2101 Analysis 3: Complex Analysis Notes

Based on the 2016 autumn lectures by Prof M Singer

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility whatsoever for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

MATH ZIU No lecture notes Loto of textbook references. 03.10.16 Complex tralyois Michael Singer (807a Office hour: Man 1-2 Introduction $(x,y real, i^2=-1)$ Functions f(z), z = x + iyHolomorphic: f(z) is differentiable tacks: -f holomorphic \Rightarrow f is infinitely differentiable. -In fact if f is defined near a point $z_0 \in \mathbb{C}$, $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ for all $|z-z_0|$ small enough - (Analytic continuation): two holomorphic functions of & g. Suppose f(z) = g(z) for all z in $D = \{1z1 < 1\}$ Then actually f = g wherever they are defined.

All these are completely untrue for real differentiable functions of a real variable. -If f is holomorphic, then u(x,y) = Re(f(z)) is harmonic i.e. $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u(x, y) = 0$ => applications of hol (holomorphic) functions in 2D fluid flow. Shall prove: tundamental Thm of Algebra. Number Theory $\pi(x) = \text{number of primes} \leq x$ $(\pi(12) = 5)$. Prime number theorem: $\pi(x) \sim \frac{x}{\log x}$ for very large xFirst proof: 1890's: Made expensial use of $S(z) = \sum_{n=1}^{\infty} \frac{1}{n^2}$ (Riemann zeta function). Riemann Hypothesis: The only zeros of S(z) in $\{0 < Re(z) < 1\}$ lie on $Re(z) = \frac{1}{2}$.

1.1 C = field of complex numbers.

$$a = x + i\beta$$
, $x, \beta \in \mathbb{R}$, $i^2 = -1$

Field
$$\Rightarrow$$
 we can add, multiply, have distributive laws etc.
also $a \neq 0 \Rightarrow \exists z \text{ s.t. } az = za = 1$
To find z : suppose $z = x + iy$.
We need $(x + ip)(x + iy) = 1$
 $ax - \beta y + i(\beta x + \alpha y) = 1$
 $bx + \alpha y = 0$
 $ax - \beta y = 1$

$$y = -\frac{\beta x}{x}$$

$$x x - \beta \left(-\frac{\beta x}{x}\right) = 1$$

Similarly
$$(x^{2} + \beta^{2})x = x$$
Similarly
$$(x^{2} + \beta^{2})y = -\beta$$
Hence $x + iy = \frac{x - i\beta}{x^{2} + \beta^{2}}$ if $x^{2} + \beta^{2} \neq 0$

Exercise

Show that 3-4i has a square root in C, by

Solving
$$z^2 = (x + iy)^2 = 3 - 4i$$
.

 $x^2 - y^2 + 2ixy = 3 - 4i$ $y=1 \Rightarrow x = -2$

 $y=-1 \Rightarrow z=2$

So $z = \pm 2 \mp i$

$$x^{2} - y^{2} + 2ixy = 3 - 4i$$

$$x^{2} - y^{2} = 3 , xy = -2$$

$$50 \frac{4}{y^{2}} - y^{2} = 3$$

$$4 - y^{4} = 3y^{2}$$
let $u = y^{2} \Rightarrow u^{2} + 3u = 4$

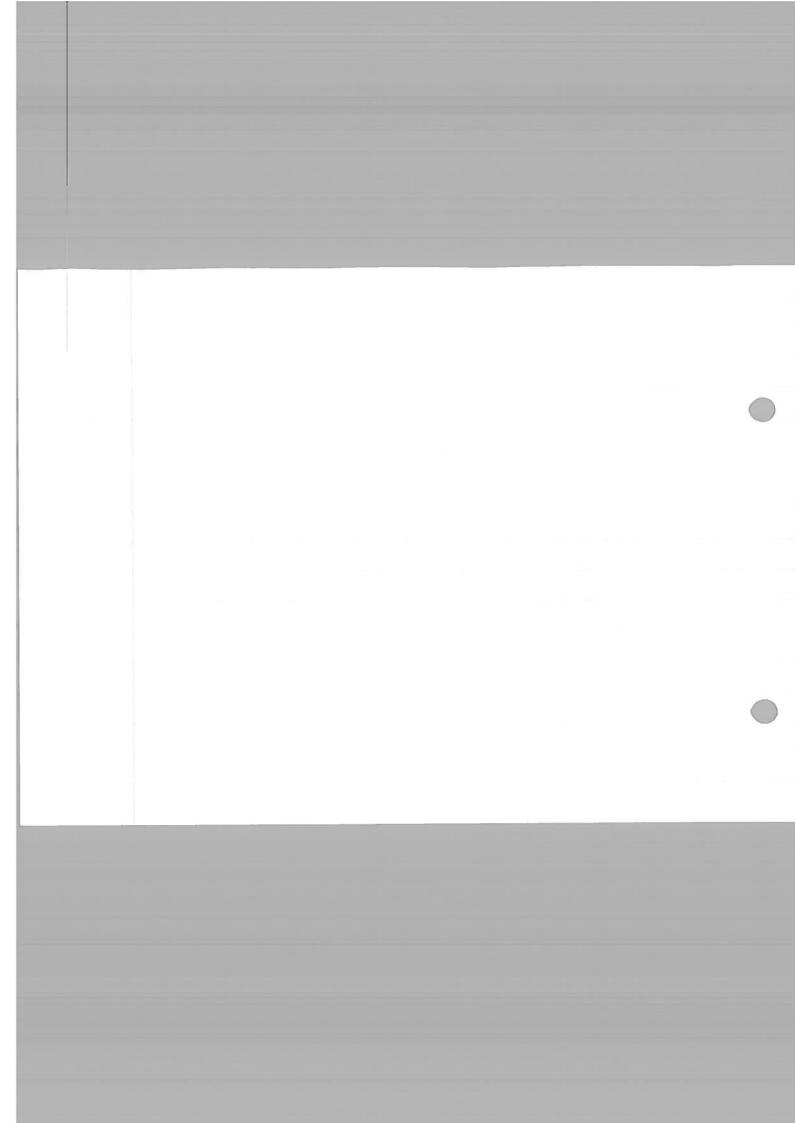
$$(u + 4)(u - 1) = 0$$

So
$$u = -4$$
 or $u = 1$

$$\Rightarrow y = \pm 1$$

Triangle Inequality Proof

We know: 1). $-121 \le Re(2) \le 121$ 2). $a\bar{b} + \bar{a}b = 2Re(a\bar{b})$ 3). $|a+b|^2 = (a+b)(\bar{a}+\bar{b}) = |a|^2 + a\bar{b} + \bar{a}b + |b|^2$ 4). $|a-b|^2 = (a-b)(\bar{a}-\bar{b}) = |a|^2 - a\bar{b} - \bar{a}b + |b|^2$ Let $z = a\bar{b} = |z| = \sqrt{a\bar{a}b\bar{b}} = \sqrt{|a|^2|b|^2} = |a||b|$ Woing 1). , 2). and |z| we have $-2|a||b| \le a\bar{b} + \bar{a}b \le 2|a||b|$ Adding $(|a|^2 + |b|^2)$ gives $|a|^2 - 2|a||b| + |b|^2 \le |a|^2 + a\bar{b} + \bar{a}b \le |a|^2 + 2|a||b| + |b|^2$ $\Rightarrow (|a| - |b|)^2 \le |a+b|^2 \le (|a| + |b|)^2$ By taking $(|a|^2 + |b|^2)$ square roots we get the result: $|a| - |b| \le |a+b| \le |a| + |b|$



MATH 2101 03-10-16 In fact every complex number has a complex square root, if $(x + iy)^2 = x + i\beta$, then $\alpha^{2} = \frac{1}{2}(\alpha + \sqrt{\alpha^{2} + \beta^{2}}), \quad y^{2} = \frac{1}{2}(-\alpha + \sqrt{\alpha^{2} + \beta^{2}})$ §1.2 Conjugation, absolute value, some inequalities. If z = x + iy, where x & y are real, the complex conjugate $\bar{z} = x - iy$ |z| = absolute value of z, $|z| = \sqrt{z}\bar{z}' = \sqrt{x^2 + y^2}'$ (note $z\bar{z} = (x + iy)(x - iy) = x^2 + y^2$). Note: 121 = 0 iff 2 = 0 • In particular $\frac{1}{2} = \frac{1}{2}$ if |2|=1. Real & Imaginary parts $Re(z) = \frac{1}{2}(z + \overline{z})$ $|M(z) = \frac{1}{2i}(z-\bar{z})$ NB: Both are real numbers Triangle Inequality Proposition If a, b ∈ C, | |a| - |b| | ≤ |a+b| ≤ |a| + |b| Proof Identities: |a+b|= (a+b)(a+b)= |a|2+ab+ab+1612 $|a-b|^2 = (a-b)(\bar{a}-\bar{b}) = |a|^2 - a\bar{b} - \bar{a}b + |b|^2$ Note ab + ab = 2 Re(ab) Note for any 2, -121 ≤ Re(2) ≤ 121 Apply with Z=ab $|a|^2 - 2|a||b| + |b|^2 \le |a+b|^2 \le |a|^2 + 2|a||b| + |b|^2$ $|a|^2 + 2|a||b| + |b|^2 = (|a|+|b|)^2$

So
$$(|a|-|b|)^2 \le |a+b|^2 \le (|a|+|b|)^2$$

Result follows by taking (+ve) square roots: $|1a1-1b1| \le |a+b| \le |a|+|b|$.

Another important inequality: Cauchy-Schwarz:

If a, ..., an, b, ..., bo are complex numbers, then

$$\left|\sum_{j=1}^{n} a_{j} b_{j}\right|^{2} \leq \left(\sum_{j=1}^{n} |a_{j}|^{2}\right) \left(\sum_{j=1}^{n} |b_{j}|^{2}\right)$$

Proof
via Lagrange's Identity' is on Problem Set 1.

Exercise 1

find absolute value of $\frac{(3+4i)(-1+2i)}{(1+i)(-3+i)}$ (don't expand!)

$$\frac{(3+4i)(-1+2i)}{(1+i)(-3+i)} = \frac{|3+4i||-1+2i|}{|1+i||-3+i|}$$

$$= \sqrt{25}\sqrt{5} = 5$$

$$\sqrt{2}\sqrt{10} = 2$$

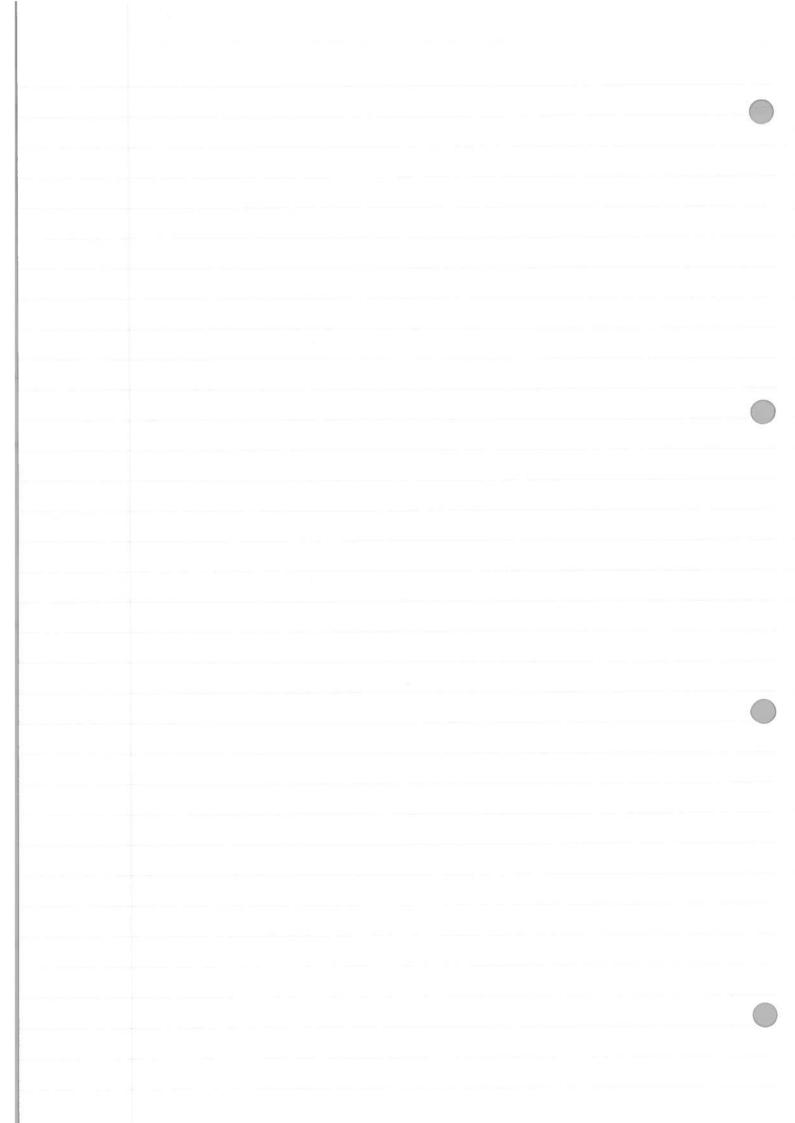
Exercise 2

If |z|=2 find upper bounds for $\frac{1}{2+1}$ and $\frac{1}{2^2+1}$ |z|=1 |z|=1 use lower bound as it is a reciprocal.

2). |z|=1 |z|=

 $|z^2+1|$ $|z^2+1|$ $|z^2|-1|$ |z||z|-1

MATH ZIOI 03-10-16 Revide: ab = ab, labl = lallbl, etc... \$1.3 Geometry of C Think of the plane R2, Z is identified with the point with coords (x,y). So a+b is represented by vector addition. (parallelogoan rule). Tand T' are similar briangles If 16/=1 then the triangles are the same size and just rotated about the origin. (briangles congruent).



MATH 2101

05-10-16

Warm-up Questions

1)
$$i^3 = -i$$
 $i^4 = 1$
 $\frac{1}{i} = \frac{i}{i^2} = -i$

$$i^n$$
 (where $n \in \mathbb{Z}$) can take values $i, -1, -i, 1$

$$7 \sqrt{4+1} = 1a$$

3). What is
$$\begin{vmatrix} 4-i \\ 1+2i \end{vmatrix}$$
?
= $\frac{14-i1}{11+2i1} = \frac{\sqrt{17}}{\sqrt{5}}$

4). If
$$|a| < 1$$
 & $|b| < 1$, show that $\left|\frac{a-b}{1-\bar{a}b}\right| < 1$ Hint: use algebra. $\left|\frac{a-b}{1-\bar{a}b}\right| \gg |a-b| < |1-\bar{a}b|$ $|1-1| |a-b|$

$$|a| < l \Rightarrow |\bar{a}| < l$$

$$|\bar{a}| |b| = |\bar{a}b| < l$$

$$|a-b|^{2} = (a-b)(\bar{a}-\bar{b})$$

$$= a\bar{a} - a\bar{b} - \bar{a}b + b\bar{b}$$

$$= |a|^{2} + |b|^{2} - a\bar{b} - \bar{a}b$$

$$|1-\bar{a}b|^{2} = (1-\bar{a}b)(1-\bar{a}b)$$

$$= 1-\bar{a}b - \bar{a}b + \bar{a}\bar{a}b\bar{b}$$

$$|hat: \left| \frac{a-b}{1-\bar{a}b} \right| = \frac{|a-b|}{|1-\bar{a}b|}$$

$$square: |a-b|^2$$

$$square: \frac{|a-b|^2}{|1-\bar{a}b|^2}$$

So we only need to show
$$\frac{|a-b|^2}{|1-\bar{a}b|^2} < 1$$

$$(|a| - |b|)^2 = |a|^2 + |b|^2 - 2|a|^2|b|^2 < 1$$

§1.3 cont. (Geometry of complex numbers) $|a| = \sqrt{a\bar{a}} = \sqrt{\alpha^2 + \beta^2} = diolance of a to 0.$ and In this D QP=6 : 10P1 < 10Q1 + 1PQ1 which is the same as 1a+b1 = la1 + 1b1. ar form. $\alpha = r\cos\theta, \quad \beta = r\sin\theta$ Polar form. $x + i\beta = r(\cos\theta + i\sin\theta) = re^{i\theta}$ r= modulus, & = argument of x+iB (arg(a)) O is determined only up to addition of integer multiples Principle argument, Arg(z) is the value of arg(z) lying in $(-\pi, \pi)$ for example, for was shown, $\sqrt{20}$ where $\sqrt{20}$ where $\sqrt{20}$ where $\sqrt{20}$ is $\sqrt{20}$ where $\sqrt{20}$ is $\sqrt{20}$ is $\sqrt{20}$ where $\sqrt{20}$ is $\sqrt{20}$ is $\sqrt{20}$ is $\sqrt{20}$.

MAINTZIOI 05-10-16 Multiplication: $Z_i = r_i (cood_i + isind_i)$, $Z_2 = r_2 (cood_2 + isind_2)$ then Z.Zz = T.Tz (cood, +isino,)(cooz + isinoz) = 1.12 (cod, cod = - sind, sind + i (sind, cost + sind z cost,)) = $r_1 r_2 \left(co \left(\theta_1 + \theta_2 \right) + i sin \left(\theta_1 + \theta_2 \right) \right)$ In particular: $arg(z_1z_2) = arg(z_1) + arg(z_2) \pmod{2\pi \mathbb{Z}}$ for any angle θ , $|\cos\theta + i\sin\theta| = \cos\theta + \sin^2\theta = 1$ In particular /Z, Zz /= 1, 12 = /Z, // Zz / §1.4 Powers: de Moirre's Theorem From the product rule: if = = - (cos0 + isin0) $z^2 = \Gamma^2(\cos 2\theta + i\sin 2\theta)$ $z'' = r''(\cos n\theta + i \sin n\theta)$ (de Moirre) Hence it is easy to find on the roots of a complex number in polar form. $f_{i,j} = r(\cos\theta + i\sin\theta)$, and $z^n = a = R(\cos\varphi + i\sin\varphi)$ then by de Moivre's Then we must have:

- (con0 + isinn 0) = R (cos p + isin p)

Hence $r = R'^n$. Also $nO = \rho + 2k\pi$ for some $k \in \mathbb{Z}$

So $\theta = \mathcal{L} + 2k\pi$ for some $k \in \mathbb{Z}$

The n nth roots of a are
$$z_k = R^{\prime n} \left(\cos \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) + i \sin \left(\frac{\varphi}{n} + \frac{2k\pi}{n} \right) \right), \ k = 0, 1, \dots, n-1$$

Ex:

What are the cube roots of -i?

$$z^3 = -i = \cos(3\frac{\pi}{2}) + i\sin(3\frac{\pi}{2})$$

$$z_k = 2\left(\cos\left(\frac{\pi}{2} + \frac{2k\pi}{3}\right) + i\sin\left(\frac{\pi}{2} + \frac{2k\pi}{3}\right)\right)$$
 $k = \frac{2k\pi}{3}$

k=0,1,2

$$arg(z_1) = \frac{71}{2} + \frac{271}{3} = \frac{771}{6}$$

$$arg(z_1) = \frac{\pi}{2} + \frac{4\pi}{3} = \frac{11\pi}{6}$$

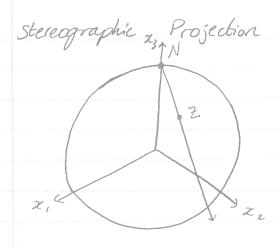
The three roots make the corners of

an equilateral triangle.

More generally the n-th roots of $a = R(\cos\varphi + i\sin\varphi)$ are the n corners of a regular polygon with n sides, lying on $1 \ge 1 = R''$ if R > 0.

WINH ZIOI 05-10-16 81.5 Simple geometric figures · Circle, centre a, radius r is set {z: |z-a|=r} $(z-a)(\bar{z}-\bar{a}) = r^2$ $(|z-a|^2 - \alpha\bar{z} - \bar{a}z + |a|^2 - r^2 = 0$ Conversey any equation of the form 7/2/2+62+62+0=0 represents a circle if $\lambda \neq 0$ and real, and c is also real. (or point or emptyset) • Straight line through a, in direction $b \neq 0$ is $\{ z : z = a + bt : real t \}$ (Parametric form of st. line, t= parameter) § 1.6 Extended complex plane and Ricmann Sphere. Introduce ∞ , not a number but we define: $a + \infty = \infty + a = \infty$ ($a \in \mathbb{C}$) $a \cdot \infty = \infty \cdot a = \infty$ if $a \neq 0$, $a \in C$ $\frac{\alpha}{\alpha} = \infty$ if $\alpha \neq 0$, $\frac{\alpha}{\infty} = 0$ if $\alpha \in \mathbb{C}$. By def" - extended complex plane Co = Cu {00} Motivation: for example, if f(z) = 1/2

> then ratural to regard $f: C \to C \cup \{\infty\}$, $f(0) = \infty$. Even $f: C \to C \to C \to \infty$, $f(0) = \infty$.



$$S = \left\{ x_1^2 + x_2^2 + x_3^3 = 1 \right\}$$

$$N = (0, 0, 1)$$

Z on S, Z = N

Join Z_1 , N by a straight line: the intersection with $\{x_3 = 0\}$ is called the stereographic projection of Z_1 .

• Formula for stereographic projection

Parametric form of st. line joining N to Z_i : $Z_i = (a_1, a_2, a_3)$, $NZ_i = (a_1, a_2, a_3 - 1)$

General point on st. line:

 $\rho = (0, 0, 1) + t(a_1, a_2, a_3 - 1)$ $(t \in \mathbb{R})$ Meets $\{x_3 = 0\}$ when $1 + t(a_3 - 1) = 0$, i.e. $t = \frac{1}{1 - a_3}$

Let x and y be the coordinates of the stereographic projection. $(x, y, 0) = (0, 0, 1) + \frac{1}{1-a_3}(a_1, a_2, a_3 - 1)$

Hence $x = \frac{a_1}{1-a_3}$ $z = 2c + ig = \frac{a_1 + ia_2}{1-a_3}$ $y = \frac{a_2}{1-a_3}$

Note: as a3-1, 2 - 00.

from the geometry it is ratural to define the abstract 'oo' with the point N of S.

Stereographic projection has an inverse. Given z, want (a_1, a_2, a_3) , $a_1^2 + a_2^2 + a_3^2 = 1$ Such that $z = a_1 + ia_2$

1). Compute
$$|z|^2$$

$$|z|^2 = z = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - a_3 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 \cdot a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 - a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 - a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 - a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 - a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 - a_1 - ia_2 = a_1^2 + a_2^2$$

$$|z|^2 = a_1 + ia_2 - a_1 - ia_2 = a_1^2 + a_2^2 - a_1^2$$

$$|z|^2 = a_1 + ia_2 - a_1 - ia_2 - a_1^2$$

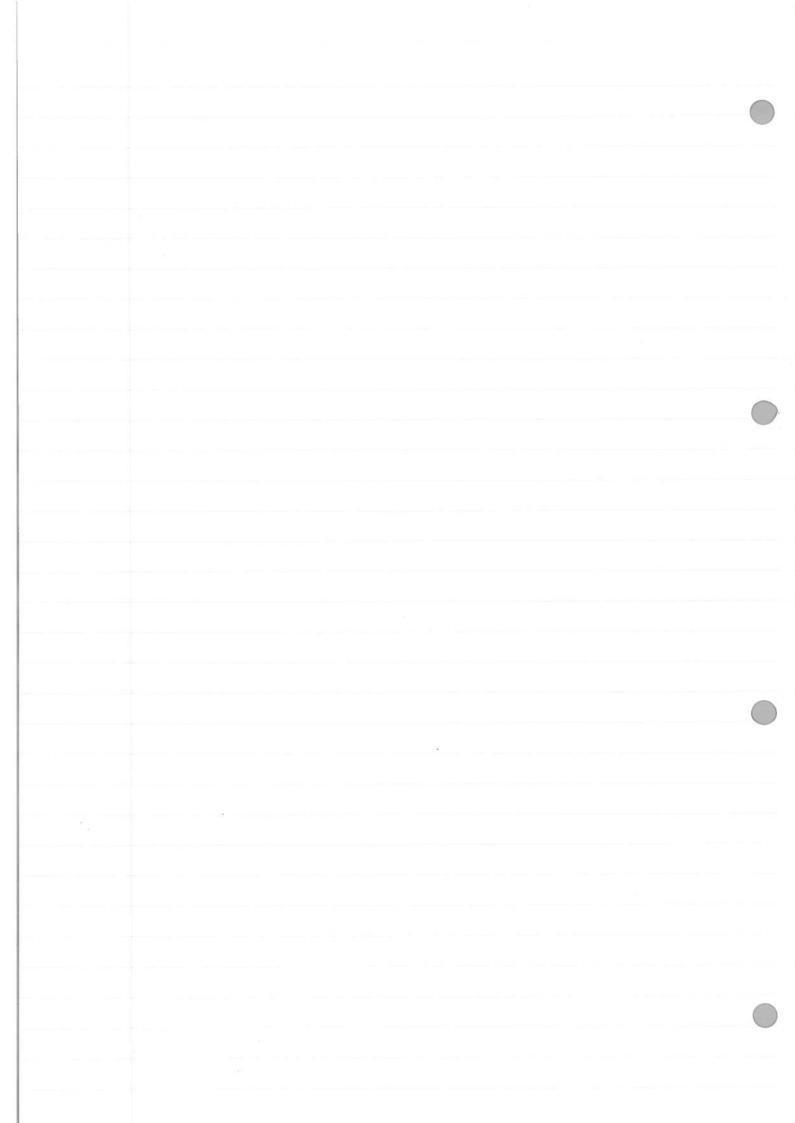
$$|z|^2 = a_1 + ia_2 -$$

$$50 \quad |a_3 = |z|^2 - 1 \qquad ||-a_3 = \frac{2}{1 + |z|^2}|$$

$$a_1 + ia_2 = \frac{2z}{1 + |z|^2}$$
 $a_3 = \frac{a_1 + ia_2}{z}$

$$a_3 = \frac{|z|^2 - 1}{|z|^2 + 1}$$

If $121 \rightarrow \infty$ $a_3 \rightarrow 1$, $a_1 \rightarrow 0$, $a_2 \rightarrow 0$ consistent with thinking of N as ∞ .



MATH 2101

10-10-16

Recall $S = Riemann Sphere = \{x_1^2 + x_2^2 + x_3^2 = 1\} \subset \mathbb{R}^3$ Steregraphic projection: (SP)

Steregraphic projection: (SP) $Z = \frac{x_1 + ix_2}{1 - x_3}$ [N= North Pole = (0,0,1)]

Theorem: SP sets up a 1:1 correspondence between $S \setminus \{N\}$ and C, with inverse $Z \mapsto \left(\frac{2Re(z)}{1+|z|^2}, \frac{2lm(z)}{1+|z|^2}, \frac{|z|^2-1}{|z|^2+1}\right)$ $= (\alpha_1, \alpha_2, \alpha_3) \in S$

Exs 1 Which point on & does OEC map to?

Exs 2 What set on & does the unit circle 121=1 correspond to?

Exs 3

If SP maps (x_1, x_2, x_3) to z and (x_1, x_2, x_3) to z', what is the relation between (x_1, x_2, x_3) & (x_1, x_1, x_3) in $z' = -\frac{1}{z}$

1).
$$Z \mapsto \left(\frac{2(0)}{1+0^2}, \frac{2(0)}{1+0^2}, \frac{0^2-1}{0^2+1} \right) = (0, 0, -1)$$

3). ?

Remark If I is a straight line in C and $z \in I$ is a point, what is $SP^{-1}(z)$? Note: As z moves on l, the lines joining N to z sweep out a plane. The intersection of a plane with I is a circle (if not \$ or point) and so I corresponds under SP to a circle on 8 through N. SP sets up a 1:1 correspondence between: 1). Grdes on 8 2). Coreles and straight lines in C. Under this correspondence, circles through N on 8 go over to straight lines in C. Koof Shall start with a circle C on B and figure out its image under SP.

C = Br Eplane 3 Can write any plane CR3 in form $\alpha, \alpha, + \alpha_2 \alpha_2 + \alpha_3 \alpha_3 = \alpha_0$ Can assume x,2 + x2 + x3 = 1. Also for non-brinal

10-10-16

intersection with S can assume $0 \le \alpha_o < 1$.

(from equ of plane above)

So if $(\alpha_1, x_2, x_3) \in \mathcal{C}$, we have $\alpha_1 \chi_1 + \alpha_2 \chi_2 + \alpha_3 \chi_3 = \alpha_0$ and $SP(\alpha_1, \alpha_2, \alpha_3) = 2$ satisfies $\alpha_1 \left(\frac{2\chi}{1+|z|^2}\right) + \alpha_2 \left(\frac{2\eta}{1+|z|^2}\right) + \alpha_3 \left(\frac{1z^2-1}{|z|^2+1}\right) = \alpha_0$

€) (x3-x0)/2/2+2x,x+2x2y=x0+x3 (x)

This is the equation of a circle if $\alpha_3 \neq \alpha_0$ and of a straight line if $\alpha_0 = \alpha_3$.

If $\alpha_0 \neq \alpha_3$ find centre and radius of the circle with equation (*)

 $(x_3 - x_0)(x^2 + y^2) + 2x_1x + 2x_2y = x_0 + x_3$

 $\chi^{2} + y^{2} + \left(\frac{2\alpha_{1}}{\alpha_{3} - \alpha_{0}}\right) \chi + \left(\frac{2\alpha_{2}}{\alpha_{3} - \alpha_{0}}\right) y = \frac{\alpha_{0} + \alpha_{1}}{\alpha_{3} - \alpha_{0}}$

 $\left(2\left(1+\left(\frac{x_1}{x_3-x_0}\right)\right)^2+\left(y+\left(\frac{x_2}{x_3-x_0}\right)\right)^2=\frac{x_0+x_3}{x_3-x_0}+\frac{x_1^2+x_2^2}{(x_3-x_0)^2}$ $=\left(-x_2^2\right)+x_2^2+x_2^2+x_3^2$

 $= \frac{(-\alpha_0^2) + \kappa_3^2 + \kappa_1^2 + \kappa_2^2}{(\alpha_3 - \alpha_0)^2}$

 $= \frac{1-\alpha_0^2}{(\kappa_3-\alpha_0)^2}$

So centre = $\begin{pmatrix} -\alpha_1 \\ \alpha_3 - \alpha_0 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_0 - \alpha_3 \end{pmatrix} = \begin{pmatrix} \alpha_1 \\ \alpha_0 - \alpha_3 \end{pmatrix}$

radius = $\frac{\sqrt{1-\alpha_0^2}}{(\alpha_3-\alpha_0)}$

32 Chapter 2 Intro to Holomorphic functions · For this first 'look', suppose our functions are defined for all ZEC · Let f(z) be a complex-value function. (Also write $f: C \mapsto C$) Definition:

If $a \in C$ is a point, then f is said to be differentiable at a if $\lim_{h \to 0} \left[\frac{f(a+h) - f(a)}{h} \right]$ exists. Remark: This copies the real-variable definition: If u(x) is a function of the real variable χ , say u is differentiable at $\chi = a$ if $\lim_{h\to 0} \left(\frac{u(a+h)-u(a)}{h}\right)^{h}$ If f(z) is differentiable at z=a, the limit is denoted f(a) and is called the derivative of f at a. If G(z) is a function of the complex variable z, $\lim_{z\to a} G(z) = A$ means, by definition, Given E>O, IS>O s.t.

 $|z-a|<\delta \Longrightarrow |G(z)-A|<\varepsilon.$

MAINZIOI

10-10-16

Definition 2.2

If f(z) is differentiable at every point we say that f is holomorphic.

Proposition 2.3
Suppose that f(z) is holomorphic and that f(z) is real at every point z. Then f must be a constant.

Prof: We know $\lim_{h\to 0} \left[\frac{f(a+h) - f(a)}{h} \right] = A \quad \text{exists for all } a.$ In particular, letting t be real, we have $\lim_{t\to 0} \left(\frac{f(a+t) - f(a)}{t} \right) = A \qquad (1)$ also $\lim_{t\to 0} \left(\frac{f(a+it) - f(a)}{it} \right) = A \qquad (2)$

Because both are 'instances' of existence of f(a) = A,

LHS of 0 is real, so A is real

Multiply (2) by i: $\lim_{t \to 0} \frac{f(a+it) - f(a)}{t} = iA$ Hence iA is also real, so A is pure imaginary.

The only number which is real & pure imaginary is 0.

So f'(a) = 0, for all a.

Claim: This implies f is constant. $f'(a) = \lim_{t \to 0} \left\{ \frac{f(a+t) - f(a)}{t} \right\} = 0$

the function f on the straight line joining a to c has zero derivative along this line, so f(c) = f(a). Similarly the derivative of f along the line joining c to b is zero, and so f(b) = f(c) Hence f(b) = f(a)Remark: f(z) = const is holomorphic (obvious) f(z) = 2 is also holomorphic proof: f(a+h) - f(a) = a+h - a = 1Hence lim [f(a+h)-f(a)] = 1 and so f(z)= z is holomorphic, with derivative Agebra of limits

(i) If f is holomorphic and g is holomorphic,

so is f+g and fg.

(ii) If g ≠ 0 then f(z) /g(z) is holomorphic Moreover: (fg)'(z) = f'(z)g(z) + f(z)g'(z)(f+g)'(z) = f'(z) + g'(z)Since z is holomorphic it follows that all powers z^n , n > 0 are holomorphic. By adding a finite number of such powers, with complex coefficients we see that any complex

polynomial $P(2) = a_0 + a_1 z + \dots + a_n z^n$ (when ao, ..., an are given complex numbers) is holomorphic.

Note $P(z) = a_1 + \dots + (n-1)a_{n-1} z^{n-2} + na_n z^{n-1}$

82.2 Polynomials With Pas above we say that Phas degree < n. Shall prove later that any non-constant polynomial has a complex O. ie. Baecs.t. P(a)=0

By polynomial division, this means we can write $P(z) = (z - \alpha) P_{1}(z)$, say where deg (P,) < deg (P)

Either P. is constant, in which case $P(z) = a, (z-\alpha)$ or it is not, in which case it has another zero, B, say: $P(z) = (z - \alpha)(z - \beta) P_2(z)$

Continuing: (Assuming an #0) Every polynomial can be written as a product of factors $P(z) = a_n (z - \alpha_1)(z - \alpha_2) \dots (z - \alpha_n)$ The a,, ..., an need not all be distinct. a; are called <u>roots</u>. The number of times a particular root occurs is called the order of the root.

For example, $P(z) = (z-1)^3 (z+2)^2 z$

1 is a root of order 3, -2 is a root of order 2, 0 is a root of order 1.

A root of order 1 is called a simple root.

MATH 2101

12-10-16

). Write z'-1 as a product of linear factors.

- 2). A polynomial of degree < 5 has 17 distinct zeros, what can you say about it?
- 3). If $P(z) = z^4 17z^3 + z + 10$ show that $\exists R > 0$ s.t. $|z| > R \implies |P(z)| > \frac{1}{2}|z|^4$.

 [Generalize to an arbibrary polynomial of degree n]
 - 1). $P(z) = \alpha_n (z \alpha_i)(z \alpha_i)...(z \alpha_n)$ α_i , ... α_n are the α_i zeros (roots) of P.

 To factorize, need all solutions of $z^n = 1$.

 De Moivre: $\omega = \cos 2\pi + i \sin 2\pi$ $\alpha_i = \omega_i$, $\omega_i = \omega^2$, ..., $\omega_{n-i} = \omega^{n-i}$, $\omega^n = 1$ So $z^n 1 = (z 1)(z \omega)...(z \omega^{n-i})$ (may help problem 1.2)
 - 2). The polynomial is O.

Rational Functions A rational punction R(z) is a quotient $R(z) = \frac{P(z)}{Q(z)}$ of two polynomials: $R(z) = a_0 + a_1 z + ... + a_n z^n$ $(a_n, b_m \neq 0)$ $b_0 + b_1 z + ... + b_m z^m$ (Q not identically zero)Always assume that P(z) and Q(z) have no common factors. If β is a root of Q [$Q(\beta)=0$] β is called a pole of R. Pole B has order (or multiplicity) r if B is a roof of Q of order r Any rational function is holomorphic away from its poles Extension of R as a map Co {00} -> Co {00}. (i) If B is a pole of R, we declare R(B) = 00. (ii) Z = 00. Define R, (w) = R(\(\frac{1}{12}\)) R, (w) = R(1) = a0 + a, w + 111 + an w - 1 bo + b, w-1+ ... + bmw-m = w (an + an-, w + ... + aow" w-m (bm + bm-, w+ ,, + bowm)

MA1 4 2101

12-10-16

If n>m, write

 $R_{i}(\omega) = \frac{a_{n} + a_{n-i}\omega + \dots + a_{0}\omega^{n}}{\omega^{n-m}(b_{m} + b_{m-i}\omega + \dots + b_{0}\omega^{m})}$

In this case R. has a pole of order n-m at w = 0 and we say that R has a zero of order n-m at $w = \infty$.

If $n \leq m$, write $R_{i}(\omega) = \frac{\omega^{m-n}(a_{n} + a_{n-1}\omega + ... + a_{n}\omega^{n})}{(b_{m} + b_{m-1}\omega + ... + b_{o}\omega^{m})}$

If n=m, $R_1(0)=a_n/b_m$ and we define $R(\infty)=a_n/b_m$. If m>n, we say ∞ is a zero of R of order m-n.

The degree of our rational function R is defined to be max(m, n).

Theorem

If we is any point of $C \cup \{\infty\}$, and R is a rational map of degree d, then R(z) = w has precisely d solutions for $z \in C \cup \{\infty\}$, counted with multiplicity.

If $R(\alpha)-w=0$, then α is a root of S(z)=R(z)-w. Define the multiplicity of this solution α to be the order of the zero of S at $z=\alpha$. Remark: {Rational functions} is a field. $R(z)^{-1} = Q(z)$ P(z)

Partial Fractions

Lemma

Let R(z) be a rational function with a pole at $z=\infty$. Then we can write:

R(z) = S(z) + E(z)

where S is a polynomial without constant term and E does not have a pole at z = 00.

Proof

Polynomial long division. R = P/Q so we need P(z) = Q(z)S(z) + E(z)Q(z).

Recall: (and find polynomials T(z) and f(z) s.t. P(z) = Q(z)T(z) + F(z), deg f < deg Q. = Q(z)(T(z) - T(0)) + Q(z)T(0) + F(z).

Put S(z) = T(z) - T(0)and $E(z) = T(0) + \frac{F(z)}{G(z)}$

to achieve our goal. Point $E(\infty) = T(0)$, in particular E has no pole at $Z = \infty$. MATH 2101

Thm?

Thm:
Let R be a rational function with distinct finite poles β_1, \dots, β_n .
Then there exist polynomials S_1, \dots, S_n without constant term and a polynomial $P_{\infty}(\Xi)$ such that $R(\Xi) = S_1\left(\frac{1}{\Xi - \beta_1}\right) + \dots + S_n\left(\frac{1}{\Xi - \beta_L}\right) + P_{\infty}(\Xi)$

The decomposition is unique.

$$\frac{\mathcal{L}\times:}{R(z)=1}$$

B,=0, Bz=-1 Note B, is a simple pole,

Bz is a pole of order 2

To use Lemma, consider

$$R_{i}(\omega) = R(\frac{i}{\omega})$$
, $R_{2}(\omega) = R(-1 + \frac{i}{\omega})$

$$R_1(\omega) = \frac{1}{\omega^{-1}(1+\omega^{-1})^2} = \frac{\omega^3}{\omega^2(1+\omega^{-1})^2} = \frac{\omega^3}{(1+\omega)^2}$$

$$R_{1}(\omega) - \omega = \frac{\omega^{3}}{(1+\omega)^{2}} - \omega = \frac{\omega^{3} - \omega(\omega^{2} + 2\omega + 1)}{(\omega + 1)^{2}}$$

$$= -\frac{2\omega^2 - \omega}{(\omega + 1)^2} = E_1(\omega), E_1(\infty) = -2$$

So take S.(w) = w.

$$R_{z}(\omega) = \frac{1}{(-1+\frac{1}{\omega})(\omega^{-z})} = \frac{\omega^{3}}{-\omega+1}$$

 $R_2(\omega) + \omega^2 = \frac{\omega^3 + \omega^2(-\omega + 1)}{-\omega + 1} = \frac{\omega^2}{-\omega + 1}$

This remainder still has a pole at w= 00, so repeat

R₂(ω) +
$$w^2$$
 + $\omega = \frac{\omega^2}{-\omega + 1} + \frac{\omega(-\omega + 1)}{-\omega + 1}$

= $\frac{\omega}{-\omega + 1}$

So set $S_2(\omega) = -\omega^2 - \omega$

Consider:

R(z) - $S_1(\frac{1}{z}) - S_2(\frac{1}{z+1}) = F(z)$

Where are poles?

No poleo at $z = 0$ because no pole at so of E ,

Similarly, F has no pot at $z = -1$. So F must be a polynomial.

In our particular case $F = 0$.

Herce: $\frac{1}{z(z+1)^2} = \frac{1}{z} - \frac{1}{(z+1)^2}$

Cauchy - Riemann Equations

 $f(z) = f(z+iy) = u(x,y) + iv(z,y)$, u, v real.

Proposition:

If $f(z)$ is holomorphic, then u and v satisfy $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial z} = -\frac{\partial u}{\partial y}$. (**)

Converse: if u and v have continuous first partial derivatives, and satisfy (**) then

MATH 2101 12-10-16 (*) is the real form of the Cauchy-Riemann Equations. Remark (\$) is equivalent bo $\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial x} = 0 \quad (4x + 1)$ (* *) is the complex form of Cauchy-Riemann Equations. (CR) Proof: (that f holomorphic \Rightarrow CR. We know that for each $\alpha \in \mathbb{C}$, f'(a) = lim [f(a+h)-f(a)] Let $h = t \in \mathbb{R}$ $(a = \alpha + i\beta)$ $f'(a) = \lim_{t \to 0} \left(\frac{f(a+t) - f(a)}{t} \right) = \lim_{t \to 0} \left(\frac{f(a+t, \beta) - f(\alpha, \beta)}{t} \right)$ Also, letting h = is, we have $(s \in R)$ $f'(a) = \lim_{s \to 0} \left(\frac{f(a + is) - f(a)}{is} \right) = \frac{1}{i} \lim_{s \to 0} \left(\frac{f(\alpha, \beta + s) - f(\alpha, \beta)}{s} \right)$ $=\frac{1}{i}\frac{\partial f}{\partial g}\left(\alpha,\beta\right)$ Hence $f(a) = \frac{\partial f}{\partial x}(a) = \frac{1}{i} \frac{\partial f}{\partial u}(a)$ and so $\frac{\partial f}{\partial x}(a) - \frac{1}{i} \frac{\partial f}{\partial y}(a) = 0$. This is (* *) at a, works at every point a. I

Gorollary

If f is holomorphic and real, then f is constant.

$$f = u + iv$$
, $v = 0$.

$$CR : \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = 0$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = 0$$

$$\frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} = 0 \quad \text{and} \quad u = \text{constant}.$$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial y} = 0 \quad \text{and} \quad u = \text{constant}.$$

Holomorphic versus harmonic

Definition:

u with continuous second partial derivatives

w.r.t
$$x$$
 and y is harmonic if

 $\Delta u = 0$ i.e. $\frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial y^2} = 0$.

Proposition:

If f = u + iv is holomorphic and u and v have continuous second partial derivatives then u + v are harmonic.

Proof (u.)

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial y} \right)$$

$$\frac{\zeta R}{\partial y} \left(\frac{\partial u}{\partial y} \right) = -\frac{\partial^2 u}{\partial y^2}$$

$$\frac{\zeta R}{\partial y} \left(\frac{\partial u}{\partial y} \right) = -\frac{\partial^2 u}{\partial y^2}$$

MATH 2101 12-10-16 Thm: If a is harmonic (in () then I harmonic v, unique up to addition of constant such that f=u+iv is holomorphic. Defi: u and v are called harmonic conjugates. Proof:
Need to find v such that CR are satisfied: $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}$. 1 Define $w(x,y) = \int_{0}^{\infty} \frac{\partial u}{\partial x} (x,s) ds$ By Jund. thm. of calculus $\frac{\partial w}{\partial y} = \frac{\partial u}{\partial x} (x, y)$ If $\phi(x)$ is any function of x only, then $V(x,y) = \omega(x,y) + \beta(x).$ We have $\frac{\partial v}{\partial y} = \frac{\partial v}{\partial x}$. $\frac{\partial v}{\partial x} = \frac{\partial}{\partial x} \int_{0}^{5} \frac{\partial u}{\partial x} (x,s) ds + \phi'(x)$ $= \int_{0}^{9} \frac{\partial^{2} u}{\partial x^{2}} (x,s) ds + \phi'(x)$ $=-\int_{0}^{5}\frac{\partial^{2}u}{\partial y^{2}}\left(\alpha,s\right)ds+\phi'(x)$ i. a harmonic $= -\frac{\partial u}{\partial y}(x,g) + \frac{\partial u}{\partial y}(x,0) + \beta(x)$ Choose $\phi'(x) = -\frac{\partial u}{\partial y}(x,0)$ to define v so second CRequation is satisfied.

MATH 2101 17-10-16 f(z) = z is not holomorphic does not exist for any Z. Difference quotient: 7+h - 2 $= \overline{z} + \overline{h} - \overline{z} = \overline{h}$ $h = \overline{t} \in \mathbb{R}, \text{ then } \overline{h} = \overline{t} = 1$ $h = \overline{t} = 1$ But if h = it, $t \in \mathbb{R}$, h = -it h = -it = -1 h = itThese two different values show that $\lim_{h\to 0} \left(\frac{h}{h}\right)$ does not exist

§3 Chapter 3 Power Series $\sum_{z=1}^{N-1} z^{2} = 1 + 2 + 2^{2} + 11 + 2^{N-1} = 2^{N} - 1$ |f||2|>1, $N\to\infty \Rightarrow z^{N}-1\to\infty$ (diverges) |J|Z|<1, $N \to \infty \Rightarrow Z^{N-1} \to \frac{1}{1-Z}$ (converges) $\frac{\sum z^{n}}{n!} = 1 + z + z^{2} + z^{3} + \dots = e^{z} = \exp(z)$ Convergent for all values of z. Ratio test: $|z^{n+1}|/|z^n| = |z| \rightarrow 0$ as $n \rightarrow \infty$ |n+1|!/|n!|/|n+1| for any fixed |z|. Theorem

Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ (1) have positive radius of convergence r, and let $D = \{z : |z| < r\}$. Then f(z) is holomorphic in D, with derivative $f'(z) = \sum_{n=1}^{\infty} na_n z^{n-1}$. (2) The radius of convergence of (2) is the same as

MATH 2101	
 	•
17-10-16	
	Roof
	Radius of convergence:
	Consider, for s>0, [lan15]
<u> </u>	Lither bounded or not (for given s).
	If bounded for s and s' <s,< th=""></s,<>
	Radius of convergence: Consider, for $s > 0$, $\{ a_n s^n \}$ Either bounded or not (for given s). If bounded for s and $s' < s$, $ a_n(s')^n = a_n s^n(s')^n $
	= lans" 3'1" is also bounded.
	Radius of anymosomi
	Radius of convergence: r = sup { s > 0 : { lan15"} is bounded }.
	sup 1020. Trans of the countries J.
	r=0 is possible.
	r= 00 is also possible if there is no upper bound.
	Proposition: (Hadamard)
	1 = lim sup { lan "n }
	1 1-100
	Claim:
	Claim: $g(z) = \sum_{n=0}^{\infty} na_n z^{n-1} \text{ has same radius of}$
	N=0
	convergence, r, as original series.
	Let $b_n = (n+1)a_{n+1}$
	$\left b_n \right ^{\gamma_n} = \left(n+1 \right)^{\gamma_n} \left a_{n+1} \right ^{\gamma_n}.$
	Fact: lim (n+1)"=1 and lim sup an+1"= lim sup an "
	So lim sup 16,1" = +. So, by Hadamard, the radius of convergence g is also r.
	radius of convergence g is also r.

Now prove that f(z) = g(z) for z ED Fix Zo ED, suppose 12016 r. < r Need to show: given $\varepsilon > 0$ $\exists \delta > 0$: $|z-z_0| < \delta$, we have $|f(z) - f(z_0) - g(z_0)| < \varepsilon$. Let $f(z) = f_N(z) + t_N(z)$ where $f_N(z) = \sum_{n=0}^{\infty} a_n z^n$ and $f_N(z) = \sum_{n=N+1}^{\infty} a_n z^n$ Similarly, let g(z) = gn(z) + sn(z) where $g_{N}(z) = \sum_{n=0}^{N} na_{n} z^{n-1} (g_{N} = f_{N}) \text{ and } S_{N}(z) = \sum_{n=N+1}^{N} na_{n} z^{n-1}$ then $f(z) - f(z_0) - g(z_0)$ $= \left(\frac{f_{N}(z) - f_{N}(z_{0})}{z - z_{0}} - g_{N}(z_{0})\right) + \left(\frac{f_{N}(z) - f_{N}(z_{0})}{z - z_{0}} - S_{N}(z_{0})\right)$ Convergence is absolute for |Z|, $|Z_o| < r$, so we can rearrange terms, so $\frac{t_N(z) - t_N(Z_o)}{t_N(z)} = \sum_{n=N+1}^{\infty} a_n(z^{n-2}, z^{n-2}) = \sum_{n=N+1}^{\infty} a_n(z^{n-2}, z^{n-1}) = \sum_{n=N+1}^{\infty} a_n(z^{n-2}, z^{n-1}$ $\frac{|t_{N}(z)-t_{N}(z_{0})|}{|z-z_{0}|} = \frac{|z_{0}|}{|z-z_{0}|} = \frac{|z_{0}|}{|z-z_{0}|}$ $\leq \sum_{n=N+1}^{\infty} |a_n| (|z|^{n-1} + ... + |z_n^{n-1}|)$ < Inlant, n-1

MATH	
17-10-16	a ====================================
	g convergent for $ Z < r$ $\Rightarrow \sum_{n=N+1}^{\infty} a_n n r_n^{n-1} \text{is convergent}$
	$\int_{n=N+1}^{\infty} A_n A ^{r}$
	So ∃ No 5.E. N≥No: ∑n an +, n-1 < € n=N+1 4
	n=N+1
	SN (Z.) is also a tail of a convergent series
	$ S_N(Z_0) < \frac{\varepsilon}{2}$ if $N \geqslant N$.
	1 N(E) 4
	Finally since f'n = gn, we can choose of so
	Finally since $f'_{N} = g_{N}$, we can choose S so that $ z-z_{0} < S \implies f_{N}(z)-f_{N}(z_{0}) - g_{N}(z_{0}) < \frac{\varepsilon}{4}$
	Z-Z ₀ / 1 / 1 / 1 / 1
	for N=N,
	Hence:
	$\left \frac{f(z) - f(z_0) - o(z)}{z - z_0} \right < \frac{\mathcal{E}}{4} + \frac$
	Remarks:
	Power series based at (centred at) Z.
	$\sum a_n (z-z_0)^n.$
10	n=0
	There is a disk of convergence: {z: z-z_o < r}} Then works in same way in this setting.
	mill works in saire way in source soloring.
	Corollary:
	(1) is differentiable to all orders in D, and
	$a_n = f^{(n)}(0)$.
	n!

 $f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} = a_1 + 2a_2 z + \dots$ f'(o) = af' is convergent in $\{z: |z| < r\}$ so it is holomorphic with derivative $f''(z) = \sum_{n=2}^{\infty} n(n-1)a_n z^{n-2}, \text{ convergent in some obsc.}$ f'(0) = 2.1.az $f^{(k)}(z)$ is holomorphic in D, represented by a power series convergent in D and $a_k = f^{(k)}(0)$ (Taylor's formula for coefficients). Exercises). Show that if $u: C \rightarrow \mathbb{R}$ has continuous 2nd-order partial derivatives with x and y and is harmonic, then $f = \partial u - i \partial u$ is holomorphic. 2). Find the radius of convergence of $\sum_{q=2}^{\infty} 2^{n^2}$ for fixed $q \in \mathbb{C}$. (Your answer will depend on q.) 3) If f(z) = \(\sum_{anz}^2 \) has radius of convergence \(\neq \), show that $f(z) = \sum_{n=0}^{\infty} a_n z^{n+1}$ has radius of convergence -, and F'(z) = F(z)

MATH 2101 17-10-16 1). f(x+iy) = u(x,y) + iv(x,y)then $\partial u = \partial v$, $\partial v = -\partial u$ $\partial x \partial y \partial x \partial y$ u harmonic $\Rightarrow \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ u has cont. 2nd-order partial derivatives $\Rightarrow \frac{\partial^2 u}{\partial x \partial y} = \frac{\partial^2 u}{\partial y \partial x}$ Look at f(z) = a(x,y) + ib(x,y)where $a = \partial u$, $b = -\partial u$ ∂z ∂z Also a cont and order p. derivatives $\Rightarrow \partial^2 u = \partial^2 u$ i. u harmonic => f holomorphic. 2). Ratio test: $\left| \frac{q^{(n+1)^2}}{2^{n+1}} \right| = \left| \frac{q^{n^2+2n+1}}{2^{n^2}} \right| |Z|$ $fix z: n \to \infty \Rightarrow |q^{2n+1}| \to \infty \quad \text{if } |z| \neq 0, |q| > 1$ $|q^{2n+1}| \to 0, |q| < 1$:. |g| <1 → r= 00 19/2/ => r=0 191=1 => r=1

MATH 2101 19-10-16 $\sum a_n (z-z_0)^n$ centred at $z=z_0$, will converge in some dise $\{z:|z-z_0|< r\}$ Corollary Suppose $f(z) = \sum a_n z^n$ as above, radius of Convergence > 0. Let $F(z) = \sum_{n+1}^{\infty} a_n \frac{z^{n+1}}{n+1}$. then f(z) has same radius of convergence as f(z) and f'(z) = f(z). Suppose radius of convergence is R. Then by theorem f(z) = f(z), and f(z) as same radius of convergence, R, as f(z).

Hence r = R. \square [Read main theorem 'backwards'] M-test (Weierstrass) M-test (Weiersbrass)

If $f_n: \Omega \mapsto \mathbb{C}$ (Ω some set)

and $|f_n(z)| \leq M_n$ for all $z \in \Omega$ where $\tilde{Z}M_n \leftarrow \infty$ then $\tilde{Z}f_n(z)$ converges absolutely and uniformly.

Recall: $\Omega \subset C$. We say $\sum_{n=0}^{\infty} f_n$ is absolutely convergent on Ω if $\sum_{n=0}^{\infty} |f_n(x)|$ is convergent of each fixed Ω . Recall that rearrangement of terms is legitimate for absolutely convergent series. Say $\sum_{f_n(z)} \int_{z} u_{ni} f_{0r} m dy$ convergent of, given $\varepsilon > 0$, $\exists N = N(\varepsilon)$ st. $\left| \sum_{n=N}^{\infty} f_n(z) \right| < \varepsilon$ $\forall z \in \Omega$. Cauchy criterion for uniform convergence: Σ for is uniformly convergent on Ω if

given $\varepsilon > 0$, $\exists N = N(\varepsilon)$ such that if n > m > N, $\left|\sum_{j=m}^{n}f_{j}(z)\right|<\varepsilon$ \forall $z\in\Omega$. Weier drass M-test follows from this. Given E>0, we use Dinequality: $\left| \sum_{j=m}^{n} f_{j}(z) \right| \leq \sum_{j=m}^{n} \left| f_{j}(z) \right| \leq \sum_{j=m}^{n} M_{j}$ IM; is convergent. Using Cauchy criterion: $\exists N_o = N_o(\varepsilon)$ st. $n > m > N_o$, $\sum_{j=m}^n M_j < \varepsilon$ Hence if $n > m > N_o$: $\left| \sum_{i=m}^{n} f_i(z) \right| < \varepsilon \quad \forall z \in \Omega$.

Defⁿ:
Let $f, f_n: \Omega \to C$ be a sequence of functions
Say $f_n \to f$ uniformly on $-\Omega$ if given E > 0, $\exists N_o(E)$ st. for $n > N_o(E)$ we have $1 \vdash (1) - \vdash (1) \mid E \mid \forall \exists E \mid \Omega$ Defo of uniform convergence of series Efor: $f(z) = \sum_{n=1}^{\infty} f_n(z)$ $f_n(z) = \sum_{j=1}^{n} f_j(z)$.

in above definition. Exponential function $\exp(z) = \sum_{n=1}^{\infty} z^n$ is convergent for all $z \in C$ $d \exp(z) = \exp(z)$ exp(z+w) = exp(z) exp(w)

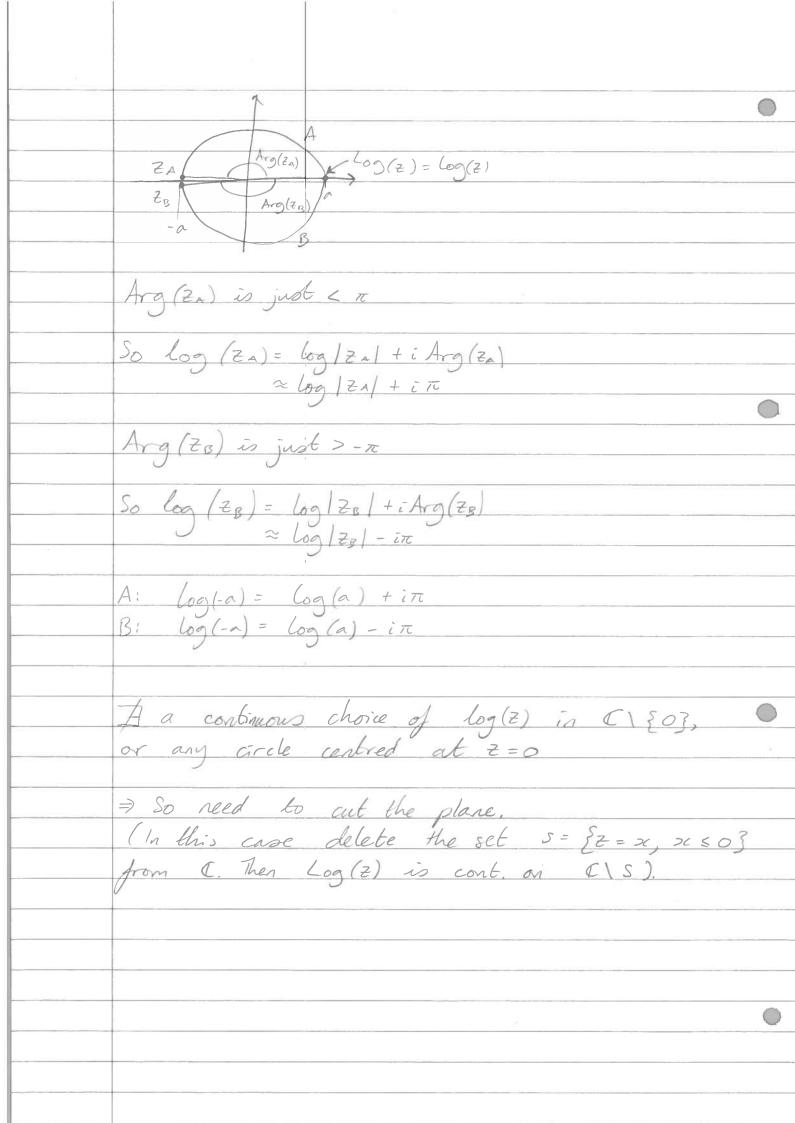
(Can be verified by multiplying the power series.

Need to rearrange, using absolute convergence.) From exp, define $\cos z = e^{iz} + e^{-iz}$, $\sin z = e^{iz} - e^{-iz}$ $\cos z = 1 - z^2 + z^4 - ... = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$ $\cos z = 1 - z^2 + z^4 - ... = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$ $\cos z = 1 - z^2 + z^4 - ... = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$ $\sin z = z - z^3 + z^5 - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(-1)!}$

Trig identities such as $cos^2z + sin^2z = 1 \quad hold.$ However it is no longer true that 1 cos 2/ ≤1, |sin 2/ ≤1. Indeed: $t \in \mathbb{R}$ $cosit = e^{-t} + e^{+t}$ as t -> ± 00. So cosit ER and goes to +00. Recall: $e^{2\pi i} = 1$ Hence e^{\pm} is periodic, with period $2\pi i$. $e^{(2+2\pi i)} = e^{\pm} \cdot e^{2\pi i} = e^{\pm} + \pm$. 1). On what set does \(\sum_{n=0}^{\infty} n^2 (\frac{2}{2} + i)^n \) converge? 2). What is the radius of convergence of \$\int_{n=0}^{\infty} \frac{7}{2} \tag{0}^{\infty} ? 3). On what set does $\sum_{n=1}^{\infty} \frac{1}{2^n}$ converge? 4). Expand $f(z) = z^{-2}$ in powers of z - i.

On what set does your expansion converge? $\frac{1}{n^{2}(z+1)^{n+1}} = \frac{(n+1)^{2}}{n^{2}} \frac{|z+1|}{|z+1|} \rightarrow \frac{|z+1|}{|z+1|} \Rightarrow n \rightarrow \infty$ CONV. on Set { Z: 12+11<1}

2101 19-10-16 Logarithms
log = natural logarithm (= (n) Try to solve Z = exp(w) Any complex number w which solves $z = exp(\omega)$ is a choice of log z. If $z = \exp(\omega)$ then also $z = \exp(\omega + 2\pi i)$ So the set of choices of $\log z$ has the form $\{\omega + 2n\pi i : n \in \mathbb{Z}\}$ and ω is a particular solution of $z = e^{\omega}$. Note: if w = u + iv, we have $z = \exp(u + iv) = (e^u)e^{iv}$, $u, v \in \mathbb{R}$ $|z| = e^u \Rightarrow u = \log|z|$. Z=e" (cosv+isinv), v is a choice of arg (z). log 7 = log /2/ + iarg(2) Note: real part of log z is uniquely defined. exp(w) +0 so log z is only defined for z +0. If z is real and positive, it is natural to choose log z to be real also. This is the principle log, Log (z). Log(z) = log(z) + iArg(z), $Arg(z) \in (-\pi, \pi]$.



Definition Ω ∈ Ω is open if for each $z_0 ∈ Ω$, there is an open disc $D = {1z-z_0} | S}$ contained in Ω. note: of is open, as is C. 20 D= { /2-2/ < S} Hay space { Re(z) > 0} = H $Z_0 \in H$, $Z_0 = x_0 + iy_0$, $x_0 > 0$ by def^n $\{|Z - Z_0| < S\} \subset H$ if $S = \frac{i}{2}x_0$ (a choice) $Q = \{z : Re(z) > 0 \ \text{Im}(z) > 0 \}$ is also open.

Non-example {121 < 13 = S closed unit disc? Clearly any disc centred at

2 with |z| = 1 will not

be contained in S. The union of any family of open sets is If Ω , ..., Ω is any finite collection of open sets then Ω , Ω , ... Ω will be open. Notation: C\K = {z \in C : z \in K} WARNING:
"Closed' does NOT mean 'not open'. What are limit points?

Say $w \in C$ is a limit point of K if \exists a sequence of points $z_n \in K$ with $z_n \to w$ as $n \to \infty$ What are limit points?

MATH 2101	
24-10-16	
	Note: every point in K is a limit point of
	Note: every point in K is a limit point of K (Take constant sequence). But there may be others.
	But there may be others.
	Take H = { Z: Re(z) > 0}
	for example == 1 EH for all n = 1 but
	En -0 4.1.
	So O is a limit point of H but not in H. $C \mid H = \begin{cases} \frac{2}{5} \in C : Re(\frac{1}{5}) \leq 0 \end{cases}$ is closed as it
	contains its 'boundary', the imaginary axis.
	facts:
	Any intersection of closed sets is closed. Any finite union of closed sets is closed.
	Any finite union of closed sets is closed.
	K = 5 P = (2) = 13
10000	$K_n = \{ Re(z) \ge \frac{1}{n} \} $ $(n = 1, 2, 3,)$
	Each Ka is closed, but UKn = SRe(z) > 03
	Each Kn is closed, but UKn = {Re(z)>0} Which is not closed.
22	
	leprition:
	Ke is closed if either of the following is true:
	· C\K is open · K contains all its limit points
	· I contains all its mont points
0	

Refinition

If XCC, say U is an open subset of

X if U = Xn \(\Omega \), \(\Omega \) open in C. C < X is a closed subset of X if X C is open in X ⇔ C=XnK, K closed in C. Example $X = \{12|<1\}$ $K = \{12|<1 \text{ and } Re(2) \ge 0\}$ By definition K is closed in X'.
For $K = X_0 \in Re(Z) \ge 0$?

= $X_0 \in Log_{ed}$ subset of () But K is neither open nor closed in C. Open subsets are 'natural homes' for continuous, holomorphic etc functions. Pef n If $\Omega \subset \mathbb{C}$ is open and $f: \Omega \mapsto \mathbb{C}$ is a function: say that f is holomorphic in Ω if it is holomorphic (i.e. complex differentiable) at each point $z_0 \in \Omega$. Openners quarantées you can approach zo in any direction).

MATH 2101	
24-10-16	
	Back to logs and so on
	such to ays vag so or
	Proposition
	in (-T, T] then
	$\frac{1}{1}$
	Log(z) := log[z] + iArg(z)
	is holomorphic in the cut plane
	$\Omega = C \setminus \{ z : lm(z) = 0, Re(z) \leq 0 \}$
	with derivative
	$\frac{d}{dz} \log(z) = 1$
	QZ Z
	Wind & X
	Ω = everything) × apart from
	Proof
	Log(z) is clearly continuous in si
	and satisfies == exp(Log(z)).
	Differentiate using chain rule:
	and satisfies $z = \exp(Log(z))$. Differentiate using chain rule: $1 = \exp(Log(z)) \cdot d(Log(z))$ dz
	$= \frac{z}{dz} \left(\frac{Log(z)}{z} \right). \Box$
	d Z

Complex powers

If $\alpha \in C$, z^{α} is defined to be $z^{\alpha} = \exp(\alpha \log(z))$ for some choice of log(z).

It is multivalued unless a is an integer.

Different values differ by multiplication by

e for some $n \in \mathbb{Z}$. Let is the cut plane of previous proportion. Then $f(z) = \exp(\alpha \log(z))$ is a holomorphic choice of z^{α} in Ω with derivative $f(z) = \alpha z^{\alpha-1}$. Exercises

1). Write down an example of a non-constant holomorphic function which vanishes at z = 0 and z=1. 2) Write down an example of a non-holomorphic function which vanishes at z=0 and z=1. 3). Write down an example of a non-constant holomorphic function with infinitely many zeros (ie there are infinitely many zero). 1). f(z) = z(z-1)2). $f(z) = Z\log(z)$, f(z) = Re(z(z-1))3). $f(z) = e^{iz} - 1$, $f(z) = \sin z$

2101	
24-10-16	
	for logz and z ", we say that $f(z)$ is a holomorphic branch of one of these functions if it is a holomorphic function defined in some open set $U \subset C$.
	We have seen that holomorphic branches of $\log z$ and z^{α} exist in $\Omega = C \setminus \{ln(z) = 0, Re(z) \le 0\}$.
	O is a branch point of 2" and of log 2. Roughly: you have to cut the plane from branch point to a in order to define a holomorphic branch.
	Example with more than one branch point. Consider z'2(z-1)'2
	Branch points are at zeros of the factors, so at z=0 and z=1.
	Problem! Define a holomorphic branch of $z'^2(z-i)'^2$. To define z'^2 we may cut plane along the negative real axis and define the branch $z'^2 = z '^2 \exp\left(\frac{i}{2}i\operatorname{Arg}(z)\right)$.
	$z''^2 = z '^2 \exp(\frac{1}{2}i \operatorname{Arg}(z)).$ Similarly a holomorphic branch of $(z-1)'^2$ may be defined as
	$(z-1)^{'/2} = z-1 ^{'/2} \exp(\frac{1}{2}i \operatorname{Arg}(z-1))$ defined in plane cut along real axis from $z=1$ to $-\infty$.

 $\frac{AriS}{O} = \frac{Arg(z)}{O}$ So a hol. branch is defined to be f(z)=|z|'2|z-11'2 exp(=(Arg(z)+Arg(z-1)) Ω,= C\ {Z: lm(Z)=0, Re(Z) ≤1} Note however that this branch is better than this and is continuous, hence holomorphic in the larger set $\Omega'_{1} = C \setminus \{ z : l_{m}(z) = 0, 0 \le Re(z) \le 1 \}$ Let a < 0 be on regalive real axis. Let z = a + iS, S small y 8 > 0 is small, Arg(z) and Arg(z-1) are both ○ nearly π (picture) so $\exp\left(\frac{i}{2}(Arg(a+iS) + Arg(a+iS-1)\right)$ $\approx \exp(\pi i) = -1$ If S < 0, Arg(z) and Arg(z-1) are both approx $\exp\left(\frac{i}{2}\left(Arg(z) + Arg(z-i)\right) \approx \exp\left(\frac{i}{2}\left(-\pi - \pi\right)\right)$ = $\exp\left(-\pi i\right)$ So exp(i(Arg(z) + Arg(z-1))) is actually continuous at z = a on negative real axis. This implies the dain that our branch

2101	
24-10-16	
	of $z'^2(z-1)'^2$ is holomorphic in $C \setminus \{z : ln(z), 0 \le Re(z) \le 1\}$.
	Renark
	Can instead define a holomorphic branch of $2'^2(2-1)'^2$ on the domain
	$\Omega_2 = C \setminus \{ \{ \{ \} \} : Im(2) = 0, Re(2) \le 0 \} \cup \{ \{ \} : Im(2) = 0, Re(2) \ge 1 \} \}$
	MARCON DOCUMENTS OF THE PROPERTY OF THE PROPER
	1
	For this choose ang (z-1) in [0, 2n)
812	Conformal Mapping
34,	Conformal Massering
1,1140,141,000	Conformal means 'angle-preserving'
	(precise def next time)
	Theorem
	Let f: Sh > C be holomorphic (sh open)
	Let $f: \Omega \to C$ be holomorphic (Ω open) The f is a conformal mapping at every point Ω of Ω with $f'(z_0) \neq 0$.
-	to y 12 with y (to) 70.
0	

2101 26-10-16 Conformality of holomorphic maps 'angle preservation' Recall a parameterized curve in C is just a differentiable mapping $t \mapsto z(t) = x(t) + iy(t)$, t in the interval [0,1] (say). Familiac example $x(t) = \cos t$, $y(t) = \sin t$, $t \in [0, 2\pi]$ This is the unit circle, $z(t) = e^{it}$ (x(t), y(t)) A curve is regular if z(t) is continuously differentiable and $dz = \dot{z}(t) = \dot{z}(t) + i\dot{y}(t)$ is non-zero for all values of t in the parameter In a general parameterised curve you can have but this is not regular.

MAIH

Note: dz is the tangest vector to the curve. Grele: tangent vector: (-sint, cost) or in C terms i(t) = ie it Given two regular curves Z, (t), Z2(t) with the same initial point Z,(0) = Z2(0) = Z0, define the angle between the curves at ze to be the angle between the tangent vectors at t=0, i.e. Angle = arg(\(\frac{z}{2}(0)\) - arg(\(\frac{z}{2},(0)\)) $z_{i}(t)$ angle between curves z_{0} . f: Ω → C is holomorphic (Ω open) and $f'(z_0) \neq 0$. Let $w_1(t) = f(z_1(t))$ (j=1,2). The angle between $w_1(t)$ and $w_2(t)$ at $w_0 = f(z_0)$ is the same as angle between z. (t) and z. (t) Proof

O Chain rule: $dw_i = f'(z_i(t)) dz_i$ dtEvaluate at t=0 w; (0) = f'(20) z; (0) $arg(\dot{\omega}_{2}(0)) = arg(\dot{f}(z_{0})\dot{z}_{2}(0)) = arg(\dot{z}_{2}(0)) : \dot{f}(z_{0}) \neq 0$ $\dot{\omega}_{1}(0)) = arg(\dot{f}(z_{0})\dot{z}_{2}(0)) = arg(\dot{z}_{2}(0)) : \dot{f}(z_{0}) \neq 0$

2101 26-10-16 In 2D physics (fluid flow) we often need u

Notion s.t. Du = 0. $\Delta u = 0$ u = 0 f holomorphicMap Ω , 1:1 and onto $D = \{121 < 1\}$ conformally. Solve the public 'explicitly' in D and transfer back to Q. Works because f is holomorphic $f: \Omega \to D$, $v: D \to \mathbb{R}$ is harmonic, then u(z) = v(f(z)) will again be harmonic. Example) of Conformal mapping.

1). Möbius bransformations (Fractional Linear transformations) T(z) = az + b (ad-bc $\neq 0$) a,b,c,d $\in C$ Extends to $C \cup \{\infty\}$ or equivalently to S by defining $T(-d/e) = \infty$, $T(\infty) = \frac{a}{c}$ Tis a bijective map 8 -> 8 with inverse T'(z) = dz - b Any Möbius bransformation, T, is everywhere conformal. T maps circles and straight lines in C to circles and straight times. (sives any two triples (Z, Zz, Zz) and (W, Wz, Wz) of pairwise distinct points, there is a unique Möbius T with T(z) = w, T(z) = wz, T(z) = wz.

MAIH

A.4). Consider the mapping w= /2-1. Where is this mapping conformal? What is the image of the real axis? What is the image of the imaginary axis? A-5). Write down the Möbius transformation mapping i 601, 1 600, 00 to -17. 4.5), -17: +17 =1 i + d -17i+17= i+d 17-18==d SO T= -172 +17 Z + 17 - 18i a=-17c, b=17c = 172-17 -7 + 18:-17 Z,(t)=E ER $W_1 = \frac{1}{t-1}$ \Rightarrow real axis $W_1 \Rightarrow 0$ as $t \Rightarrow \infty$ w. + 00 00 to 1 $w_z = \frac{1}{it-1} = \frac{-1}{1+t^2} - \frac{it}{1+t^2}$

Phis bion A map $f: \Omega \to C$ is conformal at $z_0 \in \Omega$ if: for any pair of regular curves $z_1(t)$, $z_2(t)$ with $z_1(0) = z_2(0) = z_0$. The angle between image curves $w_i(t) = f(Z_i(t))$ at $w_i = f(Z_i)$ is equal to the angle between $Z_i(t) & Z_i(t)$ at $Z_i(t) & Z_i(t)$ at $Z_i(t) & Z_i(t)$ Theorem (paraphrase - from before) If f is holomorphic and f(zo) to then f is conformal at zo. Proof of theorem (Möbius)
). The Möbius T is a composition of the basic transformations: transformations:

(*) Z \rightarrow Z + c (translation with vector c)

(*) Z \rightarrow a z (enlargement, scale factor (a)

together with rotation through reg(a)) It is clear that circles and straight lines are mapped to circles and straight lines by To understand T(z)= 1/z consider S: $z = x_1 + ix_2$ (stereographic Pojection) We saw: circles and straight lines in all become circles in S.

Note that $= (1 - \chi_3)(\chi_1 - i\chi_1)$ $\chi_1^2 - \chi_2^2$ $= (1 - \chi_3) \chi_1 - \bar{\iota} \chi_2$ Therefore, transformation $z \to /z$ corresponds to mapping $(x_1, x_2, x_3) \mapsto (x_1, -x_2, -x_3)$ of S. This is a 180° rotation of S around the x_1 axis - maps circles to circles. What about mapping (2, 2, 2, 2) to (w, wz, wz)? It is enough to find Tz, z, z, mapping (Z, Zz, Zz) to (1,0,00). For then, required Möbius will be (Tuining) o (Tzi, zi, z) Construction of T_{z_1, z_2, z_3} ? $z_2 \mapsto 0$ so must have $z - z_2$ $\frac{z_3 \mapsto \infty \quad implies}{z_{-z_3}}$ $Z_1 \mapsto 1$ means $\lambda = Z_1 - Z_3$ $Z_1 - Z_2$ So $T_{z_1, z_2, z_3}(z) = \left| \frac{z_1 - z_3}{z_1 - z_2} \right| \left| \frac{z_2 - z_3}{z_2 - z_3} \right|$

MATH 2101 31-10-16 Example Find a conformal magging of the onto (and (:1) the upper half space $H = \{ w \in C : |m(w)| > 0 \}$ We need to go beyond Möbius transformations (Too many curves) Step 1: 'Open up' the angle at z=0 with a map of the form $w_1 = z^{\alpha} = |z|^{\alpha} \exp(i\alpha argz)$ Image of Ω by this map is the set $\Omega_1 = \frac{1}{2}w_1$: $0 < |w_1| < 2^{\alpha}$ and $0 < arg(w_1) < 2\pi\alpha/17$ If we choose $a = \frac{17}{2}$, this is $\Omega_{1} = \{ \omega_{1} : 0 < |\omega_{1}| < 2^{\frac{17}{2}}, 0 < \arg(\omega_{1}) < \pi \}.$ implicit NB: because a is not an integer, we need to integer we need to integer make a choice of arg(z) continuous on Ω , could use arg(z) for this.

Step 2:

Map to a reigion bounded by arg(z) braight lines.

Use a Möbius, for example arg(z) by arg(z) by arg(z) by arg(z) braight lines. Conformal everywhere and maps circles and straight lines to circles and straight lines.

Call image Ω_{2} .

Real ω_{1} axis maps to real ω_{2} axis $\frac{\left(\omega_{1}-2^{\frac{1}{2}}\right)^{2}}{\left(\omega_{1}-2^{\frac{1}{2}}\right)^{2}} = \omega_{1}^{2}-2\omega_{1}2^{\frac{1}{2}}+2^{\frac{1}{2}}$ $\frac{\left(\omega_{1}-2^{\frac{1}{2}}\right)^{2}}{\left(\omega_{1}^{2}-2^{\frac{1}{2}}\right)^{2}} = \omega_{1}^{2}-2\omega_{1}2^{\frac{1}{2}}$ Iz is one of the four quadrants in the wz-plane (2nd quadrant) After multiplication by i, -1, -i or 1 we may assume Ω_2 is the first quadrant. (-i in this case) Ω2 = {W2 ∈ C: O < arg (W2) < T/2} Then if $w_2 = w_2^2$ and Ω_3 is the image of Ω_2 by this map, we see: $\Omega_3 = \{ w_3 \in \mathbb{C} : O < arg(w_3) < \pi \}$ 1///// So the required conformal mapping is
the composite

z > w, -> wz -> w3 $W_{3} = W_{2}^{2} = -\frac{i(W_{1} - 2^{\frac{17}{2}})^{2}}{(W_{1} + 2^{\frac{17}{2}})^{2}} = -\frac{2^{\frac{17}{2}} - 2^{\frac{17}{2}}}{(Z_{1}^{\frac{17}{2}})^{2}}$ All maps have inverses where defined so this is 1:1 and onto (ie bijective).

MATH	
2101	
31-10-16	
	Suppose
.4	$z \in \Omega$
	$\omega = z^{17} +$
311111111111111111111111111111111111111	W > Z
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Image 2' of 12 by (4):
	Ω'= {w∈ C: 0< w < 2'7, 0< arg (ω) < 2π3
	Why can we expect to find conformal mappings?
3	Riemann Magging Theorem Let sict, sit open subset of C.
	Also suppose that - a is connected and simply
39	connected. Then I a conformal map $f: \Omega \rightarrow \{121<1\}$ which is 1:1 and onto.
B	
0.2	Connected:
Cxa	
3	Can join any two points of 12 by continuous curve (Not: Or O) in . 2.
- 3	
5	Simply connected:
	Any closed curve in 12 can be continuously deformed to a point (within 12)
	deformed to a point' (within 12)
-	(Basic non-example is EL {0}.)

Integration Definition $f: [a,b] \to C, \quad continuous, \quad then$ $\int_{a}^{b} f(t) dt = \int_{a}^{b} Re(f(t)) dt + i \int_{a}^{b} I_{m}(f(t)) dt$ Proposition
Let $M = \sup\{l \neq (t)\}: a \leq t \leq b\}$ Then: $\left| \int_{a}^{b} f(t) dt \right| \leq M(b-a)$ Proof Let x = arg (st) dt) Then $e^{-i\alpha} \int_{-\infty}^{b} f(t) dt$ is real by definition. Now: $\left| \int_{a}^{b} f(t)dt \right| = \left| e^{-i\alpha} \int_{a}^{b} f(t)dt \right|$ = $\int_{a}^{b} e^{-i\alpha} f(t) dt$ $= \iint_{\mathbb{R}^{b}} \operatorname{Re}\left(e^{-i\alpha}f(t)\right) dt$ $\leq \int_{\mathbb{R}^{b}} |Re(e^{-i\alpha}f(t))| dt$ < \int mdt = m(b-a)

Integration along curves in c A curve y is a C'map 2: [a, 6] → C [C' meaning continuously differentiable] Take parameter to be angle $t: 0 \le t \le \pi$ and the point at angle t is $Re^{it} = Rust + iRsint$. So $\gamma(t) = Re^{it}$, $0 \le t \le \pi$ Pepinition

If $f: \Omega \to C$ (where Ω is open) is continuous and $f: [a, b] \to \Omega$ is a curve, then we define: $\begin{cases}
f(z) dz = f f
\end{cases}$ = [b] {(z(t)) z (t) alt this is the integral of a complex-valued function of a real variable and hence covered by the previous definition.

Example

If $f(z) = \frac{1}{1+z^2}$ and y is the semicircle as $1+z^2$ before. $\int_{0}^{\pi} \int_{0}^{\pi} \int_{0$ = friReit 1+Reit Ty : [a,b] -> C is a C' curve then we define length (z) = [b] z'(t) dt J(t) = u(t) + iv(t) J(t) = u(t) + iv(t) $W(t) \cdot st$ Hypotenuse: Ju'(t)2 + v'(t)2 St 1 / (t) | St. [i.e. y: [a, b] -> C is as injective map. Not allowed: Self intersections

2101 31-10-16 hinearity: \((c, \(\frac{1}{2} \)) + \(c_2 \, g(\(\frac{1}{2} \)) \) d \(\frac{2}{2} \) $= c_1 \int_{\gamma} \int_{z}^{z} (z) dz + c_2 \int_{\gamma} g(z) dz$ Additivity: if a < c < b, $j : [a,b] \rightarrow \Omega$ and j = j in [a,c], j = j in [c,b] then $\int_{\mathcal{T}} f(z)dz + \int_{\mathcal{T}} f(z)dz = \int_{\mathcal{T}} f(z)dz$ Sign-change under path reversal: Let j opp(s) = j(-s), -b < s < -a. Often y opr is denoted by -y.
There are good reasons for this but there is room for confusion:
- J(t) might be y(t) rotated through 180:

Reparameterisation invarience y(a') = a, $\varphi(b') = b$, and if $S = y \circ \varphi : [a', b'] \rightarrow \Omega$, then $\int_{\mathcal{F}} f(z) dz = \int_{\mathcal{S}} f(z) dz$ Proof $\int_{1}^{\infty} f(z) dz = \int_{0}^{\infty} f(\gamma(t)) \gamma'(t) dt$ $\int_{S} f(z)dz = \int_{a}^{b} f(s(z))s'(z)dz$ $S(\tau) = j(\varphi(\tau)).$ $S'(\tau) = j'(\varphi(t)) \frac{d\varphi}{d\tau}$ $\int_{S} f(z)dz = \int_{T}^{b} f(\gamma(\varphi(z))) \gamma'(\varphi(z)) \varphi'(\tau)d\tau$ MATH 2101 31-10-16 Piecewise C'aures Very often, we shall want to integrate along curves like this: 74 7 72 -R 7 0 7 R Suppose y: [a,b] -> C is a continuous Say y is piecewise C' if $\exists a = a_0 < a_1 < a_2 < ... < a_{n-1} < a_n = b$ such that if $\begin{cases}
j: (t) = j(t) & \text{for } a_{j-1} \le t \le a_j \\
\text{then } j: is C' & \text{for all } j = 1, ..., n.
\end{cases}$ For continuity we shall need $\gamma_1(a_1) = \gamma_2(a_1)$ In-1(an-1) = Jn(an-1) Extend definition of I to piecewise C'curves. If y is piecewise C' and is decomposed into C' curves as in definition: $\int f(z)dz = \sum_{i=1}^{\infty} \int_{Y_i} f(z)dz$ $= \sum_{j=1}^{n} \int_{a}^{a_{j}} f(j,(t)) f'(t) dt.$

We didn't have to assume that the decomposition of the interval is unsque because of the additivity property of f.

MATH 2101 02-11-16 Definition We say that an open set $\Omega \in \mathbb{C}$ is path-connected if: Given any 2 points z, & zz in 12, 3 a continuous curve y: [a, b] -> 12, y(a) = Z, y(b) = Z2 Examples

Any disc is path connected.

Any half plane is path connected Remark If Ω is open and path-connected, then the curve y connecting z, & z can always be drosen to consist of a sequence of straight line segments parallel to either Re or ImEssential that I be open here.

Definition

The is called a domain (or region) if it is open and path connected. Theorem

Let $f: \Omega \rightarrow C$ be holomorphic, let Ω be a domain and suppose f'(z) = 0 at all points of Ω .

In a constant. Remark: we do need I to be path connected, else there are simple counter examples. We've seen f'=0 $\Rightarrow \partial f = 0, \quad \partial f = 0$ $\partial x \qquad \partial y$ Select any $z \in \Omega$ Need to show $f(z_2) = f(z_1)$ for any other See picture (above): the vanishing of both partial derivatives = value of f of successive corners of curve are the same.

2101 02-11-16 Last line: $\int_{\gamma} f = \int_{\gamma} f(z) dz , \quad \gamma \text{ a piecewise C'aurve}$ ibion $y_1 \text{ and } y_2 \text{ are curves}, y_1: [a,b] \rightarrow C, y_2: [c,d] \rightarrow C$ $y_2(d)$ Suppose $y_1(b) = y_2(c)$.

Suppose $y_1(b) = y_2(c)$. $y_1(a)$ Suppose $y_1(b) = y_2(c)$. $y_2(c)$ $y_1(a)$ Suppose $y_1(b) = y_2(c)$. $y_2(c)$ $y_2(c)$ where $(y, +y_2)$: $[a, b+d-c] \rightarrow C$ In the picture from before, if y; is the j-th line segment in the zig-zag curve, the total curve $\tilde{y} = y_1 + y_2 + ... + y_N$ $\int_{\widetilde{Z}} f = \sum_{i=1}^{\infty} \int_{f_i} f$ Terminology
from now on, 'curve' will mean

piecenose C'curve' unless otherwise stated.

MAIH

Proposition
Let $\gamma: [a,b] \rightarrow \Omega$ be a curve, $j: \Omega \rightarrow C$ a continuous function. Then $\left| \int_{\gamma} f(z) dz \right| \leq length(\gamma) \cdot \sup_{z \text{ only }} \{lf(z)l\}.$ $\sup_{z \text{ only }} |f(z)| = \sup_{z \text{ only }} |f(z(t))| : a \leq t \leq b_{s}^{2} = : M$ By Δ inequality, it is enough to consider case $\begin{cases}
f(x) = \int_{a}^{b} f(x(t)) \cdot f'(t) dt
\end{cases}$ < [] f(x(t)) | - | x (t) | dt < M [] /(t) | dt Last time, we defined length $f(x) = \int_{a}^{b} |y'(t)| dt$

MATH 2101 Exercises Let j(t)=t+it2, 0=t=1. Calculate what is the value of this integral along the curve york which is traversed in the opposite direction $\int z dz = \int (t + it^2)(1 + 2it) dt$ $= \int (t^2 + 2t^3) + i(t^2 + 2t^2) dt$ $= \left[\left(\frac{1}{2} t^2 - \frac{1}{2} t^4 \right) + i \left(\frac{1}{3} t^3 + \frac{2}{3} t^3 \right) \right]$ $= \left[\frac{1}{2} - \frac{1}{2} \right) + i \left(\frac{1}{3} + \frac{2}{3} \right) - 0$ $= i \qquad SO \int Z dZ = -i$ 2) Let y be the piecewise C'curve y, + yz, where is a part of the real axis from -1 to 1 and $y_2(t)=e^{it}$, $0 \le t \le \pi$, is the semi-circular arc joining 1 to -1 is the upper half plane. Given that \ \(\frac{1}{2}\dz = 0 \) for some praction of, what can you say about the values of f(z) dz and f(z) dz where y3(t) = e , - \(\tau \) = e. 772

Let $f_n: \Omega \to \mathbb{C}$ be continuous and let $g: [a, b] \to \Omega$ be a curve. Suppose $f_n \to f$ uniformly on g. Then $\int f_n(z) dz \to \int f(z) dz$ as $n \to \infty$. Let $M_n = \sup_{z \in \mathcal{F}} |f(z) - f_n(z)|$. Uniform convergence (Mn -> 0 $\left| \int_{\mathcal{I}} f(z) dz - \int_{\mathcal{I}} f_n(z) dz \right| = \left| \int_{\mathcal{I}} (f(z) - f_n(z)) dz \right|$ $\leq length(z). M_n \rightarrow 0$ as $n \rightarrow \infty$ Theorem (Fundamental Thm of Calculus - Complex resion).

Suppose $f: \Omega \to C$ is holomorphic (& f' is continuous).

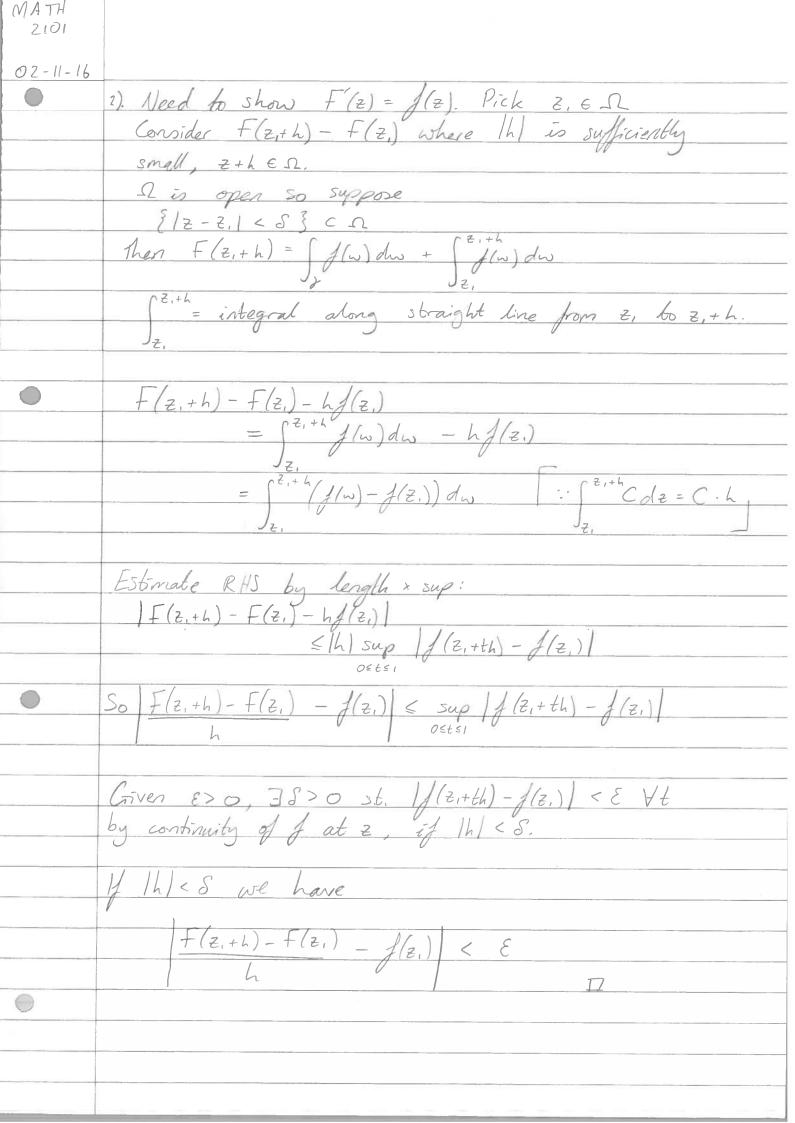
Then if $\chi: [a,b] \to \Omega$ is any curve, then $\int f'(z) dz = f(\chi(b)) - f(\chi(a)).$ Calculate. $\int_{z} f'(z)dz = \int_{a}^{b} f'(z(t)) f'(t) dt$ = [d f(z(t)) dt (Chain rule) = F(z(b)) - F(z(a)) by Funtamental Theorem
of Calculus for C - valued functions of a real variable. I

MATH 2101 02-11-16 Remark The RHS depends only on endpoints, so we have "Path - independence" of integral. $\int_{\mathcal{T}} f'(z) dz = \int_{\mathcal{S}} f'(z) dz.$ Exercises

3). If $y(t) = Re^{it}$, where R > 0 is a constant and $0 \le t \le 2\pi$, calculate $\int_{\pm}^{2\pi} dz = \int_{\pm}^{2\pi} R_{e}^{\text{int}} \cdot R_{ie}^{\text{it}} dt$ $\int z^{-1} dz = \int_{-it}^{2\pi} R^{-i} e^{-it} Rie^{it} dt$

There does not exist a holomorphic function $f: C \setminus \{0\} \mapsto C$ st. f'(z) = /2. If such an f exists, apply the F.T.C. to conclude $\int dz = 0$, f any closed curve. But this is a contradiction if $f(t) = Re^{it}$, $0 \le t \le 2\pi$. Coversely: Theorem (converse of F.T.C.) Let $f: \Omega \to C$ be continuous in a domain Ω . Then if $\int f(z)dz = 0$ for all closed curves $g: [a,b] \to \Omega$ $\Big[g(a) = g(b) \Big]$. Then $\exists F: \Omega \to C$, f holomorphic, f'=f. Proof: Choose $z \in \Omega$. For $z \in \Omega$, define $z \in \Omega$. $f(z) = \int f(w)dw$ where $g:[a,b] \to \Omega$, $g(a) = z \in \Omega$, $g(b) = z \in \Omega$ 1). If S is another curve joining to to z

If (w) dw - If (w) dw $= \int_{\gamma+s^{opt}} f(w)dw = 0$ $\therefore \gamma + s^{opt} \text{ is a closed curve.}$ So f(z) is well defined, independent of choice of ourse z.



hemma

Let D be an open disc, f is continuous: $D \mapsto C$ and $\int f(z)dz = 0 \quad \text{for any triangle}, \quad D \in \Omega$ Then $\exists f: D \mapsto C$, f holomorphic, f' = f. Proof

Same line as above. $\overline{z}_{o} = \text{centre of disc.}$ $\overline{f(\overline{z}_{i})} = \int_{z_{0}}^{z_{i}} f(w) dw = \text{integral along line segment}$ which joins \overline{z}_{o} to \overline{z}_{i} . Proof that F'(z)= f(z) uses

f(w)dw =0 and so goes through.

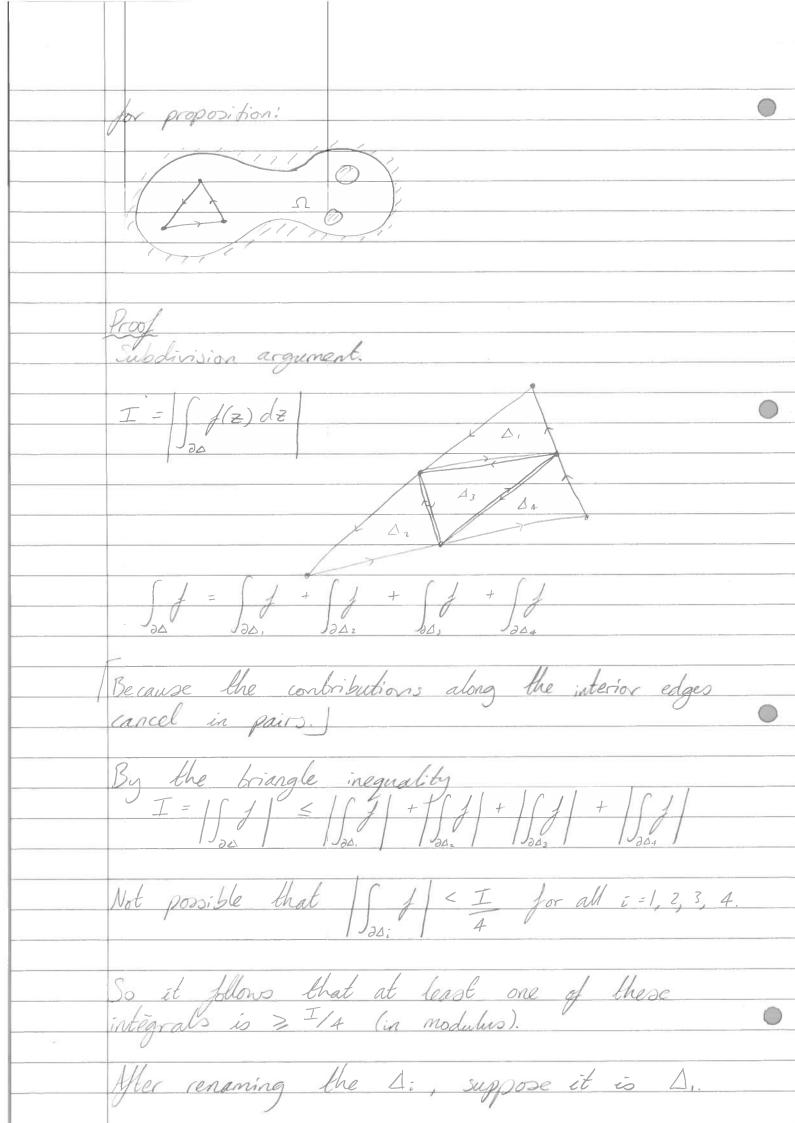
MAIH 2101 14-11-16 The Cauchy's The for a disc.

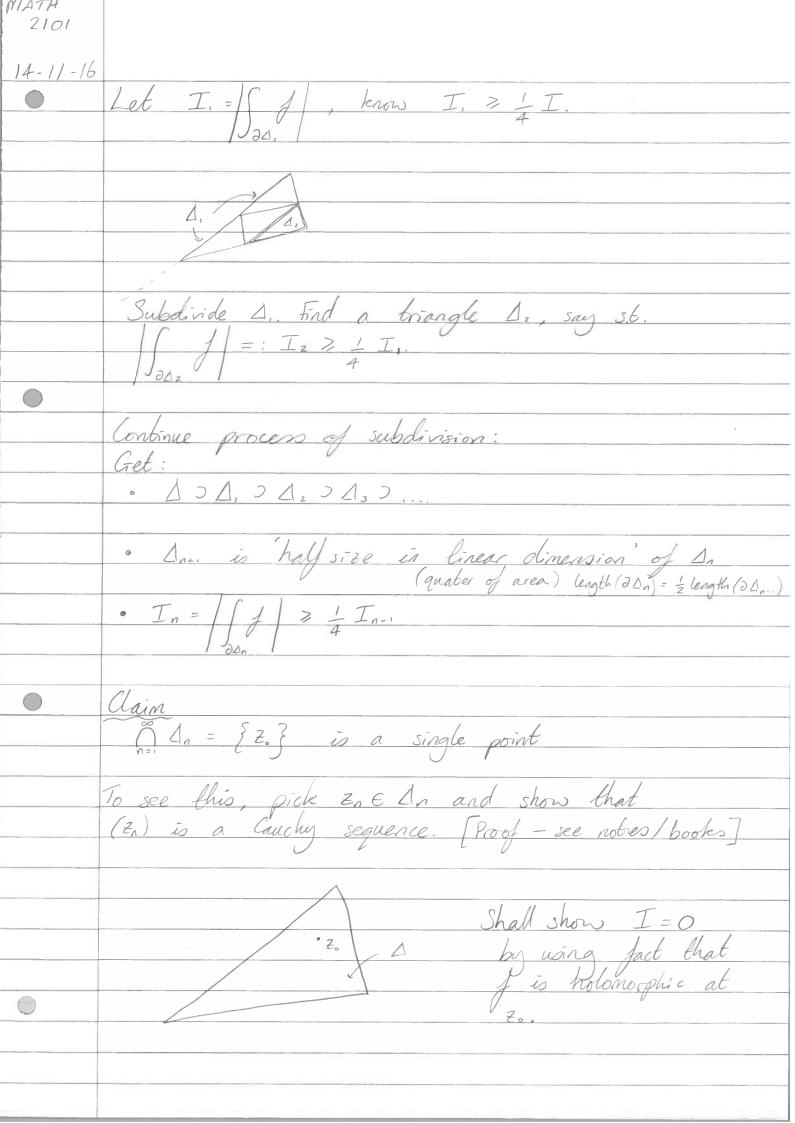
Let DC & be an open disc, and let

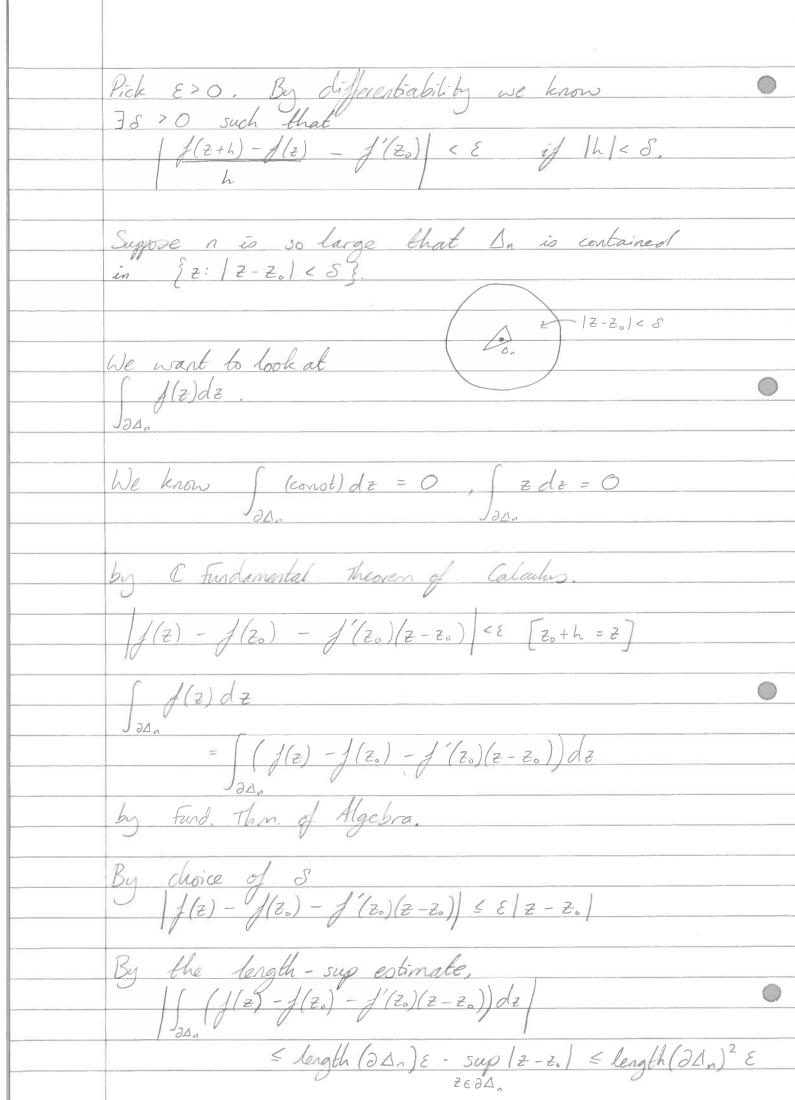
f: D - C be holomorphic. Then for every closed curve $g:[t_0,t_0] \to D$ $\begin{cases} f(z) dz = 0. \end{cases}$ Proposition Cauchy for torangles.

Let $\Omega \subset C$ be an open set and let $f: \Omega \mapsto C$ be holomorphic. Then for any triangle $\int_{\delta A} f(z) dz = 0.$ - Exundary of triangle Cauchy for briangles Δ = {all points inside the union of 3 line segments in C }. More precision: see notes. $\partial \Delta = [\omega_1, \omega_2] + [\omega_2, \omega_3] + [\omega_3, \omega_1]$ ω_1 Here for any two complex numbers a, b,

[a, b] denotes the segment starting at a & finishing at b.] Assume that w, w, w, are oriented (as in picture) so DA is traversed arti-clockwise. It is allowed for w., w, w, w, to be collinear, SO D collapses to a line segment.]







2101 14-11-16 By process of subdivision, Length $(\partial \Delta_n) = (\frac{1}{2})^n \text{Length}(\partial \Delta)$ So $I_n > (\frac{1}{4})^n I$ Combine: < E 4 Thength (∂D)2 So $4^{-n}I \leq \varepsilon 4^{-n} \text{Length} (\partial A)^2$ So I = E Length (21)2 Since E>0 was arbitrary, it follows Back to inm

Recall: If f(z) is continuous in Ω and $F: \Omega \mapsto C$ is holomorphic, with F'=f, ff(z)dz = 0 for any closed curve j. $\int f(z) dz = \int_{-\infty}^{\infty} f(\gamma(t)) \gamma'(t) dt$ t, f (j(t)) f (t) dt $= \int_{-\infty}^{t_0} df \left(f(t) \right) dt = f(f(t_0)) - f(f(t_0))$ = 0 if g(t,) = g(to)

MATH

Given $f: D \rightarrow C$, hol. Define $f(z) = \int_{\{z_0, z\}} (\omega) d\omega$ Claim F (2) = f(2). $f(z+h) - f(z) = \int_{[z_0, z+h]} - \int_{(z_0, z)}$ Apply (auchy to 1 with corners $z_0, z, z+h$ $\begin{cases}
\frac{1}{20}, \frac{1}{2} + \int_{\Xi z, z+h} \int_{\Xi z+h, z_0} \int_{\Xi z+h, z_0}
\end{cases}$ $\int_{[z,z+L]} \int_{[z_0,z+L]} \int_{[z_0,z]} \int$ = f(z+h) - f(z) So $F(z+h)-F(z)-hf(z)=\int_{[z,z+h]}(f(\omega)-f(z))d\omega$ Now use continuity of f at z to deduce $\left|\frac{F(z+h)-F(z)}{h}-\frac{f(z)}{h}\right|\to 0$ as $|h|\to 0$. (Onithing E, & proof) We have used Cauchy for Δ to prove F'(z) = f(z) and then $FTC \Rightarrow \int f(z)dz = 0$ for any closed curve.

MATH 2101	
14-11-16	
	Remark
- 17 <u>- 18 - 18 - 18 - 18 - 18 - 18 - 18 - 1</u>	Same argument => \int f(z) d z = 0, y closed curve
	for any open set I with property:
	$\exists z \in \Omega$, sb , $[z_0, z] \in \Omega$ for any $z \in \Omega$.
	The second secon
	Zo = -1
	$\Omega = C \setminus \{l_m(z) = 0, Re(z) \ge 0\}$
	works, taking to = - 1 or any point on
	regative real axis.
	Terminology - "Contour" > Piecense C'closed curve.
	Example
	$\int_{-\infty}^{\infty} \frac{\sin 2x}{2x} dx = \pi$
	Integrate e'z around [
8	$-R+iT$ $\uparrow \gamma$ $S+iT$
	$-R$ $\rightarrow S$ $\rightarrow S$ $\rightarrow S$
	Let $f(z) = e^{iz}$
	·
	Dy Cauchy's Theorem, \(\int \frac{1}{2} d \ta = 0
	Why? f(z) is holomorphic in $\Omega = \mathbb{C} \setminus \{ lm(z) \le 0, Re(z) = 0 \}$

which is starlike.

I is a closed curve contained in Ω , so Cauchy's Thin applies. 2) What does of have to do with for sinx doe? (f = sum of terms $\int_{-R}^{-S} = \int_{-R}^{-S} e^{ix} dx = \int_{-R}^{-S} \frac{\cos x + i \sin x}{x} dx \quad (i)$ $\int_{S}^{S} f(z) dz = \int_{S}^{S} (\cos x + i \sin x) ds \qquad (ii)$ Semicircle: $j(t) = \delta e^{-it}$, $-\pi \le t \le 0$ (note sign \Rightarrow clockwise) $\int_{-\pi}^{\pi} \frac{f(z)}{\int_{-\pi}^{\pi}} dz = \int_{-\pi}^{0} \frac{\exp(i \mathcal{S}e^{-it})}{\int_{-\pi}^{\pi}} \left(-i \mathcal{S}e^{-it}\right) dt$ $= -i \int_{-\pi}^{0} \exp(i\delta e^{-it}) dt$ = -iπ + O(S) for small S (iii) Combining (i), (ii) & (iii) with \ \ \ \ \ \ \ \ \ = 0, we get: $\int_{-R}^{-\delta} \frac{\sin \alpha}{x} d\alpha + \int_{\delta}^{S} \frac{\sin \alpha}{x} d\alpha - \pi + O(\delta)$ $= -Im \left\{ \begin{array}{l} f + f \\ \int_{[S,S+iT]} \int_{[S+iT,-R+iT]} \int_{[-R+iT,-R]} \end{array} \right\}$ $\underline{Idea}: Estimate RHS, and show that the modulus of each part <math>\rightarrow 0$ as $R,S,T \rightarrow \infty$. MATH 2101 16-11-16 ast time: $\int_{-R}^{-S} \frac{\sin x}{x^2} dx + \int_{S}^{S} \frac{\sin x}{x} dx - \pi + O(S)$ $= -Im \int_{I}^{I} \frac{e^{iz}}{x^2} dz$ $= \int_{I}^{I} + \chi_2 + \chi_3^2 dx$ Last line: Where S_{+} is line $S \rightarrow S_{+iT}$ J_{2} is line $S_{+iT} \rightarrow -R_{+iT}$ J_{3} is line $-R_{+iT} \rightarrow -R_{-}$ $\left| \int_{\mathcal{X}_{i}} f \right| \left| \int_{\mathcal{X}_{i}} f \right| \left| \int_{\mathcal{X}_{i}} f \right| \rightarrow 0 \text{ as } R, S, T \rightarrow \infty$ Try length - sup estimate on y_2 :

length $(y_2) = R + S$ on y_2 , z = x + iT $|f(z)| = |e^{i(x+iT)}|$ |x+iT| $= e^{-T}$ $\int x^{2}+T^{2}$ So $\int e^{i2} dz \leq (R+S) e^{-T}$ so for fixed R,S, this goes to zero as T -> 00. Try length-sup estimate on j: length (7.) = T

So | S | \leq T this doesn't work as from above we decided to let T-0 prot.

But:
$$\left| \int_{R} f(z)dz \right| = \int_{S+y}^{z} \frac{i(S+y)}{s} \cdot idy$$

$$\leq \int_{S}^{z} \frac{e^{-2}}{s} dy = \int_{S}^{z} \frac{e^{-3}}{s} \int_{S}^{T} \frac{e^{-2}}{s} dy$$

$$= \int_{S}^{z} \frac{e^{-2}}{s} dy = \int_{S}^{z} \frac{e^{-2}}{s} \int_{S}^{T} \frac{e^{-2}}{s} dy$$

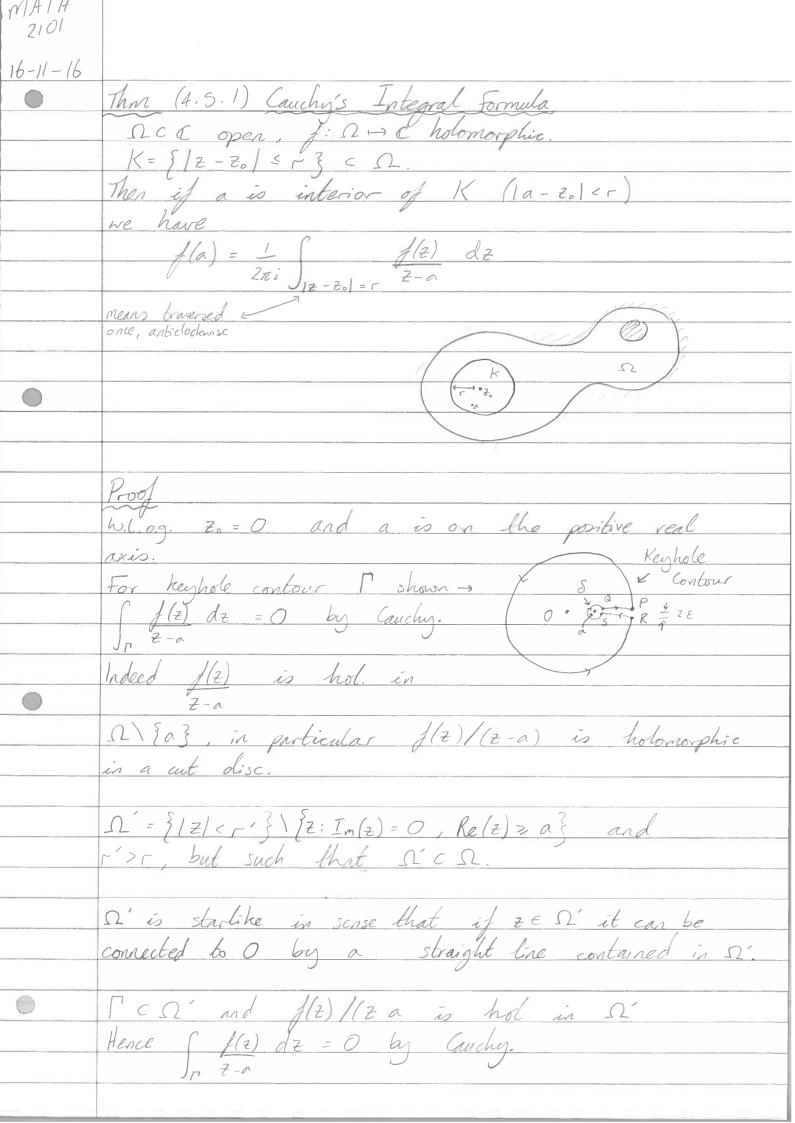
$$= \int_{R}^{z} \frac{e^{-2}}{s} dx + \int_{S}^{z} \frac{\sin x}{s} ds - \pi + O(s)$$

$$= -Trn \left(\int_{R}^{z} f(z)dz + \int_{S}^{z} f(z)dz \right) \quad (T = +\infty)$$

$$\leq O\left(\frac{1}{R}\right) + O\left(\frac{1}{S}\right)$$

$$= \int_{-R}^{\infty} \frac{\sin x}{x} dx = \pi$$

$$\Rightarrow \int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi$$



1). For fixed S $\lim_{\xi \to 0} \left(\int_{\mathbb{R}^2} \frac{f(z)}{z-a} \, dz + \int_{\mathbb{R}^2} \frac{f(z)}{z-a} \, dz \right) \to 0$ $\int_{|z|=c}^{z} \frac{f(z)}{z-a} dz - \int_{|z-a|=s}^{z} \frac{f(z)}{z-a} = 0$ 2). Lin \ \(\left(\frac{2}{2}\) dz = 2\pi \ \(\frac{1}{2}\) \\
\(\sigma_{-0} \left(\frac{2}{3}\) \\
\(\s The circle can be parameterised as $\gamma(t) = a + \delta e^{it}$ $\int_{\frac{\pi}{2}-a}^{\pi} \frac{f(z)}{dz} dz = \int_{\frac{\pi}{2}}^{2\pi} \frac{f(a+Se^{it})}{Se^{it}} iSe^{it} dt$ $= i \int_{-\infty}^{2\pi} f(a + Se^{it}) dt$ = i \(^2\pi \) \(f(a) dt + i \(^2\pi \) \((f(a + Se^{it}) - f(a) \) dt By uniform continuity sup/f(a+ Seit)-f(a)/-> 0 as S->0, Let $8 \rightarrow 0$, then $\int_{\overline{z}-a}^{\overline{z}} dz = 2\pi i \int_{\overline{z}}^{\overline{z}} da$. Proof of 0 is similar $\int_{\Omega P} \frac{f(z)}{z^2-\alpha} dz = \int_{x_1}^{x_2} \frac{f(x+i\epsilon)}{x+i\epsilon-\alpha} dx = I(\epsilon), Q = x_1 + i\epsilon, P = x_2 + i\epsilon$ $\int -I(0) = \int_{x_1}^{x_2} \left(\frac{f(x+i\epsilon)}{x+i\epsilon-a} - \frac{f(x)}{x-a} \right) dx$

2101
$$16-11-16$$
So $J(\xi) \to J(0)$ as $\xi \to 0$

Similarly $J(-\xi) \to J(0)$ as $\xi \to 0$

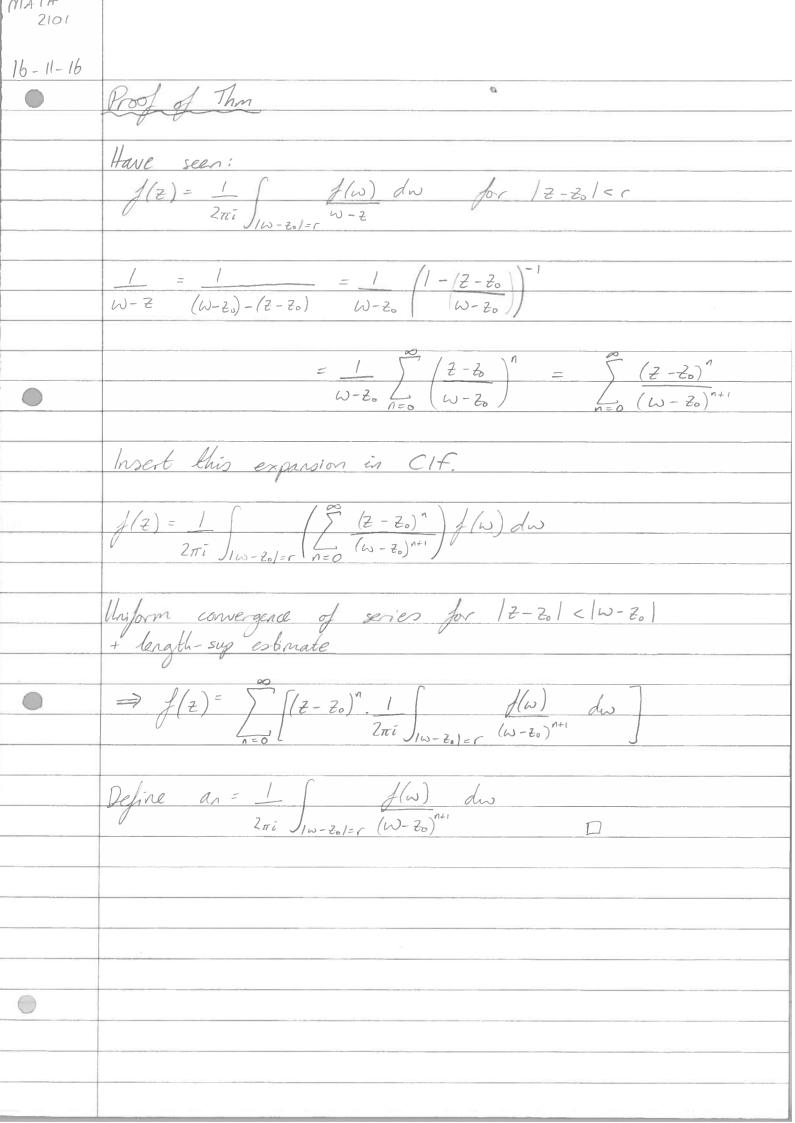
$$\int_{ax} + \int_{as} = J(\xi) - J(-\xi) \to J(0) - J(0) = 0$$
as $\xi \to 0$.

This proves the Thrm. Q

$$\int_{ax} \int_{as}^{bx} \int_{as}$$

MAIL

By fTC of direct computation $\int_{171=1}^{2} \frac{7}{2} dz = \int_{17}^{2} 0 \quad \text{if } \rho \neq -1$ $\int_{171=1}^{2} \frac{1}{2} \left(2\pi \right)^{2} \quad \text{if } \rho = -1$ Hence $I_n = 1$ $\binom{2n}{n} \left(-\frac{1}{3}\right)^n 2\pi J$ $=\frac{2\pi}{2^{2n}}\binom{2n}{n}$ Then (4.5.3) Hol. for are analytic $\Omega \subset C$ open, $f: \Omega \mapsto C$ hol. $E \in \Omega$ st. $K = \{12-2.1 \le r\} \subset \Omega$. Then f(Z) = 5 ag(Z-Zo)" where $a_{n} = \int_{0}^{(n)} (z_{0}) = \frac{1}{2\pi i} \int_{|w-z_{0}|=1}^{(\omega-2)^{n+1}} dw$ is convergent for 12-20161. If f is holomorphic in Ω then 30 is f. In particular f'is continuous. Key: 1w-zol=r, 1z-Zol<r



MATH 2101 21-11-16 Then 4 Hol fis are analytic $\Omega \subset C$ open, $f: \Omega \mapsto C$ hol. $Z \in \Omega$ st. $K = \{|z-z_0| \le r \} \subset \Omega$ $f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ where $a_n = f^{(n)}(Z_0) = \frac{1}{2\pi i} \int_{|\omega - Z_0|^{n+1}} d\omega$ is convergent for 17-201cr Key: $|w-z_0|=r$, $|z-z_0|< r$ $\Rightarrow 1 = 1$ $\lesssim (z-z_0)^n$ w-z $w-z_0$ $(w-z_0)^n$ So if f is holomorphic on I then so is f. In particular f has continuous partial derivatives. In fact all partial derivatives of all orders are Lemma (Cauchy's Inequalities) In the convergent power series expansion of of about z= zo, we have lan1 ≤ 1 sup { 1/(w)1 : 1w-201= - }. Length-sup estimate in formula for a Length of contact is 2nc For 1w- 201=1,

 $|f(\omega)| = |f(\omega)| \le \frac{1}{r+1} \sup_{n \to \infty} |f(\omega)| : |\omega - 20| = r^{\frac{3}{2}}$ Hence |an | \(\frac{1}{2\pi \cdot \cdot \frac{1}{\sigma \text{PL}}} \) \(\frac{1}{\sigma \text{PL}} \) \(\frac{1}{\sigma \text{PL Theorem 5 hiowrille's Thom

If $f: C \mapsto c$ is holomorphic and bounded,
then f must be a constant. Proof: $\Omega = C$, $z_0 = 0$, r > 0 in previous Thm. If 121<1, we have \$(2) = \(\int a_n \, 7"\) where |a, | = 1 sup. { | f(w) | : |w| = - }. y / /(2) / ≤ M Y Z ∈ C, then the above inequality gives |an | = 1 M. learn last = 0 for n>0 (10.1 < m). Hence the power series expansion of f reduces to $f(z) = a_0 \square$.

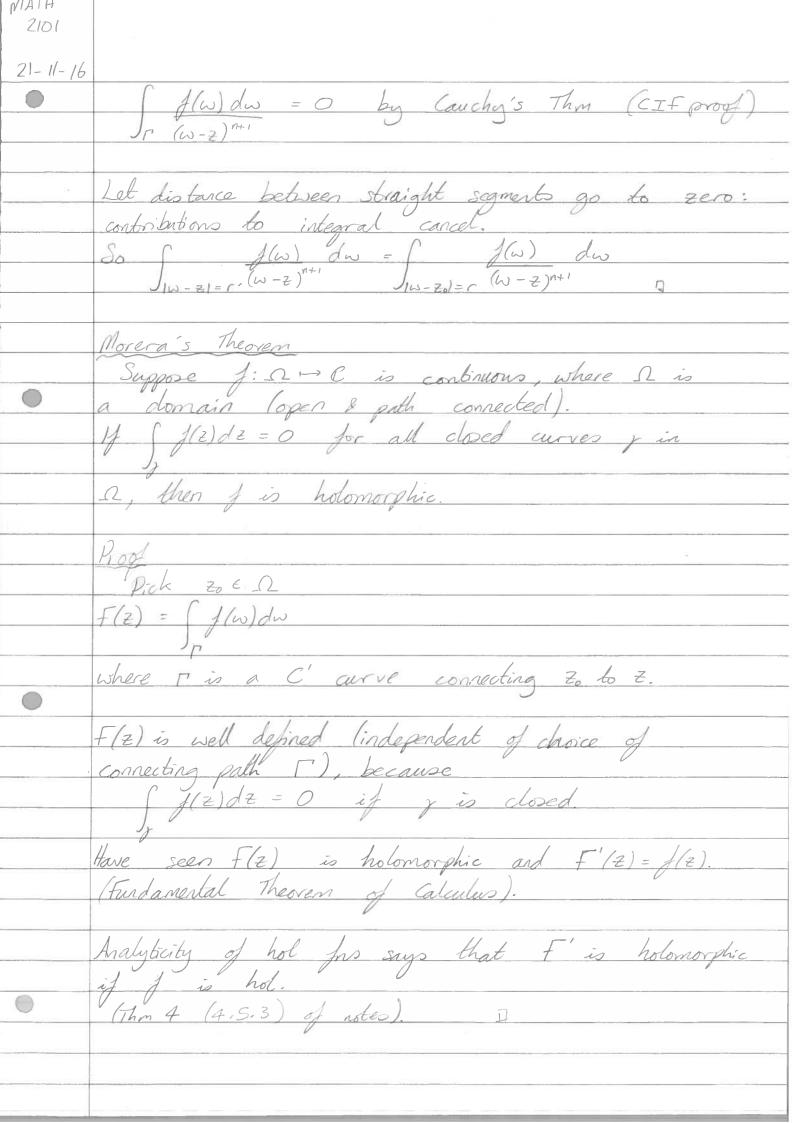
MATH 2101	
21-11-16	
	Corollary (Fundamental Thm of Algebra) Let $P(z)$ be a non-constant psynomial. Then $\exists \alpha \in C$ st. $P(\alpha) = O$.
	Then $\exists \alpha \in C$ st. $P(\alpha) = 0$.
	Proof (by contradiction) Suppose $P(z) \neq 0$ for all $z \in \mathbb{C}$. Then $f(z) = \frac{1}{P(z)}$ is holomorphic in \mathbb{C}
	Claim: f is bounded.
	Idea: $f(z) = 1$ $a_n z^n + + a_0$
	$a_n \neq 0 \Rightarrow P(z) \ge \frac{1}{2} a_n z ^n \text{if } z \ge R.$
	$S_0 f(z) = 1 \le 2 z ^{-n} for z > R$ $ P(z) a_n $
	$\leq 2 R^{-n}$ $ a_n $
	Moreover, {121 < R } is closed and bounded, f is continuous on this set so it is bounded.
	So 1/(2) < M for 121 < R
	So $ f(z) \leq \max\left(M, \frac{2}{ a_n } R^{-n}\right) \forall z \in \mathbb{C}.$
	hiouville's Thm -> f(2) is constant.
	hiourible's $Thm \rightarrow f(z)$ is constant. $\Rightarrow P = \frac{1}{f}$ is also constant.
	So P= const, contradiction I.

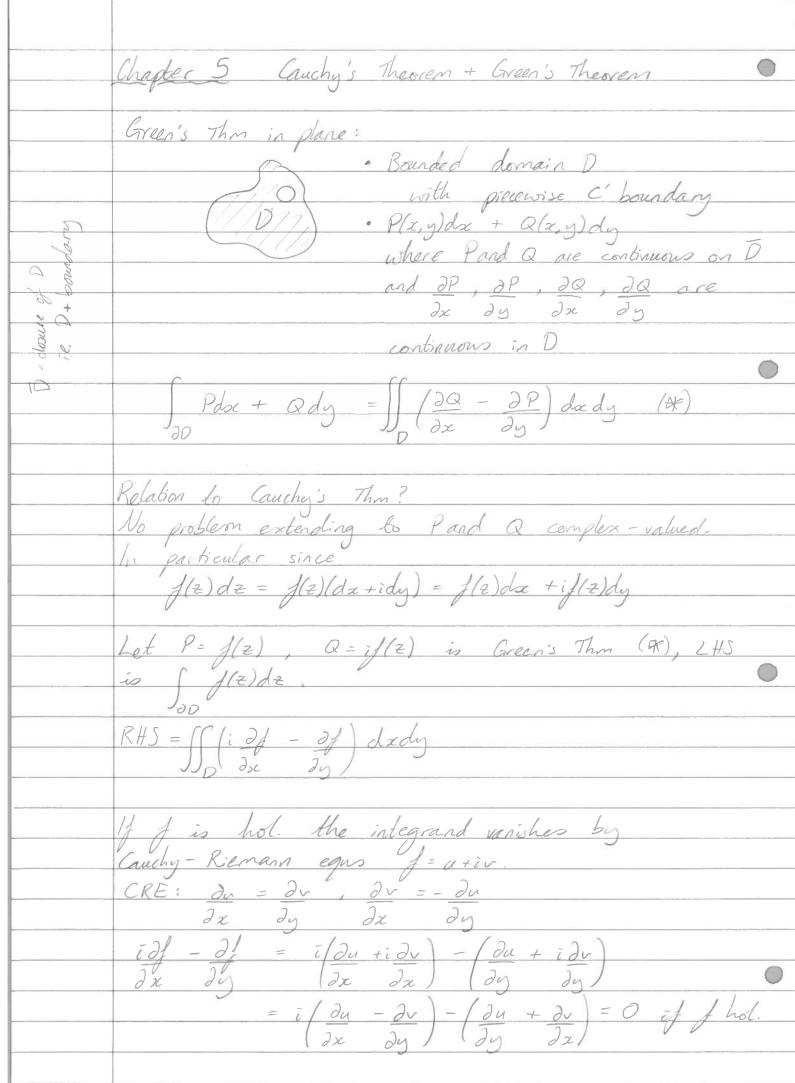
 $\frac{|f||_{|z||} ||_{|z||} ||_{|z||}}{|a_n z^n + ||_{|z||} ||_{|z||} ||_{|z||}} = \frac{|a_n||_{|z||} ||_{|z||}}{|a_n z^n|} ||_{|a_n z^n|} ||_{|a$ Choose R so that $|a_{1}| < 1 \quad \forall j = 0, 1, ..., n-1, \text{ for } |z| > R$ $|a_{1}| \geq |a_{1}| = 3n$ Then $|a_{1}| \geq |a_{2}| = |a_{1}| = |a_{1}| = |a_{1}| = |a_{1}| = |a_{2}| = |a_{2}| = |a_{1}| = |a_{2}| = |a_{2}|$ Theorem (Cauchy's Integral Formula for derivatives)

Let $f: \Omega \mapsto C$ be holomorphic, Ω a domain.

Let $\bar{D} = \{ \neq \in C : | \neq -2, 1 \leq r \} \subset \Omega$ Then, for $|Z-Z_0| < r$, $\int_{\infty}^{\infty} \int_{\infty}^{\infty} |Z-Z_0| < r$, $\int_{\infty}^{\infty} \int_{\infty}^{\infty} \int_{\infty$ Coof

Keyhole contour method $\int_{(n)}^{(n)}(z) = \int_{|\omega-z|=c'}^{(\omega)} \int_{(\omega-z)^{n+1}}^{(\omega)} \frac{1}{(\omega-z)^{n+1}} \operatorname{provided} \left\{ \omega: |\omega-z| \le c' \right\} \le \Omega.$ I keyhole countous





MATH 2101	
21-11-16	
0	Hence Green's Thm - Cauchy's Thm.
	Comments
	Objection: if 'holomorphic' means 'complex derivative exists', we do not have f is C' and so we
	eart agry Green's Thon
	following Thm 4 we now know that of holomorphic ⇒ f is C'. Now we can use Green's Thom to get more general versions of Cauchy.
	⇒ f is C'. Now we can use Green's Thom to
	get more general versions of Cauchy.
	Definition
	A bounded domain D has pieceurse C' boundary
	if, for each path connected subset S of DD there is a piecewise C' closed curve y: [to, to] -> C
	such that is a bisection x:[1 47-> C
	such that y is a bijection $y:[b, t_0] \rightarrow S$. Say also that y agrees with standard orientation of the boundary (DD) if at all points t with $y'(t) \neq 0$, $y(t) + isy'(t) \in D$ for all small positive S .
	of the boundary (20) if at all points t with
	y'(t) ≠ 0, y(t) + is y'(t) ∈ D for all small positives.
	Intuitively: 'domain is on left' as you traverse boundary.
	(external boundary: articlockerise, internal: clockwise)
112	***(E)
-	Example $D = \{z \in \mathbb{C} : a < z < b\}$
	$D = \{ z \in \mathbb{C} : a < z < b \}$
	$S_1 = \begin{cases} 5 & 0 \\ 5 & 0 \end{cases}$ $S_2 = \begin{cases} 121 = 6 \end{cases}$ $S_2 = \begin{cases} 121 = a \end{cases}$
	$S_2 = \frac{5}{2} z = a^2$
	Se is traversed chockwise to agree with
	orientation.
Í	

Definition / Notation Let D by a bounded domain with piecewise of boundary. If there are a finite number of path-connected boundary components S_1, \dots, S_n , and g_i a quameterisation of S_i agreeing with standard orientation, then we write 20 = S, O ... U Sn = $y_1 + y_2 + \dots + y_n$ Green's 7hm

With above conventions and in this situation: $\int_{\partial D} Pdx + Qdy = \int_{j=1}^{\infty} \int_{j} (Pdx + Qdy)$ and we have $\int P dx + Q dy = \iint_{Q} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$. Generalisation of Cauchy's Thin

f: \(\Omega\) is holomorphic

(\Omega\) an open set)

Let \(\Dmoderalle{D}\) be a domain st. D= closure of DCD Then $\int f(z)dz = 0$.

MAYH 2101 23-11-16 Green's Theorem]

D bounded domain with C'-boundary 2D,

D= j, +...+ jn. (S_3) D (n-3)Green's Theorem If P(x,y), Q(x,y) are C' (first partial derivatives $\int_{\partial D} P(x,y) dx + Q(x,y) dy = \iint_{\partial D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$ The (Generalisation of Cauchy)

Suggest D D C Ω , where Ω is an open subset of C.

Suggest $f: \Omega \mapsto C$ is holomorphic.

Then $\int f(z)dz = \int f(z)dz = O$. By Thm 4 Pholomorphic firs are expandable in power series) it follows that f is C' in I and hence also in Du 20. So we can apply Green to calculate of flette = [flet daridy) Then $\int f(z)dz = \int (i\partial f - \partial f)dxdy = 0$ by \mathcal{L} $\int \partial \mathcal{L} = \int \partial \mathcal{L} = \int \partial \mathcal{L} = \int \partial \mathcal{L} = \partial \mathcal{L} = \partial \mathcal{L}$ $\int \partial \mathcal{L} = \partial \mathcal{L} = \partial \mathcal{L}$ $\int \partial \mathcal{L} = \partial \mathcal{L} = \partial \mathcal{L}$ $\partial \mathcal{L} = \partial \mathcal{L}$ ∂ Remark Remark $\Omega = C \setminus \{0\}$ $f: \Omega \mapsto C \quad holomorphic$ $D = \{c, < |z| < c_2\}$

Cauchy: $\int_{|z|=c_2} f(z)dz = \int_{|z|=c_3} f(z)dz$ Intuition: 'Can move contour through region where f is holomorphic, without changing value of the integral. Example

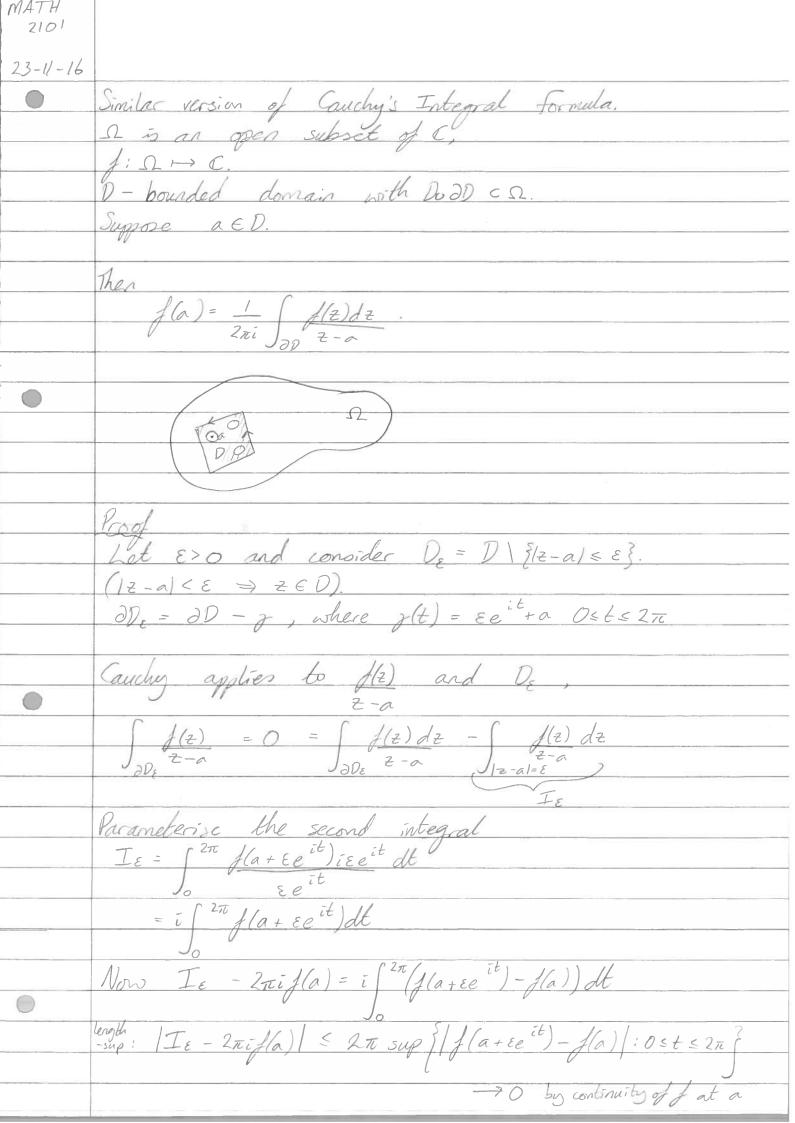
Vitaria

-R

T, R $f(z) = \frac{1}{z^2 + 1}$ Want: $\int_{\Gamma} \frac{1}{z^2 + 1} dz \qquad (R > 1)$ f(z) is holomorphic in $C \setminus \{i, -i\}$ which contains $D \cup \partial D$. So Cauchy: $\int_{\Gamma} f(z)dz = \int_{\mathcal{F}} f(z)dz \qquad (\partial D = \Gamma - \chi)$ Orientation of χ_3 is opposite

to standard for convicuence here. Example $\int_{|z|=1}^{2} \frac{dz}{z} = 2\pi i$ Here |z|=1 is not the boundary of a bounded domain

D with $D \cup \partial D \subset \Omega$ where f is hol on Ω as the origin is removed.



 $\int_{\Omega} \frac{f(z)dz}{z-a} = 2\pi i f(a) \quad \square$ Use Cauchy's Integral Formula (for derivatives) to calculate 1). $\int_{-\infty}^{\infty} dsc$ 2). $\int_{-\infty}^{\infty} \frac{\alpha \sin \alpha}{(x^2+1)^2} dx$ 3). $\int_{-\infty}^{\infty} \frac{\log|z| \, dx}{4 + x^2}$ (Large semicircular contour in each case) 1) Holomorphic Junction (not rec. in whole of C, 2) Contour (precense C' closed curve) Need to choose a hol. fn.

to be equal (or very closely related to) the real Q 2 answer integral we are after. (ould by $f(z) = ze^{iz}$ $(1+z^2)^2$ when z=x, $f(x)=\frac{x(\cos x + i\sin x)}{(x^2+1)^2}$ Could try g(z) = z sin z (z²+1)2



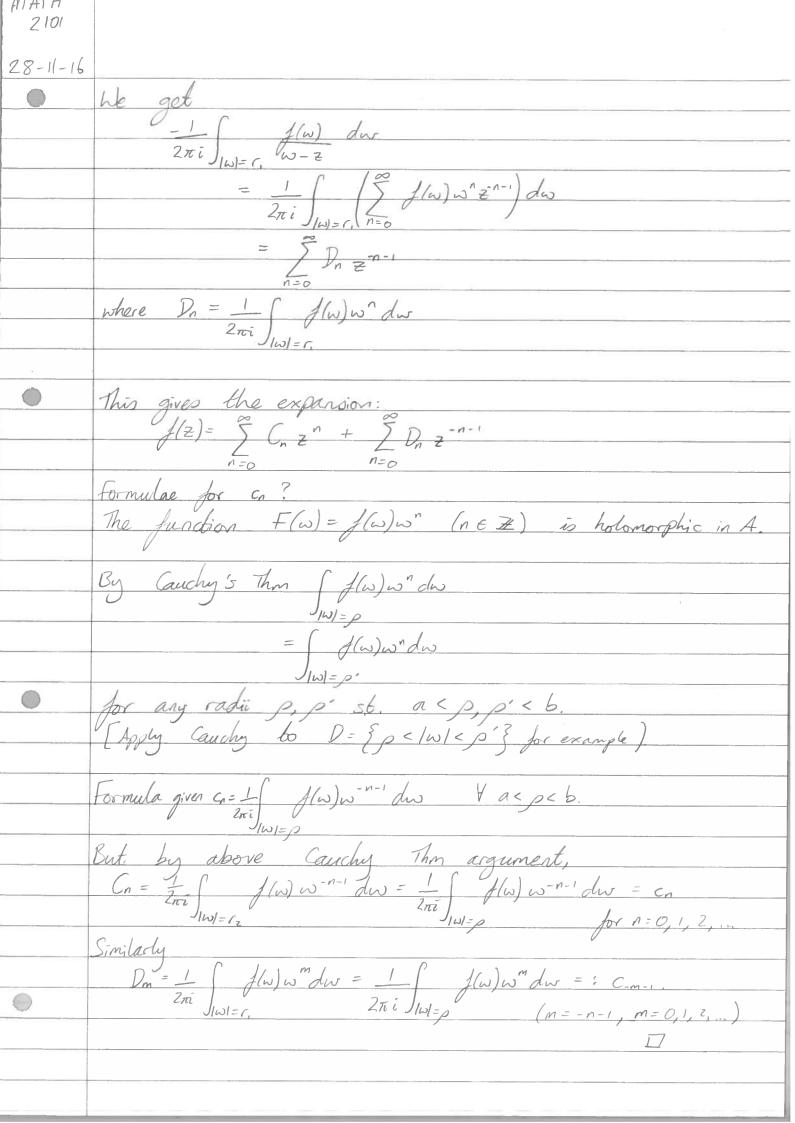
Note 122+1/ = /2/2-1 = 23-1 $\frac{S_0/2e^{it}}{(t^2+1)^2} \leq \frac{R_0^{-y}}{(R^2-1)^2} \leq \frac{R_0^{-y}}{(R^2-1)^2}$ So lengx sup $\leq \pi R^2 \rightarrow 0$ as $R \rightarrow \infty$. $(R^2-1)^2$ Hence $\int_{-\infty}^{\infty} \frac{x e^{ix} dx}{(x^2+1)^2} = \frac{\pi i}{2e}$ $\int_{-\infty}^{\infty} \frac{x \sin x}{(x^2 + 1)^2} dx = \pi \qquad (\text{This is imaginary part})$ What if we had used Zsinz? (1+z²)2 $\int_{\Gamma} \frac{z \sin z}{(1+z^2)^2} dz = C \quad \text{by} \quad (If \text{ for deriv.})$ $\frac{5inz = e^{iz} - e^{-iz}}{2i} \\
= e^{ix-y} - e^{-ix+y}$ J82 (1+22)2 which cannot be controlled on to because e > 00

MATH 2101 28-11-16 · Laurent's Theorem · Isolated singularies · Residue Theorem Let A be an annulus A = {z ∈ C : a < |z| < b} a, b are real, a < b; a = 0 is allowed, in this case we get $\mathcal{D}^*(0,b) = \{ \exists \in C : 0 < |\exists | b \} \}$ Laurent's Theorem

Let A be an annulus, and $f: A \mapsto C$ be holomorphic.

Then $\exists c_n \in C$, such that $f(z) = \sum_{n=-\infty}^{\infty} c_n z^n$, $\forall z \in A$. Moreover if $p \in (a,b)$ we have $C_n = \frac{1}{2\pi i} \int_{|z|=p}^{2n-1} f(z) dz \quad \forall n \in \mathbb{Z}.$ Remark:
Note formula for co has flexibility to vary p. Pick ZEA, also pick r., r. st. a<r, < 121 < r. < b.

Then $D = \{r, < |z| < r_2 \}$ is contained in A and CIF gives $f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(\omega)}{\omega - z} d\omega$ $= \frac{1}{2\pi i} \int_{|\omega| = C_{\epsilon}} \frac{f(\omega) d\omega}{\omega - 2} = \frac{1}{2\pi i} \int_{|\omega| = C_{\epsilon}} \frac{f(\omega) d\omega}{\omega - 2}$ outer circle
inner circle Idea: expand 1 by binomial theorem: compare with proof that 'hol' - analytic'. In $|\omega| = r_2$ integral, we have $|\omega| > |z|$ and so we can expand $\frac{1}{\omega - z} = \frac{1}{\omega} \left(\frac{1 - z}{\omega} \right)^{-1} = \frac{1}{\omega} \sum_{n=0}^{\infty} \left(\frac{z^n}{\omega^n} \right)$ By uniform convergence, we can switch I and I and $= \frac{1}{2\pi i} \sum_{n=0}^{\infty} \left(\int_{|\omega|=C_2}^{|\omega|=C_2} \int_{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2} \int_{|\omega|=C_2}^{|\omega|=C_2} \int_{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2} \int_{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|=C_2}^{|\omega|$ het Cn = 1 \ w^{-n-1}f(w) dw. $|n| |\omega| = r$, integral, we have |z| > |w|, so $\frac{1}{\omega - z} = -\frac{1}{z} \left(\frac{1 - \omega}{z} \right)^{-1} = -\frac{1}{z} \left(\frac{\infty}{z^{n}} \right)$ is valid for |z| > r, $|\omega| = r$. Apply same 'moves' to this integral.



1). Analogues of Cauchy inequalities:

If $M_p = \sup \left\{ |f(z)| : |z| = p \right\}$, length-sup gives: $|C_n| = \frac{1}{2\pi i} \int_{|\omega|=p} \int_{|\omega|=p} \int_{|\omega|=p} \frac{1}{2\pi i} \frac{1}{2\pi i} \cdot 2\pi p \cdot M_p \cdot p^{-n-1}$ $= M - n \quad (de)$ This can give useful information, especially if a = 0. 2). The coefficients are unique.

For if not and $f(z) = \sum_{n=-\infty}^{\infty} c_n z^n = \sum_{n=-\infty}^{\infty} c_n' z^n$ then $0 = \sum_{n=1}^{\infty} (c_n - c_n) z^n$ In this case Mo=0, so plugging in to estimate for co, find co-co'=0 Vn. Consider $f(z) = \exp(\frac{i}{z})$ which is holomorphic except where z = 0, in particular in any purched disc, $D^*(0,b)$. If $z \neq 0$, $\frac{1}{z} \in \mathbb{C}$, and $\exp\left(\frac{1}{z}\right) = \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{1}{z}\right)^n = \sum_{n=1}^{\infty} \frac{1}{z^{-n}}$ So this is the Laurent expansion and $C_0 = 1$, $C_{-n} = \frac{1}{n!}$ for n = 1, 2, ...and $C_n = 0$ if n = 1, 2, 3, ...

2101 28-11-16 Laurent series v. Fourier series.

Suppose f(z) is holomorphic in an annulus A of the form $\{1-\varepsilon < |z| < |+\varepsilon\}$ ($\varepsilon > 0$). Laurent gives the expansion $f(z) = \sum_{n=0}^{\infty} c_n z^n \text{ for } 1-\varepsilon < |z| < 1+\varepsilon,$ where $c_n = \frac{1}{2\pi i} \int \int [\omega] \omega^{-n-1} d\omega$ When |z|=1, $z=e^{i\theta}$ and we get $f(e^{i\theta})=\sum_{n=0}^{\infty} c_n e^{in\theta}$ where $c_n = \frac{1}{2\pi i} \int_{-2\pi}^{2\pi} f(e^{i\theta}) e^{-(n+i)i\theta} e^{i\theta} d\theta$ $=\frac{1}{2\pi i}\int_{0}^{2\pi}\int_{0}^{2\pi}\int_{0}^{2\pi}e^{-in\theta}d\theta$ ($w = e^{i\theta}$, $dw = ie^{i\theta}$) Cf Fourier series write $F(o) = f(e^{io})$ to be in with previous course. Isolated singularities Suppose f: 12 -> C is holomorphic, where A point $z_0 \notin \Omega$ is called an isolated singularity of if 38>0 s.t. $D^*(z_0,8) = \{z: 0<|z-z_0|<8\}$ is not isolated singularities

MATH

Examples
Any rational function P(z) has isolated
Q(z) Singularities at the zeros of Q. e^{iz} is holomorphic in $C \setminus \{i, -i, 3i, -3i\}$. $(z^2+1)(z^2+9)$ These removed points are all isolated singularity. Let zo & si be an isolated singularity of f. In particular, f is holomorphic in a punctured disc D*= {z ∈ C: O < |z-zo| < S}. So f(z) has a Laurent expansion in gowers of $z-z_0$: $f(z)=\sum_{n=1}^{\infty}c_n(z-z_0)^n$, for $z\in D^*$. $\int_{1}^{1}(z) = \dots + C_{-2}(z-z_{0})^{-2} + C_{-1}(z-z_{0})^{-1} + C_{0} + C_{1}(z-z_{0}) + \dots$ (i) to is a removable singularity if Cn = 0 \for n < 0. (ii) to is a pole of order mo if C-m #0 but Cn=0 \to n<-m. (iii) Otherwise if $c_n \neq 0$ for infinitely many n < 0, to is an essential singularity. Note: (i), (ii) and (iii) are mutually exclusive possibilities. Definition If to is an isolated singularity of f, then the coefficient c-, in the hausent expansion is called the residue of of at Zo. C-, = Kesz (f).

2101 28-11-16 Example 1 $\frac{1}{1(z) = \sin z} \quad \text{is hol if } z \neq 0, \ z_0 = 0 \text{ is an isolated}$ singularity. $f(z) = \frac{1}{2} \left(z - z^3 + z^5 - \dots \right) = 1 - z^2 + z^4 - \dots$ This is the Laurent expansion of $\frac{\sin z}{z}$ in $D^*(o, \delta)$. No regative powers of z > z=0 is a removable singularity.

Sinz, $z \neq 0$ extends holomorphically to C, at O,

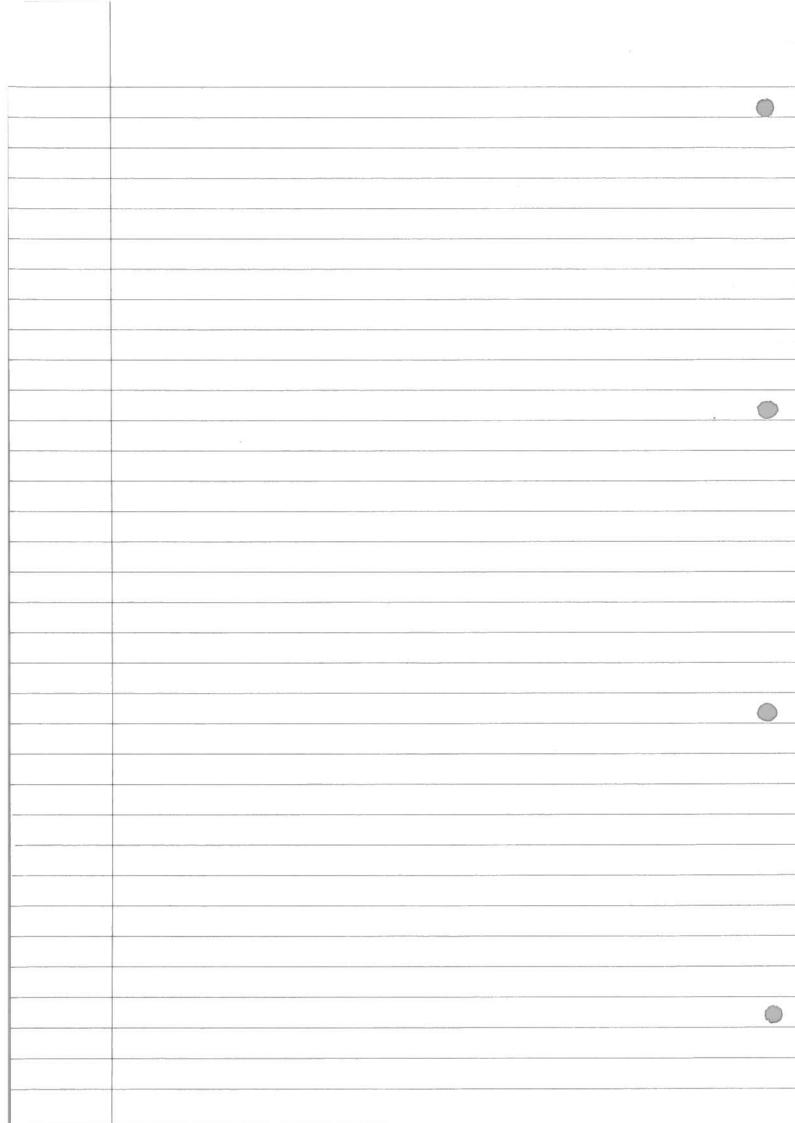
defined to be 1. (Previous) example 2 $\exp(\frac{1}{z})$: exertial singularity at z=0. has singularities at z=n, any n ∈ Z $f(n+h) = \frac{1}{e^{2\pi i(n+h)}-1} = \frac{1}{e^{2\pi i h}-1}$ [1+2xih + 1/2 (2xih)2+ ...] -1 2 mih + 1/2 (2 mih)2+1... $= \frac{1}{2\pi i h} \left(\frac{1 + \frac{1}{2!} 2\pi i h}{2!} + O(h^2) \right)^{-1}$ If Ihl is small we can expand binomially:

MAIH

1 (1 - Tih + O(h.2))
2 mih $= \frac{1}{2\pi i(z-n)} - \frac{1}{2} + O(z-n) \qquad (h=z-n)$ So c., \$0, cn = 0 for n <-1 :. Pole of order I (aka simple pole') Suppose z_0 is an isolated singularity of f.

Then z_0 is removable iff $\lim_{z \to z_0} (z - z_0) f(z) = 0.$ 1solated singularity, so f(Z)= [cn(Z-Zo)" ⇒: if removable, cn = 0 for n < 0. So f(z) = co + G(z-zo) + 1111 is valid for all 0<1z-Zo1<8. Then (z-Zo) f(z) = co(z-Zo) + G(z-Zo)2 + ... f(z) → co as z → 20 20 1f(z)(z-20) = 1f(z)/2-20/→0 €: Need bo use lim (2-20) f(2) = 0. to prove co = 0 for all n < 0. Use (ox) [ICn] = Mpp-n]. Then 3 -> 0 s.t. 12-20/1/(2)/ < E if 12-20/< < S. Hence if 12-201 = p < r, p/f(z)/< E, M, < E/p.

MATH 2101 28-11-16 $|c_n| \leq \frac{\varepsilon}{\rho} \cdot \rho^{-n} = \varepsilon \rho^{-1-n}$ If n=-1, this is E If n <-1 it is Ep (positive) So I col is less than any given positive number, hence O.



2101 30-11-16 Definitions 1). f: C -> C holomorphic is called 'entire'. 2). If f is holomorphic apart from isolated singularities in an open set Ω , then f is meromorphic if all singularities are (removable or) poles. 3). If zo is an isolated singularity of f with Laurent expansion $\sum_{n=-\infty}^{\infty} (z-z_0)^n$, then the principle part of $\int_{-\infty}^{\infty} (z-z_0)^n$ (sometimes called singular part) The residue Reszo(f) := c. Recall If to is an isolated singularity of f, it means

3 a punctured disc D*(zo,r) = { z:0<1z-zo1<r} such that f: D*(20, -) - C is holomorphic. to is a removable singularity if cn=0 \n<0 ⇔ the principle part of f is zero. Proposition Suppose Ξ_0 is a removable singularity of f. Then $\exists \ \tilde{f}: \mathcal{D}(\Xi_0, c) \mapsto \mathbb{C}$, holomorphic and $f(z) = f(z) \quad \text{if} \quad z \in D^*(z_{\circ}, r).$ We know $f(z) = \sum_{n=0}^{\infty} C_n(z-z_0)^n = C_0 + C_1(z-z_0) + ...$ for 0</2-201<r. $f(z) = \begin{cases} f(z) & \text{if } z \neq z_0 \\ c_0 & \text{if } z = z_0 \end{cases}$

MATH

Then f(z) is holomorphic in $D(z_0, r)$ as it is given by the convergent power series $\sum_{n=0}^{\infty} c_n(z-z_0)^n$. And f= f if 2 + 20. Notational remark When to is a removable singularity of f we shall usually denote by the same symbol of the extended hol. for you get by removing the singularity. Further Remarks 1). Let z_0 be an isolated singularity of f.

Let $p_1 = singular$ p_1, t of f.

Then $p_1(z) = \sum_{n=-\infty}^{\infty} c_n(z-z_0)^n$ is holomorphic in 2). The following are equivalent: (i) $\frac{1}{20}$ is a pole of order m[if. $f(z) = C_{-m}(z-z_0)^{-m} + C_{1-m}(z-z_0)^{1-m} + ... C_{-m} \neq 0$] (ii) $\exists \, F : D(z_0, c) \mapsto C$ holomorphic, $F(z_0) \neq 0$, such that $f(z) = F(z) \qquad \left[F(z) = C_{-m} + C_{1-m}(z - z_0) + \ldots \right]$ $(\overline{z} - \overline{z_0})^m$ 3). Branch points are not isolated singularities.

MATH 2101	
30-11-16	
0	Residue Theorem
	Suppose of is holomorphic in a (open) apart
	from isolated singularities.
	Let D be a doed and bounded domain with
	Piecewise smooth boundary 2D, DudDc D.
	Suppose there are no singularities of f on DD.
-	Then $\int f(z) dz = 2\pi i \int Resu(f)$.
	JOD WED
	Here Res. (1) = 0 if w is not a singular point
	Here Res. (f) = 0 if w is not a singular point of f and the sum is automatically finite.
	More explicitly, if z,,, zn are the
	singularities of f in D,
	$\int f(z)dz = 2\pi i \sum_{z} \operatorname{Res}_{z}(f). \qquad (*)$
	Jap i=1 x=singularity
	Lemma
	Let to be an isolated singularity of f , $f: D^*(z_0, r) \mapsto C$.
	Then if Ocper (1/2) d2 = 2 = -2 = - Re (1)
1909	$\int_{ z-z_0 =p} f(z) dz = 2\pi i c_{-} = 2\pi i Res_{z_0}(f)$
	18 = 50/- /2
	Proof
	\mathcal{D}''
	$\int \frac{1}{2} dz = \int \frac{2\pi}{4} \frac{1}{2\pi} + \rho e^{it} \int_{-1}^{1} \rho e^{it} dt$
	Parameterise circle $z = z_0 + pe^{it}$, $0 \le t \le 2\pi$ $\int_{ z-z_0 =p}^{2\pi} \int_{0}^{2\pi} f(z_0 + pe^{it}) i pe^{it} dt$
	$= \int_{-\infty}^{2\pi} \int_{-\infty}^{\infty} C_n(\rho e^{it})^n i \rho e^{it} dt$
)
	$= \int_{-\infty}^{\infty} \int_{-\infty}^{2\pi} \int_{-\infty}^{\infty} e^{-it} dt \qquad \text{by uniform convergence.}$
	n=-00 Jo
	= 2\pi c

This uses $\int (z-z_0)^n dz = \int 0$ if $n \neq -1$ $\int_{|z-z_0|=p}$ $\int_{|z-z_0|=p}$ $\int_{|z-z_0|=p}$ Proof of Residue Theorem 1). Suppose (Zn) is an infinite sequence of singularities of f, Zn ED. Bolzano-Weierstrass: I a convergent subsequence Zn; -> Zo as ; -> 00 (Dv D) is closed and bounded). Claim: Zo E DUDD C IL By hypothesis, f is hot at to or to is an isotated singularity.

But this is not possible as $\Xi_n \in D^{44}(\Xi_{\infty}, r)$ for any small r>0. 2) Enumerate the singularities of f in D, Z, Z_N . $\exists D_i = D(Z_i, c)$, 0 < r << 1 so that Z_i is the only singular point of f in D_i . Also $\overline{D}_i = D_i \cup \partial D_i \subset D$.

Let $E_c = D$ $(\overline{D}_i \cup \overline{D}_2 \cup ... \cup \overline{D}_N)$. Now f is hol in an open set containing Er so Cauchy: $\int_{\partial F} f(z)dz = 0$. But also $\int_{\partial E_r} f(z)dz = \int_{\partial Q} f(z)dz - \sum_{i=1}^{N} \int_{|z-z_i|=r} f(z)dz$ $= \int_{\partial D} f(z) dz - \int_{i=1}^{N} 2\pi i \operatorname{Res}_{z_{i}}(f)$ applying Lemma to each term.

MATH 2101	
30-11-16	
	Exercises
	1). What type of singularity does
	1). What type of singularity does $ \frac{f(z) = \pi^2 - 1}{\sin^2(\pi z)} = \frac{z^2}{z^2} $
	have at z = 0?
	2). What type of singularity does 1. have at $z = 0$? $(e^{z}-1)^{2}$
	$(e^{\frac{2}{\epsilon}}-1)^2$
	3). What is the residue of $f(z)$ if f is holomorphic $(z-z_0)^{n+1}$
	in some disc D(te,r)?
l'I	Type - removable singularity: $c_n = 0$ if $n < 0$ pole of order m : $c_{-m} \neq 0$, $c_n = 0$ $\forall n < -m$, $m > 0$
	essential singularity: Cn + O for infinitely many ne o
	Had a formula for on as an integral around a
	circle. Not usually a good way to calculate on!
	Had a formula for on as an integral around a circle. Not usually a good way to calculate on! Best to use Taylor expansion where possible.
	1/6-1
	Note 1 - can't expand as power series. $(e^{2}-1)^{2}$ But can expand e^{2} . So $e^{2}-1=2+\frac{2^{2}}{2!}+$ = $2(1+\frac{2}{2}+\frac{2^{2}}{3!}+)$
	$Soe^{\frac{2}{5}}-1=2+\frac{2^{2}}{5}+\dots=2(1+\frac{2}{5}+\frac{2^{3}}{5}+\dots)$
	7! 2! 3!
	$\frac{S_0}{(e^2-1)^2} = \frac{1}{2^2} \left(\frac{1+\left(\frac{2}{2!} + \frac{2^2+}{3!}\right)^{-2}}{2!} \right) \frac{1}{(2!-3!)^2} $ can expand binomially.
	(e=-1)= 22 12. 3: can expand binomially.
0	

Contour integration via Residue theorem. Evaluate oda Let f(2) = 1 Singularities at Z4 = -1 = e Ti So $Z_i = \exp(\pi i + 2k\pi i)$, $k \in \mathbb{Z}$ $\pi i/4$ $3\pi i/4$ $5\pi i/4$ $7\pi i/4$ $Z_1 = e$, $Z_2 = e$, $Z_3 = e$, $Z_4 = e$ ₹1 × × ₹1 $\Gamma = \chi_1 + \chi_2$, $\chi_1 = [-R, R]$, $\chi_2 = Re^{it}$ $0 \le t \le 2\pi$ $\begin{pmatrix} \times_{z_1} & \times_{z_1} & \wedge & \Sigma_z \end{pmatrix}$ Cauchy Residue Thm: -R = 0 t, $R = 2\pi i \left(Res_{z_1}(f) + Res_{z_2}(f) \right)$ Fact: (see Problem Set 8) and to is simple tero of q (p(to) + 0). Resz (f) = P(20) P=1, q= 24+1, q'= 323 Resz, (f) = $\frac{1}{4z^3} = \frac{1}{4}e^{-3\pi i/4}$ Resz, (f) = $\frac{1}{4z^3} = \frac{1}{4}e^{-9\pi i/4}$

20-11-16

So
$$\int f(z)dz = 2zi \left(e^{-2\pi i/4} + e^{-7\pi i/4}\right)$$

Claim:

$$\left|\int_{\mathcal{F}} f(z)dz\right| \to 0 \text{ as } R \to \infty$$

Try length sup first.

$$\left|\int_{\mathcal{F}} |f(z)|dz\right| \to 0 \text{ as } R \to \infty$$

$$\left|\int_{\mathcal{F}} |f(z)|dz\right| = \left|\int_{\mathcal{F}} |f(z)|dz\right| = \left|\int_{\mathcal{F}} |f(z)|dz\right|$$

$$\left|\int_{\mathcal{F}} |f(z)|dz\right| = \left|\int_{\mathcal{F}} |f(z)|dz\right|$$

$$\left|\int_{\mathcal{F}} |f(z)|dz\right| = \left|\int_{\mathcal{F}} |f(z)|dz\right|$$

$$\left|\int_{\mathcal{F}} |f(z)|dz\right| \to 0 \text{ as } R \to \infty$$

$$\left|\int_{\mathcal{F}} |f(z)|dz\right| = \left|\int_{\mathcal{F}} |f(z)|dz\right|$$

$$\left|\int_{\mathcal{F}} |f(z)|dz\right| = \left|$$

MATH 2101 05-12-16 Chapter 7 Analytic Continuation 1/2/= \sum_{n=0}^{\infty} \sum_{n=0}^{\infty} \text{Defines a hol function} in D= { z: |z|<1}. Series is definitely divergent if |z| \le 1. However: for 12/21, \(\sum_{n=0}^{2} = \frac{1}{1-2} \) In other words, in this case, $\exists F(z) = \frac{1}{1-7}, \text{ hot in } \Omega = C \setminus \{1\} \text{ and}$ such that f(z) = f(z) for all $z \in D$. [Restriction of f to D is equal to f] We say that F is an analytic continuation of f. Main fact: Analytic continuation is unique. More generally, suppose D is a domain C and $f: D \mapsto C$ is holomorphic.

Suppose $f: \Omega \mapsto C$ is holomorphic, $D \in \Omega$, $(\Omega \text{ a domain})$ and F(z) = f(z) for z in D. We say I is an analytic continuation of f to sa. Uniqueness Thm

If Ω is path connected and F, and $f_2: \Omega \to C$ are analytic continuations of f, then $F_1(z) = F_2(z)$

Compare with real functions $f(x) = \frac{1}{x}$, 0 < x < 1 differentiable $f_{x}(x) = \frac{1}{x} + x > 0$ is a differentiable extension of $f_{x}(x) = \frac{1}{x} + x > 0$ is a differentiable extension of $f_2(x) = \begin{cases} \frac{1}{2}x, & 0 < 2 < 1 \\ 2 - x, & x > 1 \end{cases}$ is also differentiable. Note: Differentiable continuation is not unique for cal functions. § Isolated zeros of holomorphic functions.

2101 05-12-16 Theorem f and D as above. Jand V as above.

Zo is of finite order if and only if Zo is an isolated zero of f.

Moreover Zo is infinite order (=) it is not isolated (=) 3D' = {z:|z-zo| < r'} such that A(2)=0 Y Z ∈ D'. Proposition Troposition z_n isolated zero of f if and only if $\exists z_n \rightarrow z_n$ s,t, $f(z_n) = 0$, Proof Suppose we have such a sequence, but D'= {2:/2-20/<r'} has property 0</2-20/<r' This D' = 12, - Zol > r' so Zn cannot converge to Proof of Thm $f(z) = \sum_{n=0}^{\infty} a_n(z-z_n)^n$ is convergent in D. 1(30)=0 → a0=0 · All a = 0, by definition this is a zero of ∞ order and then f(z) = 0. Hence zo is of ∞ order $\Leftrightarrow f(z) = 0$ in D.

• If not all $a_n = 0$, $\exists ! m > 0$ st. $a_0 = a_1 = \dots = a_{m-1} = 0$, $a_m \neq 0$. Then f(z) = am(z-Zo)m + am+, (z-Zo)m+1+ ... = /2-20) [am + am+1(2-20)+11] = (z - Zo) Mg(z) where g is given by a convergent power series in

MATH

D(20, r), so is hot and g(20) = am + O. By continuity of g at z_0 , $\exists r' \leq r \leq t$. $|z-z_0| < r' \Rightarrow |g(z)| > |a_n|$. Now 20 is the only zero of f in D' = {12-21<13 $f(z) = 0 \iff (z - z_0)^m g(z) = 0$ $\iff z = z_0 \text{ or } g(z) = 0$ but second doesn't happen for z in D. This argument shows:

finite order zero \Rightarrow isolated zero

infinite order zero \Leftrightarrow $f \equiv 0$.

isolated zero \Rightarrow finite order?

Suppose not of finite order. Then z_0 is infinite order zero, and so $f \equiv 0$, so not isolated. 3 Urique Continuation Thm (Identity Thm) Suppose $f: \Omega \rightarrow C$ is holomorphic, where Ω is a path-connected open set. Suppose $z_0 \in \Omega$ is a zero of infinite order of f. Then $f(z) = 0 \ \forall \ z \in \Omega$. Proof (Note: problem is to show $f(z)=0 \ \forall z$ in $D'=\{z:|z-z_0|< r'3=\}$ $f(z)=0 \ \Omega$: Topological Ω Let Ω = { z ∈ Ω : f(z) = 0}

MATH 2101 $f(z)=0 \ \forall \ z \in \Omega \Leftrightarrow \Omega=0$ Suppose $\Omega \neq \Omega_0$ and $z, \neq \Omega_0$ If Z, E Do, choose a curve y: [to, t] > 2 such that y(bo) = 20, y(t) = 2. Consider TER j(to, T) c Ω. Let to = sup {T: y [to, T) c so.} Intuitively: J(t) & Do V t < to, J(t) + Do for to to, t-to sufficiently small.

Ex does exist because f(z) = 0 \tau sufficiently Let 20 = 1 (ta). f is continuous at 2 × 80 $f(z_*) = \lim_{t \to t_*} f(f(t)) = 0.$ So f(Zx) = 0 Two possibilities: - finite order (=) isolated infinite order \Leftrightarrow non-isolated \Leftrightarrow f(z) = 0 $\forall 1z - z_{el}$ sufficiently small But $f(\gamma(t)) = 0$ by definition for $t \le t_*$ J(t) -> J(ta) as t -> tx so Z* cannot be an isolated zero of f.

By previous Then it follows $\exists r'$ st. $|z-z_*| < r' \Rightarrow f(z) = 0$.

In particular $f(y(t)) = 0 \forall t$: $|y(t)-z_*| < r'$ and in particular for small $t > t_*$ This contradicts maximality of tox. This implies no Z, with with $f(Z_1) \neq 0$. i.e. $f(Z) = 0 \quad \forall z \in \Omega$. Uniqueness of analytic continuation follows: Proposition Suppose Ω is a domain $D \subset \Omega$ is open $f: D \mapsto C$ is hol. and $f, f_2: \Omega \longmapsto C$ are both hol, with $f, (z) = f_2(z) = f(z)$ for all $z \in D$. Then $f, (z) = f_2(z) \forall z \in \Omega$. Suppose a is a domain Let $G(z) = F_1(z) - F_2(z)$ Then $G: \Omega \mapsto C$ is holomorphic and G(z)=0 $\forall z \in D$. In particular G has zero of infinite order, hence G(2)=0 YZER. I Remarks

Different formulation:

If f is hol and non-constant in a domain

then every zero of f is isolated and hence

of finite order. Remarks follows that if $z_1, ..., z_n$ is a set of zeros of a non-condant hol function, then can write $f(z) = (z - z_1)^m g_1(z)$ where g_1 is hol and $g_1(z_1) \neq 0$. Continuing: $f(z) = (z - z_1)^m ... (z - z_N)^m g_N(z)$ where g is holomorphic where I was and gn(Z;) # 0 for j=1, ..., N.

2101 07-12-16 Maximum Principle (Maximum Modulus Theorem) Theorem Let i be a bounded domain (connected open set) let f: \(\Omega \in C\) be holomorphic. Suppose also f is continuous on $\bar{\Omega} = \Omega \cup \partial \Omega$.
Then the maximum value of |f(z)| is attained on the boundary of a, 2s. Since Dud D is closed and bounded and If(z) is certinuous on this set, $\exists z_0 \in \Omega \cup \partial \Omega$ st. if $M := \max \{ |f(z)| : z \in \Omega \}$, $|f(z_0)| = M$. If z. E d \ then we are done. Then to is an interior point and for small enough r>0, $\bar{D}=\{\pm:|\pm-\pm_0|\leq r\}$ Step 1: claim that f is constant on D 1z-Zo]=r is parameterised as y(t)= zo+re $f(z_0) = \frac{1}{2\pi i} \int_{z_0}^{2\pi} \frac{1}{z_0 + re^{it}} \frac{1}{re^{it}} dt$ $= \frac{1}{2\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} dt + re^{it} dt$ Applying basic estimate for integrals:

| J(zo) | < 1 | J(zo + reit) | dt Noting that - [2 / [1/20] dt =] (20)

/// # 1 H

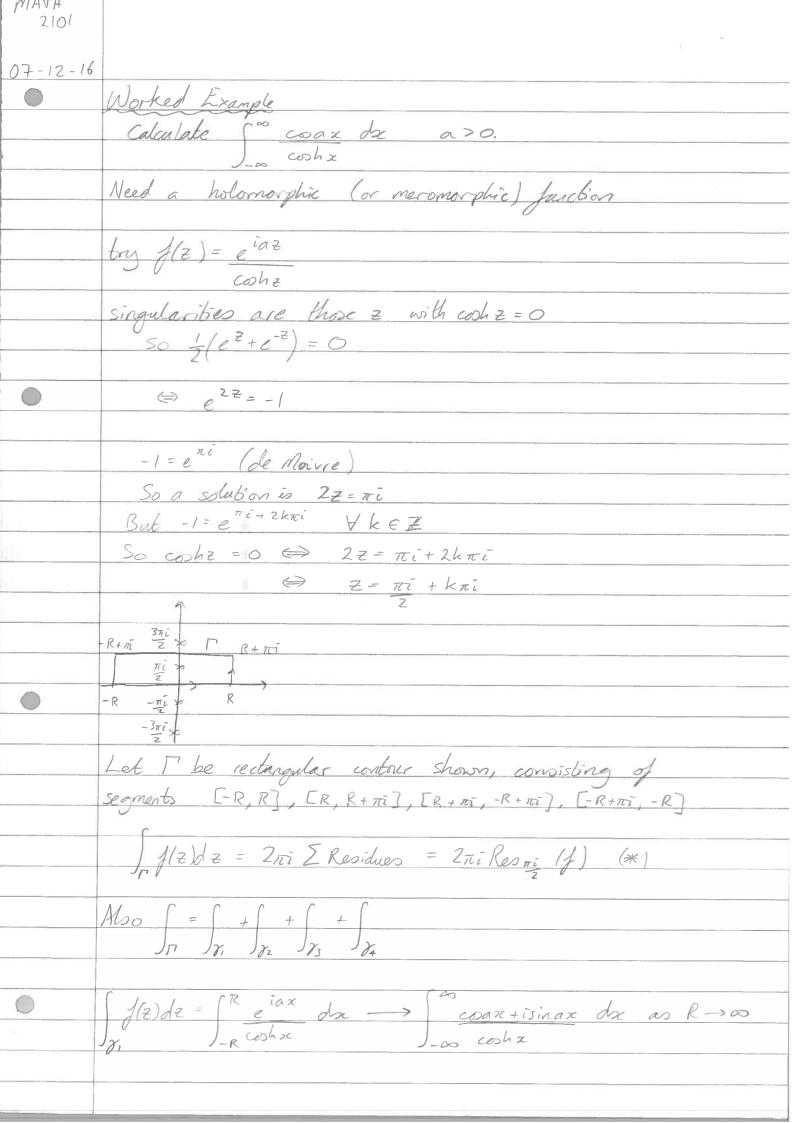
So we obtain [27] | f(zo + reit) - | f(zo) | dt > 0 By definition of zo, g(t) < 0 So \(\frac{2\pi}{g(t)} \) dt ≤0. If g(t) < 0, by continuity g(t) < 0 for $|t-t_0|$ sufficiently small and so $\int_{0}^{2\pi} g(t) < 0$. Hence g(t)=0 \t. Hence $|f(z_0)| = |f(z_0 + re^{it})|$ Yt

Also true for all i sufficiently small and hence for all z in D

Conclusion is that |f(z)| is constant on $D = \{ \mp : |\pi - 2_0| < r \}$ Application of Cauchy-Riemann Equations gives that f is constant for z in D. Step 2 f(z) constant in $D \Rightarrow f(z)$ constant in Ω Follows by applying identity theorem to f(z) = f(z) - f(z). For f(z) is holomorphic and vanishes identically in an open disc. Identity Then gives f(z) = 0 in Ω . Since f is constant |f(z)| = M is constant and so max is achieved at a boundary point.

MATH 2101	
07-12-16	
	Corollary: Fundamental Thm of Algebra
*	
	Suppose p(z) = z" + an -1 z" + 111 + do
	has no complex root
11.5112	Let $f(z) = 1$ $\rho(z)$
	This is holomorphic in C.
0.00	In particular it is holomorphic in DO, R) = { 2: 121 < R}.
	For given R, let M(R) = max { f(z) : z = R}
	Notice that if S>R, M(R) = M(S).
	But max principle says:
	0 \(M(R) = max \(\) \[\] \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	But $ \rho(z) \approx z ^n$ if $ z $ is large and so for $ z =R$, $ \rho(z) \approx R^n$.
	So $ f(z) \approx R^{-n} \rightarrow 0$ as $R \rightarrow \infty$.
	Hence $M(R) \rightarrow 0$ as $R \rightarrow \infty$.
	So $0 \le M(R) \le M(S)$, if $S > R$, but $M(R) \rightarrow 0$.
	Only possibility is M(R) = 0.
	Contradiction.
	Application
	Consider hol punctions f: D-D with hol. inverse.
	I Möbius transformation with this property:
	Consider hol functions f: D-D with hol. inverse. 3 Möbius transformation with this property: e /z +a , a <1.
	Max principle: Can show these are the only such holomorphic mappings.
	such holomorphic massings.

Computation of residues Suppose to is an isolated singularity, in fact a pole of f. In particular the Laugent series has the form: $\frac{C_{-m}}{(z-z_{0})^{m}} + \frac{C_{-m+1}}{(z-z_{0})^{m-1}} + \frac{1}{z-z_{0}} + \frac{C_{-n}}{z-z_{0}} + \frac{C_{-m}}{z-z_{0}} + \frac{C_{-m}}{z-z_{0}}$ principle or singular part. C-n = 0 for n>m correspondo to zo, a pole of order m. formula for c., i). If m=1 (simple pole), c., = $\lim_{z \to z_0} (z-z_0)f(z)$ m=1, the series collapses to f(z)= C-1 + O(1) for 12-201 smail. So (2-20)/(2) = C-1 + O(12-201). Now take limit to get: Lim (12-20) f(2)) = C-1 2). If mal: c-, = lim (d) m-1 ((z-20) m f(z)). Calculate from Laurent expansion step by step: (Z-Zo) f(Z) = C-m + C-m+, (Z-Zo)+ ... + C-, (Z-Zo) m-1 + Co(Z-Zo) m+ ... Differentiate m-1 times, kills all terms where (2-20) with j<m-1, and we are left with $\frac{|d|^{m-1}(z-z_0)^m f(z)}{dz} = c_{-1}(m-1)! + c_0 m(m-1)...(2)(z-z_0) + ...$ lim |d | m-1 /(z-20) m /(z) = (m-1)! C-1
z->20 (dz)



So $\int f(z)dz = -\int_{-R}^{R} \frac{i\alpha(x+\pi i)}{\cosh(x+\pi i)} dx$ So $\int f(z)dz = (1+e^{-\pi \alpha})\int_{-R}^{R} \frac{e^{i\alpha x}}{\cosh x} dx + \int f(z)dz + \int f(z)dz$ = 2 ti Res = (f) - use length-sup estimate to show from ond from - compute the residue at πi .

can use $\lim_{z \to \pi i} |z - \pi i| = \frac{iaz}{2} - (simple pole)$

MATH 2101 12-12-16 The Argument Principle Theorem: Let Ω ⊆ C be an open suboct. Let $f: \Omega \mapsto C$ be a meromorphic function (i.e. f holomorphic function away from a set of poles). Let $D \subseteq \Omega$ be a closed disc D = {z: |z-z_o| < r}.
Suppose that none of the zeros or poles of f Let's label the zeros z, z, ..., zm, Let's say z_i has order k_i i.e. $f(z) = (z - z_i)^{k_i} g(z)$ with $g(z_i) \neq 0$ & say p_i has order k_i i.e. $f(z) = (z - p_i)^{-k_i} g(z)$, $g(p_i) \neq 0$ Then if $N = \sum_{i=1}^{n} k_i$, $P = \sum_{i=1}^{n} l_i$ we have $N-P=\frac{1}{2\pi i}\int_{-1}^{1}f(z)dz$ This will follow from the residue theorem $\frac{1}{2\pi i} \int_{C} F(z) dz = \sum_{w \in D} Res_{w}(F)$ where $C = \partial D$ Set $F(z) = f(z) = d \log f(z)$ Proof of Thm: So it's sufficient to prove that

Resz: (F) = k: & Resp: (F) = -l:

(2)

Noce:

If $f(z_i) = 0$ then f may have a pole at z_i .

Once we know 0 & 2 we get from residue than $\frac{1}{2\pi i} \int f(z) dz = \sum k_i - \sum k_i = N - P$ So let's calculate

Resz: (F) is coefficient of 1/2-2;
in Laurent expansion of F at z; f has a zero of order ki at z means $f(z) = (z - z;)^{ki} g(z)$ $\Rightarrow f'(z) = ki (z - 2i)^{ki-1} g(z) + (z - 2i)^{ki} g'(z) \text{ (product rule)}$ $\frac{1}{2} = \frac{f(z)}{f(z)} = \frac{k_i}{z - z_i} + \frac{g'(z)}{g(z)}$ $= \frac{1}{2} \operatorname{Res}_{z_i}(f) = k_i \Rightarrow 0$ $\int has a pole of order 1: at p: then$ $\int (z) = (z - p:)^{-li} g(z)$ $\int '(z) = -li (z - p:)^{-li-1} g(z) + (z - pi)^{-li} g'(z)$ $\Rightarrow f(z) = -li + g(z)$ $z - \beta i + g(z)$ $\Rightarrow Resp_i(f) = -li \Rightarrow (2)$ So overall $\frac{1}{2\pi i} \int \frac{f'(z)}{f(z)} dz$ $= \frac{1}{2\pi i} \int \frac{f(z)}{f(z)} dz = \frac{1}{2\pi i} \int \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int \frac{f'(z$

MATH 2101	
12-12-16	
	Lecture plan
	1). Argument Principle / 2). Topological interpretation of this thin 3). Consequences: Rouche's theorem Fundamental theorem of algebra
	2). Topological interpretation of this thin
	3). Consequences: Rouche's theorem
	Fundamental theorem of algebra
	Topological interpretation WINDING NUMBER
	WINDING NUMBER
	Let $\Gamma'(t)$ be a piecewice C' closed curve in $C &$ let $a \in C$ be a point not on Γ .
	let a & l be a point not on !.
	Dad
	The indian makes of [active)
	bollowing integral
	$n(\Gamma, \alpha) := - \int dz$
	The winding number of Γ around a is the following integral $n(\Gamma, \alpha) := \frac{1}{2\pi i} \int_{\Gamma} \frac{dz}{z-\alpha}$
	$ie = \frac{1}{2\pi i} \int_{t_0}^{t_1} \Gamma'(t) dt$ $2\pi i \int_{t_0}^{t_1} \Gamma(t) - \alpha$
	2ni Jto T(t)-a
	Properties of n(T,a):
	$\cdot n(\Gamma, \alpha) \in \mathbb{Z}$
	· courts the number of times I "winds" around
	a i.e. $n(\Gamma, a)$ is a "topological quantity". • $n(\Gamma, a)$ measures the change of $arg(z-a)$
	· n(1, a) measures the change of arg(z-a)
	as z moves around [.
	20
	a
0	$Q = a_{CQ}(2-a)$

 $n(\Gamma, 0) = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{\Gamma'(t)}{\Gamma(t) - a} dt$ $= \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{1}{e^{int}} dt = n \int_{0}^{2\pi} dt = n$ $= \frac{1}{2\pi i} \int_{0}^{2\pi} e^{int} dt = n \int_{0}^{2\pi} dt = n$ Example: Let $\mathcal{E}(t) = e^{it}$ Let f be a meromorphic function. Let $\Gamma'(t) = f(\varepsilon(t))$ chain rule $n(\Gamma, 0) = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f'(\varepsilon(t)) \varepsilon'(t)}{f(\varepsilon(t))} dt$ $= \frac{1}{2\pi i} \int_{0}^{2\pi i} \frac{f'(z)}{f(z)} dz \quad \text{change of variables}$ $\frac{1}{2\pi i} \int_{\varepsilon} \frac{f(z)}{f(z)} dz \quad \text{change of variables}$ = N-P by argument principle. So ara. principle say: n(foε, 0) = N-P. $n(\Gamma, a) \in \mathbb{Z}$ $L(t_{i}) = 2\pi i n(\Gamma, \alpha)$ $L'(t_{i}) = d \int_{t_{i}}^{t} \Gamma'(s_{i}) ds = \Gamma'(t_{i}) ds = \Gamma'(t_{i}) ds = \Gamma(t_{i}) ds = \Gamma(t_{i}) ds$ Claim $e^{L(t)} = \Gamma(t) - a$ Assuming this claim, note that $e^{L(t_i)} = (\Gamma(t_i) - a)/(\Gamma(t_o) - a) = 1 \text{ as } \Gamma(t_o) = \Gamma(t_i)$ as I is closed curve. 2min (F, a)

MATH 2101 12-12-16 = n([,a) ez Proof of claim: d (exp(-L(t))(r(t)-a)) $= -L'(t) \exp(-L(t))(\Gamma(t)-\alpha) + \exp(-L(t))\Gamma'(t)$ $= \exp(-L(t)) \left[\Gamma'(t) - L'(t)(\Gamma(t)-\alpha)\right]$ $= e^{-l(t)} \left[\Gamma'(t) - \Gamma'(t) \left(\Gamma(t) - a \right) \right] = 0$ $\Rightarrow e^{-L(t)}(\Gamma(t)-a)$ is const. At $t = t_0$: $e^{-L(t_0)}(\Gamma(t_0) - a)$ $L(t_0) = 0$ so this is just $(\Gamma(t_0) - a)$. $\Rightarrow e^{-L(t)}(\Gamma(t)-a) = \Gamma(t_0)-a$ $\Rightarrow e^{L(t)} = \Gamma(t)-a$ $\Gamma(t_0)-a$ \square $n(\Gamma, \alpha) = \frac{\text{change in arg}(z-\alpha)}{2\pi}$ $\Gamma = \alpha S = runs \text{ around } \Gamma$. Proof
e L(t) = [/t] - a => L(t) = log (\(\Gamma(t) - a) - log (\Gamma(t_0) - a) Im (L(t)) = arg (T(t)-a) - arg (T(to)-a) as log(reio) = log + i 0 L(t,) = 2 min (T, a) $= \lim_{t \to \infty} L(t_t) = 2\pi n(\Gamma, \alpha) = \arg(\Gamma(t) - \alpha) - \arg(\Gamma(t_0) - \alpha)$

Theorem (Rouché) Let DEC be an open set. Let J.g: $\Omega \mapsto C$ be holomorphic puctions Let $D \subseteq \Omega$ be a dix & suppose that 1/(z)1 > 1g(z)1 Yz E 2D Then & & & + g have the same number of zeros (counted with multiplicity) inside D. Equivalently n(fleit), 0) = n((f+g)(eit), 0) There are no poles so P = 0 & $\tilde{P} = 0$ # poles of (f+g)so arg. princ \Rightarrow $n(f(e^{it}), 0) = N \leftarrow \# zeros of f$ $n(f+g)(e^{it}), 0) = \tilde{N} \leftarrow \# zeros of (f+g)$ Pichuse proof:

f(eit) + g(eit) differ by g(e it)

differ by g(e it)

4 |g(e it)| < |f(e it)|

So the curves wind the same number of times around 0 (they're close to each other). I Example Let $p(z) = z^{2} - 4z^{3} + z - 1$.

phas 7 zeros in C. How many of these live inside

§ 7:12/43 MATH 2101 12-12-16 Take /(2) = -423 & g(2) = 27+2-1 Rouché's The applies as |f(z)| = 4 $|g(z)| \le |+1+1=3| \le 4$ So f and f+g have same number of zeros counted with multiplicity inside D = {1=1=1}.

f has a unique zero of order 3 in D

=> f+g has 3 zeros. What about inside $\tilde{D} = \{z: |z| \le 2\}$?

Note that $2^{7} = 128$, so if we let $f(z) = z^{7}$, $g(z) = -4z^{3} + z - 1$ then |f(z)| = 128 & $|g(z)| \le 4 \times 2^{3} + 2 + 1 = 35 \le 128$ on |z| = 2So Rouché => f+g has 7 zeros inside D of Proof of Rouche's Thm N = # zeros of f inside D $\tilde{N} = \# \text{ zeros of } f \text{ in } D$ No poles, so arg principle: $N = \frac{1}{2\pi i} \int_{\partial D} \frac{f(z)}{f(z)} dz$ $\tilde{N} = \frac{1}{2\pi i} \int_{\partial D} \frac{f(z) + g'(z)}{f(z) + g(z)} dz$ $\frac{N-N=1}{2\pi i} \int_{\partial D} \left[\frac{f'(z)+g'(z)}{f(z)+g(z)} - \frac{f'(z)}{f(z)} \right] dz$ $=\frac{1}{2\pi i}\int_{\partial D}\frac{ff'+fg'-ff'-gf'}{(f+g)f}dz$

So $\tilde{N}-N=\frac{1}{2\pi i}\int_{\partial D} \frac{fg'-gf}{f(f+g)} dz$ $=\frac{1}{2\pi i}\int_{\partial D} dz \left[\log(1+\frac{a}{2})\right] dz$ $= \frac{1}{2\pi i} \left[\frac{\log(1 + g(e^{i2\pi})) - \log(1 + g(e^{i0}))}{\log(1 + g(e^{i2\pi}))} - \frac{\log(1 + g(e^{i0}))}{\log(1 + g(e^{i0}))} \right] = 0$ log is not a well-defined function on C, rather

I need to make a branch cut:

get a "branch" of log defined away from

the branch cut. la this proof we're ohan because we're taking log (1+2) & (1+9/) is in the half plane Also 191 < 1/1 on 20 => 191 < 1 So 1 + |g(z)| always lies in a ball of 1/(z)| radius 1 around 1 so never crosses into $\{Re\ z \le 0\}$. So we just pick a branch of log & argument Note: The argument principle requires that none of the zeros of for f+g lie on DD.

Note: 1/(2) > 1g(2) 1 for ZE 2D

