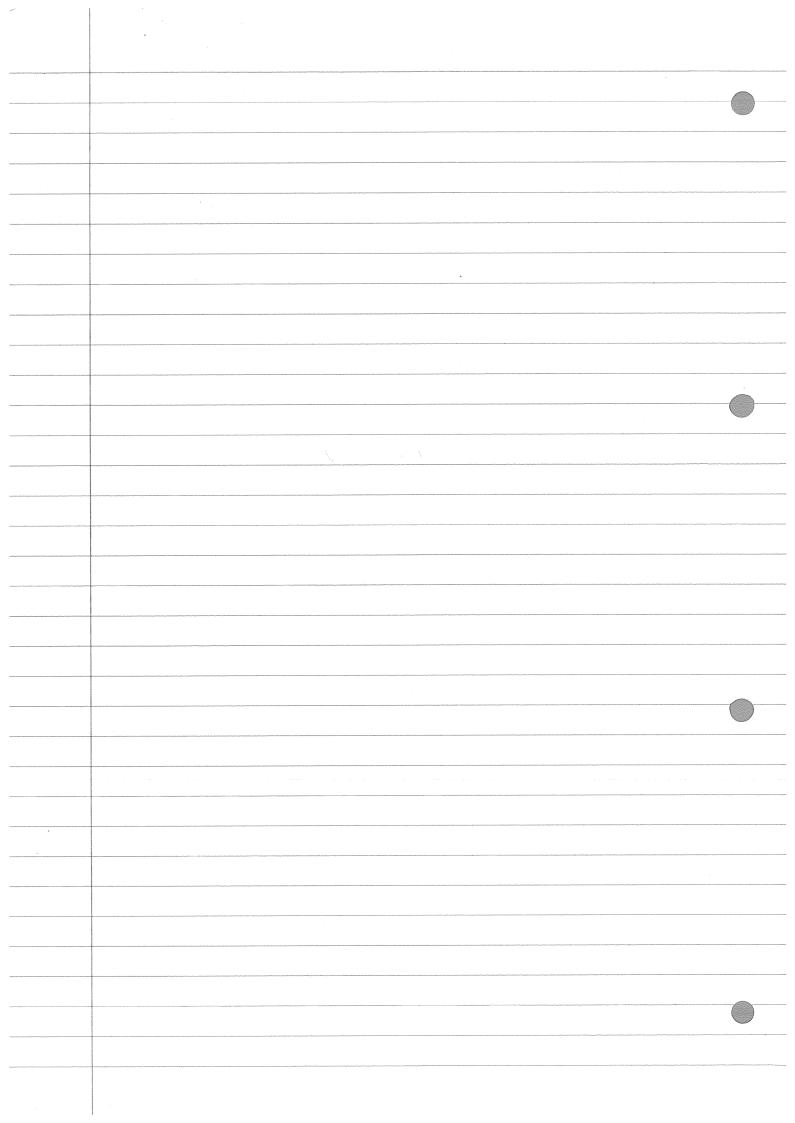
1401 Mathematical Methods 1 Notes

Based on the 2015 autumn lectures by Dr C G Böhmer

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility whatsoever for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.


5/10/15 c. boehmer@ucl.ac.uh 21 1401 - Methods 1 Office hour Mon 2-3pm Vectors test after R.W. · Vectors Prop-box 1 (by Monday) · Complex numbers (last year: one 65%) · Integral calculus · 1st order ODE · And order ODE · Probability 1. Vectors Introduction: Some things in nature require more than just one number. Temperature, for instance, is a scalar feld, however the temperature field on the surface of the Earth requires more information, like the location. A force on the other hand, has a strength and a direction. Other examples are velocities, accelerations and displacements. We will describe these types of quantities using directed line segments or arrows. * Working definition: Vectors are directed line segments for which we can define a mathematically, physically or geometrically meaningful (and also useful) rule of addition. We define addition of vectors by the parallelogram or triangle rule.

Experimenting with springs, for instance,

shows that forces do behave in this way.

Two opposing press or displacements can cancel each other, therefore we will need to define the concept of a zero vector. * Note: In Algebra vectors will be studied as 'n-tuples' of numbers (x, x, x3, ... xn). This is a much more axiomatic approach than the geometrical treatment given here. Both formulations can be related by writing vectors in a special basis. We will always work with a special basis. *Notabion - Points are denoted by capital Latin letters, A. B. C.... - The vector from A to B is denoted by AB. This vector is equivalent to all vectors obtained by parallel displacement of AB. All such vectors have the same direction and the same length. The vector character is often indicated by an underline, as in u, mainly used on boards and old textbooks. Modern books use u. The length or modulus of the vector AB is denoted by IABI or AB. The length of u or u is denoted by 141 or u. denoted by 141 or u. -A vector of length 1 is called a unit vector and is indicated by a hat. We write $u = u\hat{u}$. Notation can be tedions, we try to avoid $|\hat{u}| = 1$!

Addition of vectors and multiplication by a scalar Our definition of vector addition obeys the commutative and associative laws: (u+v)+w=u+(v+w)An important operation on vectors is multiplication by $u \Rightarrow u + u = 2u$

09/10/15 1401 L2 We can deduce that hu is a vector in the direction of u and 1-times as long if 1>0. For 140, the vector hu is in the apposite direction of u and 111-times its length. We need to define a zero vector, denoted by Q.
This vector has zero length and an unspecified direction. We have the obvious relation The zero vector allows us to define the 'inverse' of a vector. Let u and v be two vectors such that u + v = 0 = v + uthen we will write u = -v. from our geometrical approach we have u = (-1)v. We can call this the regative of the vector. The parallelogram rule also applies to $\lambda(u+v)$, which means $\lambda(u+v) = \lambda u + \lambda v$. There are two distinct ways of drawing a set of orthogonal (all at right angles) and normal (all of unit length) axes. One speaks of an orthonormal axes. One can define it in a right-handed and a left - handed way.

TRH TZ (LH) TZ

X y y x

We will always use a right-handed system. Along our Cartesian axes we will define unit vectors. They are denoted by i, j, k along the x, y, z axes, respectively. The translation of the origin O to the point P with coordinates (2, y, z) is given by the vector xi + yj + zk. Sometimes we write x i + yj + zk = pc y z zwith the identification: The vector S = 2Ci + yj + 2k is generally called the position vector of the point P, relative to the origin O. By convention we say that the point A has position vector a and has distance a or I a I from the origin. * Note: We could also choose the triple $\frac{i+j}{12}, \frac{i-j}{12},$ One can check that every vector can be written as a linear combination of this new basis. This basis is not aligned with the Casterias axes.

09/10/15 1401 22 Example 1: Let us try to express the vector joining A and B using the position vectors a and b, relative to the origin O. So b-a is the position vector of B relative to A Equation of a straight line
We want to write a relation which gives the
position vector (relative to some origin) of all points
on a given line.
Let us define this simply by the requirement
that two points, A and B, on that line. We can now define any point on the line by the relation $r = \vec{O}A + \lambda \vec{A}B$ where λ is an arbitrary parameter with IER. This is the parametric equation of a staight line. As I varies,
The position vector of a point P moves along the line. We saw AB = b-a and hence we can write r = OA + > AB $= \alpha + \lambda (b - \alpha)$ We could also write $r = wa + 6b, \quad w + 6 = 1$ Note: that r=a+16 is also a straight line, but not the line through A and B. The position vector r=wa + 05 for arbitrary w and three points A, B, O. The prescription wto=/ will

restrict the position vector is to be on the line through A and B. Exercise 1: Think about the straight line which would be obtained when w+ o=n where n is a natural number, hook for a pattern. Example 2: Assume that the three points A, B, C
lie on a straight line and consider the
relation AC = M CB for some arbitrary (real)

u. What does this mean geometrically?

let u=1: AC = CB

C is the midpoint between A and B.

AC = \frac{1}{2}CB \Rightarrow 2AC = CB

AC = \frac{1}{2}CB \Rightarrow 2AC = CB

AC = \frac{1}{2}CB \Rightarrow 2AC = CB

AC = \frac{1}{2}CB \Rightarrow 2AC = CB M = -2: $\overrightarrow{AC} = -2\overrightarrow{CB} = 2\overrightarrow{BC}$ $\Rightarrow now B$ is the midpoint between

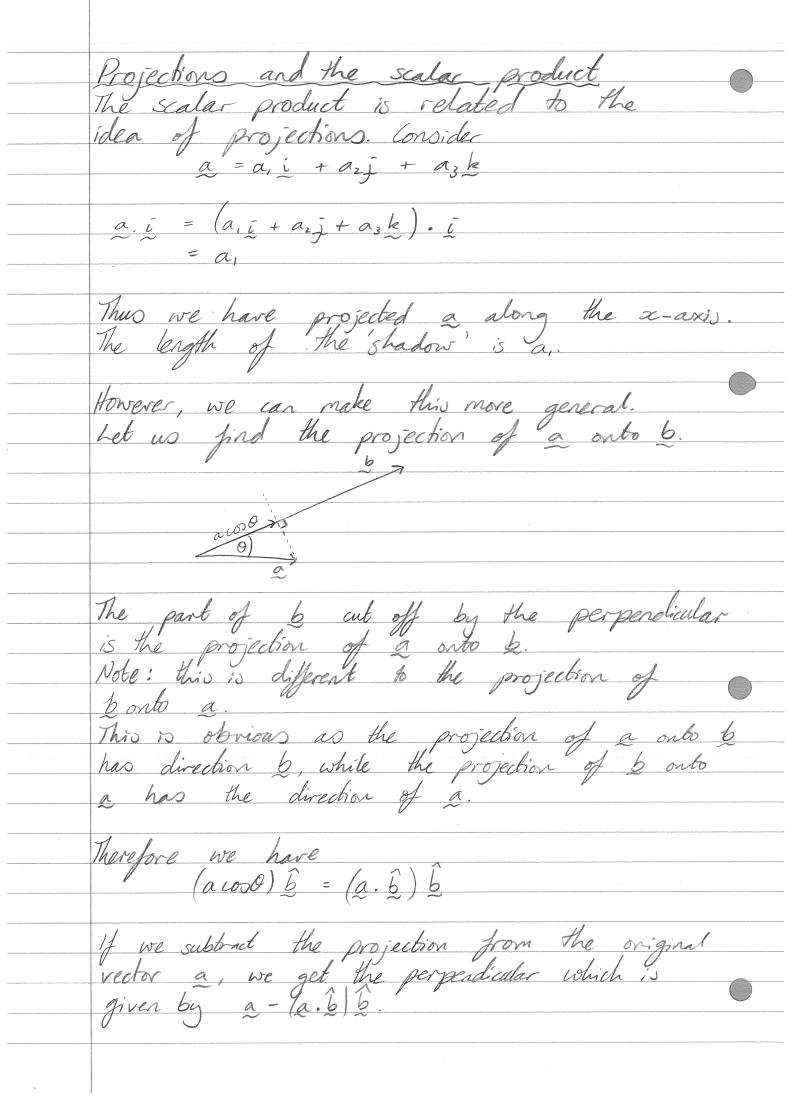
A and C. A B. C. Exercise 2: Discuss M = 0 and M =-1

It is common common to use the phrase 'C divides AB internally in the ratio $\alpha:\beta'$ to mean $AC = \frac{\alpha}{3} \vec{c} \cdot \vec{l} \vec{d} \Rightarrow \beta \vec{A}C = \alpha \vec{C}B$. The term 'externally' is used if the ratio is negative. Let us consider the relation $A\hat{C} = \mu \hat{C}\hat{B}$ and let us try to solve for the position vector \hat{C} . We have $\hat{A}\hat{C} = \hat{C} - \hat{a}$ cB = c-b $\overrightarrow{AC} = \mu \overrightarrow{CB}$ $\Leftrightarrow c-\alpha = \mu(b-c)$ $(\Rightarrow c(1+\mu) = a+\mu b$ We can divide by $1+\mu$ provided that $\mu \neq -1$, which gives $C = \frac{1}{1+\mu} \frac{\alpha}{1+\mu} + \frac{1}{1+\mu}$.

Which $\mu = \frac{\alpha}{8}$ would give $c = k b + \beta a$ $x \neq \beta \qquad x \neq \beta$ which as before we can write $c = wa + \sigma b \qquad w + \sigma = 1.$ So we are back to the equation of a straight line. Using Cartesian coordinates and writing vectors as triples we have $\begin{pmatrix} x \\ z \end{pmatrix} = \begin{pmatrix} 1-x \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$.
This gives us the coordinates (x, y, z) as the

 $\lambda = 2c - a_1 = y - a_2 = z - a_3$ $b_1 - a_1$ $b_2 - a_2$ $b_3 - a_3$ Hence there is no need to mention the parameter & which is why it is often not written explicitly. This form of the equation of a straight line is called the implicit form (no explicit x). *A straight like can be written as: $\frac{x-a_1}{b_1-a_2} = \frac{y-a_2}{b_2-a_3} = \frac{z-a_3}{b_3-a_3}$ Example 3: Let a straight line be given by $\frac{5\ell-2}{3} = \frac{9-1}{4} = \frac{7-3}{2}$ $= \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} + \lambda \begin{pmatrix} b_1 - a_1 \\ b_2 - a_2 \\ b_3 - a_3 \end{pmatrix}$ $\Rightarrow \left(\begin{array}{c} x \\ y \\ \overline{z} \end{array} \right) = \left(\begin{array}{c} 2 \\ 1 \\ \overline{3} \end{array} \right) + \left(\begin{array}{c} 3 \\ 4 \\ \overline{2} \end{array} \right)$ Note: (3,4,2) is not on the line as it is b-a.

09/10/15 1401 22 Example 4: Given a trapezium ABCD with AB/Ici Show that the line joining the midpoints of the diagonals is parallel to AB and CD. Show that its length is the mean of AB and We take A to be the origin.


By assumption $\overrightarrow{DC} = \underline{C} - \underline{d} / \underline{b} = \overrightarrow{AB}$ from the figure we have: $\frac{1}{AE} + EF + FB + BA = Q$ $\frac{1}{2}C + EF + \frac{1}{2}(b-d) - b = Q$ ⇒ EF = b - ½ C + ½ (d - b) 12/10/15 L3 » Ef = 1/2 b - 1/2 c + 1/2 d $\Rightarrow EF = \frac{1}{2}(b-c+d) = \frac{1}{2}b + \frac{1}{2}(d-c)$ By assumption, b is parallel to (d-c) and thus we have shown the first statement. Since EF, b and d-c are parallel let us introduce a unit vector pointing in the direction of EF. We call this vector \hat{u} . $EF = \frac{1}{2}b + \frac{1}{2}(d-c)$ $EF | \hat{u}| = \frac{1}{2}|AB|\hat{u} - \frac{1}{2}|DC|\hat{u}$ Therefore we find $|EF| = \frac{1}{2}(|AB| - |DC|)$

A		
	If the trapezium is changed to a rectangle, the points E and F would coincide which is in agreement with the minus sign.	
	E and F would coincide which is in agreement	
Notes and and resident resident resident and an analysis of the Astrophysics and resident and analysis of the	with the minus sign.	et voormente assessinske teknik konstruen an assessa kaleis
	The scalar product	
	The angle between two vectors a and b is define	d
	as the acute and between the directions of a	
	The scalar product. The angle between two vectors a and be is defined as the acute angle between the directions of a and b.	Stade of Communication of Asia Asia State Court of St. Mills (Pr. son Assault)
	Since vectors obtained by parallel displacement are equivalent, we can always translate both vectors so they begin at the same point.	n na
	equivalent, we can always translate both vectors so	that
	thous begin at the same point.	
	, AB	
	2/	
	A	
Annual An		
	We define the scalar product to be the number	
	We define the scalar product to be the number a.b = a b cos 0 = a bcos 0	
details and side of the state o	(a) a b = cos 0	
	$\frac{6}{ a } \frac{a}{ b } = \cos \theta$	
	$\Leftrightarrow \hat{a} \cdot \hat{b} = \cos \theta$	
	This definition implies the following grower tes:	
	This definition implies the following properties:	
	$(ii)(\lambda a).b = a.(\lambda b) = \lambda(a.b)$	
		9

12/10/15 1401 43 Let us now consider the possible scalar products of i, j, k i.k = 0 i.j = 0 i.i=1 j.j = 1 j.k= 0 j. = 0 k.k = 1 k. i = 0 k.j=0 Let us next consider the scalar product of two vectors: $a = (a_1, a_2, a_3)$, $b = (b_1, b_2, b_3)$ (a, i + a2 j + a3 k) (b, i + b2 j + b3 k) $= a_1 b_1 \underline{i} \cdot \underline{i} + a_1 b_2 \underline{i} \cdot \underline{j} + \dots + a_3 b_2 \underline{k} \cdot \underline{j} + a_3 b_3 \underline{k} \cdot \underline{k}$ $= a_1 b_1 + a_2 b_2 + a_3 b_3$ This is due to 6 out of the 9 terms varishing. The scalar product satisfies a 'product' rule: a.(b+c) = a.b + b.c Exercise: Show this directly using a=a,i+a,j+a,k

Length of a vector. The scalar product of a with itself gives We know a.a = a,2 + a2 + a3 which is Pythagoras' Theorem in three dimentions. Having defined the length of a vector, we can always define $\hat{a} = \frac{a}{\sqrt{a \cdot a}}$ The angle between two vectors We can rearrange the scalar product definition as follows $\frac{\cos \theta = a \cdot b}{ab} = \frac{a \cdot b}{\sqrt{a \cdot a} \sqrt{b \cdot b}}$ Example: The angle between the vectors (1,1,1) and (1,2,1) is co0 = 1.1 + 1.2 + 1.1 $\int_{1^{2}+1^{2}+1^{2}}^{1^{2}+2^{2}+1^{2}} \sqrt{1^{2}+2^{2}+1^{2}}$ $= \frac{4}{\sqrt{3}\sqrt{6}} = \frac{4}{3\sqrt{2}} = \frac{3\sqrt{2}}{2}$

12/10/15	1401
	Vector equation of a plane
	We have seen previously that the equation of a straight line can be written as $r = \omega a + \sigma b$ with a constraint on ω and σ .
16/10/15 L4	We can 'more' this plane away from the origin of by displacing it by some vector c. Any point on that plane would be given by \(\tau = C + wa + \sigma b. \)
	Note: This plane does not contain the points A, B, C. A * B C C C C C C C C C C C C C
	The plane containing. These points A, B, C can be written as $ \Gamma = C + \lambda CA + \mu CB $ $ = C + \lambda(a-c) + \mu(b-c) $
	We can rewrite this as $r = (1 - \lambda - \mu) c + \lambda a + \mu b$
	We could also write this plane as $r = \alpha \alpha + \beta b + j c \text{ with } \alpha + \beta + j = 1.$
	For arbitrary a, B, J, this is any point in 3D space. With one constraint this becomes a plane (2D space).

16/10/15 1401 L4 Check the angle between the projetion and the perpendicular [a-(a.6)b]. [(a.6)b] = a. (a. b)b - [a. b)b]. [a. b)b] $= (\underline{a}.\underline{b})\underline{a}.\underline{b} - (\underline{a}.\underline{b})^2\underline{b}.\underline{b}$ $= (a.b)^2 - (a.b)^2 = 0$ Therefore we can decompose any vector a into two pieces relative to another vector b. One part along b and one perpendicular to it. $a = (a \cdot \hat{b})\hat{b} + [a - (a \cdot \hat{b})\hat{b}]$ $a \cdot (b + c) = a \cdot b + a \cdot c$ Prove this using projections. b Taa'a" hikewide a(b.c) + (a.b)c

Direction covines

Let \hat{a} be a unit vector which we write $\hat{a} = \hat{a}, \hat{i} + \hat{a}, \hat{j} + \hat{a}, \hat{k}$ We define the direction cosines l, m, n to be the argles α , β , j between $\hat{\alpha}$ and the Cartesian axes. Since $\hat{\alpha}$, \hat{i} , \hat{j} , k all have unit length $l = \hat{a} \cdot \hat{i} = \hat{a}_i = \cos \alpha$ $M = \hat{a} \cdot \hat{j} = \hat{a}_i = cos \beta$ $n = \hat{a} \cdot k = \hat{a}_3 = cosp$ Index rotation.
The index rotation is a very powerful method to handle equations using vectors.
Some identities which take pages to prove can often be proved in one or two lines. firstly we will write $\ell_1 = i$, $\ell_2 = j$, $\ell_3 = k$ Then we can write $a = a_1 i + a_2 j + a_3 k$ = a, e, + azez + azez $\Rightarrow a = \sum_{i=1}^{3} a_i e_i$ Whenever we have equations involving vectors,
there may be many summations involved.
In order to simplify this notation we will will follow
the Kinstein summation convention. This states: We sum over twice repeated indices and drop the summation symbol. We will write a = aiei. 16/10/15 1401 LA The scalar product of the i,j,k looks like an identity matrix.

We define ei.e; = di; = {1 if i = j}

d is called Kronecker delta. Example the scalar product of two vectors We have a = aiei and b = bie; a.b = aiei.bjej a.b = aib; (ei.ej) $a.b = aib; dij = \underbrace{\tilde{z}}_{i=1}^{2} \underbrace{\tilde{z}}_{i=1}^{2} a_{i}b_{j} d_{ij}^{2}$ $\underbrace{ecall}_{a.b} = a_{i}b_{i} = \underbrace{\tilde{z}}_{aib}_{i} = a_{i}b_{i} + a_{2}b_{2} + a_{3}b_{3}$ $\underbrace{a.b}_{i=1}^{2} = a_{i}b_{i} = \underbrace{\tilde{z}}_{aib}_{i} = a_{i}b_{i} + a_{2}b_{2} + a_{3}b_{3}$ Vector equation of the plane II
Let A be a given point on the plane, and
let a be a normal vector to the plane.
We can always find \hat{n} . If r is the position vector of a goint P in the plane, then the vector AP lies in the plane. Therefore it must be normal to a. We can define a plane by saying that is the position yector of a point P in the plane if ñ. (r-a)=0

This is equivalent to n.r=n.a=c=const. the number c has a neat geometrical interpretation. $\hat{n} \cdot r$ is the length of the projection of \underline{r} onto \hat{n} . Therefore, c is the minimum distance of the plane from the origin what is the minimum distance from 3x +2y+2=1 $|\Omega| = \sqrt{3^2 + 2^2 + 1^2} = \sqrt{14}$ We divide by $\sqrt{14}$ $\frac{3}{\sqrt{14'}}$ $x + \frac{2}{\sqrt{14'}}$ $y + \frac{1}{\sqrt{14'}}$ $z = \frac{1}{\sqrt{14'}}$ $\Rightarrow c = \frac{1}{\sqrt{14^7}}$ The vector product axb (sometimes anb) is defined to be the vector where O is the angle between a and b and c is a unit vector, normal to both a and b. The triple a, b, (axb) should form a right harded set of vectors. Some properties are: (i) axb is a vector $(ii)(\lambda a) \times b = a \times (\lambda b) = \lambda(a \times b)$ (iii) axa = 0 This final property follows from the fact that we

16/10/5 1401 LA require a right-handed set Let us consider all possible vector products of our basis vectors i, j, k. $i \times i = 0$ $i \times j = k$ ixk=-j $j \times i = -k$ $j \times j = 0$ jxk=i $k \times i = j$ $k \times j = -i$ $k \times k = 0$ We note that this array of equations is skew-symmetric thoing index notation we can write

Lixe; = Eijkek

where Eijk is the Levi-Civita symbol (or permutation symbol, antisymmetric symbol or alternating symbol). It is defined by Eijk = \$0 if any two indices are equal +1 if ijk is an even permutation of (ijk)

-1 if ijk is an odd permutation of (ijk) This means $\mathcal{E}_{123} = \mathcal{E}_{312} = \mathcal{E}_{231} = |$ ever permutation swap two $z \in \mathbb{Z}_{13} = \mathbb{Z}_{321} = \mathbb{Z}_{132} = -1 \in \text{odd permutation}$ indices and $\mathbb{Z}_{132} = -1 \in \mathbb{Z}_{132} = -1 \in \mathbb{Z}_{132} = -1 \in \mathbb{Z}_{132}$ and $\mathbb{Z}_{132} = -1 \in \mathbb{Z}_{132} =$

The Levi-Civita symbol satisfies the following Eijk Einn = djmdkn - djndkm Einn Ejmn = 2dij Eisk Eisk = 6 Exercise: Prove these identities. Let us now consider the vector (cross) product
of two vectors a and b.

axb = aieixbjej

= (aibj)(eixej)

= aibj Eijkek $(a \times b)_k = a_i b_j \mathcal{E}_{ijk}$ $(a \times b)_1 = a_i b_j \mathcal{E}_{ij}$ = $\mathcal{E}_{321} a_3 b_2 + \mathcal{E}_{231} a_2 b_3$ $= a_2 b_3 - a_3 b_2$ So $(a \times b) = (a_2 b_3 - a_3 b_2)$ $(a_3 b_1 - a_1 b_3)$ $(a_1 b_2 - a_2 b_1)$

Sometimes axb is expressed using $|a_3b_1 - a_1b_3|$ Example:

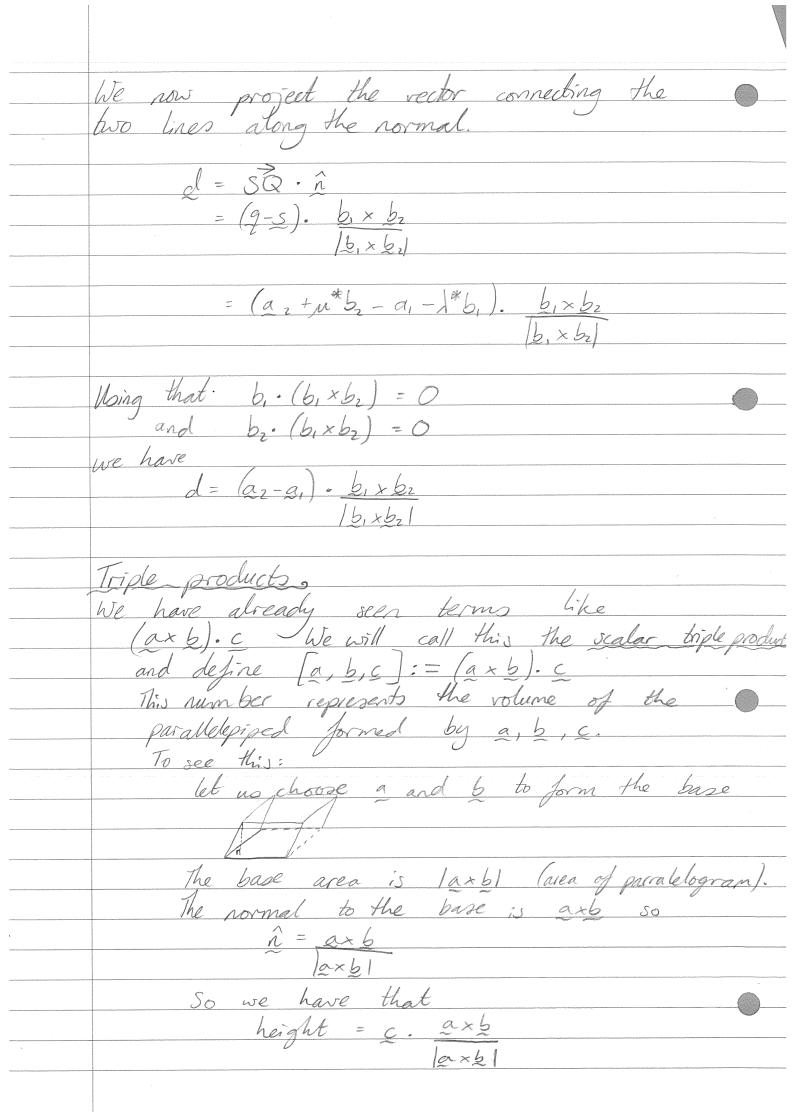
Prove ax (b+c) = axb + axc

noing the index notation. = aiei × (bjej + ckek) = aie - x (b; +c;)e; (renaming k as;) = a; (b; +c;) Eijk ek aibj Eijk en + ai cj Eijh en = axb + axc Re-do the proof without index notation. Since the vector product gives vectors, we can consider (axb) x c a = i and b = c = j $(a \times b) \times c = (c \times j) \times j$ $a \times (b \times c) = i \times (j \times j)$ When considering the triple vector product, the positions of the bracket are important. Area of a parallelogram.

Consider a parallelogram spanned by two
vectors a and b. Area = $|0A||0B||sin\theta$ = $absin\theta = |a \times b|$

10/15 1401 1.6 Distance of a point from a plane,
Let a plane be defined by three points

A, B, C and let P be a point.


We find the shortest distance between P and the plane as follows:

Find AP and project along the normal â which gives

d = AP. â We can use the vector product to compute \hat{n} . The vectors \overrightarrow{AB} and \overrightarrow{AC} are in the plane, therefore $\underline{n} = \overrightarrow{AB} \times \overrightarrow{AC}$ $\Rightarrow \hat{n} = AB \times A\hat{c}$ ean so we have

proof. | * d = AP. AB × AC Distance between two skew lines We are considering two non-intersecting (this mean skew) lines given by

The minimum distance of approach is along a direction perpendicular to both lines. These directions are b, and bz, so $\hat{\Lambda} = \underbrace{b_1 \times b_2}_{|b_1 \times b_2|}$ Let S and Q be any two points on the two lines so that S = a, + 1 + 5, 9 = az + M* bz

23/10/15 1401 26 Therefore, we can write the volume as follows: V=base (height) = Laxbt (c. axb) = (axb).c We can conclude that [a, b, c] = [c, a, b] = [b, c, a]
These are the cyclic permutations. And also [b, a, c] = - [a, b, c] [a,c,b]=-[c,a,b] [c,b,a] = - [b,c,a] In the index notation this is very clear [a, b, c] = (axb).c = aibj Eijkek · cmem = aib; Eijk Cmek. em = aibj Eijk Ck = aibjckEijk = $\sum_{i=1}^{3}\sum_{i=1}^{3}\sum_{i=1}^{3}a_ib_ickEijk$ The symmetry properties of [0,0,0] are those of Eigh. We also have that the positions of the symbols and x in this product do not matter. The orientation of a, b, c matters.

We also encountered the object $(a \times b) \times c$.

We already know that $(a \times b) \times c \neq a \times (b \times c)$ We have the identity $a \times (b \times c) = (a \cdot c)b - (a \cdot b)c$ Exercise:

Prove this starting with

a = a, i + azj + azk We will prove this using the index notation.

Let d = bxc = bic; Eijheh = dnen axd = amdn Emns &s So, the LHS is just components, not full vector $a \times (b \times c) = a_m(bic_j \in ijn) \in mas \in s$ = ambic; Enij (-Enms) es = - ambic; (dim Jis - dis Jim) es = ambic; disdimes -ambic; dimedises = ancobiei - anboncje; $= (a \cdot c)b - (a \cdot b)c$ The vector briple product also satisfies the Jacobi identity $a \times (b \times c) + c \times (a \times b) + b \times (c \times a) = 0$

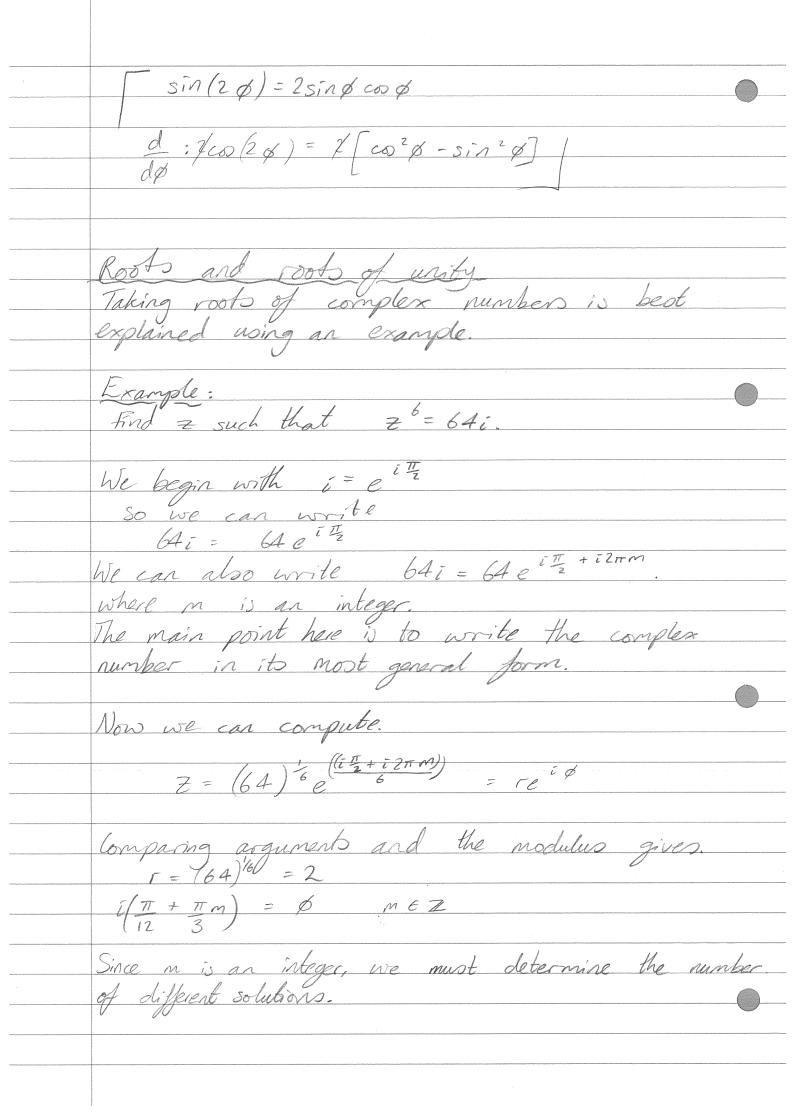
23/10/15 1401 26 Complex numbers Introduction Complex numbers are written as Z = x + iy where $i = \sqrt{-1}$ or $i^2 = -1$, $x, y \in \mathbb{R}$ x = x = x + iy where $i = \sqrt{-1}$ or $i^2 = -1$, $x, y \in \mathbb{R}$ x = x = x + iy and x = x + iy and y = x + iy imaginary part, x = x + iy and y = x + iy imaginary part, x = x + iy and y = x + iy and y = x + iy imaginary part, x = x + iy and y = x + iy and y = x + iy imaginary part, x = x + iy and y = x + iy and We can view complex numbers as vectors in the plane. They obey the usual rales of vector addition. We have $z_1 + z_1 = (x_1 + iy_1) + (x_2 + iy_2)$ $= (x, + x_2) + i(y, +y_2)$ We can naturally multiply complex numbers Z, = DC, +iy, Z2 = x2 + iy2 = $(x, +iy, |(x_2+iy_2)$ = $x_1x_2 + i(x_1y_2 + x_2y_1) + i^2y_1y_2$ = $x_1x_2 - y_1y_2 + i(x_1y_2 + y_1x_2)$ $Z, Z_2 = (x, +iy)(x_2 + iy_2)$ We have an additional operation called complex conjugation $\overline{z} = x - i y \qquad (\overline{z} = z^*)$ Geometrically $z \Rightarrow \overline{z}$ corresponds to reflection along $|z_1 + z_2| \le |z_1| + |z_2|$ where $|z| = \sqrt{x^2 + y^2}$ and we rote that

 $\frac{ZZ}{Z} = (3c + iy)(x - iy) \\
= (x^2 - iy^2) = x^2 + y^2 \\
\frac{ZZ}{Z} = |Z|^2$ Geometry in the complex plane Circles: The set of points & satisfying 12-201 = r with r>0 are on a circle with centre to and radius r. To see this: $|x + iy - xo - iyo|^{2} = r^{2}$ $|(x + iy - xo) + i(y - yo)|^{2} = r^{2}$ $|(x + iy - xo) + i(y - yo)|^{2} = r^{2}$ $(2-3) (3c-3c_0)^2 + (y-y_0)^2 = r^2$ Lines: The relation 12+3:1=12+(5-2:) defines a straight line. One should read this as the distance from -3i equals the distance from -5+2i. Start with z = x + in x + iy + 3i = |x + iy + 5 - 2i|1 oc + i(y+3) = (oc+5) + i(y-2) $x^2 + (y+3)^2 = (x+5)^2 + (y-2)^2$ 20 + yx + by +9 = xx + 10x + 25 + y - 4y + 4 10y = 10x + 20 = 20+2

Polar Form Let z = x + iy be a complex number We define r = |z| = Ix2+y2 and denote the angle between the origin and I, and the x-axis by p. We call p the argument. This allows us to write z= rcop + irsing = r (cop + isinp) Euler's formula: let us consider the series expansion of e'd assuming it converges $e^{i\phi} = 1 + i\phi + (i\phi)^{2} + (i\phi)^{3} + (i\phi)^{4} + ...$ $2! \quad 3! \quad 4!$ $= 1 - \beta^2 + \beta^4 + \dots$ $+i\left[\phi-\phi^3+\phi^5+\ldots\right]$ = coop + ising due to the Taylor series. Prove Euler's formula by computing

d (e-ip (cop + ising))

Jp


Therefore we can write every complex number of $Z = re^{i\phi}$ where r = |z| $\phi = arg(z)$ If r=1 there is a complex number on the unit circle. De Moirre's Theorem $\frac{1}{4} = re^{i\theta} \quad \text{then}$ $z^n = r^n (e^{i\theta})^n = r^n (e^{in\theta}) \quad n \in \mathbb{R}$ So, using the Euler formula we have $(\cos \phi + i\sin \phi)^{\alpha} = (\cos(n\phi) + i\sin(n\phi))$ De Moivre's theorem has two main applications:

(i) finding powers of complex numbers.

(ii) proving / finding trigonometric identities. Trigonometric identities, Let us express cos(3\$) and sin(3\$) in terms of up & and sing. Use De Moirres theorem for n=3

cos (3\$\phi\$) + isin (3\$\phi\$) = (cop + isin\$\phi\$) 3 = $co^{3}\phi + 3co^{2}\phi (isin\phi) + 3co\phi (isin\phi)^{2} + (isin\phi)^{3}$ = cos \$ - 3 co \$ sin 2 \$ + 3 i cos 2 \$ sin \$ - i sin 3 \$ $\Rightarrow \{\cos(3\phi) = \cos^3\phi - 3\cos\phi\sin^2\phi$ (sin(30) = 3co2 psing - sin 30

26/10/15 1401 47 Alternatively, let us try to express sin 2 f in terms of multiple cosines. We start with $Z = e^{i\phi} = co\phi + isin\phi$ $\bar{z} = e^{-i\phi} = co\phi - isin\phi$ Therefore $\left(z + \frac{1}{z}\right) = 2\cos\phi$ $\left(\frac{z}{z} - \frac{1}{z}\right) = 2i\sin\phi$ We also have $\left(z^{n}+\frac{1}{2}n\right)=2\cos n\theta$ $\left(z^n - \frac{1}{2^n}\right) = 2ising$ Let us start with $(2i\sin\phi)^2 = \left(\frac{1}{2} - \frac{1}{2}\right)^2$ $= z^2 - 2z \frac{1}{7} + \frac{1}{7^2}$ $=\left(z^{2}+\frac{1}{2}\right)-2$ $=2\cos(2\phi)-2$ = -4 sin2 \$ = 2 co/2 \$] - 2 sin 2 = 1/2 (1 - coo (20))

30/10/	5 1401	
L8		
	We find:	
	M=O	$\phi = \frac{\pi}{12}$
	m = 1	$\phi = \frac{5\pi}{12}$
,	m = 2	$\phi = 3_{1}$
	M = 3	$\phi = 13\pi$ 12
	m = 4	$\phi = \frac{17\pi}{12}$
	m=5	$\phi = \frac{21\pi}{12}$
	M = 6	$\phi = T + 2\pi = \pi$ as this is an angle 12
	We find six m > 6 solutions of 20 from pr	different solutions and for we find will only differ by factors revious solutions.
	The purdamental a polynomial of has a complex	theorem of algebra states that order n with complex coefficients
	Example: What are the to We know that	hree roots of $z^3 = 1$. $z = 1$ is one solution to the
	equation. $(z^3-1) \div (z-1)$ $-(z^3-z^2)$	
	$\frac{z^2-1}{-(z^2-z)}$ $\frac{z^2-1}{z^2-z}$	
	2-1	

Exercise $(2c^{5} + 4x^{4} + 2c^{3} + x^{2} - x' + 2) \div (2c^{3} - 2x^{2} + 2c - 1)$ $z^3-1=(z^2+z+1/z-1)$ We can now solve the quadrabic: $Z_{2,3} = -\frac{1}{3} \pm \sqrt{\frac{1}{4} - 1}$ Now we consider the equation z=1 n ∈ Z, n>0 We write $z = re^{i\theta} \ni r = 1$. $\left[z^n = r^ne^{in\theta}\right]$ In its most general form we have $1 = 1e^{i2\pi m}$ $m \in \mathbb{Z}$ Then we have $z^n = r^n e^{i2\pi m} = 1$ If we denote $w = e^{\frac{2\pi \overline{\nu}}{n}}$ then the roots of the equation are $1 = w^{\circ}$, w', w^{2} , ..., w^{n-1} These correspond to m = 0, 1, ..., n-1. Exercise Show 1+w'+w2+ +w"-1=0.

30/10/15	1407
48	
	Trigonometric and hyperbolic functions.
	We start with Euler's formular eig = cosp + ising
	and have already withen that
	and have already written that $\cos \phi = \frac{1}{2} \left(e^{i\phi} + e^{-i\phi} \right)$
ı	$Sin\phi = \frac{1}{2i} \left(e^{i\phi} - e^{-i\phi} \right).$
	This would suggest that we can define these
	This would suggest that we can define these functions with a complex argument as follows $cos(z) = \frac{1}{2}(e^{iz} + e^{-iz})$
	$\sin\left(z\right) = \frac{1}{2i} \left(e^{iz} - e^{-iz}\right).$
	Let us consider a purely complex number
	Z=iy.
`	$coz = cos(iy) = \frac{1}{2}(e^{i(iy)} + e^{-i(iy)})$
	which is the definition of $cosh(y)$.
	So we have
***	cos(iy) = cosky) Likewije
To the state of th	$sin(iy) = \frac{1}{2i}(e^{i(iy)} - e^{-i(iy)})$
	$=\frac{1}{25}\left(e^{-9}-e^{9}\right)$
TO THE PROPERTY OF THE PROPERT	$= -\frac{1}{2} \left(e^{y} - e^{-y} \right) \qquad \left[-\frac{1}{i} \times \frac{\overline{i}}{\overline{i}} = -\frac{\overline{i}}{\overline{i}^{2}} \right]$
	$= i \frac{1}{2} \left(e^{y} - e^{-y} \right) = i \sinh(y)$
*	so sin(iy) = isinh(y)

Example: Consider $\cos^2 x + \sin^2 x = 1$ and assume this hold for any $x \in \mathbb{C}$. Set $x = i\phi$ with $\phi \in \mathbb{R}$, then $\frac{2f(x)}{2} + \sin^2(i\phi) = 1$ \Rightarrow $\cosh^2 \phi + i^2 \sinh^2 \phi = 1$ (\Rightarrow) $\cosh^2 \phi - \sinh^2 \phi = 1$ Maclaurin and Taylor series

(an we approximate a function f(x) near a point x_0 using a polynomial? Let P(x) be a polynomial $P(x) = a_0 + a_1(x - x_0) + a_2(x - x_2)^2 + a_3(x - x_0)^3 + \dots$ We want to choose the numbers a_0, a_1, a_2, \dots such that $P(x_0)$ is $f(x_0)$, and such that all derivatives of P at x_0 are those of f at x_0 If we put $x = x_0$ then $f(x_0) = P(x_0) = a_0$ Let us differentiate once wrt.x: $dP = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + ...$ So that $dP(x_0) = a_1 = f'(x_0)$ dx $1^2D_1 \cdot 1 \cdot 2a_1 = -1''/1$ $\frac{d^{2}P(x_{0}) = 2a_{2} = f''(x_{0})}{dx^{2}}$ $\frac{d^{3}P(x_{0}) = 3x2a_{3} = f'''(x_{0})}{dx^{3}}$

30/10/15 140 In general we would find $f''(x_0) = n! a_n$ Having found all a; , we have $f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)(x - x_0)^2$ $+\int \frac{1}{(2c_0)}(x-x_0)^2 + ... + \int \frac{(k)}{(2c_0)}(x-x_0)^k + ...$ $(x) = \sum_{n=1}^{\infty} \frac{f(n)(x_0)}{n!} (x - x_0)^n$ This is a power series in $(x-x_0)$ or about the point x_0 . This is called the Taylor Series. It is called the Maclaurin Series if $x_0 = 0$. By choosing $x = x_0 + h$ we can also write $f(x_0 + h) = \sum_{n=0}^{\infty} \frac{f^n(x_0)}{n!} h^n$ We can show that $\sin 2c = \int_{m=0}^{\infty} \frac{(-1)^m}{(2m+1)!} d^{2m+1}$ $f(x) = \cos x$ $f'(x) = -\sin x$ $f''(x) = -\cos x$ $f''(x) = -\sin x$ $f''(x) = -\cos x$

$$\Rightarrow f(x) = 1 + (-1)x^{2} + (+1)x^{4} + (-1)x^{6} + (u)x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{4} + (-1)^{3}x^{6} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{4} + (-1)^{3}x^{6} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

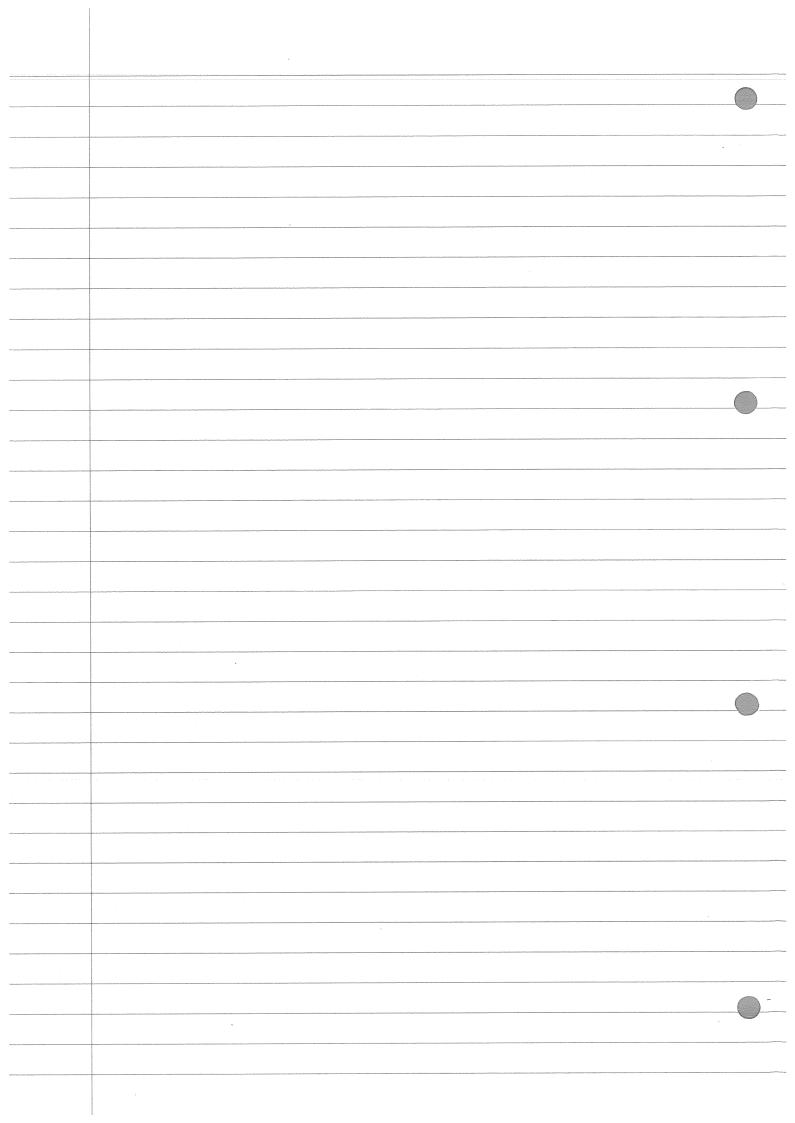
$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{3}x^{2} + \dots$$


$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{2}x^{2} + \dots$$

$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{2}x^{2} + \dots$$

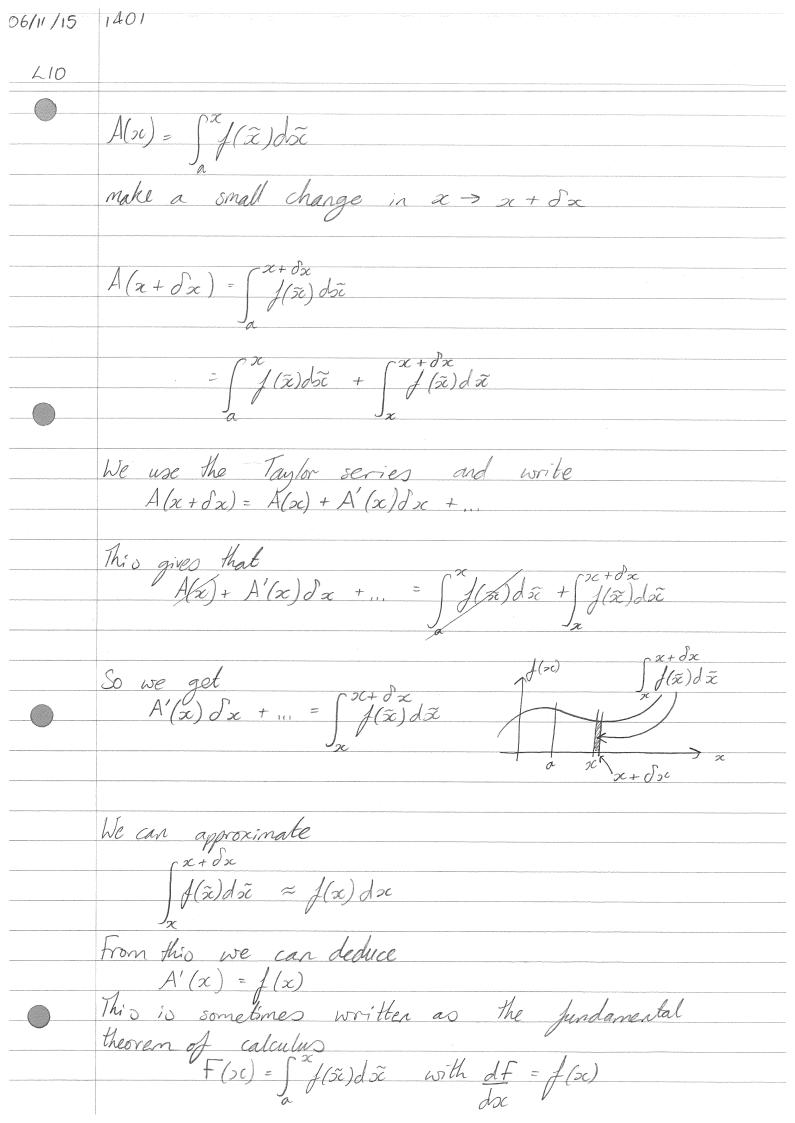
$$= 1 + (-1)^{1}x^{2} + (-1)^{2}x^{2} + (-1)^{2}x^{2} + \dots$$

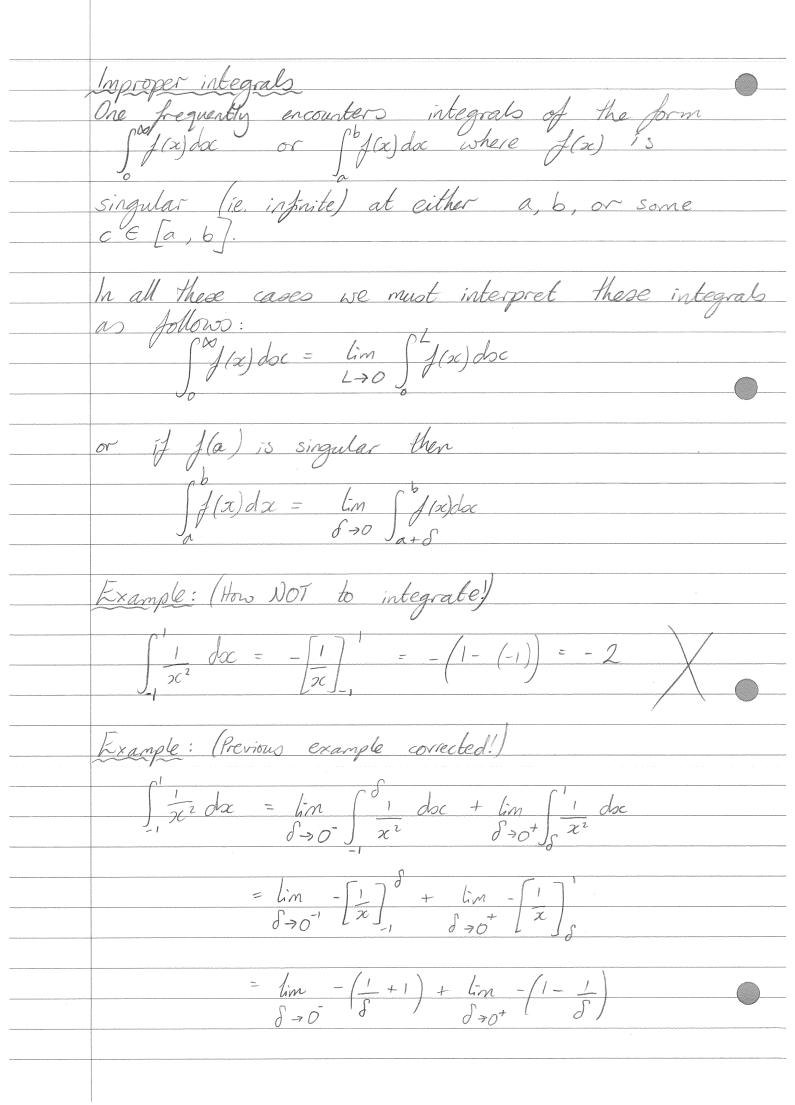
$$= 1 + (-$$

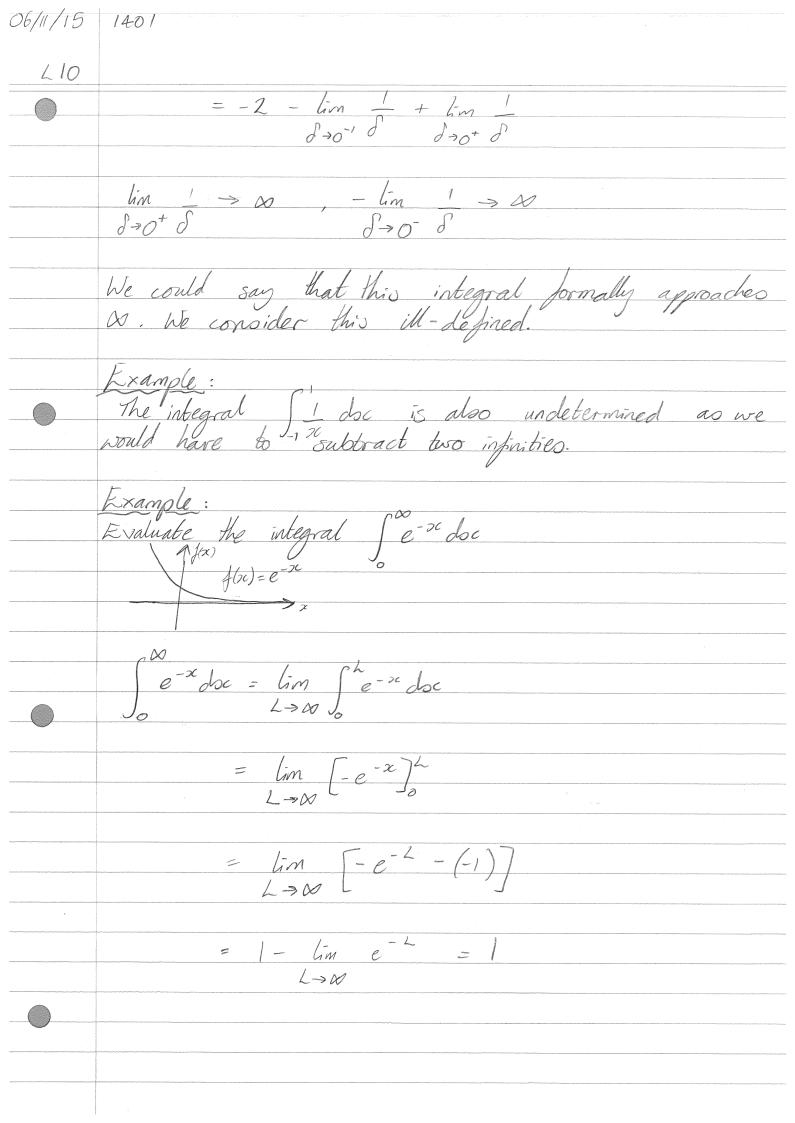
30/10/15 1401 L8 Binomial theorem for non integers Consider the function $f(x) = (1+x)^n$ and find its power series expansion. $f(x) = (1+2c)^{\alpha}$ f(0) = 1 $f'(x) = \alpha(1+x)^{\alpha-1}$ $f'(0) = \alpha$ $f''(x) = \alpha(\alpha-1)(1+\alpha)^{\alpha-2}$ $f''(0) = \alpha(\alpha-1)$ For general n we have $J^{(n)}(0) = \alpha(\alpha-1)(\alpha-2)....(\alpha-n+1)$

02/11/15 1401 $f^{(n)}(0) = \alpha (\alpha - 1)(\alpha - 2) \dots (\alpha - (n - 1))$ Therefore we can write $(1+x)^{\alpha} = \sum_{n=0}^{\infty} \frac{\alpha(\alpha-1)....(\alpha-n+1)}{n!} c^{n}$ $= 1 + x_{2}c + x(x-1)x^{2} + x(x-1)(x-2)x^{3} + ...$ If a is a positive integer, this series terminates and we get the binomial theorem. Find the power series of arctan (x). We could start differentiating, but this will get hard.

More efficiently, start with


1 = (1+xc2)^{-1}


1+x2 $= 1 - x^{2} + \frac{(-1)(-2)}{2!} x^{4} + \frac{(-1)(-2)(-3)}{3!} x^{6} + \dots$ $= 1 - x^2 + x^4 - x^6 + x^8 + \dots$ Now let us integrate both sides and we get $\arctan(x) + C = x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \frac{1}{9}x^9 + \dots$ We can fix C by evaluating both sides at x = 0. This gives C = 0. Series can be composed, multiplied, divided etc. It is often easier to so this than to compute derivatives


Example Find the power series of arctan (e²¹-1) up to x4. We know $e^{x} = 1 + x + 3c^{2} + 3c^{3} + 3c^{4} + 3c^{5} + 3c^{6} + 3c^{$ arctan(y) = y - \frac{1}{3}y^3 + \frac{1}{5}y^5 - \frac{1}{7}y^7 Combining both series we find arctan(e^{2} -1) = $\left(2 + 2 + 2 + 2 + \dots\right)$ $-\frac{1}{3}\left(x+2c^{2}+3c^{3}+...\right)^{3}$ $+\frac{1}{5}(x+x^2+x^3+...)^5+...$ $= x + x^{2} + x^{3} + x^{4} + \dots$ $-\frac{1}{3}\left(x^{3}+3x^{2}x^{2}+\ldots\right)$ $= x + \frac{1}{7}x^{2} + 3c^{3}\left(\frac{1}{6} - \frac{1}{3}\right) + 2c^{4}\left(\frac{1}{74} - \frac{1}{7}\right) + \dots$ $= x + \frac{1}{2}x^{2} - \frac{1}{6}x^{3} + \frac{11}{2}x^{4} + \dots$

02/11/15	1401
29	
	Integration
	Introduction:
	There are two different definitions of integration.
	The first celates to integration as the opposite
	of differentiation.
Telephone (School School Schoo	Introduction: There are two different definitions of integration. The first relates to integration as the opposite of differentiation. This means: If df = f(x) then F is the anti-derivative of f(x). The second one relates to an area under a curve. Then the second one relates to an area under a curve.
	The second one -dates to
	1) f(n)
	à 6
	We say A = I f(x) dx is the area under the curve
40	in the interval [a, b].
4949749767-8511-7680-1-768-1-768-1-768-1-768-1-768-1-768-1-768-1-768-1-768-1-768-1-768-1-768-1-768-1-768-1-768	Note: An integral is not necessarily related to an acea. The usual Riemann integral can be generalised to the Lebesque integral and one can then integrate functions like $f(x) = \begin{cases} 1 & \text{if } R \setminus R \\ 0 & \text{if } R \setminus R \end{cases}$
***************************************	area. The usual Kremann integral can be
	generalised to the Lebesque integral and one
	(a) SI & B D
***************************************	$\int_{\Omega} (x) = \int_{\Omega} (x) dx$
	This function is not Riemann integratable.
	Junior 10 100 1000 anii invegrance.
	Let us consider the punction
	Let us consider the function $A(x) = \int_{a}^{\infty} f(\tilde{x}) d\tilde{x}$
· · · · · · · · · · · · · · · · · · ·	For a specific choice of so we get the area under the curve in the interval [a, sc]
***************************************	under the curve in the interval [a, 2c].
	Let us make a small change octor with
	Let us make a small change $x + \delta x$ with $ \delta x <<1$, then $A(x + \delta x) = \int_{0}^{x + \delta x} f(x) dx$
	Ja

 $= \int_{\alpha}^{\infty} f(\tilde{x}) d\tilde{x} + \int_{\alpha}^{\infty} f(\tilde{x}) d\tilde{x}.$ A(x + dx) = A(x) + A'(x) dx + ...

Example: Évaluate s'x" doc for all n. Let us begin with n \(+-1. \)

If n < 0 then x diverges near sc = 0. In this case we should write $\lim_{\delta \to 0^{+}} \int_{0}^{\infty} x^{n} ds = \lim_{\delta \to 0^{+}} \int_{0}^{\infty} x^{n+1} ds$ $=\lim_{\delta\to0^+}\left[\frac{1}{n+1}-\frac{1}{n+1}\right]^{n+1}$ $= \frac{1}{n+1} - \frac{1}{n+1} \int_{-30}^{1} dt$ $\int_{0}^{\infty} x^{n} dx = \begin{cases} \frac{1}{n+1} & \text{if } n > -1 \\ \text{diverges if } n < -1 \end{cases}$ If n = -1 we have $\lim_{\delta \to 0^+} \int_{S}^{1} z e^{-1} dz = \lim_{\delta \to 0^+} \left[\log |z| \right]_{S}^{1}$ = - Em loglo] = diverges. The integral diverges if n = -1 and converges otherwise. 26/11/15 1401 210 Integration by parts.

Starting with the product rule we can write d [uv] = du v + u dv dsc dsc dscand integrate to find $uv = \int du \ v \ dv + \int u \ dv \ doc.$ Judv doc = uv - Jdu v doc. This identity is useful when integrating products, provided the integral on the right-hand side is 'easier' than the one on the left $\int xe^{-x} ds = x(-e^{-x}) - \int (-e^{-x}) ds = x$ $= -xe^{-x} - e^{-x} + C.$ One could have chosen the functions the other way round and we would have arrived at some identity. Whenever we wish to integrate an inverse function (log, arcsin, access, ...) it turns out that integration by parts is the best approach. This is because we know the derivative of the inverse function

Example: Jarcsinsc de = Jarcsin x da = $x a r c s i n x - \left(x d x \right)$ = xarcsin; + \(\lambda - \times^2 + C \) One can derive a host of beautiful identities using integration by parts.
Imagine we want to find sin 700) doc. We define In = [sin (sc) doc $=-\cos x \sin^{n-1} x - \left(-\cos x\right)(n-1)\sin^{n-2} x \cos x \cos x$ $=-\cos x \sin^{n-1} x + (n-1)\sin^{n-2} x \cos^2 x \cos^2 x$ = $-\cos x \sin^{n-1} \alpha + (n-1) \int \sin^{n-2} x (1-\sin^2 \alpha c) d\alpha c$ = - coscsin 1-1 se + (n-1) [sin 1-2 doc - sin 2 doc] $= -\cos x \sin^{n-1} sc + (n-1) \overline{\perp}_{n-2} - (n-1) \overline{\perp}_{n}$ We can now solve for $\overline{\perp}_{n}$ $\Rightarrow \overline{\perp}_{n} + (n-1) \overline{\perp}_{n} = -\cos c \sin^{n-1} sc + (n-1) \overline{\perp}_{n-2}$ $\Rightarrow \underline{T}_{n} = -\frac{1}{n} \operatorname{concsin}^{n-1} \operatorname{oc} + (n-1) \underline{T}_{n-2}$ This is a recursive relationship for the integral \underline{I}_n . To complete this we need \underline{I}_0 and \underline{I}_n , which are $\underline{I}_0 = \int I \, dsc = sc + C$, $\underline{I}_n = \int sin x \, dsc = -cos x + C$.

Exercise:

Show that $\int_{0}^{\frac{\pi}{2}} \sin^{5}x \, dx = \frac{8}{15}$ Substitution The idea of substitution is to change the independent variable of in a useful way by introducing a new independent variable y which can be expressed in terms of α .

Then y = y(sc) dy = dy dscand the original integral or might simplify if expressed in y. Example: Let us try to find

Jeoxe sin & doc let y = sinsc dy = cox doc $\int \cos x e^{y} dy = \int e^{y} dy$ It is not always easy to guess a for a given integral. useful substitution

Some common substitutions are: x = asinho x = a cosh O X = a tano Partial Fractions

We are interested in finding $\int_{Q_n(x)}^{P_n(x)} dx$ where $P_m(x)$ is a polynomial of degree m and $Q_n(x)$ is a polynomial of degree n. Any integral of this type can be found in the following way:

Firstly if M > n then one has to start with long division one gets a polynomial plus a fraction where the degree of the numerator is less than the degree of the polynomial in the denominator.

16/11/15	1401
211	
	$\int \frac{P_m(\alpha)}{Q_n(x)} dsc$
	(of the polynomial)
	If the order men, we can use partial fractions Straight away. If m > n we do polynomial division and then use partial fractions.
	If m > n we do polynomial division and then
	use partial fractions.
***************************************	The polynomial will have n roots if we allow a to be complex.
	All complex roots come in conjugate pairs and thus we can write $Q_n(x)$ in the following way. $Q_n(x) = (x - x)^{\alpha} (x - x)$
,	we can write $Q_n(x)$ in the following way.
	$(\mathcal{L}_{n}(x) = (x - x)^{n}, (x - x)^{n}, (x - x)^{n}, (x - x)^{n}, (x - x)^{n}$
	$\left(2c^{2}+p_{S}zc+q_{S}\right)^{\sigma}$
	The root x, has multiplicity a etc.
	The quadratics (sc2+pix+qi) have no real roots
	The guadratics (x2 + pix + qi) have no real roots which means they all satisfy pi2 < 4 qi. They also may have a multiplicity (power).
	may have a muniplicity (power).
	Example
	Consider the polynomial $x^4 + x^3 - x^2 - 5x + 4$
	We spot that $x=1$ is a root of the polynomial. $x^4 + x^3 - x^2 - 5x + 4 = (x - 1)(x^3 + 2x^2 + x - 4)$
***************************************	$=(\alpha-1)^2(\alpha^2+3\alpha+4)$
	The guadratic has no real roots and we are done
	Now assuming that m <n< th=""></n<>
	Now assumming that m <n achieve="" alway="" can="" following="" rewriting:<="" th="" the="" we=""></n>

20/11/15 1401 Therefore our integral becomes $I = \frac{1}{25} \int_{0}^{\infty} \frac{4}{2t+2} + \frac{5}{(2t+2)^{2}} + \frac{3-42c}{2c^{2}+1} dc$ $= \frac{1}{25} \int_{0}^{\infty} \frac{4}{x+2} + \frac{5}{(5c+2)^{2}} - \frac{2}{x^{2}+1} \frac{2x}{x^{2}+1} dx$ Each park can now be integrated and we arrive at the following $I = \frac{1}{25} \left[\frac{4 \log |x+2| - 5}{x+2} - \frac{2 \log |x^2 + 1| + 3 \arctan(x)}{x} \right]_0^{\infty}$ $= \frac{1}{25} \left[2 \log \left| \frac{(\chi + 2)^2}{\chi^2 + 1} \right| - \frac{5}{\chi + 2} + 3 \arctan \left(\frac{1}{\chi} \right) \right]^{\infty}$ (by combinging logarithms (important!)) $=\frac{1}{25}\left[2\log(1)-2\log(4)-0+\frac{5}{2}+3\pi-6\right]$ $= \frac{1}{25} \left[\frac{5}{2} + 3\pi - 4 \ln(2) \right]$ The universal or tangent half-angle substitution
We want to find integrals of the form $\int \frac{d\theta}{2 + sin\theta} \quad or \int \frac{d\theta}{1 + 7cos\theta} + 3sin^2\theta$ Some of these integrals can be found by using an identity cleverly or by guessing a useful substitution. However, all rational functions of to gonometric functions can be integrated using the following

substitution: $t = tan(\frac{6}{2})$ or 0 = 2arctan(t)We need to derive some useful identities

dt = ½ sec 2(%) do Using sin 2u + cos 2u = 1 $\Rightarrow \begin{cases} \tan^2 u + 1 = \frac{1}{\cos^2 u} \\ 1 + \frac{1}{\tan^2 u} = \frac{1}{\sin^2 u} \end{cases}$ $\Rightarrow \begin{cases} \cos u = 1 \\ \hline J1 + \tan^2 u \end{cases}$ $\begin{cases} \sin u = \tan u \\ \hline J1 + \tan^2 u \end{cases}$ $\begin{cases} \cos \varphi = 1 \\ \hline J1 + t^2 \end{cases} \Rightarrow \begin{cases} \cos \varphi = 1 - t^2 \\ \hline J1 + t^2 \end{cases}$ $\begin{cases} \sin \varphi = t \\ \hline J1 + t^2 \end{cases}$ $\begin{cases} \sin \varphi = 2t \\ \hline J1 + t^2 \end{cases}$ Therefore we also have $d\theta = 2\cos^2(\frac{9}{2}) dt$ = $\frac{2}{1++2}$ dt

20/11/15 1401 112 Rewrite the integrals in terms of half-angles. $T = \int d\theta$ $\frac{d\theta}{2 + 2\sin(\frac{\theta}{2})\cos(\frac{\theta}{2})}$ Apply the universal substitution, t = tan (2). Voing the previous identities $I = \int \left(\frac{1+t^2}{1+t^2}\right) dt$ $\int 2 + 2\left(\frac{t}{\sqrt{1+t^2}}\right)\left(\frac{1}{\sqrt{1+t^2}}\right)$ $= \int \frac{(1+t^2)dt}{1+(t+t^2)}$ $= \int \frac{dt}{t^2 + t + 1}$ $= \int dt$ $(t+\frac{1}{2})^2 + \frac{3}{24}$ Next, we can set $t+\frac{1}{2} = \frac{\sqrt{3}}{2} \tan u$ $dt = \frac{\sqrt{3}}{2} \sec^2 u \, du$ $I = \left(\left(\frac{13}{2} \right) \sec^2 u \, du \right)$ $\int_{-\frac{3}{4}}^{3} \tan^2 u + \frac{3}{4}$ $= \int \frac{2\sqrt{3}}{3} du = \frac{2}{3} u + C = \frac{2}{3} \arctan\left(\frac{2}{3}\left(\frac{t+\frac{1}{2}}{2}\right)\right) + C$ = 2 arctan (2 (tan 2 + 1)) + C

Exercise $\int_{0}^{\frac{\pi}{2}} d\theta = \pi$ $\int_{0}^{\frac{\pi}{2}} 2 + \sin \theta = 3\sqrt{3}$ $\int_{2}^{2} d\theta = 2\pi$ $\int_{2}^{2} + \cos\theta = \sqrt{3}$ First order ordinary differential equations

A first order ordinary differential equation (ODE)

is an equation of the form

dy = F(x,y)

ax with initial or boundary conditions that specify the value of the function y(x) at some point Seperable equations.

An ODE is seperable if f(x,y) = f(x)g(y) for some functions f and g.

For instance $f(x,y) = x^2 + y^2$ is not separable. All seperable equations can be as follows. We have dy = F(x, y) = f(x), g(y) dxsolved in $\frac{1}{9(4)} \frac{dy}{dse} = f(x)$ we integrate I dy dx = [f(x) dx dy by chain rule. $=\int \frac{1}{g(\eta)} d\eta = \int f(x)dsc$

NOTE: In the exam if you do a question twice with different answers, LEAVE BOTH.
Normally we write dy = f(x)g(y)
$\frac{dy}{g(y)} = f(x)dsc$
Provided we can find these integrals we can solve the ODE.
The solution will depend on a constant of integration and so we have a family of solutions.
The initial or boundary condition fixes this constant.
Example Solve the ODE scdy + 3y = 2 dx
$3c \frac{dy}{dx} + 3y = 2$
with $y=2$ when $x=1$ $\left[y(x=1)=2\right]$
Firolly we write $\frac{dy}{dx} = \frac{2-3y}{x}$
So $\int \frac{dy}{2-3y} = \int \frac{dx}{3c}$
$= \frac{1}{3} \log 2 - 3y = \log x + C$
we write $\log 2-3y = -3\log x + \hat{c}$
We apply $\exp(sc)$ to both sides $2-3y=x^{-3}\tilde{c}$

Lastly, we apply the initial andition

$$y(x=1) = \frac{1}{3} (2 - \frac{c}{x^3}) = 2$$

$$\Rightarrow 2 - \frac{c}{13} = 6$$

$$\Rightarrow \frac{c}{c} = -4$$

Reduction to seperable form.

There are many equations which are not expandly form.

Consider the ODE

 $\frac{d}{dx} = \frac{c}{(2\pi)}$

For instance

 $f(x,y) = x^2 + y^2$ is of that form.

$$f(x,y) = x^2 + y^2$$

$$= x^2 (1 + \frac{c}{2})$$

$$= x^2 (1$$

20/11/15	1401
412	
	Then $\frac{dy}{dx} = 1 \frac{z(x)}{dx} + x \frac{dz}{dx}$
	$y(y_x) = y(z)$
	Therefore dy = \psi (\frac{\gamma_{sc}}{2sc})
	becomes
	$\frac{x dz}{dx} + z = \varphi(z)$
	$\frac{\partial}{\partial x} = y(z) - z$
	$(z) \frac{dz}{dx} = \frac{f(z) - z}{x}$
	which is sperable.
	Next, let us consider the equation
	$\frac{dy}{dx} = \frac{x - y - 5}{x + y - 1}$
	We can transform this into seperable form
	We can transform this into seperable form by introducing a new dependent and a new
	independent variable. $x = u + a$
	y = v(u) + b
	Firstly, we write dy in terms of v(u) and u.
	$\frac{dy}{dx} = \frac{d(v(u))}{dx} = \frac{dv}{du} = \frac{dv}{du}$
	Now our equation becomes
	$\frac{dv = u - v + a - b - 5}{du u + v + a + b - 1}$
	von ve TV FALTE 1

Since we can choose a and b, we will choose them such that

a-b-5=0 and a+b-1=0 We get a=3 and b=-2

23/11/15 1401 L13 $\frac{dy}{dx} = \frac{x - y - 5}{x + y + 1}$ X= u+a y= v(u)+b $\frac{dy}{ds} = \frac{d}{ds} \left(V(u) + b \right)$ $= \frac{d}{dx} v(u) = \frac{d}{dx} v(u(x))$ = dv du $u=x-a \Rightarrow du = 1$ a-b-5=0 $a+b+1=0 \Rightarrow a=3 & b=-2$ Now our equation becomes $\frac{dv}{du} = u - v$ which is of the form previously disussed.

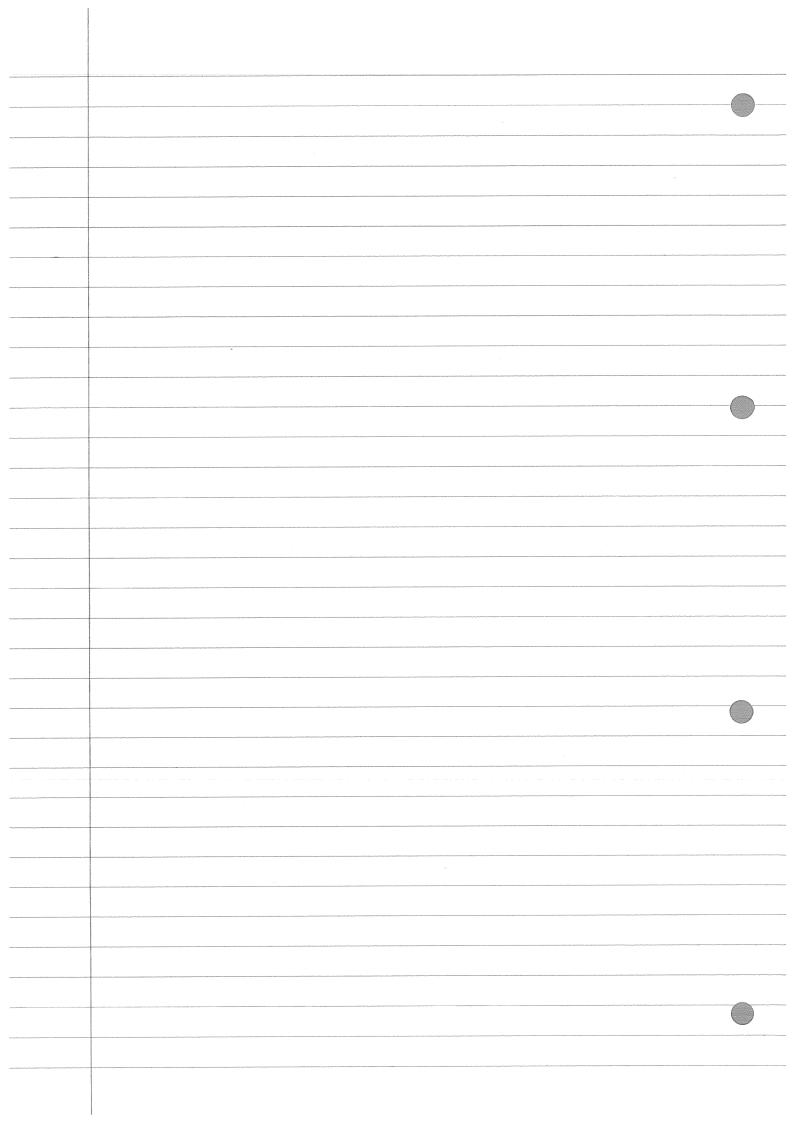
Introducing $z = \frac{1}{4}$ transforms this into a separable equation which in turn can be solved. The two linear equations have no solutions, then there exists a single substitution for a new dependent variable. Exercise Solve of $\frac{dy}{dsc} = \frac{3c + y - 1}{2x + 2y + 4}$ is no solution. (ii) introduce == x+y and solve the equation.

Exercise

Solve $\frac{dy}{dx} = \frac{1}{2}(x^2 + 4xy + 4y^2) + \frac{3}{2}$ You get $y = tan(2x+C) - \frac{x}{2}$ The general first order linear equation is

dy + a(xx) y = f(xx) If f=0 the equation is called homogeneous and it is separable. Let us multiply our equation by some Q(x)

=> Q dy + Q ay = Q f


dx Consider the expression

d (Qy) = Q'y + Qy' = Qdy + Qay

doc 7 doc 7 Since Q is arbitrary we can choose Q such that Qy = Qay This equation is separable and so dQ = Qa(oc) $\frac{\partial}{\partial x} = \int a(x) dx$ \Rightarrow ln Q + C = $\int a(x) dsc$ \Rightarrow Q $\tilde{c} = \exp(\int a(\omega) d\omega)$ We can set $\tilde{c} = 1$

The function a chosen in this way is called the integrating factor. (Can be quoted.) Then we can write $\Rightarrow Q(x)y(x) = \int_{0}^{x} Q(t)f(t)dt + C$ Then $y(\alpha)$ is given by $y(\alpha) = \frac{1}{Q(x)} \left(\frac{\alpha}{Q(t)} f(t) dt + \frac{C}{Q(x)} \right)$ To summarise this procedure b(x) dy + c(x) y = g(x)(i) Divide by b(x) to get $\frac{dy}{dx} + a(x)y = f(x)$ (ii) find $Q = \exp \int a(x) dx$ (iii) Multiply your equation by Q and we get d (Qy) = Qf (iv) Integrate to find y/x)
(v) Apply initial/boundary conditions to fix the constant of integration.

23/11/15 1401 L13 Example $x^{2} dy + (1+ic)y = \frac{1}{x}$ dsc $\frac{dy}{dx} + \left(\frac{1}{x^2} + \frac{1}{x}\right)y = \frac{1}{x^3}$ $Q = \exp \left\{ \frac{1}{x^2} + \frac{1}{x} dsc \right\}$ $= \exp\left[-\frac{1}{x} + \log x\right] = xe^{-\frac{1}{3}c}$

27/11/15 1401 $\frac{dy}{dx} + \frac{1+x}{x^2} y = \frac{1}{x^3}$ The integrating factor is

Q = exp [1+x doc

x² = $\exp\left(\frac{-1}{5}e^{+\log x}\right)$ = xe = 5c Therefore $\frac{d(xe^{-\frac{1}{x}}y) = xe^{-\frac{1}{x}} \frac{1}{x^3}}{dx}$ $= \frac{1}{2c^2} e^{-\frac{1}{3}c}$ $\exists xe^{-\frac{1}{2}}y=e^{-\frac{1}{2}}+C$ $y(x) = \frac{1}{x} + \frac{C}{xe^{-\frac{1}{x}}}$ $= \frac{1}{x} + \frac{ce^{\frac{1}{2}x}}{x}$

Bernoulli's equation

The nonlinear equation $dy + P(x)y = y^n Q(x) \qquad n \neq 1$ is called Bernoulli's equation This can be reduced to a linear equation by introducing the new dependent variable

z=y'-n' We have $\frac{dz}{dx} = (1-n)y^n dy$ $4 dy = y^n \frac{1}{(1-n)} \frac{dz}{dx}$ We put this into our equation $y^{n-1} dz + P(x)y = y^{n} Q(x)$ $\Rightarrow \frac{1}{(1-n)} \frac{dz}{dx} + P(x)y^{1-n} = Q(x)$ $\frac{1}{(1-n)}\frac{dz}{dx} + zP(x) = Q(x)$ $\frac{dz}{d\omega} + (1-n)P(x)z = (1-n)Q(x)$ This equation can now be solved using the integrating factor method.

Interchanging variables,
Let us consider the equation

dy = y log(y)

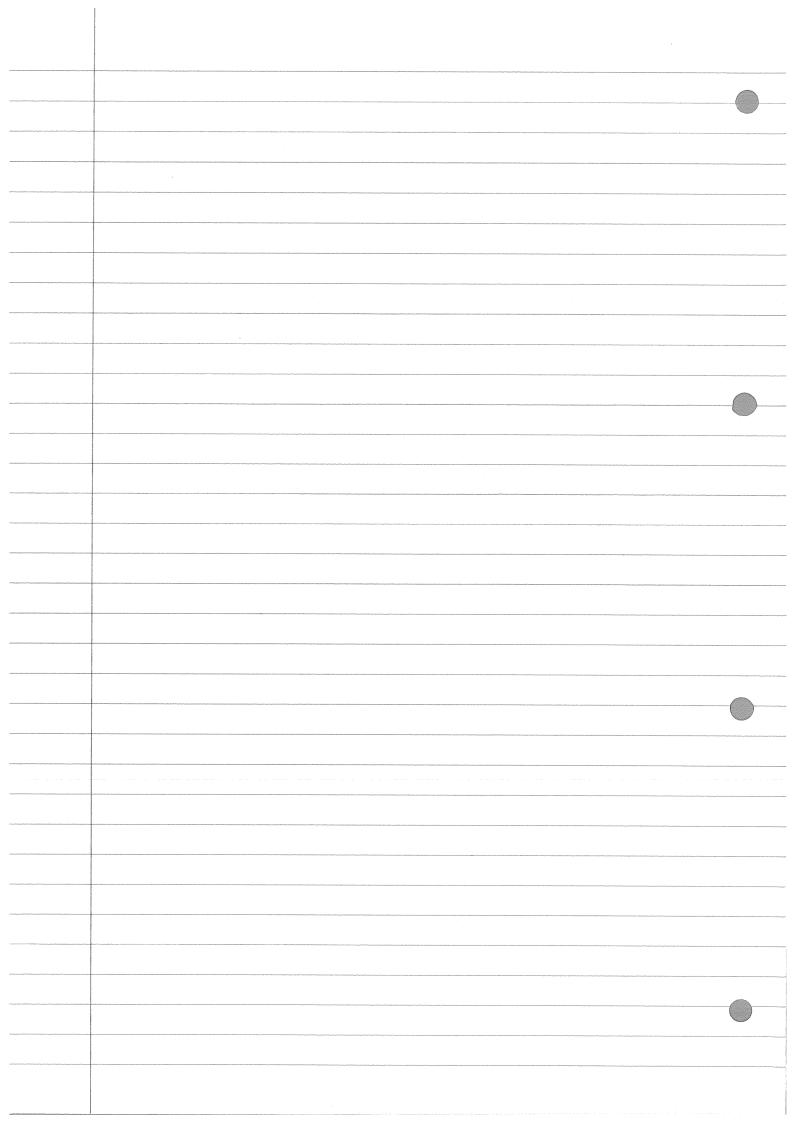
do log(y)-x This is non-linear in y(x) but linear in x(y). We make y the independent variable and x(y) the dependent variable.
This means dx = log(y) - x dy = glog(y)(2) doc + x = ighter dy ylogy The integrating factor contains the integral

Jy logy $= \int \frac{1}{u} du = \log u = \log \log(y)$ Therefore Q = exp (S.)
= exp (log logy)

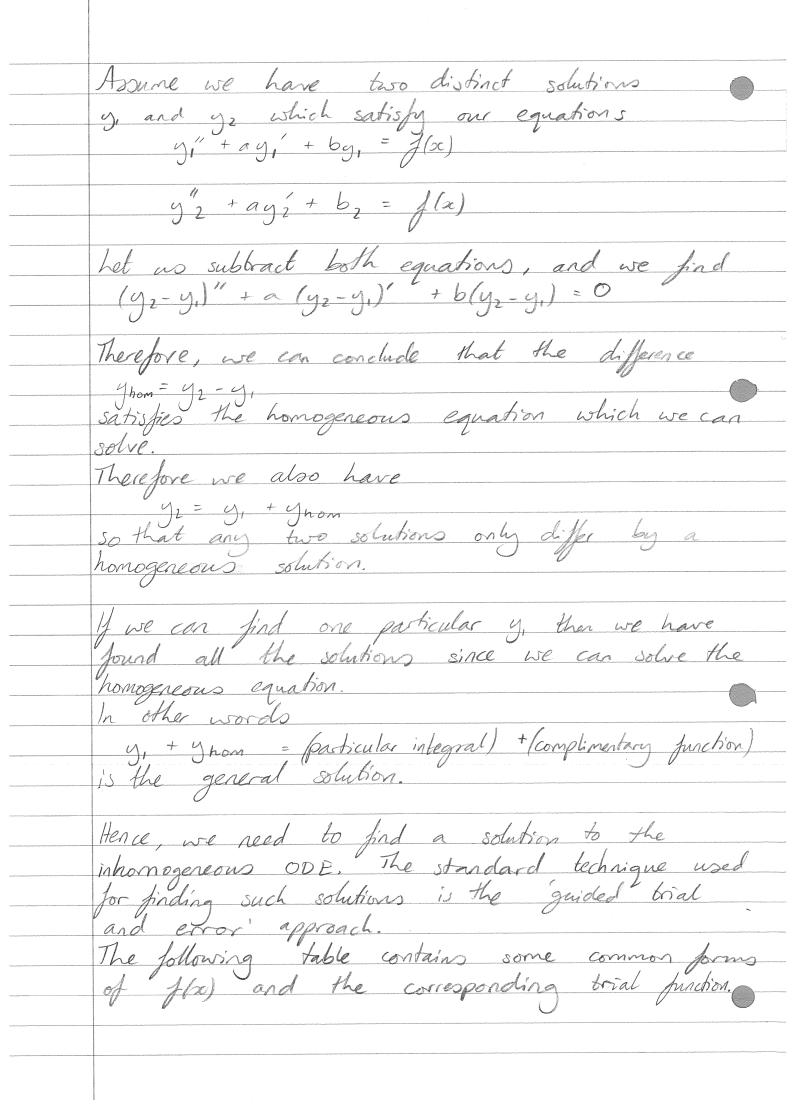
Now our differential equation becomes

d (log(y)) = log(y)

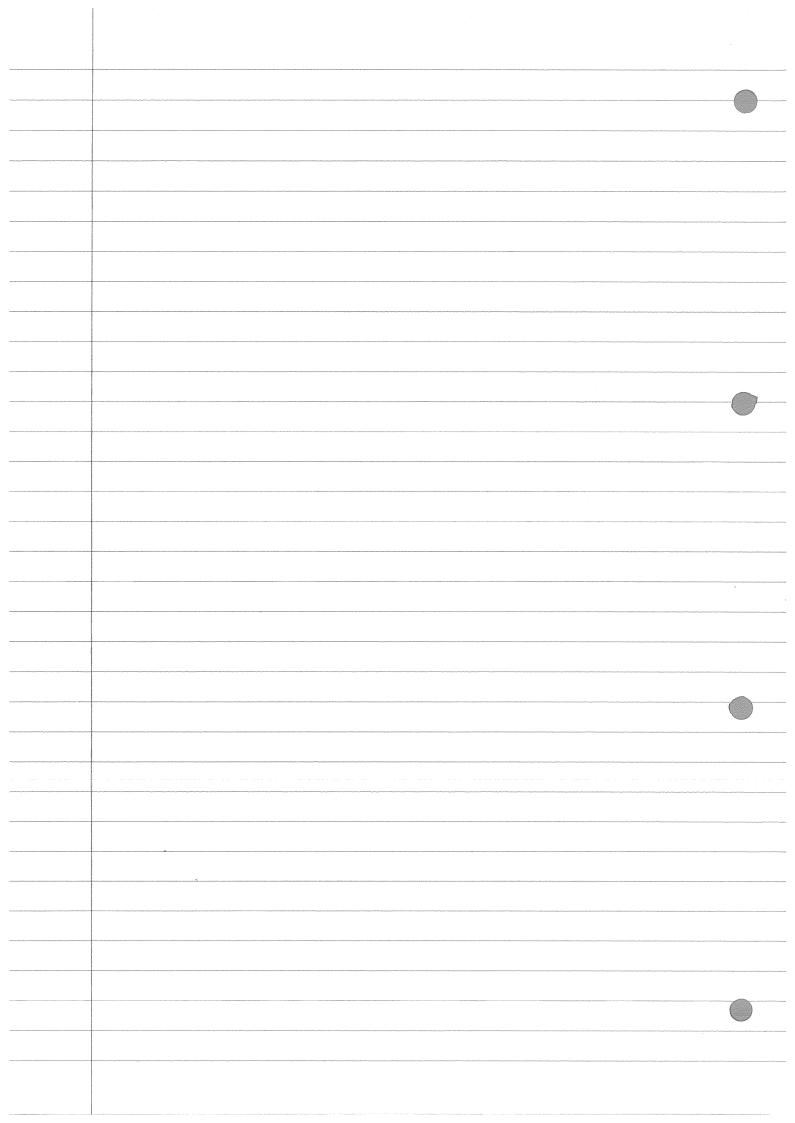
dy $\log (y) x = \int \log(\overline{y}) d\overline{y} + C$ = [log (g) [log (g)] dy + C = 1/logy) 2+C. $\Rightarrow x(y) = \frac{1}{2} \log(y) + C \log(y)$. Going back one equation: [logh]] - 2log(y)x + 2C = 0 > 92 - 29x+2C = 0 where 9 = log(g) $\Rightarrow q_{12} = x \pm \sqrt{x^2 - \hat{c}}$ (og/412) = x + 1x2-6 => y = exp(2c ± 1x2-ê) Initial boundary conditions will fix the sign and value of E 27/11/15/1401 L14 Second order ODEs Introduction The general linear second order ODE is given by


y" + a(x)y' + b(x)y = f(x)

We will concentrate on equations where a and b are constants. There are some equations which reduce to this If f=0 the equation is said to be homogeneous, f(x) is often called the forcing term of the equation. Constart coefficient homogeneous equations Consider the equation y" + ay + by = 0 We know that y' + ay = 0 is solved by
y = Ae -ax, therefore we begin with the $y(x) = Ae^{1x}$ y'(x) = Ale 12c y"(x) = A 2 e Loc Substituting this into the ODE Alzere + aller + ble = 0 () 2+a/ + b) = 0 Assuming A \$0 => 12 + ab + b = 0 This is called the auxiliary equation of the ODE. In general we have two solutions to the auxiliary equation, unless there are repeated Assuming we have two roots λ , and λ_2 the general solution is $y(x) = Ae^{\lambda_1 x} + Be^{\lambda_1 x}$.


Initial / Boundary conditions fix the values of A and B. If we have a pair of complex conjugate roots, we write $= e^{\rho x} \left(A \cos(qx) + i A \sin(qx) + B \cos(qx) - i B \sin(qx) \right)$ $= e^{ex}((A+B)\cos(qx) + (iA-iB)\sin(qx))$ $= e^{px} (Ecogoc) + Fsin(gx))$ where E=A+B, F= i(A-B) hastly, if $\lambda = \lambda_1 = \lambda_2$ we know that one solution is given by $y = Ae^{\lambda_{2c}}$ where $\lambda = -\frac{a}{2}$ $(\lambda^2 + a\lambda + b = 0, \lambda_{1,2} = -\frac{a}{2} + \sqrt{\frac{a^2}{4} - b})$ To find the other solution, we try $y'(x) = f(x)e^{\lambda x}$ $y'(x) = f'e^{\lambda x} + f \lambda e^{\lambda x}$ $y''(x) = f''e^{\lambda x} + f' \lambda e^{\lambda x} + f' \lambda e^{\lambda x} + f \lambda^{2} e^{\lambda x}$ $= f''e^{\lambda x} + 2\lambda f'e^{\lambda x} + f \lambda^{2} e^{\lambda x}$ Ther we subobitate into our equation and get y'' + ay' + by = 0 $(f''e^{x}x + 2\lambda f'e^{x}x + f\lambda^{2}e^{x}x) + a(f'e^{x}x + f\lambda e^{x}x) + bfe^{x}x = 0$ $e^{\lambda x} \left[f'' + f'(2\lambda + a) + f(\lambda^{2} + a\lambda + b) \right] = 0$ 0!!! $\Rightarrow e^{\lambda x} \left[\int_{-\infty}^{\infty} + \int_{-\infty}^{\infty} (2\lambda + \alpha) \right] = 0$ because I is a solution of the auxiliary equation.

2 +111/15	1401
214	
	$2\lambda + a = 0$ because λ is a repeated root $(\lambda = -\frac{a}{2})$ Therefore we are left to solve $e^{\lambda z} \int_{-\infty}^{\infty} = 0$
	Therefore we are left to volve
	2 12 1" - 0
	$\Rightarrow f(x) = Ax + B$
	And have
	And hence $y(x) = (Ax + B) e^{Ax}$.
	Nobe:
	This method of dialing the scored solution to
	an ODE using y = A(x) e in where e is a homogeneous
nemacronous materials and have made above to the relative energy at a set of the relative engine.	solution is very powerful. It also works for
	Note: This method of finding the scond solution to an ODE using y = f(u) e in where e is a homogeneous solution is very powerful. It also works for inhomogeneous equations and can be very efficient.
	esticat.
THE COLUMN TWO COLUMN TO THE COLUMN TWO COLU	
And the second s	
	·
	,


1-11

30/11/15	1401
215	2nd order ODEs
	Example
	$y'' + y' + y = 0$ with $\{y(0) = 1\}$
	(y'(0)=3
	The auxiliary equation is
Million de la Million de la descripción de la dela del million de la dela dela dela dela dela dela del	$\int_{-\infty}^{\infty} \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$
We in the contract	$\lambda_{1,2} = -\frac{1}{2} + \sqrt{\frac{1}{4} - 1}$
	$= -\frac{1}{2} + \frac{1}{2}\sqrt{-3}$ $= -\frac{1}{2} + \frac{1}{2}\sqrt{3}i$
	Therefore the general solution is
	$y(sc) = A e^{-\frac{x}{2}} cos(\frac{\sqrt{3}}{2}x) + B e^{-\frac{x}{2}} sin(\frac{\sqrt{3}}{2}x)$
	Now we apply the initial conditions
	Now we apply the initial conditions y(x=0) = A.1 + B.0 = A=1
	$a'(a) = A(1 - \frac{2}{3}) \cdot a(3) \cdot 1 \cdot 1 - \frac{2}{3}(a) \cdot (3) \cdot (3)$
	$y'(x) = A(-\frac{1}{2}e^{-\frac{x}{2}})\cos(\frac{\sqrt{3}}{2}x) + Ae^{-\frac{x}{2}}(-\sin(\frac{\sqrt{3}}{2}x)\frac{\sqrt{3}}{2}) + B(-\frac{1}{2}e^{-\frac{x}{2}})\sin(\frac{\sqrt{3}}{2}x) + Be^{-\frac{x}{2}}(\cos(\frac{\sqrt{3}}{2}x)\frac{\sqrt{3}}{2})$

	$y'(x=0) = -\frac{1}{2}A + A.0 + B.0 + \frac{3}{2}B = 3$
	$\frac{3}{3} = 3 + \frac{1}{2}$ $\frac{3}{2} = 3 + \frac{1}{2}$ $\frac{3}{3} = 3 + \frac{1}{2}$
	Hence our solution is
***************************************	Hence our solution is $y(x) = e^{-\frac{x}{2}} \cos(\frac{\sqrt{3}}{2}x) + \frac{7}{3}e^{-\frac{x}{2}} \sin(\frac{\sqrt{3}}{2}x)$
	Inhomogeneous equations
	In homogeneous equations We are now considering the equation
	$y''(x) + ay'(x) + by(x) = f(x) a, b \in \mathbb{R}.$
	July July July Vije Vin.
area.	

30/11/15	1401	
L15		
	Ae box	total function y(x) ae bx if b is not a root of the auxiliary equation.
		axe bx if b is a root of the auxiliary equation.
		ax 2 e bx if b is a repeated root of the auxiliary equation
	of degree r	a polynomial of degree n $ax^2 + bx + c$
	Acos (Bx) or Csin (Dx)	x cos (Bx) + y sin (Bx) this does not work if ± iB (or ± iD) is the root of the auxiliary equation. otherwise try: x(xcos\beta x) + y sin(\beta xc)
	products of sin() & cos()	turn the product into sums using trigonometric identities and then proceed as before.
	hyperbolic	rewrite as exponentials and guess accordingly
	linear combinations	Re (e (a+ible) and treat it as exponentials
:	of the above	also linear combinations

04/12/15 1401 L16 Example Solve the differential equation $y'' - 3y' + 2y = e^{4x} + e^{3x} + e^{2x}$ We start with the complementary function (solution to the homogeneous equation). The auxiliary equation is $\frac{1^2 - 3\lambda + 2 = 0}{1^2 - 3\lambda + 2 = 0}$ » (1-2)(1-1)=0 » /=1, 1=2 Hence we find Jum = Ae 200 + Be 00 For the particular integral we begin with ae 4th be 3x. Since ex is part of the homogeneous solution we use cxe 2x. $yp = ae^{4x} + be^{3x} + cxe^{2x}$ $y'p = 4ae^{4x} + 3be^{3x} + c(e^{2x} + 2xe^{2x})$ $y''p = 1bae^{4x} + 9be^{3x} + c(2e^{2x} + 2(e^{2x} + 2xe^{2x}))$ We substitute back into our ODE and get $1bae^{4x} + 9be^{3x} + 4c(e^{2x} + xe^{2x}) - 3(4ae^{4x} + 3be^{3x} + c(e^{2x} + 2e^{2x}))$ $+ 2(ae^{4x} + be^{3x} + cxe^{2x}) = e^{4x} + e^{3x} + e^{2x}$ e 4x: 16a - 12a + 2a = 1 => a = 1 $e^{3x}: 96 - 96 + 26 = 1 \rightarrow 6 = \frac{1}{2}$ xe22 4 c-6c +2c=0 $e^{2\pi}$: $4c - 3c = 1 \Rightarrow c = 1$ We expect the xern terms to give an identity since they arise from differentiating the erre

of that product. This is the honogeneous equation and so we expect zero. Therefore our particular integral is given by $y_p = \frac{1}{1}e^{4x} + \frac{1}{2}e^{3x} + xe^{2x}$ and hence the general solution is $y(x) = Ae^{2x} + Be^{2x} + \frac{1}{5}e^{4x} + \frac{1}{2}e^{3x} + xe^{2x}$ Now we could apply initial / boundary conditions. Example
Solve y"+4y = x2 + cos(x) The auxiliary equation is 12 + 4 = 0 and we get 1 = ± 2i So the complimentary function is given by Thom = Acos(2x) + Bsin(2x) For the particular we begin with yet = ax2 +bsc +c + mcax + nsinx yet = 2ax +b - msinx + ncosc y"= 2a - mcox - nsinx We substitute back into the ODE and get 2a-mcox-nsinx +4(ax2+bx + C+mcosx +nsinse) next we compare coefficients $coz: -m + 4m = 1 \Rightarrow m = \frac{1}{3}$ $sinx: -n+4n=0 \Rightarrow n=0$ $x^2: 4a=1 \Rightarrow a=\frac{1}{4}$ » b=0 x: 4b=01: 2a+4c=0 > c=-1/8 Therefore, our general solution is y(2e) = Aco(2se) + Bsin(2se) + 3 cose + 4 x2 - 8 It this point we could apply initial (boundary conditions. 04/12/15 1401 216 Example Solve the equation y"-y=x+ex The auxiliary equation is $\lambda^2 - 1 = 0$ so that $\lambda = \pm 1$. So e^{-x} is a solution of the homogeneous equation. We will try solving this equation using $y(x) = f(x) e^{-x}$. $y'(x) = f'e^{-x} + 2f'e^{-x} + fe^{-x}$ $y''(x) = f''e^{-x} + 2f'e^{-x} + fe^{-x}$ Substitution gives f"e" + 2 je x + fex - fex = x + ex > /"ex + 2/ex = x + ex Set g=f' and get
g'ex+2gex=x+ex $\frac{1}{2}$ $\frac{1}$ Q = exp([2doc) = e 200 $\frac{\partial}{\partial x} \frac{d(e^{2x})}{dx} = xe^{x} + e^{2x}$ $\frac{\partial}{\partial x} = \frac{2\pi}{2} = \frac{2\pi}{2} = \frac{2\pi}{2} + \frac{2\pi}{2} + \frac{2\pi}{2} + \frac{2\pi}{2} = \frac{2\pi}{2} + \frac{2\pi}{2} = \frac{2\pi}{2}$ Therefore $y = \int_{-\infty}^{\infty} e^{x} = \left(e^{-x} + De^{x} + \frac{1}{2}xe^{x} - x \right)$

 $y'' - 3y' + 2y = xe^{x}$ The aux; l'ary equation is $\lambda^{2} - 3\lambda + 2 = 0$ $(\lambda - 2)(\lambda - 1) = 0$ Example Thom = Ae 2x + Be x We cannot guen a suitable particular integral and so begin with $y = fe^{x}$ $y' = f'e^{x} + fe^{x}$ $y'' = f''e^{x} + fe^{x}$ Substitution into the ODE gives

(f'ex + 2fex + fex) -3(fex+fex) + 2fex = xex $\int_{-1}^{1} + 2f' + f - 3f' - 3f + 2f = 2c$ $\int_{-1}^{1} - f' = x$ Set g = f' g' - g = 2c $Q = \exp(\int -dsc) = e^{-sc}$ $\frac{d}{ds}\left(e^{-2t}g\right) = e^{-2t}g$ e-xg = -e-x2c-e-x+C $3 \quad g = -2c - 1 + Ce^{x}$ $3 \quad f = -\frac{1}{2}x^{2} - x + Ce^{x} + D$ Therefore our final solution is $y = fe^{x} = Ce^{2x} + De^{x} - e^{x}(\frac{1}{2}x^{2} + xc)$

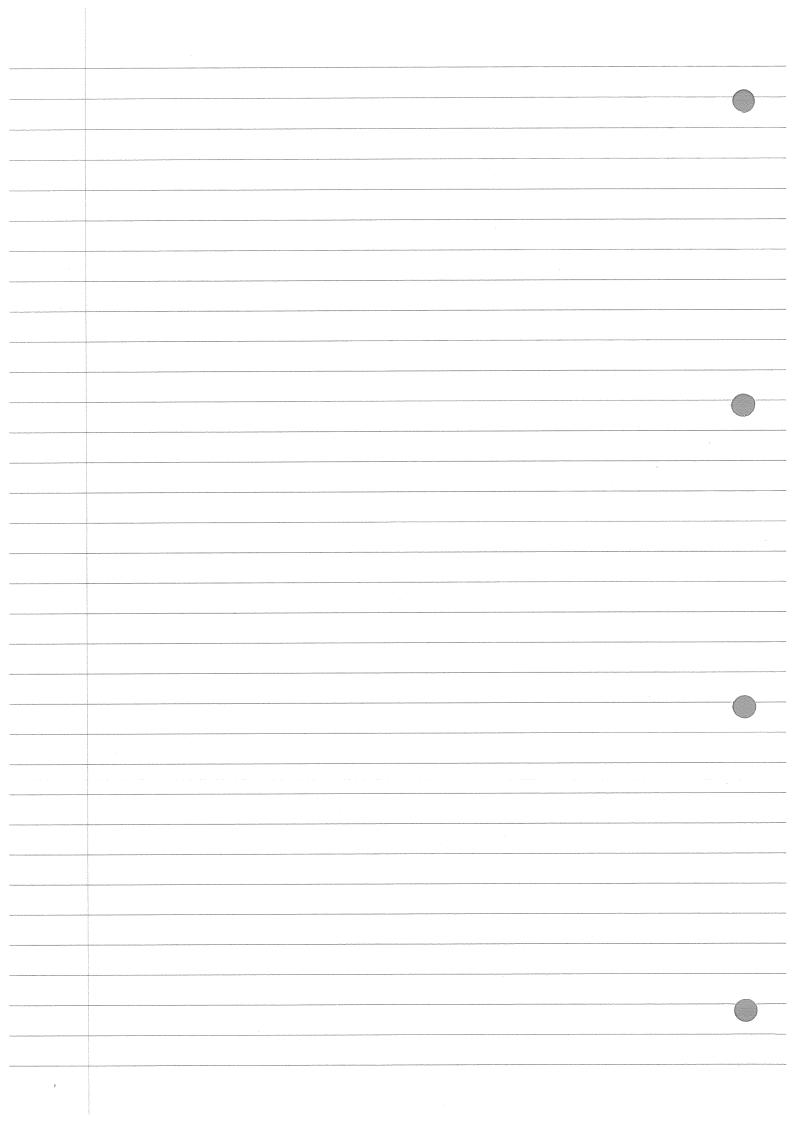
04/12/15	1401
416	
	Euler's equation
	The Euler or Cauchy-Euler equation is
	The Enler or Cauchy-Enler equation is $x^2y'' + axy' + by = f(x)$ with $a, b \in \mathbb{R}$
	Exercise
	Show that introducing the new independent variable
	x=e or t=log(x) transforms this equation
	The hardest part is to show that
	d2y = 1 d2y - 1 dy
	$\frac{d^2y}{dsc^2} = \frac{1}{x^2} \frac{d^2y}{dt^2} - \frac{1}{x^2} \frac{dy}{dt}$
***************************************	This should be done first and only requires careful
	use of the chair rule
	$x = e^{t} \qquad y(x) = y(x(t))$
	$dx = e^{t}dt \qquad oly = dy dx = dy e^{t}$ $dt dx dt dx$
	However, we can solve this differently by noting
	its particular structure
	x² x second derivative
	x'x first derivative
	20° × Junction
	to the homogeneous equation.
AMERICA (1940-1947)	n ve morningeneous equations.
	Example
	$\frac{\text{Example}}{x^2y'' + xcy' - 4y = xc^2 + xc^4}$
	Let us try using $y = x^{\lambda}$ $y' = \lambda x^{\lambda-1} xy' = \lambda x^{\lambda}$ $y'' = \lambda (\lambda - 1) x^{\lambda-2} x^{2}y'' = \lambda (\lambda - 1) x^{\lambda}$
	$y' = \lambda x' \qquad xy' = \lambda x''$
	$y'' = \lambda(\lambda^{-1})x \qquad x^{-1}y'' = \lambda(\lambda^{-1})x$

Therefore, the homogeneous equation becomes $\lambda(\lambda-1) x^{\lambda} + \lambda x^{\lambda} - 4x^{\lambda} = 0$ $(\lambda(\lambda-1) + \lambda - 4) x^{\lambda} = 0$ $(3) \left[\lambda^2 - \lambda + 4 - 4 \right] 2c^2 = 0$ Hence yrom = $Ax^2 + Bx^2$ Now, we can again try a solution of the form $y = \int x^2$ $y' = \int x^2 + 2\int x$ $y'' = \int x^2 + 4\int x + 2\int x$ We substitute 22 / f"x2 + 4 /x + 2 f) + x (f'x2 + 2 fx) - 4 (fx1) = x2 + x4 $\Rightarrow x^2(f''x^2+4fx)+x(f'x^2)=x^2+x^4$ Divide by x^{4} : $\int_{-\infty}^{\infty} \frac{1}{x} \int_{-\infty}^{\infty} \frac{1}{x} \int_{-\infty}^{\infty}$ set g = f' $50 g' + \frac{5}{2}g = 1 + \frac{1}{2}$ $Q = \exp\left(\int_{SC} \frac{5}{3c} dx\right) = oc^{5}$ $\frac{d}{dx}\left(x^{5}g\right) = x^{5} + x^{3}$ $3c^{5}g = \frac{1}{6}3c^{6} + \frac{1}{4}3c^{4} + C$ So f'=g= = = = = + = + = + cx-s => f = 1/2 x2 + 1/2 log/21 + Cx - 4 + D Hence $y = x^2 f = \frac{1}{12} x^4 + \frac{1}{4} x^2 \cdot \log|x| + \tilde{c} x^{-2} + Dx^2$

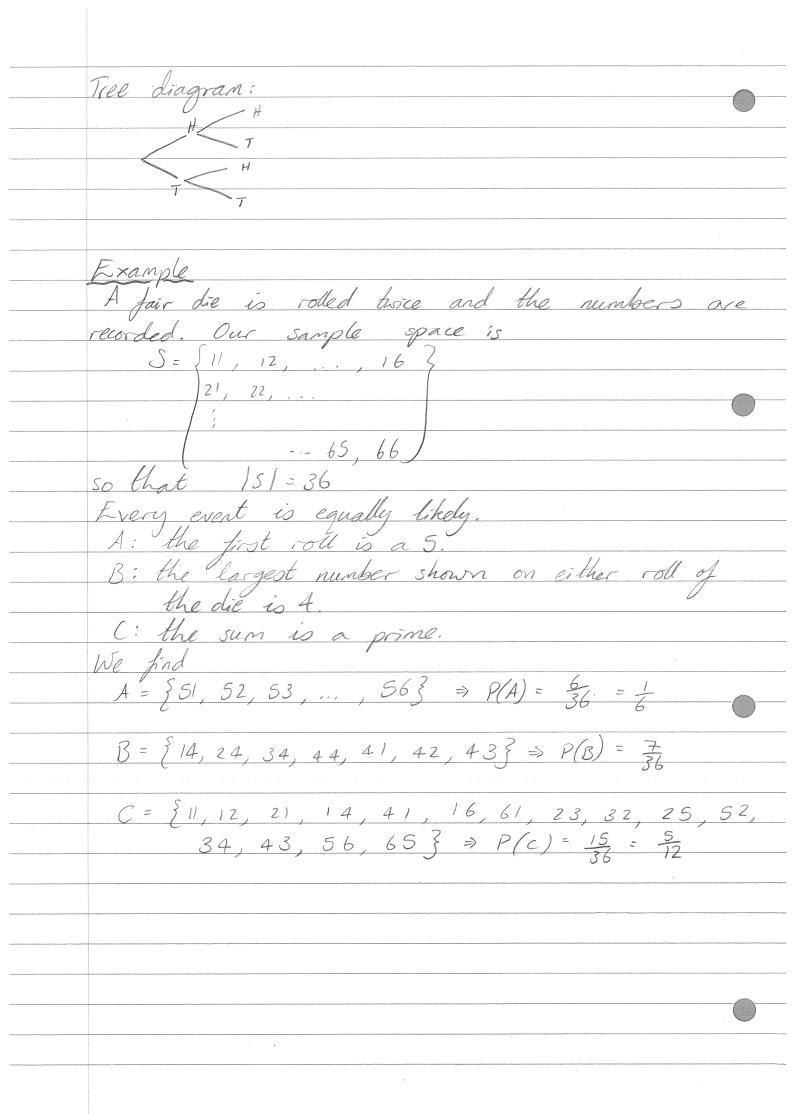
07/12/15 1401 L17 Probability Basics The starting point of a probability model is a sample space or state space) which is representing all possible outcomes of an experiment, brial, Example Two coins are torsed. One possible sample space is {HH, HT, TH, TT} another one is (HH, HT, TT 3 (order irrelevant). An event A is a subset of our sample space S. Set operations: - intersection: An B = { oc : oc e A and oc eB}

(ac belongs to both A and B) - union: AUB = { 2c: 2c eA or 2c eB}

(x belongs to A or B or both) - complement: A = { oc: oc & A }


(the complement is denoted by A or A') - relative compliment: A\B = {x: x \in A and \sc \neq B}

A\B is the set of all points which are in


A but not in B.

- disjoint (or mutually exclusive sets):	
An B = & where & is the empty set	<u> </u>
A and B are disjoint if they have	no
element in common.	
Example	
Consider the set S= {0,1,2}	
The elements of Sare O, 1, 2.	
We write 1 & S.	
The subsets of S are {03, {13, {23, {	80,13, 80,23
£1, 23, {0, 1, 23, \$ = {}	
Definition of a probability:	
To each event ACS we assign a rumber	2r, P(A)
called the probability of A which satisf	heo
the following conditions:	
(i) P(A) = 0 for all A	
(ii) P(5) = 1	
(iii) If $A \cap B = \emptyset$ then $P(A \cup B) = P(A) + P(B)$	
$P(A \cup B) = P(A) + P(B)$	
Two useful identities that we will need are: (A \ B) \(\text{(A \ B)} = A \)	
$(A \setminus B) \cup (A \cap B) = A$	
$(A \setminus B) \cup B = A \cup B$	
1	
Lemma	
$(a) P(A^c) = 1 - P(A)$	
(b) $P(\emptyset) = 0$ (c) $P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
(c) P(AUB) = P(A) + P(B) - P(AnB)	
	(-5.5)

07/12/15 1401 417 Proof of (a) We have AnA = & and also AUAC = S (ii) stated P(s) = 1 1=P(s)=P(AUAc) $= P(A) + P(A^{c})$ by (iii) >> P(A=) = 1-P(A) B We know that S = Ø Then by (a) $P(\emptyset) = P(s^c) = 1 - P(s)$ = 0 by (ii) @ We have that A\B. and AnB are disjoint $(A \setminus B) \cap (A \cap B) = \emptyset$ $A \setminus B \cap (A \cap B) = A$ Then P(A) = P((A\B)\cup (A\B))
= P(A\B) + P(A\B) by (iii) Likewise $(A \setminus B)_{0} B = \emptyset$ (A \B) UB = AUB Therefore P(AUB) = P((A\B)UB) = $P(A \setminus B) + P(B)$ We can eliminate P(A \ B) and get $P(A \cup B) = P(A) - P(A \cap B) + P(B)$ = P(A) + P(B) - P(AnB)

11/12/15	1401
L18	
	Egnally Likoley Events
	Equally Likeley Events Consider a sample with a finite number of elements S = { s.,, s., }
	S = 3 S So ?
	where a = 151
	Consider the events consisting of only one element of S (simple events). Then
	of S (simple events). Then
	$S_1 = \{s_i\}$; $S_2 = \{s_2\}$;
	Since all Si are disjoint we have $1 = P(S) = P(S_1 \cup S_2 \cup S_3 \cup \cup S_n)$
	$1 = P(S) = P(S_1 \cup S_2 \cup S_3 \cup \cup S_n)$
	$= P(S_1) + P(S_2) + \dots + P(S_n)$
	1/200/ 5 / 5 5 2
	17 each event 5; 5 is equally likely, then
	If each event $S_{i} = \{s_{i}\}$ is equally likely, then $1 = n P(S_{i}) \text{for one fixed } j,$ then $P(S_{i}) = \frac{1}{n}$.
	r(S)) - A
	Any event A which is a union of disjoint events
	Si, for instance
	$A = \left\{ S_{\bar{\alpha}_1}, S_{\bar{\alpha}_2}, \dots, S_{\bar{\alpha}_k} \right\}$
	with $k = A $
	Then P(A) = P(si,) + P(siz) + + P(six)
	$=\frac{1}{n}+\frac{1}{n}+\frac{1}{n}$
	k times
	$= \frac{k}{n} = \frac{ A }{ S }$
	Example
	A fair con in topsed horse Our sample some
	A fair coin is topsed busice. Our sample space is $S = \{HH, HT, TH, TT\}$ and all simple events
	are equally likely.
	all equally likely. $P(HH) = \frac{1}{2}$
	Plone head and one tail) = P(HT) + P(TH) = =
	Plat least one tail appears) = 1 - P(HH) = 3

11/12/15 1401 L18 Viscrete Sample Space A sample space is said to be discrete if it is either prite or courtably infinite (the elements can be listed one after the other).

If S is courtably infinite then there is a one-to-one correspondence between S and the natural numbers M. Therefore we can sum over all probabilitées and get $\sum_{x \in S} P(x) = 1$ Example Consider a game involving a fair coin toped until the first time we throw a head, when the game ends.

A possible sample space is

S= {H, TH, TTH, TTTH, TTTTH, ... }

The game ends on the n-th throw of and only if n-1 tails have been thrown in a row.

On = (\frac{1}{2}|^{n-1}/\frac{1}{2}| = (\frac{1}{2}|^n)^{n-1}/\frac{1}{2}| = (\frac{1}{2}|^n)^{n-1}/\frac{1}{2}| = (\frac{1}{2}|^n)^{n-1}/\frac{1}{2}| = (\frac{1}{2}|^n)^{n-1}/\frac{1}{2}| = (-1/2)^n $\rho_n = \left(\frac{1}{2}\right)^{n-1} \left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^n$ $\sum_{n=1}^{\infty} p_n = \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1}{2} = 1$

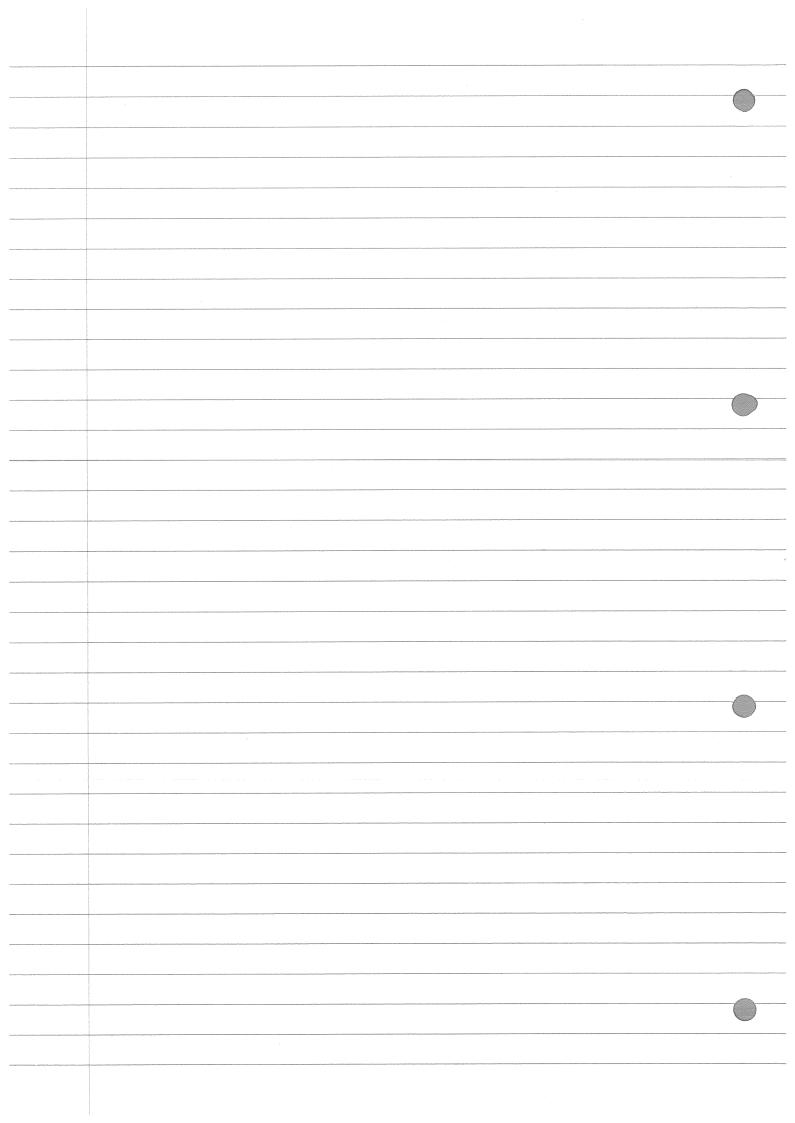
Conditional Probability Example
An urn contains 3 black balls and 2 white balls. Two balls are removed (without pulling them back). Find the following:

A - the first ball is black

B - the second ball is black

C - the two balls have the same colour P(A) = 3/5 $\frac{3}{5} \frac{1}{8} \frac{1}{4} \frac{1}{10} \frac{1}{10} = \frac{10}{10} = \frac{10}{10} = \frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{3}{4} = \frac{12}{20} = \frac{3}{5}$ $P(c) = P(BB) + P(\omega \omega)$ $= \frac{3}{5} \times \frac{2}{4} + \frac{2}{5} \times \frac{1}{4} = \frac{2}{5}$ This tree diagram is a special case of a more general one: We define P(BIA) = P(AnB) to be the probability that an event happens, given that A has already happened. In the example, 11/12/15 1401 L18 A was the event that the first ball was black and B was the event that the second ball was black. We note that $B = (B \cap A) \cup (B \cap A^c)$ and also $(B \cap A) \cap (B \cap A^c) = \emptyset$ Therefore we can write $P(B) = P(B \cap A) \cup (B \cap A^c)$ = P(BnA) + P(BnAc) = P(BIA)P(A) + P(BIAc)P(Ac) Therefore we could write $P(A \mid B) = P(B \cap A) = P(B \cap A)$ $P(B) \qquad P(B \mid A) P(A) + P(B \mid A^c) P(A^c)$ Counting Consider a set S with a objects. when considering ordered samples, repetition is
allowed. The number of samples of size r
is given by no.

In an ordered sample, with no repetitions we have a choices for the first, no choices
for the second, and so on, and no (r-1) choices
for the rth. This gives n(n-1)(n-2)...(n-(r-1)) = n(n-1)(n-2)...(n-r+1)If we take r=n we get n! which is the number of different ways to awange a dements.


In an unordered sample, with no repetitions we want to determine the number of subsets containing or elements of a set containing or elements. We call this "Cr. Each set contains or elements which can be arranged in r! ways. Therefore, we have "(rr!) ordered samples \Rightarrow "(rr!)!Hence ${}^{n}C_{r} = n! = {n \choose r}$ This is the number of combinations of elements that can be taken from a set of n elements.
We note that (?) is the binomial coefficient which we see in the expansion of $(a+b)^n$ for Find the total number of subsets of a set of size n.

Subset of zero: (°) empty subset

subsets of size r: (°)

subset of size n: (°) The total number would be $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = \frac{2}{5}\binom{n}{2}$ $=\sum_{r=0}^{\infty}\binom{n}{r}r^{r-r}$ = (1+1) = 2

11/12/15	1401
L18	
	Example
	In a group of r people, find the probability that at least two people have the same birthday. [not nexessarily in the same year, also we neglect the leap year].
	the same birthday.
	Inot nessessarily in the same year, also we nealest the leap year?
	The first person can choose 36/365 days.
	The second person can choose 364/365 days.
	The rth person can choose 365-(1-1) days.
-	
	We can compute the probability of r people having different birthdays by 365, 364, 363,, 365-r+1 365, 365, 365, 365
	365 364 - 363 365-1-1
	365 365 365 365
	= 365! (365-r)!(365) ^r
	So the probability that at least two people
	So the probability that at least two people have the same birthday is $P(r) = 1 - 365!$
	$(365-r)!(365)^r$
	$P(22) \approx 47.6 \%$ $P(23) \approx 50.7 \%$

14/12/15 1401 219 Independence Two events are independent of $P(A \cap B) = P(A)P(B)$ which also means P(BIA) = P(B) Binomial distribution A Bernoulli brial is a repeated independent experiment or event with only two possible outcomes:

- success with probability p

- failure with probability q=1-p These probabilities must be the same for each brial. The probability of r successes from a Bernoulli brials is given by the binomial distribution $b(r)=\binom{n}{r} p \binom{n-r}{2}$ Example Letter written in 1693 from Pepys to Newton.

Question: Which of the following propositions
has the greatest chance of success?

A: Six fair dice are tossed independently and
at least one six appears.

B: Twelve fair dice... and at least two
sixes appear. Sixes appear. C: Eighteen fair dice ... and at least three Sixeo appear.

14/12/15 1401 419 $= g^n \sum_{r=0}^{\infty} r(r) \left(\frac{p}{q}\right)^r$ Recall $\sum_{r=0}^{n} {n \choose r} > c^{r} = (1+>c)^{n}$ differentiate with respect to x $\sum_{r=0}^{n} \binom{n}{r} 2c^{r-1} = n \left(1 + x\right)^{n-1}$ Multiply by x $\frac{\sum_{r} \binom{n}{r} x^{r} = n x (1+x)^{n-1}}{n}$ Therefore we find $\sum_{r=0}^{n} r b(r) = q^{n} n \left(\frac{p}{q}\right) \left(1 + \frac{p}{q}\right)^{n-1}$ $= np(q+p)^{n-1}$ = np because p+q=1Poisson dibribution The binomial distribution is very useful but it can involve large factorials which are computationally expensive to compute.
We will define the Poisson distribution to be the limit of the benomial distribution as no becomes very large while keeping the mean $\lambda = np$ constant. We want $n \to \infty$, $p \to 0$ in such a way that $\lambda = np$ does not charge. $b(r) = \binom{n}{r} p^r q^{n-r}$ $= n! prq^{n-r}$ $\frac{r!(n-r)!}{r!(n-r)!}$

$= n! \left(\frac{\lambda}{n} \right)^{n-r} $ $= n! \left(\frac{\lambda}{n} \right)^{n-r}$	
r:(n-r)!. \")	
· · · · · · · · · · · · · · · · · · ·	

18/12/15 220 Example For dice (fair) $\mu = 1 \times \frac{1}{6} + 2 \times \frac{1}{6} + \dots + 6 \times \frac{1}{6} = \frac{7}{2}$ Example Binomial distribution $b(r) = \binom{n}{r} \rho q^{n-r}$ So the mean value of successes (expectation) is $\sum_{r} r b(r) = \sum_{r} {n \choose r} p^{r} q^{n-r}$ $= 2^n \sum_{r=0}^{n} r\binom{r}{r} \binom{p}{q}^r$ Recall: $\sum_{r=1}^{n} {n \choose r} \lambda^{r} = (1+\lambda)^{n}$ $\frac{\sum_{r=0}^{N} \Gamma(r^{n}) \lambda^{r-1}}{\sum_{r=0}^{N} \Gamma(r^{n}) \lambda^{r-1}} = N(1+\lambda)^{N-1}$ (by differentiating wrt λ) $\sum_{r=1}^{N} \Gamma(r) \lambda^{r} = N \lambda (1+\lambda)^{N-1}$ (multiplying by 1) Therefore we find: $\sum_{r=1}^{N} r p(r) = q^{N} N(\frac{p}{q}) (1+\frac{p}{q})^{N-1}$ $= q^{N-1} N \rho (1+f)^{N-1}$ = $np(q+p)^{n-1} = np \quad (note: p+q=1)$ The Poisson Riberbution The Binomial Distribution is very useful but it can involve large factorials which are computationally expensive to compute. We will define the poisson distribution to be the limit of the Bironial Distribution as a becomes

very large, while keeping the mean 1=np We want 1-> 00, p>0 in such a way that $=\frac{n!}{r!(n-r)!}\frac{p^{2}q^{n-r}}{r!(n-r)!}=\frac{n!}{r!(n-r)!}\left(\frac{\lambda}{n}\right)^{r}\left(\frac{1-\lambda}{n}\right)^{n-r}$ $=\frac{\lambda^{r}}{r!}\frac{n(n-1)...(n-r+1)}{n}\left(\frac{1-\lambda}{n}\right)^{-r}\left(\frac{1-\lambda}{n}\right)^{n}$ $=\frac{\lambda^{r}\left[\left(1-\frac{1}{n}\right)\cdots\left(1-\frac{r-2}{n}\right)\left(1-\frac{\lambda}{n}\right)\left(1-\frac{\lambda}{n}\right)^{r}\left(1-\frac{\lambda}{n}\right)^{n}\right]}{r^{r}\left(1-\frac{\lambda}{n}\right)^{r}\left(1-\frac{\lambda}{n}\right)^{n}}$ fixed no of terms, all of which > 1 as n > 00. We only have to be careful with $a_n = (1 - \frac{\lambda}{n})^n$, $\lim_{n \to \infty} a_n$. To find this limit we start with $\log a_n = n \log (1 - \frac{\lambda}{n})$ $\lim_{n\to\infty} \left(\log a_n\right) = \lim_{n\to\infty} \left(n\log\left(1-\frac{1}{n}\right)\right) = \lim_{n\to\infty} \left[\log\left(1-\frac{1}{n}\right)\right]$ L'Hopital's Rule $f(\lambda_0)=0=g(\lambda_0)$, $\lim_{\lambda \to \lambda_0} \left(\frac{f(\lambda)}{g(\lambda)}\right)=\lim_{\lambda \to \lambda_0} \left(\frac{f'(\lambda)}{g'(\lambda)}\right)$ By L'Hopital's rule: $\lim_{n\to\infty} \left[\frac{\lambda/n^2}{1-\lambda/n} \right] = \lim_{n\to\infty} \left(\frac{-\lambda}{1-\lambda/n} \right) = -\lambda$ Therefore: $\lim_{n\to\infty} \left[n\log\left(1-\frac{\lambda}{n}\right) \right] = \lim_{n\to\infty} \left[\log\left(1-\frac{\lambda}{n}\right)^n \right] = -\lambda$ $\Rightarrow \lim_{n \to \infty} \left(1 - \frac{\lambda}{n} \right)^n = e^{-\lambda}$ Finally we obtain the Porson Distribution as the large limit of the Binomial Distribution. $P(r) = \lim_{n \to \infty} (b(r)) = \lambda^r e^{-\lambda}$

18/12/19	1401
L 20	
	Example
	An insurance company pays £500k to each dient who has a fire. The company has 5000 clients, and the probability of a fire is 10 ⁻⁴ per year.
***************************************	dient who has a fire. The company has
	5000 dients, and the probability of a fire
	15 10-4 per year.
	And the probability of the company paying out
	£2M in a single year.
Amended and a second a second and a second a	We have that $p=10^{-4}$ is small and $n=5000$
	o carge, 11-14 2.
	[We assume: no dient has two fires in the same year]
Weekfields and the control of the co	sure gen J
	£2M corresponds to 4 fires in this year.
	Hence we compute the probability of 0, 1, 2, 3
	fires and have
	E2M corresponds to 4 fires in this year. Hence we compute the probability of 0, 1, 2, 3 fires and have $R(->4) = 1 - \{R(0) + R(1) + R(2) + R(3)\}$
-	
	$= 1 - e^{-\frac{1}{2}} \left\{ 1 + \frac{(\frac{1}{2})}{1!} + \frac{(\frac{1}{2})^2}{2!} + \frac{(\frac{1}{2})^3}{3!} \right\}$
	~ 0-00175 ~ 0.2 %
	Example
:	An office recieves three calls per hour or average. Find: (a) No calls are recieved in a given hour. (B) Exactly three calls are received in a given hour.
V/2007/00/00/00/00/00/00/00/00/00/00/00/00/	tind: @ No calls are recieved in a given hour.
	B) Exactly three calls are received in a given hour.
	$(a) = e^{-3}$
	3! 3!

We already know the near is $\mu = \sum_{i} \alpha_{i} P(\alpha_{i})$ We are often interested in how much the outcome differs from the mean. One measure of this is the variance $\sigma^2 = \sum_i (x_i - \mu_i)^2 \mathcal{H}(x_i)$ and the standard deviation Continuous probability distributions.
So far use have considered discrete sample Now we want to define probabilities over R.

We define the probability using a probability density function f(x) s.t. $P(a < x \le b) = {}^{b} f(\bar{x}) d\bar{x}$ We need to impose conditions on f(x) so that P is a probability consistant with our previous definition.

(i) $f(x) \ge 0$ $\forall x$ (ii) $\int_{M} f(x) dsc = 1$ (normalisation condition). We can also define the mean by $\mu = \int_{\mathcal{H}}^{+\infty} f(x) dsc$

18/12/15 1401 220 and the variance by $\sigma^2 = \int (x - u)^2 f(x) dx$ $= \int (x^2 - 2x\mu + \mu^2) f(x) dx$ $= \int_{-\infty}^{+\infty} \frac{1}{x^2} f(x) dx - 2\mu \int_{\infty}^{+\infty} \frac{1}{x^2} f(x) dx + \mu^2 \int_{-\infty}^{\infty} f(x) dx$ $= \int x^2 f(x) dx - 2\mu^2 + \mu^2$ $= \int_{\infty}^{2} f(x) dx - \mu^{2}$ We call s the standard deviation. Example

The probability density function describing the location of a particle is $f(x) = \begin{cases} c(x-x^3), & 0 < x < 1 \end{cases}$ the probability of the particle is the (i) We fix the constant, c, using the normalisation condition. $1 = \int f(x) dx$ $= c \int x - xc^3 doc$ $= C \left[\frac{1}{2} x^2 - \frac{1}{4} x^4 \right]' = \frac{1}{4} C \Rightarrow C = 4$ (ii) Let us compute the mean: $\mu = \int_{-\infty}^{+\infty} f(x) dsc$

$$\frac{3}{3} \mu = \int_{0}^{4} x(x-x^{3}) doc$$

$$= 4 \left[\frac{1}{3}x^{3} - \frac{1}{2}x^{5} \right]_{0}^{4}$$

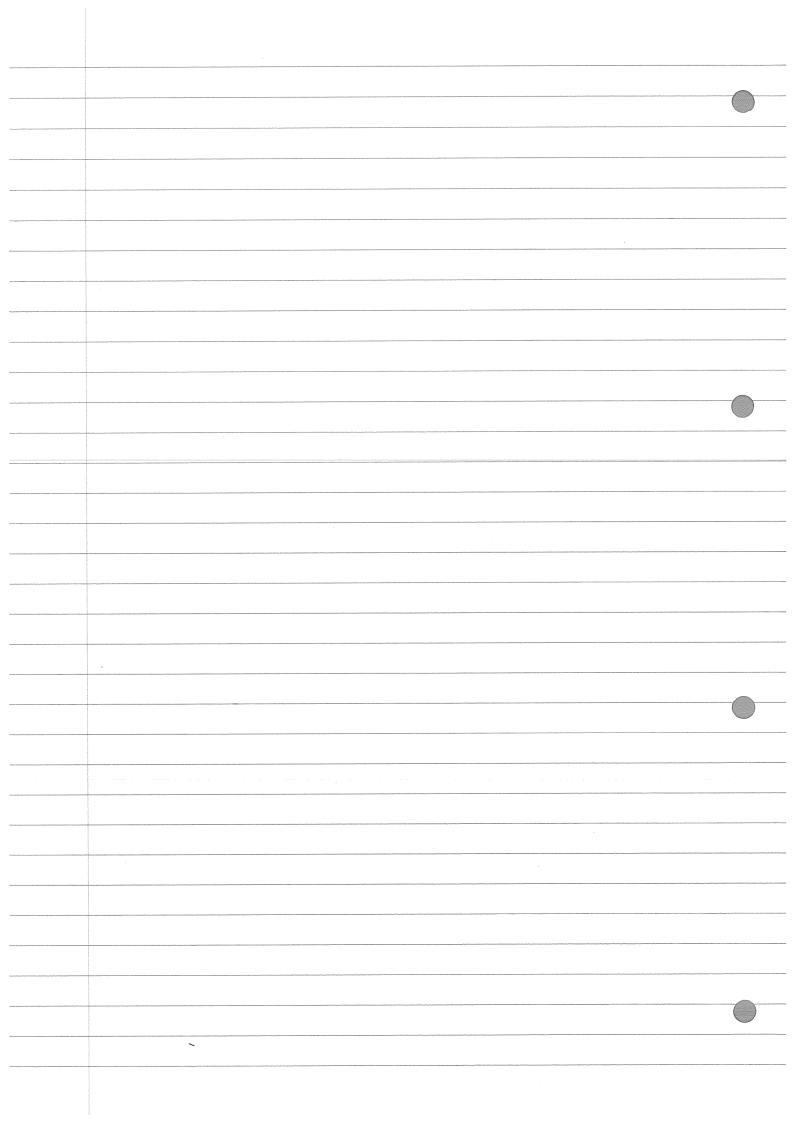
$$= 4 \left[\frac{1}{3}x^{3} - \frac{1}{2}x^{5} \right]_{0}^{4}$$

$$= 4 \left[\frac{1}{3}x^{3} - \frac{1}{2}x^{5} \right]_{0}^{4}$$

$$= 4 \left[\frac{1}{3}x^{4} - \frac{1}{6}x^{6} \right]_{0}^{4} - \mu^{2}$$

$$= 4 \left[\frac{1}{4}x^{4} - \frac{1}{6}x^{6} \right]_{0}^{4} - \mu^{2}$$

$$= 4 \left[\frac{1}{4}x^{4} - \frac{1}{6}x^{6} \right]_{0}^{4} - \mu^{2}$$


$$= \frac{1}{3} - \left(\frac{1}{5} \right)^{2}$$

$$= 4 \left[\frac{1}{2}x^{2} - \frac{1}{2}x^{3} \right]_{0}^{4}$$

$$= 2 \left[\left(\frac{1}{2} \right)^{2} - \frac{1}{2} \left(\frac{1}{2} \right)^{4} \right]$$

$$= \frac{1}{2} - \left(\frac{1}{5} \right)^{4} = \frac{1}{2} - \frac{1}{16} = \frac{7}{16}$$

Exam Vectors - 2 questions Complex rumbers) Integration J 1st. ODE } 1 or 2 questions 2nd. ODE Probability - 1 question

