate qued. other properties of isomorphism -•V≌W ⇔ W≌V. · U IV and VIN > UIN FINITENESS . The concepts of finite and infinite sets. imagine if f: 10, 1, 2, 3} -> 10, 1, 2,3} is in injection. e.g. 0 1 2 3 note that if f is injective, it is dutomanically any extrine.

1201-034.

On the other hand, consider $N = \{1, 2,\}$ where $g: N \rightarrow N$, $g(n) = n + 1$
where g is injective here, it still is not surjective : 7 \$ 1m (g)
and the second state of B (Consen) in the set of the man connective
Definition A set A is called firsts when every injective map f: A -> A is also surjective.
For instance, (1, 2,, n-1, N) is finite, but IN is infinite.
A china of white only a state of the second
Question: To what extent is 1N 2 "typical" infinite set?
there are a subscription of the standard
Technitical An infinite set A is called constants where exists a bijective mapping f: IN -> A. (where OG IN)
For instance, IN is convertable, take f=1d
It is countable, since $\pi t = \{n \in \mathbb{N} : \le h\} = \{1, 2, \dots, n, n\}$
Them we define for I as find the them and the states
However, this leads us to Galileo's pavadox.
It is countable because f: NH2 20's -> N, f(n)=n+1 is bijective; f=0(m)=m-1 (m>1).
this implies that one can take a proper subset of an infinite set, which is still infinite. which imfinity is larger?
The second of read to be the second second second
Our notion of counsebuility is built upon foundations of antor set theony.
N $ 0 1 2 3 4 5 1 2 2 2 2 2 2 2 2 2$
~ 2
-4 -3 -2 -1 q 1 2 3 4 5 We define $q: N \rightarrow \mathbb{Z}$. -4 -3 -2 -1 q 1 2 3 4 5 We define $q: N \rightarrow \mathbb{Z}$. So the motive counting principle. $q(2n)=n$, $q(2n+1)=-(n+1)$. [two cases]
an attendive counting principle. Junior , Junior (1971) Livo cases
Then g is bijective.
Take IN X IN jois that countable? Yes.
(9,2) (2.2) Hove, we approach the problem the other way round.
(0,D = (1), (1,2) (0,2) (0,1) (0,1) (0,1) (0,1)
(0,0) (0,1) (0,2) Ther intrance, $\Psi(0,0) = 0$, $\Psi(1,0) = 1$, $\Psi(0,1) = 2$, $\Psi(2,0) = 3$
We know that \mathbb{Z} is bijective, so $\mathbb{Z}^{1}: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ is also bijective \Rightarrow
NX IN is countable.
Corollary — If A_1B are countable infinite sets, then $A \times B$ is countable. $B \longrightarrow C$ $N \longrightarrow A \times B$.
though - take effections 1. IN S. H. J. M. C.
Define 1 in - AXB by - LT JI
Corollary - if A1, A2,, An are countable, then A1 × A2 × × Am is also countable.
Proof - think of B= A, X A2X X Am-1, then A, XA2X XAm-1XAm = BX Am.
by induction. B is countable, so hence BXAm is countable.
Think of "mathematical alphabet" as being a countable set, which includes.
$\mathcal{A} = \{+, -, \cdot, -, \mathbb{N}, a, b, \dots, z, a', b', \dots, z', \dots\}$, then \mathcal{R} is a countable set.
This implies that a mathematical expression of length n is an element in the , where $A_n = A \times A \times \ldots \times A$
tout An is countable, so, the totality of mathematical expressions is No An.
BOWN IN IT D COMMODIC, ON THE MIDNING of Manualter oppressions in NST
Reportion - nos An is countrable.

Proof - For each n, let Pn: N -> An be bijedive.

Get c:
$$N \rightarrow N \longrightarrow UAn$$
, so $c \circ T^{-1} : N \rightarrow N An$ is hijective / g.e.d.

Theorem LÖWENHEIM-SKOLEM THEOREM: The set of all possible mathematical expressions is countable.

In Analysis, one is required to believe the following statement. Uncounstablishing of IR (contor): The set IR is not counstable. Boof by analogy, contor's diagonal trick: let S be infinite subsets of IN, contor showed that S is not countable. we write each element of E B as an increasing sequence, i.e. $d = (d_0 < \alpha_1 < \alpha_2 < \dots < \alpha_n < \alpha_{n+1} < \dots)$ Suppose I is inversible $\chi^{\circ} = (\chi^{\circ}_{0} < \chi^{\circ}_{1} < \dots < \chi^{\circ}_{n} < \dots$ $\alpha^{i} = (\alpha^{i}_{p} < \alpha^{i}_{1} < \cdots < \alpha^{i}_{n} < \cdots$ $d^{n} = (d_{0}^{n} < d_{1}^{n} < \dots < d_{n}^{n} < \dots$ Then we define $\beta \in \mathcal{F}$ by $\beta n = \sum d_j^i + n$; then $\beta n \in \mathbb{N}$. we see then, clearly, that β is not in the list because dif < βr for any r. which contradicts countability assumption 1 g.e.d. Then ... we see that IR is at least as big as P. let d= (do < di, < ... < dn < ...) & g Write down decimal with 0,15. $f(\alpha) = f(\alpha) \circ f(\alpha)_1 \dots f(\alpha)_n$ $f(\alpha)_r = \begin{cases} \circ & if r & f \\ 1 & if r & g \end{cases}$ so fR is not countable. This leads, in turn, to an argument with the lowenheim-skolen theorem. END OF SYLLABUS.