2201 Algebra 3: Further Linear Algebra Notes

Based on the 2016 autumn lectures by Dr I Strouthos

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility whatsoever for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

MATH 2201 03-10-16 Further Linear Algebra Isidoros Strouthos i. strouthoo Quel. ac. uk Course material: on Modle Room 501 (lecture notes & exercises) Tues 2.15 - 4pm First deadline: 21-10-2016 Thurs 5.15 - 6 pm Fri 3.15 - 5pm Vosibly useful textbooks: · Cohn & Elements of Linear Algebra (Vol 1) · Curtis - Abstract Linear Algebra · Kaye & Wilson - hinear Algebra · Larg - hinear Algebra · Lipschult & Lipson - Linear Algebra · hipschutz - 3000 solved problems in hinear Algebra. Overview of Course · Polynomial Rings: Studying polynomials, and try to examine how they are similar to the natural numbers or integers: there is a Euclidian algorithm. · Linear maps and the Jordan normal form. Some naboices can be diagonalised, e.g. consider (2 4): (-1) is an eigenvector corresponding to the eigenvalue 2. (-2) is an eigenvector corresponding to the eigenvalue 3. Not every square matrix can be diagonalised, e.g., consider (-10). This has complex eigenvalues. But even with complex numbers not all matrices can be diagonalised as we night not have enough linearly independent eigenvectors.

Jordan showed that any square matrix (over C) can be bransformed to a simpler form.

hinear and bilinear forms

Linear form: a linear map that takes as

input a single vector and returns as output

a single number.

- correspond to row matrices"

Bilinear form: input = two vectors,

output = a single vector

e.g. (x, y,) (1 2 | x2 |
3 4 | y2)

= (x, y,) | x2 + 2y2 |
3x2 + 4y2)

= x, x2 + 2x, y2 + 3x2y, + 4y, y2

• Inner product spaces

Special case of a bilinear form $(x y)(10/x) = x^2 + y^2$ $(x y z t)/1000/x = x^2 + y^2 + z^2 - t^2$ (0100-10z)

MATH 2201 04-10-16 some notation We will use the "usual" symbols Z. Q. R. C. to denote, respectively, the sets of integers, rational numbers, real numbers, complex numbers. Note that, for us, N will denote the set of portive integers, and No will denote the set of non-regative integers. $N = \{1, 2, 3, ... \}$ $N_0 = \{0, 1, 2, 3, ... \}$ Chapter - Polynomial rings Some basic objects in abstract algebra We start with the rolation of a group, a basic Object involving a single operation.

Def: A group consists of a set, G, together with an operation, *, such that the following conditions are satisfied:). If a, b ∈ G, then a ≠ b ∈ G ← closure 2). If a, b, c & G, then a & (b & c) = (a & b) & c + associativity 3). There exists an identity element, e, such that, for every a & G: a * e = a and e * a = a. 4). For each a & G, there exists an inverse element, b, such that: a * b = e and b * a = e Note: . A structure satisfying conditions (1) and (2) is a semigroup.

A structure satisfying conditions (1), (2) and (3) is a monoid.

Note:

A semigroup, monoid or group that also satisfies: $\forall a, b \in G$, $a \neq b = b \neq a \in Commutativity$, is abelian.

Let's now consider a structure that involves two

Def: A ring consists of a set R together with two operations, addition, denoted by '+', and multiplication, denoted by '' (we often write a.b as 'ab') such that:

1). If a, b ∈ R: a+b ∈ R

2). If $a, b, c \in R: (a+b)+c = a+(b+c)$

3). I an identity element for addition, 0, in R, s.b. $\forall a \in R : a+0=a$ and 0+a=a

4). $\forall a \in R$, $\exists an additive inverse, -a, in R, s.t. <math>a + (-a) = 0$ and (-a) + a = 05). $\forall a, b \in R$; a + b = b + a.

R for e

R forms (6). If $a,b \in R$: $ab \in R$ R forms 7). If $a,b,c \in R$: a(bc) = (ab)coutsplied (8). There exists an identity element for multiplication, monord I, in R, s.t. $\forall a \in R$. I. I = II, in R, st. Yack: 1-a = a and a.1 = a Justifulty (10). $\forall a,b,c \in R: a(b+c) = ab+ac$ Examples: In the following, addition is "usual addition", multiplication is "usual multiplication", O denotes the number zero and I denotes the number one. · IN and No do not form rings conditions 3, 4 fail condition 4 fails. · It forms a ring · Q, R, C form rings In fact, Q, R, C form fields A field is a ring which is commutative and where every non-zero element has a multiplicative In general, if a ring also satisfies

11). $\forall a, b \in R : ab = ba$ we have a commutative ring. Any commutative ring that also satisfies 12). HaER \ 803, 3 as element 6 s.t. ab=land ba=1 is a field. (A ring that satisfies condition (12), but not necessarily (11) is often known as a division ring)

MATH 2201

04-10-16

Most rings we will study in this course are commutative.

 $\begin{pmatrix} 4 & 6 \\ 3 & 4 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 \\ 3 & 7 \end{pmatrix}$

Example of non-commutative ring Consider the set of 2×2 matrices with real number entries $M_2(R) = \{a_1, a_{12}\}: a_1, a_{12}, a_{21}, a_{22} \in R\}$ with '+' being addition of matrices (identity element, 0, is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ '.' being multiplication of matrices (identity element, 1, is $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$). Then $M_2(R)$ forms a ring, but multiplication is not commutative e,g. $\begin{pmatrix} 1 & 1 & 1 & 2 & 1 & 1 \\ 0 & 1 & 3 & 4 & 4 & 0 & 1 \end{pmatrix}$

MATH2201 07-10-16 from last time: definitions of group, semigroup, monoid, ring, field.

Key example of a ring (in this chapter /course):

The ring of polynomials over another ring. Let R be a ring. Then a polynomial over R is a formal expression of the form $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n + ...$ where a is an indeterminate or a variable, and ao, a, az, ... are coefficients, and where only finitely many of the coefficients are nonzero. for example, if we take R to be R, the following are polynomials over R: 0 = 0 + 0x + 0x + ... 1 = 1 + 0x + 0x2 + ... x + 1x-22x2-2 x^2+5x+6 22+1 x2-2 $= x^3 + 1$ However 1 + x + x c2 + ... + x c2 + ... (which goes on forever) is not a polynomial over R.

The zero polynomial is the polynomial where ever coefficient is zero: $a_0 = 0$, $a_1 = 0$,... $\Rightarrow 0 + 0x + 0x^2 + ...$

Two polynomials, $f(x) = a_0 + a_1 x + \dots = \sum_{i} a_i x^i$ and $g(x) = b_0 + b_1 x + \dots = \sum_{i} b_i x^i,$ are equal if all corresponding coefficients are equal. equal.i.e. $a_0 = b_0$, $a_1 = b_1$, ...

e.g. $1+x+2x^2 = 1+x+2x^2$ $1+x \neq 1+x^2$

A constant polynomial is one of the form $f(x)=a_0$.

To show that polynomials over a rine, are similar to #:
they form a ring and there is a Euclidian algorithm on them.

The set of all polynomials over a ring R is denoted by R[x].

Key rotation to find Euclidean algorithm:
we need to compare the sizes of polynomials
using the notion of degree.

Definition:

Cover a polynomial $f \in R[x]$, for a ring R, the degree of f is defined as follows:

If f is not zero, the degree of f, deg(f), is the largest non-negative integer for which $a_n \neq 0$, where $f = a_0 + a_1x + a_2x^2 + ...$

```
· If f=0, then deg(f) = -00 (")
for any ring R, R[x] becomes a ring under the
following operations:
 Addition: Suppose f(x) = \sum_{i=1}^{n} a_i x^i = a_0 + a_i x + ...

and g(x) = \sum_{i=1}^{n} b_i x^i = b_0 + b_1 x + ...

then the sum of f and g, f + g, is defined
          as follows:
                (f+g)(x) = f(x) + g(x) = \sum_{i} (a_i + b_i)x^{i}
= (a_0 + b_0) + (a_1 + b_1)x + (a_2 + b_2)x^{i} + ...
How is the degree affected by the sam?
examples: f(x) = x+1, g(x) = x^2 + 5x + 6, (f+g)(x) = x^2 + 6x + 7
deg(f) = 1, deg(g) = 2, deg(f+g) = 2
              • f(x) = 0 , g(x) = x^2 + 3x + 7 , (f+g)(x) = x^2 + 3x + 7
                  deg(f) = -\infty, deg(g) = 2, deg(f+g) = 2
             • f(x) = x^2 + 1, g(x) = -x^2 + x + 1, g+g(x) = x + 2
                 deg (f) = 2, deg(g) = 2, deg(f+g) = 1
In general: {deg(f+g) = max {deg(f), deg(g)}}
Multiplication
  If f(x) = a_0 + a_1 x + ... + a_n x^n, and g(x) = b_0 + b_1 x + ... + b_m x^m,
                                                               deg (f) = n, anto
                                                             deg(g)=m, bm +0
Then the product is defined as follows:
  (fg)(x) = f(x)g(x)
              = aobo + (aob, +a, bo) >c + (aobz + a,b, + azbo) >c 2 + 111 + anbm x"
              = \sum_{i=0}^{\infty} \left( \sum_{j=0}^{\infty} a_j b_{i-j} \right) x
eg. f(x) = x + 1, g(x) = x^2 + 2
      then (fg)(x) = (x+1)(x2+2)
```

 $= x^3 + x^2 + 2x + 2$

If we take the coefficients to be in a field, then if $a \neq 0$ and $b \neq 0$; $ab \neq 0$.

(Not true for modular arithmetic etc...) So, if R is a field (we will only consider R or C) then we can say that deg(fg) = n + m = deg(f) + deg(g)This also works if f = 0 or g = 0. Suppose f = 0. Then, for any g : fg = 0. deg(fg) = deg(f) + deg(g) $= -\infty + m = -\infty.$ So, we can say that for any $f,g \in k(x)$, where k is a field, deg (/g) = deg(/) + deg(g/.) Under these operations, any set of polynomials over a field forms a ring.

Suppose that f is a non-zero polynomial, f = Zaixi

If n is the largest non-negative integer for which

an # 0 (i.e. f has degree n) then an is the

leading coefficient of f. examples: $f(x) = 2c^3 + 3 \Rightarrow \text{leading coefficient is 1.}$ $f(x) = -3x^2 + 7 \Rightarrow \text{leading coefficient is -3.}$ A polynomial with leading coefficient equal to I is a monic polynomial. e.g. $f(x) = x^3 + 3$ is moric

Note if f(x)= ao and ao + 0, then deg(f)= 0

 $f(x) = -3x^2 + 7$ is not monic.

MATH 2201

07-10-16

Divisor in rings and the Euclidian algorithm

Def: Suppose a, b are elements in a ring R. Then a divides b, or a is a divisor of b, if there exists an element $c \in R$ such that ac = b.

If so, we write a 1 5.
If a does note divide b, we write a x b

Example

If $R = \mathbb{Z}$, then 2|6, -2|6, 1|3, 3|3,

but $3 \nmid 7$.

Note: everything divides 0, but 0 only divides itself. For any $n \in \mathbb{Z}$: $n \cdot 0 = 0$ so $n \mid 0$, but $0 \cdot c = n$ has no solution if $n \neq 0 \Rightarrow 0 \nmid n$.

If R = R[x] then x+2 divides $x^2 + 5x + 6$, but x+2 does not divide $x^2 + 1$.

Again, the zero polynomial divides only itself, but every polynomial divides zero.

From the point of view of division, there are three types of elements in the rings we will study: for a ring R

for a ring R

1). an element $u \in R$ is a unit if there exists a multiplicative inverse of u in R, i.e. an element $u' \in R$ such that uu' = 1 and u'u = 1.

The set of all units in R is denoted by U(R).

Examples: $U(Z) = \{+1, -1\}$ (-1)(-1)=1

What about R(x): Any polynomial of degree 1 or

or greater is not a unit U(R[x]) = R\{0} all non-zero, constant polynomials eg. x +1 is not a unit: there is no f ER[x] such that $(x+1) \cdot f = 1$. We can show this using deg(fg) = deg(f) deg(g).Suppose that I is a unit in R[x] Then, there is some g ER[20] such that fg=1. So deg (4) + deg (g) = deg (Fg) (Possibilities: deg () = -00, 0,1, 2, ...) So deg(1) + deg(g) = 0 ie. deg(f) = 0 (and deg(g) = 0. So f is a nonzero constant. If j is a non-zero constant ie. f = a ∈ R \ {0} then f is a unit: a.a. = 1, each non-zero constant in a field, like R,

is invertible. Similarly U(C(2)) = C\ {0} (non-zero, constant polynomials)

2). an element $a \in R$ is irreducible if a is not a unit and if a = bc for $b, c \in R$, then bor cis a writ.

Examples: In I the irreducible elements are essentially the primes: { ± 2, ± 3, ± 5, ... 3. 6 is not irreducible as 6 = 2 ×3. In C[x], the ineducible elements are?

If deg(f)=1 then f is irreducible. We can show this, again, using

MATH 2201

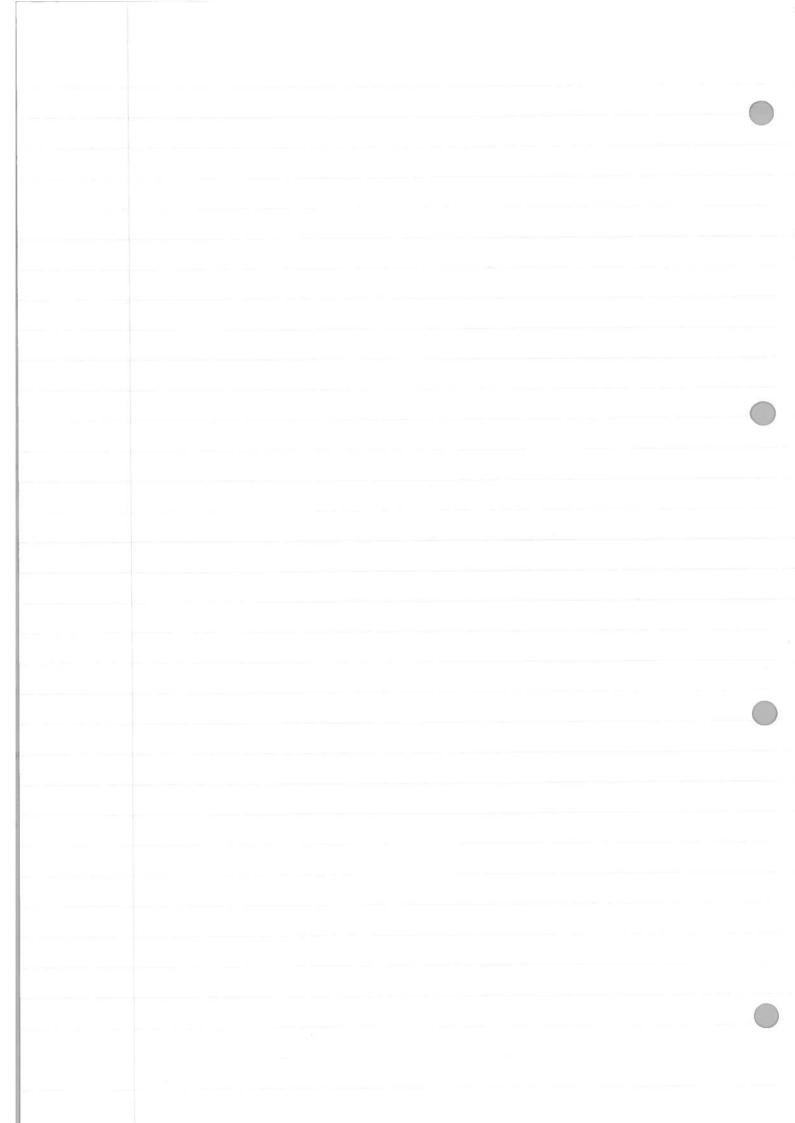
07-10-16

deg (fg) = deg(f) + deg(g). Suppose that deg(f) = 1, and that f = gh. Then deg(g) + deg(h) = 1, i.e. deg(g) = 0 or $deg(h) = 0 \Rightarrow g$ or h is a unit. So f is irreducible. This also works in R[xz]: if deg(f) = 1 then f is irreducible. If we work in C[x], then any polynomial of degree greater than 1 is reducible.

3). An element $a \in R$ is reducible if it is not a unit and not ineducible.

Every polynomial with complex coefficients can be factorised into linear factors (over ϵ):

e.g. $x^2 + 5x + 6 = (x + 2)(x + 3)$ $x^2 + 1 = (x + \bar{\iota})(x - \bar{\iota})$


Fundamental Thm of Algebra; For a proof, see MATH 2101.

So, in C[x] all polynomials of degree 2,3,4,...

Note: the zero polynomial is reducible: 0=0×0 i.e. O can be written as a product without using any products.

In R[x], all polynomials of degree I are irreducible, but there are also irreducible polynomials of greater degree. e.g. $f(x)=x^2+1$ is irreducible in R[x], we can only factorise it using non-zero constants:

 $\chi^{2} + 1 = \frac{1}{5}(\chi^{2} + 1) = 5(\frac{1}{5}(\chi^{2} + 1))$

MATH 2201 10-10-16 Previously on Algebra 3: · notion of degree in k[x] · some results involving degrees: tor figek[x] deg (0) = - 20) deg (f+g) = max { deg f, deg g } deg (fg) = deg(f) + deg(g)Consequence: deg(-f) = $deg(-1 \cdot f)$ = deg (-1) + deg (f) = 0 + deg(f) => deg(-f) = deg(f) Metto: "There's no need for anger, there's no need for blame, there's nothing to prove here, everything's still the same!" & We will try to "translate" the Euclidean algorithm and associated results from Z to k[z]. In \mathbb{Z} , given $a, b \in \mathbb{Z}$ and $b \neq 0$, then there exists unique $q, r \in \mathbb{Z}$ such that a = qb + r where $0 \le r \le 161$ try to make remainder a number e.g. -7=0.3-7 r s.t. 0=r<3. -7 = -1.3 + (3-7) -7 = -1.3 + (-4)-7 = -2.3 + (6-7) -7 = -2.3 + (-1)-7 = -3.3 + (9-7) -7 = -3.3 + (2)To show that 2, - exist in the above statement,

just carry out the process of changing the

remainder step-by-step unbil it satisfies

0 < r < 161.

To show that q, r are unique, suppose:

D - a = q, b + r, , 0≤r, <161

(2) - $a = 92b + r_2$, $0 \le r_2 < 1b/$

Then, subbracking 0 from 0: $0 = (q_2 - q_1)b + (r_2 - r_1)$

so b(q1-q2) = (r2-r1)

50 /6(2, -22) = 12-5.1

⇒ 16/19,-92/ = 152-5,1

But note that 0= r, r2 < 161

so 0 ≤ 1 - 1 < b1)

Hence 0= 16/19, -92/</br>

i.e. 0 = 19, -921 < 0

so 91 = 92 note $91, 92 \in \mathbb{Z}$

Substituting $q = q_2$ back into O, O we obtain $\Gamma_1 = \Gamma_2$, so q and Γ are uniquely determined.

Let's now consider k[x]. Here, for $a,b \in k[x]$, where $b \neq 0$, we can find unique $2, r \in k[x]$ such that a = 2b + r where $deg(r) \leq deg(b)$. MATH 2201 10-10-16 Example Take R[x]. Consider $a(x) = x^2 + 3x + 2$, b(x) = x + 1Then $(x^2 + 3x + 2) = (x + 2)(x + 1) + Q$ deg (r) < deg (b) whereas if $a = xc^2 + 3x + 3$, we obtain $(x^2 + 3x + 3) = (5x + 2)(x + 1) + 1$ deg(r) < deg(b) Detailed example (how to find 2, 1): Let $a = x^2 + 4x + 7$, b = 2x + 4Start with any g,r that work eg. q=0 $x^{2} + 4x + 7 = 0.(2x+4) + x^{2} + 4x + 7$ deg (r) & deg(b)
as 2 > 1 so we have to make r a smaller degree. Notice: $x^2 + 4x + 7 = \frac{1}{2}(2x + 4) + (x^2 + 4x + 7) - (x^2 + 2x)$ $=\frac{1}{2}x(2x+4)+(2x+7)$ here deg(r) = deg(s) so continue the process to get deg (r) < deg (b). Notice: x2+4x+7= 2x(2x+4)+1.(2x+4)+((2x+7)-(2x+4)) $=(\frac{1}{2}x+1)(2x+4)+3$ deg(r) = deg(b)

So, we have found q, r: $2 = \frac{1}{2}x + 1, r = 3$

This can be summerised in terms of a long division of polynomials.

$$\frac{2x}{2x} + 1$$

$$(2x + 4) x^2 + 4x + 7$$

$$\frac{2x}{2x} + 2x + 0$$

$$2x + 7$$

$$-(2x + 4)$$
3

So $2^2 + 4x + 7 = (\frac{1}{2}x + 1)(2x + 4) + 3$

Similarly for $a = 3x^3 + 5$, $b = 2x + 4$

$$\frac{2}{2}x^2 + 3x + 6$$

$$(2x + 4) 5x^3 + 0x^2 + 0x + 5$$

$$-(3x^3 + 6x^2 + 0x + 0)$$

$$6x^2 + 0x + 5$$

$$-(6x^2 + 12x + 0)$$

$$12x + 5$$

$$-(12x + 24)$$

$$-19$$
So $a = 9b + r$ for $deg(r) < deg(b)$

$$(f $2 = \frac{3}{2}x^2 - 3x + 6, r = -19$$$

heto now prove the statement that, for any $a,b \in k[x]$, where $b \neq 0$, there exists unique $q,r \in k[x]$ such that a = qb + r and deg(r) < deg(b).

Proof of uniqueness: Suppose that a = q, b + r, deg(r) < deg(b) $a = q_2 b + r_2$ $deg(r_2) < deg(b)$ Then, as in the case of Ξ : $b(q, -q_2) = r_2 - r_1$

```
10-10-16
              Taking degrees:
deg(b(q_1-q_2)) = deg(r_2-r_1)
             So deg(b) + deg(q,-q2) = deg(r2-r,) = deg(r2+(-r,1)
             Then deg(b) + deg(q, - q2) < max {deg(r,), deg(r,)}
                                                       < deg (b)
11-10-16 Let's complete the proof from yesterday:
            Proposition:
               Suppose that k is a field and that a, b \in k[x],
            where b $ 0.
            Then, there exists unique q, r \in k[x] such that \alpha = qb + r where deg(r) < deg(b).
            Proof:
            Let's first show that such q, r exist.
Start with any q', r' that satisfy
                    a=96+ -
            (e.g. start with g'=0, r'=a:a=0.b+a)

(At any stage) if deg(r') \ge deg(b), then

r', b have the form:

r'=r_n x^n + ... + r_o where r_n \ne 0

b=b_m x^m + ... + b_o where b_m \ne 0 (b)

(note: b \ne 0 by assumption, so this is okay)
                                                                            (b=b(x))
             where n > m (since deg(r') > deg(b))
           Then consider:
                     To bon'x n-m. b = To bon x n-m (bonx m + ... + bo)
                                         = (nx n+ ... + rnbm b. oc n-m
```

MATH 2201

Then $r' - r_n b_m' x^{n-m} b$ $= (r_n x^n + ... + r_n) - (r_n x^n + ... + r_n b_m' b_n x^{n-m})$ So $deg(r' - r_n b_m' x^{n-m} b) < n = deg(r')$ Then, we can find q'', r'' such that a = q''b + r'', deg(r'') < deg(r')namely since a = q'b+r' $a = (q' + r_n b_m' x^{n-m})b + (r' - r_n b_m' x^{n-m}b)$ Applying this always gives a remainder, ", of degree strictly smaller than the degree of the previous remainder: deg(r") < deg(r"). A long as deg(r) & deg(b), keep applying this centil deg(r) < deg(b).
This process will terminate after a finite number of steps. At this point we will have $q, r \in L[x]$ such that a = qb + r and deg(r) < deg(b). Let's now show that such q, r are uniquely determined. Suppose that a = 9.5 + r, O, $deg(r) \leq deg(b)$ $a = g_2b + r_2$ (3), $deg(r_2) < deg(b)$ Subtracting 0 from 0 gives: $0 = (q_2 - q_1)b + (r_2 - r_1)$ and hence: 5(q1-q2) = (r2-r1)

```
MATH 2201
11-10-16
          Taking degrees:
deg(b(q_1-q_2)) = deg(r_2-r_1)
          Then deg (b) + deg (2, -92) = deg (r2-r.)
         (using deg(fg) = deg(f) + deg(g) for f, g & k(E))
         So deg (6) + deg (91-92) < max {deg(r2), deg (-r.)
         (using deg(f+g) = max {deg(f), deg(g)} for f,g Eh[2])
          i.e. deg(b) + deg(q.-q2) & max {deg(r2), deg(r,)
          (using deg(f) = deg(-f) for f & k[x])
          But deg (r.) < deg (b) and deg (r2) < deg (b) so max { deg (r.), deg (r2)} < deg (b)
          Therefore: deg (b) + deg (q, - 22) < deg (b)
```

ie. $deg(q_1-q_2) < 0$ so $deg(q_1-q_2) = -\infty$ (possible degrees: $-\infty$, 0, 1, 2, ...) i.e. $q_1-q_2 = 0$ (using $deg(f) = -\infty \iff f = 0$)

Thus $q_1 = q_2$ and substituting back into $O, O: r_1 = r_2$. So $q_1 = q_2$, $r_1 = r_2$, this shows that q and r are uniquely determined.

Using this process of division, we can prove the Kemainder Theorem: Suppose $f(x) \in k[x]$ for some field k, and $a \in k$. Then f(a) = 0 if and only if x - a divides f. Suppose first that x-a divides f. Then, for some $g(x) \in k(x)$: f(x) = (x-a)g(x)Then f(a) = (a-a)g(a)= 0-g(a) i.e. f(a) = 0 as required. Suppose that fla) = 0 By the previous proposition, there exists q(x), r(x) such that f(n) = g(n)(x-a) + r(x)where deg (r(a)) < deg (x-a) i.e. deg (r(a)) < 1 So r(x) is a constant, r(x) = c for some $c \in k$. Substituting z = a into 0: f(a) = q(a)(a-a) + r(a) so f(a) = r(a), so r(a) = 0 (since f(a) = 0) So C=0 and r(x)=0 Then f(x) = g(x)(x-a), so (x-a) divides f(x), as required. []

MATH 2201

11-10-16

Goal: show how we can use Euclidean division on k(x) to obtain complete factorisations of polynomials in k(x)

first extend the rotion of a greatest common divisor from IN to It and k[x].

Suppose $a,b \in \mathbb{N}$. Then, $c \in \mathbb{N}$ is a common divisor of a and b if c divides a and c divides b. We can say the same in \mathbb{Z} and $k[\mathbb{Z}]$. In fact, for any ring R, $c \in R$ is a common divisor of a and b if $c \mid a$ and $c \mid b$.

The greatest common divisor of a, b & N is a natural number d such that:

· da and db

· if, for some $c \in \mathbb{N}$: cla and clb, then $c \leq d$ (or equivalently, cld).

MATH ZZOI 14-10-16 Greatest common divisors in IN: Suppose a, b & IN where at least one of a and b is non zero. A number de N is a greatest common divisor of a and b if the following conditions hold:

odla and d16 · y, for some c EIN, cla and clb, then cld. (note: this is equivalent to "if cla and clb, then c sd." h N, a greatest common divisor of a, b is If we take the same definition to I or k[x] (for a field k) this is not the case. In \mathbb{Z} : if a=6, b=9, then both 3 and -3 would satisfy the corresponding definition.

Diriors of 6: ± 1 , ± 2 , ± 3 , ± 6 19: ± 1 , ± 3 , ± 9 Common divisors: ±1, ±3, each of these divides 3 and -3. Note there are two units (±1) in Z. Similarly, we do not have unqueness in k[z] e.g. consider R[x], and let $a=x^2-1$, $b=x^2+3x+2$ then a=(x+1)(x-1), divisors are: $1, x+1, x-1, x^2-1$ and any non-zero constant multiple. and b = (x+1)(x+2), divisors are: 1, x+1, x+2, x^2+3x+2 and any non-zero constant multiple. Common divisors: 1, x+1 and all constant (non zero) muliplies.

In #, we obtain uniqueness by insisting that the greatest common divisor is non-negative.

In k[x], we insist that greatest common divisors are movie (leading coefficient !).

Suppose f(x), $g(x) \in k[x]$ for a field k, and f(x), g(x) are not both zero. A nonic polynomial $d(x) \in k[x]$ is a greatest common divisor of f(x) and g(x) if:

• $d(x) \mid f(x)$ and $d(x) \mid g(x)$

• if, for some $c(x) \in k[x]$: c(x)|f(x) and c(x)|g(x), then c(x) I d(x).

Let's show that, given $f(x), g(x) \in k[z]$, there is a unique greatest common divisor

Helpful results:

If a(x) and b(x) are monic polynomials and a(x) = ub(x) for $u \in k \setminus \{0\}$ (i.e. deg(u) = 0) then a(x) = b(x).

Youf: deg(a) = deg(u) + deg(b)

=> deg(a) = deg(b)

So, for some n E INO:

 $\int a = x^n + a_{n-1}x^{n-1} + ... + a_1x + a_0$ $b = x^{n} + b_{n-1} x^{n-1} + \dots + b_{1} x + b_{0}$ (a, b monic).

Since a(x) = ab(x):

 $x^{n} + a_{n-1}x^{n-1} + ... + a_{n}x + a_{0} = ux^{n} + ub_{n-1}x^{n-1} + ... + ub_{1}x + ub_{0}$ Comparing coefficients: u=1, ai=b; \v05i = n-1. So $a(x) = \mathcal{L}_{oc}$.

of $d_1(x)$, $d_2(x)$ are monic polynomials in k[x] and if $d_1|d_2$ and $d_2|d_1$, then $d_1=d_2$

MATH 2201

14-10-16

Proof: Since d, $|d_2|$ there is $c \in k[x]$ such that $d_2(x) = c(x)d$, (x). Also as $d_2|d_2$ there is $c' \in k[x]$ such that d, $(x) = c(x)d_2(x)$. Substituting $d_2(x) = c(x)d$, (x) into d, $(x) = c'(x)d_2(x)$, we obtain d, $(x) = c(x)c'(x)d_2(x)$ Then deg(c') + deg(c) + deg(d) = deg(d). Since d, is monic, d, $\neq 0$, $deg(d) \geq 0$. So deg(c') + deg(c) = 0

 $\Rightarrow \deg(c') = \deg(c) = 0.$

So $d_2(x) = c(x)d_1(x)$, but c(x) is a nonzero constant, so, by the previous helpful result: $d_1(x) = d_2(x)$.

Now suppose that for f(x), $g(x) \in k[x]$ (not both zero), $d_1(x)$ and $d_2(x)$ are greatest common divisors. $d_2 | f$ and $d_2 | g$, so $d_2 | d$, (since d_i is a greatest common divisor).

Suppose also that d, If and d, Ig, so d, Idz (as dz is a greatest common dinsor).

So d_1, d_2 are monic, $d_1 | d_2$ and $d_2 | d_1$, hence, by the previous result $d_1(x) = d_2(x)$.

Hence, for f(x), $g(x) \in k[x]$ (not both zero), there is a unique greatest common divisor, which we denote by gcd(f,g).

Note:

1). An equivalent definition of gcd(f,g) involves the following: If clf and clg, then $deg(c) \le deg(d)$.

2). Note that any polynomial divides O, so for a non-zero $f \in k[x]$ gcd(f,0) is the monic "version" of f. eg. gcd(2x+4,0) = x+2.

How may we determine greatest common divisors in practice ! Use the Euclidean algorithm: · Apply Euclidean division repeatedly, starting from two polynomials f(x) and g(x), where g + 0, until we get a zero remainder: A=9.9+1. 9 = 92 (1+ 12 The final non-zero remainder in this process leads to ged (fig). ged (f, g) is the monic "version" of that remainder. Also, by back substitution in the algorithm, we can determine polynomials o(x), b(x) such that g(d(f,g) = a(x)f(x) + b(x)g(x). Example Take $f(x) = x^3 - 10x + 3$, $g(x) = x^2 - 9$. Step 1: divide f by 9: $x^3 - 10x + 3 = 2(2^2 - 9) + (-x + 3)$ Step 2: divide x2-9 by -x+3 $x^2 - 9 = (-x - 3)(-x + 3) + 0$ 20 we have $x^{3}-10x+3=x(x^{2}-9)+(-x+3)-0$

So we have $x^{3}-10x+3 = x(x^{2}-9) + (-x+3) - 0$ $x^{2}-9 = (-x-3)(-x+3) + 0 - 0$ The final non-zero remainder is -x+3.

Make it monic (divide through by -1): x-3So $gcd(x^{3}-10x+3, x^{2}-9) = x-3$ Rearranging $0: -x+3 = 1 \cdot (x^{3}-10x+3) - x(x^{2}-9)$ so $x-3 = -1 \cdot (x^{3}-10x+3) + x(x^{2}-9)$ $a(x) \quad f(x) \qquad b(x) \quad g(x)$

14-10-16 Example Take $f(x) = 9x^3 - 3x^2 + 4x + 2$, $g(x) = 3x^2 - x + 1$ Applying the algorithm: $9x^{3}-3x^{2}+4x+2=3x(3x^{2}-x+1)+(x+2)-0$ $3x^2 - x + 1 = (3x - 7)(x + 2) + 15$ - 2 $x+2 = \left(\frac{1}{15}(2k+2)\right) \cdot 15 + 0$ -(3)The final non-zero remainder is 15 so gef (f,g) = 1. (f and g are septime. Note for any $f \in k[x]$ gcf(f, 1) = 1 so f and 1 are coprime.) Rearranging O and O (to make the remainders the subjects): $x + 2 = 1 \cdot (9x^3 - 3x^2 + 4x - 2) - 3x(3x^2 - x + 1) - 3$ $15 = 1 \cdot (3x^2 - x + 1) - (3x - 7)(x + 2) - \Phi$ Substitute 3 into 4: $15 = 1 \cdot (3x^{2} - x + 1) - (3x - 7)(9x^{3} - 3x^{2} + 4n - 2) - 3x(3x^{2} - x + 1)$ $- 3x(3x^{2} - x + 1) + (-3x + 7)(9n^{3} - 3n^{2} + 4n - 2)$ $15 = (1 + 3x(3n - 7))(3x^{2} - x + 1) + (-3x + 7)(9n^{3} - 3n^{2} + 4n - 2)$ $\Rightarrow 1 = \left(\frac{-3}{15}x + \frac{7}{15}\right)f(x) + \left(\frac{9}{15}x^2 - \frac{21}{15}x + \frac{1}{15}\right)g(x).$ Example Given: If has degree 3 $x^2+1 \text{ divides } f(x)$ if we divide f(x) by x-1 the remainder is 16.

if if " f(x)" x+2" " -5 x^2+1 divides f(x): $f(x) = g(x)(x^2+1)$ Also deg(f)=3, so deg(g)=1, i.e. $g=a, x+a_0$ $(a, \pm 0)$ So f(x) has the form $f(x) = (a_1x + a_0)(x^2 + 1)$ from (a) f(x) = g(x)(x-1) + 16 for some g(x)Substituting x=1: f(1) = 16

MIATH 2201

From before $(a_1x + a_0)(x^2 + 1) = f(x)$ Set x = 1: $2(a_1 + a_0) = 16$ Similarly from 0: f(-2) = -5So $(-2a_1 + a_0)(5) = -5$

So a, + a0 = 8, - 2a, + a0 = -1

MATH 2201 17-10-16 Let's now show that the Euclidian algorithm does lead to the greatest common divisor, in the way described last time. Helpful result from earlier:

If d, dr are monic, and if d, ldr and deld, then d, = dr. We use this to show the following key result. Proposition

Suppose that f(x), g(x), g(x), $r(x) \in k[x]$,

for a field k, and suppose $g \neq 0$. If f(x) = g(x)g(x) + r(x), then g(d(f,g)) = g(d(g,r))Proof:

Suppose that $d_1 = \gcd(f, g)$ and $d_2 = \gcd(g, r)$ Then $d_1 \mid f$ and $d_1 \mid g$, $d_2 \mid g$ and $d_2 \mid r$ Since: $d_1 \mid g$, $d_1 \mid gg$ Since: $d_2 \mid g$, $d_2 \mid gg$ Also: $d_1 \mid f$ So: $d_1 \mid f \mid f$ So: $d_2 \mid gg \mid f$ i.e. $d_2 \mid f$ (and $d_3 \mid g$)

But $d_2 = \gcd(g, r)$ But $d_3 = \gcd(f, g)$ But $d_4 = \gcd(f, g)$ So, by definition of gcd: d. I dz and dz Id...
Furthermore, d. and dz are monic, so using an
earlier result: d, = dz as required. D Then viewing this in the context of the Euclidean algorithm, leads to the greatest common dinsor.

Applying the algorithm to f(se), g(se) (g(se) \$0) $\Gamma_{n-2} = q_n \Gamma_{n-1} + \Gamma_n$ $\Gamma_{n-1} = q_{n+1} \Gamma_n + 0$ Then gcd(f,g) = gcd(g,r) gcd(g,r) = gcd(r,r) $gcd(r_{n-2}, r_{n-1}) = gcd(r_{n-1}, r_{n})$ $gcd(r_{n-1}, r_{n}) = gcd(r_{n}, 0)$ Overall: gcd (f,g) = gcd (ra, o) Also: for any $f \in k[x]$, gcd(f,0) is the more "version" of f, eg. gcd(2x+3,0)=x+3So gcd (f,g) is, as claimed before, gcd (r., 0)
i.e. it is the monic version of r., the final
non-zero remainder. If the first remainder is already 0, i.e. if f = qg(+0) then gcd(f,g) is the monic version of g. eg. if $f(x) = x^2 - 1$, g(x) = x + 1 then $x^2 - 1 = (x - 1)(x + 1)$, g(x) = x + 1.

Consider irreducible elements in k[x] [inR[x] and c[x]] In a ring R: · a is a unit if Ju'ER such that · a is irreducible if it is not a unit and if, whenever a = bc, then bor c is a unit. o a is reducible if it is neither a unit nor irreducible, ie. if it is possible to find non-units b, c such that a = bc. Examples In #: units are #1 ineducible elements are ±2, ±3, ±5, ±7,. reducible elements are ±4, ±6, ±8, ±9, ... What about inducibles (units in k[2]? From before: $f(x) \in k[x]$ unit iff deg(f) = 0" iff f is a non-zero constant.

• If $f(x) \in k[x]$ and deg(f) = 1, then f(x) is irreducible.

But it is not always true that every irreducible element has degree 1. eg. in R[x]: x2+1 is irreducible. The next result shows we can "test" degree 2 polynomials for irreducibility:

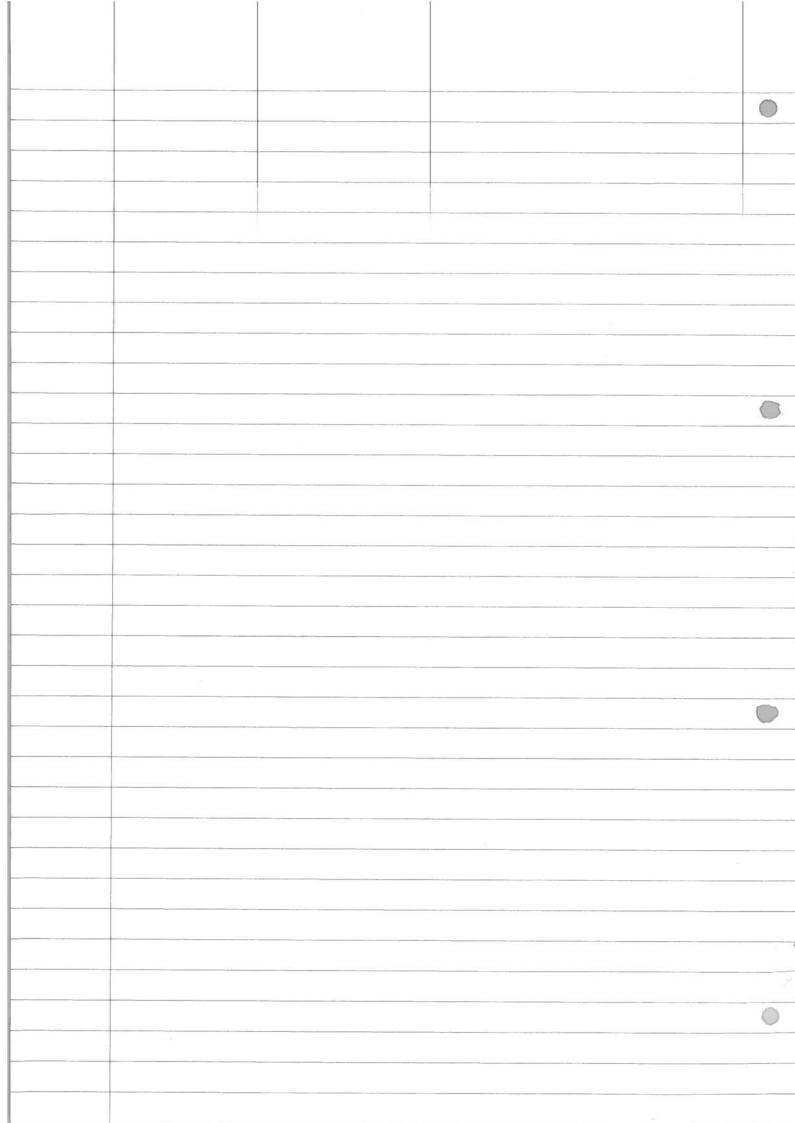
Suppose that $f(x) \in k[x]$ and deg(f) = 2. Then f is reducible if and only if $\exists a \in k = s, b$, f(a) = 0. [if there exists a root of f in k] Equivalently: fis irreducible iff f has no root in k. Recall: Remainder Theorem:

For $f(x) \in k[x]$, x-a divides f if and only

if f(a) = 0. Proof of proposition:
Suppose that f = gh.
Considering degrees: 2 = degf = deg(g) + deg(h).
So, we have the Jollowing possibilities: f deg(g) = 0, deg(h) = 2/ deg (g) = 2, deg (h) = 0 deg(g)=1, deg(h)=1 So, either deg(g)=0 or deg(h)=0, or deg(g)=1 or deg(h)=1ie. either g or h is a unit, or neither is a unit. Equivalently: either of is irreducible, or fis reducible. freducible $\Rightarrow f(x) = g(x)h(x)$ where $\deg(g) = \deg(h) = 1$ i.e. f(x) = (a, x + a)h(x) for $a_0, a_1 \in k$, $a_1 \neq 0$.

MATH 2201 17-10-16 ie /(-a0)=0 examples: $x^2 + 3x + 2 = (x+1)(x+2)$ $x^{2} + 1 = 2(\frac{1}{2}(x^{2} + 1))$ 18-10-16 From last time Proposition: Suppose $f(x) \in k(x)$, for a field, where deg(f)=2. Then f(x) is reducible iff $\exists a \in k$ st. f(a)=0 (i.e. f has a root in the field k). Suppose, first, that f(a) = 0 for some $a \in k$. her, using the Remainder Theorem, x - a divides f(x), so that, for some g(x) E K[x]: $f(x) = (x - \alpha)g(x).$ Considering degrees: deo(f) = 1+deg(g) so deg(g)=1 So, this is a factoridation of f(se) that does not involve units (each unit in k(se) has deg = 0) So f(x) is reducible, as required. Now, suppose that f(x) is reducible, is that for some g(n), h(x) E k(20), f(x) = g(x)h(x), where neither of g(x), h(x) is a unit (i.e. $deg(g) \neq 0$, $deg(h) \neq 0$). By considering degrees:

deg(f) = deg(g) + deg(h)i.e. deg(g) + deg(h) = 2.
Since $deg(g) \neq 0$, $deg(h) \neq 0$, the only possibility is deg(g) = 1 and deg(h) = 1. i.e. $g(x) = a_1 x + a_0$ for $a_0, a_1 \in k$, $a_1 \neq 0$ Then $f(x) = (a_1 x + a_0)h(x)$. Now, set $a = -a_0 \in k$: $f(a) = (a, (-a_0) + a_0)h(x) = 0$ So there exists a & k s.b. f(a) = 0, as required I Similarly we can show: Proposition:
Suppose $f(x) \in k[x]$, for a field k, where deg(f) = 3.
Then: f(x) is reducible in k[x] iff $\exists a \in k$ st. f(a) = 0Examples · The polynomial x2-2 is irreducible in Q[x], since there is no gER such that q2-2=0, while x2-2 is reducible in R[x] and C[x] $\dot{z}^2 - 2 = (\chi + \sqrt{2})(\chi - \sqrt{2})$ · The polynomial x2+2 is irreducible in Q[x] and R[x] since there is no real (or rational) number or such that 12+2=0 i.e. such that r2 = -2. However, x2+2 is reducible in C[x]:


2201 18-10-16 $x^2+2=(x+i\sqrt{2})(x-i\sqrt{2})$ where $i^2=1$). In C(x): if deg(f) > 2 then f(x) is reducible.
This follows from the fundamental Theorem of
Algebra. Any polynomial in C[x] can be factorised into linear factors (of degree 1), i.e. can be written as $c(x-a)(x-a_1)...(x-a_n)$ for $a_1, \dots, a_n \in C$, $c \in C$, $c \neq 0$. 2). In R(x), there exist reducible and irreducible polynomials of degree 2: eg. x^2+2 is irreducible, but x^2-2 is reducible. In $\mathbb{R}[x]$, we also have both reducible and e.g. x²-2 is irreducible, but x²-4 is 3). It turns out that in R[z] every polynomial of degree greater than or equal to 3 is reducible. In Q (sc), things get more interesting.

We now by to show that every polynomial in k[sc] can be factorised in a unique way, in terms of illeducible elements.

(Just like every natural number can be factorised uniquely in terms of primes). Consider a monic ineducible element $\rho(x)$ in k[x]. Since $\rho(x)$ is irreducible, if $\rho(x) = f(x)g(x)$. then f(x) or g(x) is a unit, a non-zero constant. So, any factorisation of p(x) has the form $p(x) = u(\frac{1}{u}p(x))$ where $u \in k$, $u \neq 0$. So the only monic devisors of p(x) are: I and p(x). Hence, for any f(x) in k(x):

either g(x)(f,p) = p(x) or g(x)(f,p) = 1 p(x)(f(x)) f(x) f(x) coprime By simply using "back substitution" in the Euclidean algorithm, we obtain a(x), $b(x) \in k(x)$ s.E. gcd(f,g) = a(x) f(x) + b(x)g(x)for every f(x), $g(x) \in k[x]$, $g(x) \neq 0$ This is known as Bezout's Lemma

MATH 2201	
18-10-16	
	Key step to unique factorisation:
	Proposition: Suppose $g(x)$ is a monic irreducible polynomial in $k[x]$. For any $f(x)$, $g(x) \in k[x]$: If $p(x) f(x)g(x)$, then $p(x) f(x)$ or $p(x) g(x)$.
	Proof:
	We assume that $p(x) f(x) g(x)$. If $p(x) f(x)$, then we are done. Suppose now that $p(x) \times f(x)$. Let's try to show that $p(x) g(x)$.
jal pu	Since $p(x)$ does not divide $f(x)$: $gcd(f, p) = 1$ So, using Bezout's Lemma, there exist $a(x)$, $b(x) \in k(x)$ st. $a(x) f(x) + b(x) p(x) = 1$.
	Multiplying through by $g(x)$: $a(x)f(x)g(x) + b(x)p(x)g(x) = g(x)$
	Note: since $p(x) f(x)g(x):p(x) a(x)f(x)g(x)$ since $p(x) p(x):p(x) b(x)p(x)g(x)$ \Rightarrow So $p(x) a(sc) f(x)g(x)+b(x)p(x)g(x)$
	Hence $\rho(x)$ divides $g(x)$ as required. \square

MATH	
2201	
21-10-16	
	From last time:
	Proportion
	Suppose that p(x) is a movie ineducible polynomial
	110 6/207
	For every $f(x)$, $g(x)$ in $k(x)$: if $p(x) f(x)g(x)$, then $p(x) f(x)$ or $p(x) g(x)$.
	p(x) f(x) or $p(x) g(x)$.
	This can be extended to the following:
	Poposition:
	Suppose p(x) is a monic irreducible polynomial
	in $k[x]$.
	If for $f_i(x)$,, $f_n(x) \in k[x]$, $p(x) f_i(x) f_n(x)$, then $p(x) f_i(x)$ for some i ($1 \le i \le n$). $p(x) = k[x]$ divides at least one of the $f_i(x)$.
	p(x) / fi(x) for some i (1sisn).
,	(p(a) divides at least one of the fix).
	Proof By induction on n.
	for the case n=1, the statement becomes:
	for the case $n=1$, the statement becomes: If $p(x) f(x)$, then $p(x) f(x)$ (nothing to prove)
	Now, assume that the result holds up to and
	Now, assume that the result holds up to and including n:
	i.e. if $p(x) g_1(x)g_n(x)$, then $p g_i(x)$ for $1 \le i \le m$, wherever $m \le n$.
	wherever men.
	Next, suppose that $p(x) (f, (x) f_n(x)) f_{n+1}(x)$, so,
	by the previous proposition:
	Next, suppose that $p(x) (f,(x) f_n(x)) f_{n+1}(x)$, so, by the previous proposition: $p(x) f_1(x) f_n(x) \text{or} p(x) f_{n+1}(x).$
	So, using the inductive assumption:
	So, using the inductive assumption: $p(x) \mid f(sc) \mid for some \mid \leq i \leq n \text{ or } p(n) \mid f_{n+1}(x)$.

as $p(x) | f_1(x) \dots f_n(x)$. Overall, p(x) divides $f_i(x)$ for some i, $1 \le i \le n + 1$. We can use this to prove a theorem about unique factorisation in k[x].

Two other results we will use are:

1). If p(x), q(x) are monic ineducible and p(x) | q(x), then p(x) = q(x). To see this, note, from earlier, that if p(x) is a morie irreducible polynomial in k[x], then, for any f(x) Ek[x]: gcd(f, p) = 1 or gcd(f, p) = p(x) (f, p) = p(x) (f(x)) = p(x)So since p(x) is a monic irreducible polynomial: gcd (p,q) = p(x) (we cannot have gcd(p,q)=1, since p/q) Similarly, since godis monic and ineducible: gcd(q,p) = q(x). $\therefore p(x) = q(x). \qquad \square$ 2). The following holds for a(x), b(x), $c(x) \in k[x]$:

if $a(x) \neq 0$ and a(x)b(x) = a(x)c(x), then b(x) = c(x)If a(x)b(x) = a(x)c(x), then a(x)(b(x)-c(x)) = 0. So, a(x) = 0 or b(x)-c(x) = 0. Since $a(x) \neq 0$, b(x) = c(x) by assumption.

Suppose f(x) is a monic polynomial in k[x] and $deg(f) \ge 1$ (so f is not a constant). Then, there exist monic irreducible polynomials $\rho_i(x), \ldots, \rho_r(x)$ such that p,(x),..., pr(x) such that $f(z) = p_1(z) \dots p_r(x)$. Furthermore, the factorisation is unique (up to reordering): If we also have If we also have $f(x) = g_1(x) \dots g_s(x) \text{ for } g_1(x), \dots, g_s(x) \in k[x]$ monic irreducible polynomials,
then S = C, and each i, $1 \le i \le C$: $p_1(x) = g_2(x)$ for some We prove this by induction on the degree of f(x). Let's first show that a suitable factorisation of f(x) exists (by induction). exists (by induction). If deg(f)=1, then f is irreducible, so the result holds (chose r=1 and $p_r(x)=f(x): f(x)=f(x)$ is a factorisation). Now, suppose that the result holds for degree smaller than or equal to n, i.e. that, for each $y(x) \in k(x)$ such that $deg(g) \le n$, there exists a factorisation into irreducible elements. Consider $f(x) \in k[x]$ such that deg(f) is either reducible or irreducible ($deg(f) \ge 1$, so f cannot be a unit) If f(x) is irreducible, then the result we are trying to prove holds (just as in the n=1 case) If f is reducible, then, for some g(x), $h(x) \in k[x]$ such that f(x) = g(x)h(x) and where neither of g(x), h(x) is a unit (so deg(g) >1 and deg(h) >1).

Then deg (f) = deg (g) + deg (h). It follows that deg(g) & n and deg(h) & n. Hence, we can use our inductive assumption; we can factorise g(x) and h(x): $g(x) = \rho_1(x) \dots \rho_n(x)$ for monic irreducible $\rho_n(x), \dots, \rho_n(x) \in k[x]$ $h(x) = g_1(x) \dots g_n(x)$ for " $g_1(x), \dots, g_n(x) \in k[x]$ So, there (also) exists a factorisation of f(z) into monic, ineducible polynomials: (f(x) = g(x)h(x)) $f(x) = \rho_1(x) \dots \rho_k(x) q_1(x) \dots q_k(x).$ Let's now show the uniqueness of a factorisation for f(x), up to reordering (using induction). • If deg(f)=1 then f is irreducible, so one factorisation is f(x)=f(x) (i.e. choose r=1 and $p_r(x)=f(x)$). Suppose $f(x) = q_1(x) \dots q_s(x)$ (q::monic, irreducible)

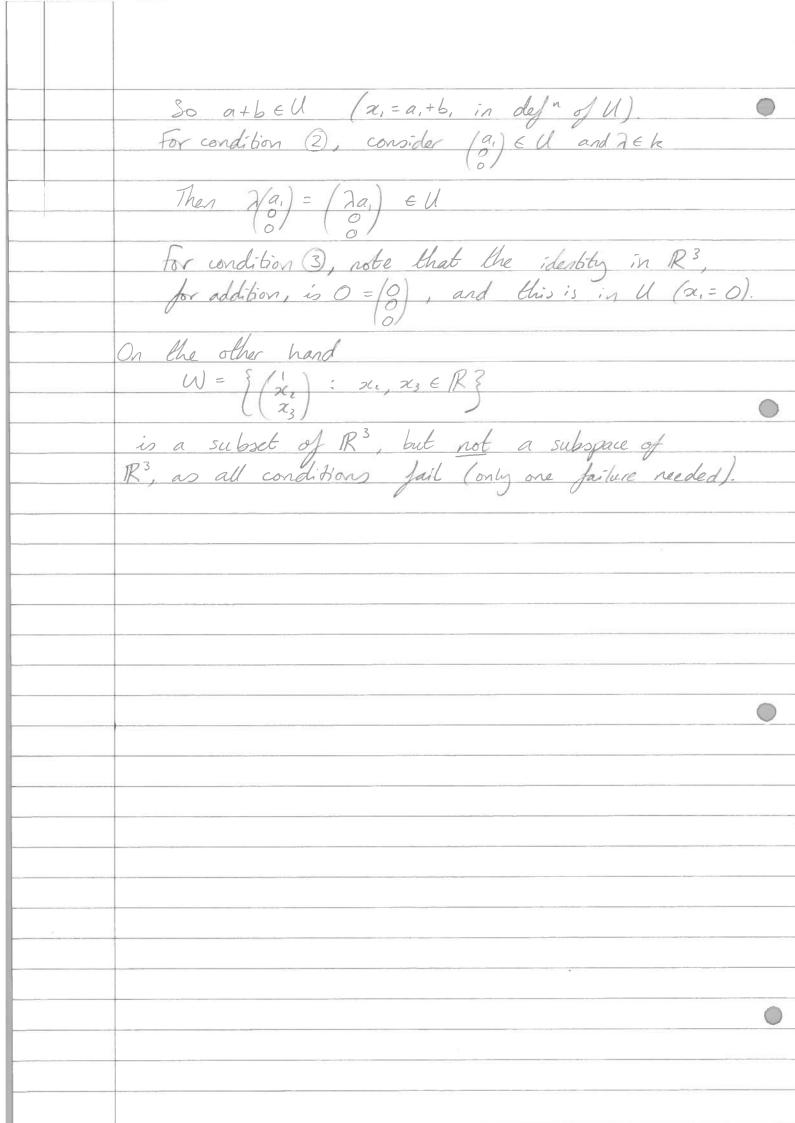
Then $deg(f) = deg(q_1) + \dots + deg(q_s)$ So $deg(q_1) + \dots + deg(q_s) = 1$ Also $deg(q_1) \ge 1$ for each $1 \le i \le s$ (q: irreducible)

It follows that s = 1: $f(x) = q_1(x)$.

So c = s = 1, and $p_1(x) = q_1(x)$ (= f(x)) as required. Now, suppose that the result holds for all polynomials of degree smaller that or equal to n: If deg(g) in the state factorization of g(x) into ineducible elements is urique as described in the statement of the theorem. Consider f(x) & k[x] with dea (f) = n+1,

MATH 2201 21-10-16 and suppose that $f(x) = p_1(x) \dots p_r(x) \text{ for movic irreducible } p_1(x), \dots, p_r(x) \text{ in } k(x)$ and f(x) = q.(x)... qs(x) " Then, since p(x) | f(x): p, | q.(x)... q.(x). So, using an earlier result: p. 19;(x) for som 15 j Es. Thus, using one of the earlier results: p,(x) = q;(x) (both monic irreducible) Therefore, we can "cancel out" P, (x), q;(x) from: P.(x) p2(x).... Pr(x) = q(x)... q;-1(x) q;(x) q;+1(x).... qs(x). $S_{0} \rho_{2}(x) \dots \rho_{r}(x) = q_{r}(x) \dots q_{j-1}(x) q_{j+1}(x) \dots q_{s}(x).$ Since deg(p,) = deg(q;) >,1, deg (p2(x)...pr(x)) < deg (f) = n+1. (0x) Hence: deg(pr(x)...pr(x)) in, so we can use inductive assumption: and, for each $2 \le i \le r : p_i(x) = q_i$ for some Also $p_1(x) = q_2(x)$. So, overall, we obtain: r=S and $p_i(x) = q_i(x)$ for some $1 \le t \le s$, for each $1 \le i \le r$. Thus, the factorisation of f(x) into irreducible elements, is unique.

Chapter 2 - hinear maps and the Jordan normal form. We start with the spaces on which linear maps are defined. Deportion: A vector space consists of a set, V, together with an operation of addition denoted by +, and, for some field k, a salar multiplication, denoted by . such that the following conditions are satisfied:


1). If a,b ∈ V, then a+b ∈ V 2). for all a, b, c ∈ V: a + (b+c) = (a+b)+c 3). There exists an identity element, O, in V such that, for each aEV: a+0=a and O+a=a. +) for each a EV, there exists as additive inverse, -a, in V, such that: a+(-a) = 0 and (-a) + a = 0. 5) For all a, b ∈ V: a+b=b+a 6). For each $\lambda \in K$, $\alpha \in V$: $\lambda \cdot \alpha \in V$ 7). If I is the multiplicative identity in k, then I.V = V for each vEV 8). For each λ_1, λ_2 in k, and v in $V: \lambda_i(\lambda_i v) = (\lambda_i \lambda_i) v$ 9). For each DEK and a, b EV: 2(a+b) = 2a+26 10). For each 2, 2 ink, and a EV: (2,+2)=(2;a)+(2;a) Notes: 1). The elements of Vare known as vectors, 2). We often "drop" the symbol for scalar multiplication: we write Iv instead of A.V. 3). Many other rules that hold in vector spaces follow from the above, e.g. -1. v = -v, 0. v = 0, 0.0=0

MATH 2201	
24-10-16	
	Previously on MATH 2201
	definition of vector space V over a field k. Note: In this module, we will not in general, be
	Note: In this module, we will not in general, be
	underlining vectors.
	Examples of vector spaces:
	Examples of vector spaces: i). For a field k, consider $k^n = \{a_i\}$: $a_1,, a_n \in k\}$
	If we define addition and scalar multiplication as Jollows:
	as Jollows:
	$ \begin{pmatrix} a_1 \\ + \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} b_1 \\ b_n \end{pmatrix} = \begin{pmatrix} a_1 + b_1 \\ \vdots \\ a_n \end{pmatrix} + \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} = \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} + \begin{pmatrix} \lambda a_1 \\ \vdots \\ \lambda a_n \end{pmatrix} +$
	(an) (bn) (an+bn) (An) (dan)
r).	then k' is a vector space over the held k.
	then k' is a vector space over the field k. e.g. R3 is a vector space over R.
	2). For a field k, let V = {(a,, an): a,, an \ k}
	and define addition and scalar multiplication
	as follows:
	$(a_1,, a_n) + (b_1,, b_n) = (a_1 + b_1,, a_n + b_n),$
	$\lambda(a_1,, a_n) = (\lambda a_1,, \lambda a_n)$ for $\lambda \in k$.
	Then V is a vector space over k.
	· Each alonget of I and to the about
	Each element of V may be thought of as a function from k" to k.
	punción grom R WR.
	e.g. (1,2,3) corresponds to a function from
	\mathbb{R}^3 to \mathbb{R} defined as follows: $(1, 2, 3) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = x_1 + 2x_2 + 3x_3$
	$\begin{pmatrix} z_1 \\ z_3 \end{pmatrix}$
	ϵR^3

3). For a field k, consider the set of all 2×2 matrices with entries in k: $M_{1}(k) = \frac{1}{2} \left\{ a_{11} \ a_{12} \right\} : a_{11}, a_{12}, a_{21}, a_{22} \in k$ This forms a vector space over k, using the following rules: $(a_{11} \ a_{12}) + (b_{11} \ b_{12}) = (a_{11} + b_{11} \ a_{12} + b_{12}),$ $(a_{21} \ a_{22}) \ (b_{21} \ b_{22}) \ (a_{21} + b_{21} \ a_{22} + b_{22}),$ $\frac{\lambda(a_n \ a_{12})}{(a_{21} \ a_{22})} = \frac{\lambda(a_n \ \lambda(a_{12}))}{(a_{21} \ a_{22})} = \frac{\lambda(a_n \ \lambda(a_{12}))}{(a_{22} \ a_{22})} = \frac{\lambda(a_n \ \lambda(a_{12}))}{(a_{$ As seen earlier, M2(k) also forms a ring (with multiplication defined as "usual" matrix multiplication) but here we "forget" that operation Inot required to use it in order to satisfy the definition of a vector space). In general Ma(k) forms a vector space over k.

(All exm matrices with entries form a field over 4)-for any field k, the ring of polynomials, k(x), forms a vector space over k, using the rules: $\sum_{i} a_{i} x^{i} + \sum_{i} b_{i} x^{i} = \sum_{i} (a_{i} + b_{i}) x^{i}$ λ(a + a, x + az x² + ... + anx² + ...) = λao + λa, x + ... + λanx² + ... Again this is in fact a ring, but we "forget" about multiplication of polynomials here.

2201	
24-10-16	
	5). For any held k, consider k[x], the set of all
	5). For any field k, consider $k[x]_n$, the set of all polynomials of degree up to and including n : $k[x]_n = \{a_0 + a_1x + + a_nx^n : a_0,, a_n \in k\}$
	$k[x]_{n} = \{a_{0} + a_{1}x + + a_{n}x^{n} : a_{0},, a_{n} \in k\}$
	This forms a vector space over k, using rules as
	in example (4).
	$(a_0 + a_1 x + + a_n x^n) + (b_0 + b_1 x + + b_n x^n) = (a_0 + b_0) x + + (a_n + b_n) x^n$
	$\lambda(a_0 + a_1 x + + a_n x^n) = \lambda a_0 + \lambda a_1 x + + \lambda a_n x^n$
	Note: k[x] is at some as is R[x]
	Note: $k[x]_n$ is not a ring, e.g. in $R[x]_2$ we have $1+2c^2, 2+x \in R[x]_2, \text{ but}$
	(1+x2)(2+x) = 2+x+2x2+x3 & R(x)2 (degree > 2)
	So if $a(x)$, $b(x) \in R[x]_2$, it does not follow
	necessarily that $a(x)b(x) \in R[x]$,
	a Condition of
	Subspaces are vector spaces within vector spaces.
	Dala -1-
	Vefinition
	a field k). Then U is a subspace of V if the
	tollowing are satisfied:
۵	Jollowing are satisfied: 1). If a,b∈U then a+b∈U
	2). If a EU and JEK, then FaEU
	3). The identity element of V, O, is in U:OEU.
	Examples:
	The subset of the vector space IR, defined as
d	The subset of the vector space \mathbb{R}^3 , defined as follows: $U = \{x_i\} : x_i \in \mathbb{R}^3$, is a subspace of \mathbb{R}^3 .
	eg. to check condition (); let a, b \in U, say
	$a = (a_1)$, $b = (b_1)$ for $a, b \in \mathbb{R}$
	$a = \begin{pmatrix} a_1 \\ 0 \end{pmatrix}, b = \begin{pmatrix} b_1 \\ 0 \end{pmatrix}$ for $a_1, b_2 \in \mathbb{R}$.
	Then $a+b = (a_1) + (b_1) = (a_1 + b_1)$

2201	× ×
25-10-16	
	Fano last fina:
/	Examples of vector spies, subspaces.
	Today:
	Today: Review of (other) notions related to vector spaces.
	v v
	uppose we are given vectors v,, vn in a vector space
	V over a field k.
	theac combination of vi,, va over R is an
	Suppose we are given vectors v,, vn in a vector space I over a field k. A linear combination of v,, vn over k is an element of V of the form λ , ν , ν , ν , ν , ν , where λ ,, $\lambda \in k$.
	The source of v. v. over he is the set of all
	The span of v.,, vn over k is the set of all linear combinations of v,, vn over k; we denote this set by las span, {v,, vn}
	this set by las span &v vo?
	span, {V,, V, } = { d, V, + + dava: d,, dn ∈ k }
	We say that v., vs span a vector space W
	(over k) if v,, v, are vectors in W, and every vector in W can be written as a linear
	every vector in W can be written as a linear
	combination of Vi, ii, vo over k
	ie. spank {v.,, vn3 = W.
	Examples
	Examples 1). Consider $R^2 = \{(x_1) : x_1, x_2 \in R\}$
	Then (o), (?) span R2 over R.
	for each $\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} \in \mathbb{R}^2$: $\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \chi_1 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \chi_2 \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\chi_1, \chi_2 \in \mathbb{R}$.
	Alon (1) (0) (1) som R2: 00000 100-6-1. R2
	Also (i), (i) span R2: every vector in R2 is a linear combination of these vectors
	over R.

MATH

2). Consider k[x] over a field k. $\begin{cases} a_0 + a_1 x + a_2 x^2 : a_0, a_1, a_2 \in \mathbb{R}^3 \\ \text{Each element of } k[x]_2 \text{ is a linear combination} \end{cases}$ of $1, x, x^2$ ore k. $a_0 + a_1 x + a_2 x^2 = a_0 \cdot 1 + a_1 \cdot x + a_2 \cdot x^2$ So 1, x, x2 span k[z] over k, or {1, x, x2} spans k[x] over k. The vectors v_1, \dots, v_n are linearly independent over v_n if the equation $\lambda_1 v_1 + \dots + \lambda_n v_n = 0$ has as its only solution $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$ $(\lambda_1, \dots, \lambda_n \in \mathbb{R})$. Otherwise, if there exists a non-zero solution to $\lambda, v, + ... + \lambda_n v_n = 0$ ($\lambda, ..., \lambda_n \in k$) we say that $v, ..., v_n$ are linearly dependent over k. Examples:

In \mathbb{R}^2 , the vectors (o), (i) are linearly independent \bigcirc since $\lambda_1(0) + \lambda_2(0) = (0) \Rightarrow \lambda_1 = 0$, $\lambda_2 = 0$. $\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (for λ_1 , $\lambda_2 \in \mathbb{R}$) Note:

Any non-zero vector in R2, on its own, is linearly independent. e.g. $\lambda(1) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Rightarrow \lambda = 0$ So {(0) is linearly independent }

The zero vector is linearly dependent, there are many nonzero solutions to $\lambda(0) = (0)$

2201	
25-10-16	
•	(could choose any ZER).
	(could choose any $\lambda \in \mathbb{R}$). So $\S(0)\S$ is tinearly dependent.
	In general, for a vector space V over a field
	R if r EV and V + O, then
	In general, for a vector space V over a field k if r & V and v + 0, then • {v} is linearly independent, while • {0} is linearly dependent.
	(In fact, any set containing the zero vector is linearly dependent).
	linearly dependent).
	Returning to R2, the vectors (6), (9), (1) are
	linearly dependent since the equation
	linearly dependent since the equation $\lambda_1(i) + \lambda_2(i) + \lambda_3(i) = (i) \text{ has non-zero solutions}$
	e.g. $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = -1$.
	i. In k[x], the set {1, x, x²} is linearly independent
539090	$\lambda_0 \cdot 1 + \lambda_1 \cdot x + \lambda_2 \cdot x^2 = 0 \Rightarrow \lambda_0 = 0, \lambda_1 = 0, \lambda_1 = 0.$ As is the set $\{1, x\}$: $\lambda_0 \cdot 1 + \lambda_1 \cdot x = 0 \Rightarrow \lambda_0 = 0, \lambda_1 = 0.$
	"Every subset of a linearly independent set is
	"Every subset of a linearly independent set is linearly independent."
	These notions lead to the idea of a basis:
	The vectors v.,, vn, in a vector space V over a
	field k, form a basis for V if: · v.,, vn span V over k: V = span, {v.,, vn}
	· V,, vo are finearly independent over k.
	We also say that the set {v,, ,, vn} is a basis for
	Vover k.

Examples

1). The set {(b), (?)} is a basis for R2 over R as is the set {(1), (1) }, where as {(1)} and {(1), (0), (1)} are not.

does not span not L.T. 2). For the vector space $\{(x_1, x_2): x_1, x_2 \in \mathbb{R}\}$ over the field \mathbb{R} , $\{(1,0), (0,1)\}$ is a basis. $\left[\lambda_1(1,0) + \lambda_2(0,1) = 0 \Rightarrow \lambda_1 = \lambda_2 = 0 \right]$ $\left[\forall x_1, x_2 \in \mathbb{R}: (x_1, x_2) = x_1(1,0) + x_2(0,1) \right]$ 3). Consider $M_2(C) = \{ /z_1, z_{12} \} : z_1, z_2, z_2, z_2 \in C \}$ (z_2, z_2) Basis of $M_2(C)$ over $C : \{ (10), (01), (00), (00) \}$ $\forall z_{11}, z_{12}, z_{21}, z_{22} \in C : (z_{11} z_{12}) = z_{11}(10) + z_{12}(01) + z_{21}(00) + z_{22}(00)$ $(z_{21}, z_{22}) = (00) + (00)$ So span $\{ \in (1,1), \in (1,2), \in (2,1), \in (2,2) \} = M_2(1)$ Also, these vectors are linearly independent: $\lambda_1(10) + \lambda_2(01) + \lambda_3(00) + \lambda_4(00) = (00)$ $\frac{1}{2} \begin{pmatrix} \lambda_1 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix} \Rightarrow \lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = 0$ $\begin{pmatrix} \lambda_3 & \lambda_4 \end{pmatrix} \begin{pmatrix} 0 & 0 \end{pmatrix}$ the same argument shows that we have linear independence over R.

MATH 2201	
28-10-16	
20 10 10	From last line:
	Examples of horse of yester spaces
	$f_{OC} M_2(\mathcal{C}) = S(a_1, a_2) : a_1, a_2, a_3 \in \mathcal{C}$
	Examples of bases of vector spaces. For $M_2(C) = \begin{cases} a_{11} & a_{12} \\ a_{21} & a_{22} \end{cases}$: a_{11} , a_{12} , a_{21} , a_{22} , a_{21} , a_{22}
	The following is a basis over C:
	The following is a basis over C : $\{(10), (01), (00), (00)\}$
	((00), (00), (10), (01))
	Bases depend on the fields that we choose to
	1907 N AVEN:
	e.g. I has the following basis over C: {1}
	eg. C has the following basis over C: {1} Each z=x+iy can be written as x+iy=(x+iy).1
	a Const. 1/1
181	Over R. however, we require two (real) numbers
	to express x + iy: x + iy = x.1 + y.i
	in R in R
	So a basis of C over R is E1, i3.
	$O(1) \cdot A(5)$
	Returning to $M_2(C)$, a general element has the form $\{x_1 + iy_1, x_2 + iy_2\}$
9	$form \left(x, + iy, x_2 + iy_2 \right)$
	$\left(\begin{array}{cccc} \chi_3 + i \gamma_3 & \chi_4 + i \gamma_4 \end{array}\right)$
	$= (x_1 + iy_1)(10) + (x_2 + iy_2)(01) + x_3 + iy_3(00)$ $\in \mathcal{L}$
	$+ / 2 \times 100$
	$+\left(x_4+iy_4\right)\left(\begin{array}{c}0\\0\end{array}\right)$
	In terms of real constants, we need eight matrices
	ove (R:
	$\left(\chi_{1}+iy_{1},\chi_{2}+iy_{2}\right)=\chi_{1}\left(10\right)+y_{1}\left(50\right)+\chi_{2}\left(01\right)+iy_{2}\left(0\bar{c}\right)$
	X3+in3 X++in4/
	$+ x_3 (00) + iy_3 (00) + x_4 (00) + iy_4 (00)$
	(10) (10) (01) (0i)

Examples

A), Consider the vector space k[x] over a field k: $k[x] = \{a_0 + a_1x + a_2x^2 + ..., + a_nx^n + ... a; \in [x], \text{ only} \}$ finitely many a_i are non-zero. Basis of k[x] over k: [1, x, x2, ..., x",...] = infinite basis 5). Consider $k[x]_2 = \{a_0 + a_1x + a_2x^2 : a_0, a_1, a_2 \in k\}$ Basis of $h[x]_2$ over $k : \{1, x, x^2\}$ Some results concerning bases:

• Every vector space V over a field k has a basis over k. (3 bais for V) Also, any two bases of V over he contain the same number of elements. (Basis Theorem) The number of elements in a basis of V over k is called the dimension of V over k, denoted by $\dim_{\mathbb{R}}(V)$ (or $\dim(V)$ if k is obvious). eg. $\dim_{\mathbb{R}}(\mathbb{R}^3) = 3$, $\dim_{\mathbb{R}}(M_2(\mathbb{C})) = 4$, $\dim_{\mathbb{R}}(M_2(\mathbb{C})) = 8$, dima (C)=1, dima (C)=2, dima (K[x]2)=3, dim k (k [x]) = 00 (note we will study mostly finitedimensional vector spaces).

2201 28-10-16 · Any linearly independent set of vectors is a subset of a basis (can be "extended" to a basis).

e.g. {(), ()} is linearly independent, and can be extended to {(1), (1), (1)}. · Any spanning set has a basis as a subset (can be "reduced" to a basis).

e.g. {(1), (0), (1)} spans R² over R, and we can find a subset of this that is a basis of \mathbb{R}^2 over $\mathbb{R}: \S(1), \{0\}\}$. · If dim (v) = n and {v, ..., vn} is a linearly independent set in V over k, then {v, ..., vn} is a basis of V over k. (ie. the spanning property · If dim, (V) = n and {v.,..., vn} that spans V over k, then {v.,..., vn} is a basis of V over k. (is, the linear independence property also holds). · Suppose that, over a field k, U is a subspace of V. If dim(U) = dim(V), then U = V. (For finite dimensional U and V).

MAIH

An operation on (sub) spaces
Suppose that U, W are subspaces of a vector
space V. The sum of U and W, U+W, is
defined as U+W= {u+w:u ∈ U, w ∈ W} e.g. if we take $V = \mathbb{R}^3$, and $U = \frac{5}{7} \binom{\pi}{6} : \pi \in \mathbb{R}^3$, $W = \{ \begin{pmatrix} 0 \\ 2 \end{pmatrix} : Z \in \mathbb{R} \}$. Then $U + W = \{ |x| + |0| : x, z \in \mathbb{R} \}$ i.e. $U+W=\{/\alpha\}: \alpha, z \in \mathbb{R}\}$ The sum is direct if, in addition, $U_nW = \{0\}$. We write a direct sum as $U \oplus W$. e.g. in the previous example, the sum is direct. if $v \in U_nW$, then $v \in U$, so $v = \binom{n}{2}$ for $x \in R$ and $v \in W$, so $v = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ for $z \in \mathbb{R}$ $\Rightarrow \begin{pmatrix} x \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 2 \\ 0 \end{pmatrix} \Rightarrow x = 0, z = 0, so v = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ i.e. $U_0 W = \{0\}$ Key property of direct sems:

If U has a basis {u, ..., u, 3}

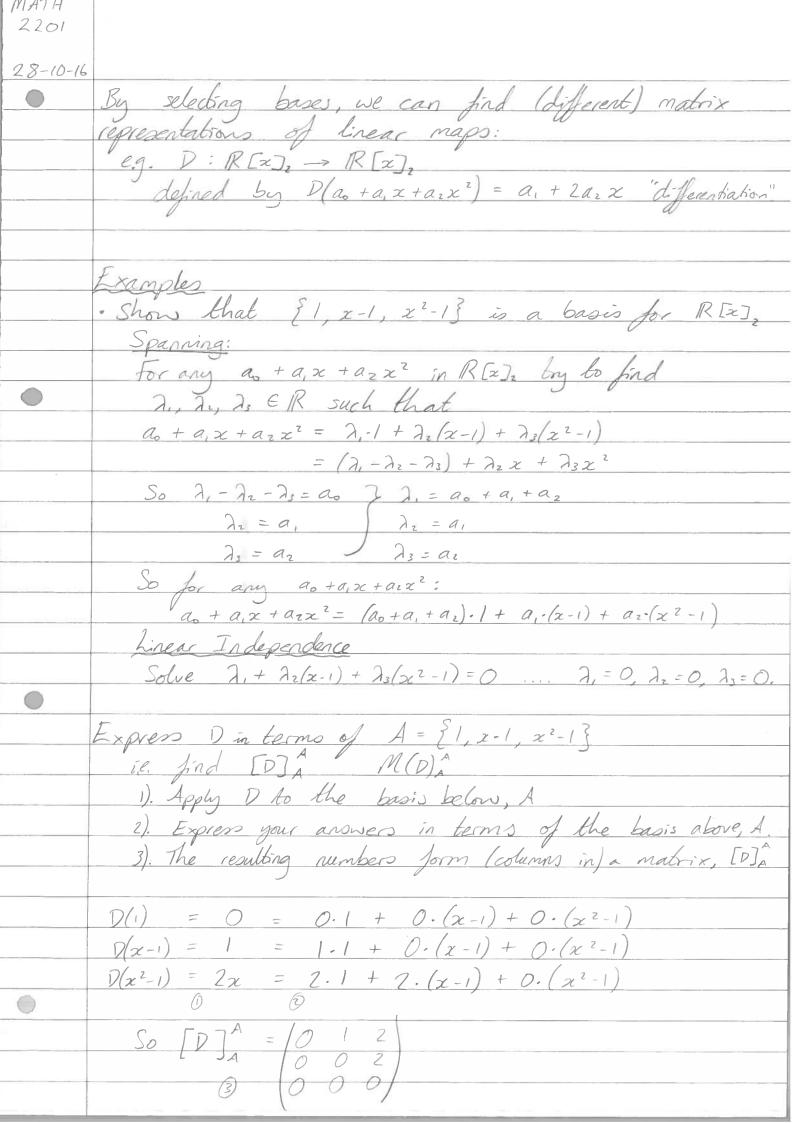
and W has a basis {w, ..., w, m} and $U \cap W = \{0\}$, then the set $\{u_1, \dots, u_n, w_1, \dots, w_m\} \text{ is a basis for the direct}$ $\text{sum } U \oplus W.$ $\text{As a result } \left(\dim(U \oplus W) = \dim(U) + \dim(W)\right)$ $\text{This is actually a special case of the more general } \bullet$ $\text{result: } \dim(U + W) = \dim(U) + \dim(W) - \dim(U \cap W).$

2201 28-10-16 For example

Consider \mathbb{R}^3 and subspaces $U_1 = \begin{cases} \langle x \rangle : x \in \mathbb{R}^3 \end{cases}$, $U_2 = \begin{cases} \langle 0 \rangle : y, z \in \mathbb{R}^3 \end{cases}$, $U_3 = \frac{5}{5} \left(\frac{x}{9}\right) : x, y \in \mathbb{R}^{\frac{7}{5}}$ dim (U1)=1, dim (U2)=2, dim (U3)=2 U, + U2 = R3, U, n U2 = {0} so U, o U2 = R3 dim (R3) = dim (U1) + dim (U2). U2n U3 = 8(9) : y ER } dim(U2 + U3) = dim(U2) + dim(U3) - dim(U2 n U3) 3 = 2 + 2 - 1 We now define linear maps: Suppose that V, W are vector spaces over a field k. A function T: V -> W is a linear map if it satisfies the following conditions: 1). T(0) = 0 - identity in W, Ow identity in V, Ox 2). For all V, V2 EV: T(V,+V2) = T(V,) + T(V2) 3). For all veV, Dek: T(DV) = DT(V) Examples

Consider the function $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined as

Jollows $T\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 2x_1 - x_2 \\ 4x_3 \end{pmatrix}$ This is a linear map. $T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 2.0 - 0 \\ 4.0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $T\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} = \begin{pmatrix} 2a_1 - a_2 \\ 4a_3 \end{pmatrix}, T\begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = \begin{pmatrix} 2b_1 - b_2 \\ 4b_1 \end{pmatrix}$


$$T\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = T\begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix} = \begin{bmatrix} 2(a_1 + b_2) - (a_1 + b_1) \\ 4(a_2 + b_2) \end{bmatrix}$$

$$= \begin{pmatrix} 2a_1 - a_1 \\ a_2 \end{pmatrix} + \begin{pmatrix} 2b_1 - b_2 \\ a_2 \end{pmatrix} + T\begin{pmatrix} b_2 \\ b_2 \end{pmatrix}$$

$$So T\begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix} = T\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + T\begin{pmatrix} b_2 \\ b_2 \end{pmatrix}$$

$$T\begin{pmatrix} 2a_1 \\ 2a_1 \end{pmatrix} = \begin{bmatrix} 7a_1 - 2a_1 \\ a_1 a_2 \end{bmatrix} = \begin{pmatrix} 2(2a_1 - a_2) \\ 2(a_1 - a_2) \end{pmatrix} = 2T\begin{pmatrix} a_2 \\ a_2 \end{pmatrix}$$

$$\frac{1}{2} \begin{pmatrix} 2a_1 \\ a_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2a_1 - a_2 \\ a_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2a_1 - a_2 \\ a_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} a_1 \\ a_1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} a_1 \\ a_1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} a_1 \\ a_1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} a_1 \\ a_1 \end{pmatrix} = \frac{1}{2}$$

2201 31-10-16 Let's complete our review from last time. For a linear map T: V >> W over a field k (where V, W are vector spaces over k) • the rank of T is the dimension of the image of $T: \operatorname{rank}(T) = \dim_{\mathbb{R}}(\operatorname{Inn}(T))$ • the nullity of T is the dimension of the kernal of $T: \operatorname{null}(T) = \dim_{\mathbb{R}}(\operatorname{Ker}(T))$. The result: dim (Ker (+)) + dim (Im(+)) = dim (V) is known as the rank-rulity theorem (or the kernel-rank theorem) Consider a linear map T: C" -> C" over C (in the remainder of this chapter, we will study linear maps of this form). Given any basis B of Cⁿ, can find an $n \times n$ matrix, $[T]^B$ that represents the linear map in terms of B. Consider the linear map T: C2 -> C2 defined as follows $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ -2x_1 + 4x_2 \end{pmatrix}$ Choose the standard basis &= {(i), (i)} of C² over C. Let's determine [T] E T(0) = (-2) - 1(0) - 2(0)So $[T]_{\varepsilon}^{\varepsilon} = \begin{pmatrix} 1 & 1 \\ - \end{pmatrix}$ T(i) = (4) = 1(0) + 4(0)

MATH

Can we find a basis in terms of which the matrix is particularly simple? eg. consider the basis $B = \{(1), (2)\}$, and find $[T]_{\mathcal{B}}^{\mathcal{B}}$ $T(\frac{1}{2}) = (\frac{2}{2}) = 2(\frac{1}{2}) + O(\frac{1}{2})$ $T(\frac{1}{2}) = (\frac{3}{6}) = O(\frac{1}{2}) + 3(\frac{1}{2})$ $S_0[T]_3^8 = (20)$ Recall we can connect " $[T]_{\varepsilon}^{\varepsilon}$ and $[T]_{\varepsilon}^{\varepsilon}$ through a change of basis matrix, obtained by using $[I]_{\varepsilon}^{\varepsilon}$ and $[I]_{\varepsilon}^{\varepsilon}$, where I denotes the identity map: $I(x_{\varepsilon}^{\varepsilon}) = (x_{\varepsilon}^{\varepsilon})$ Here: $T(i) = (i) = 1 \cdot (i) + 1 \cdot (i)$ $T(i) = (i) = 1 \cdot (i) + 2 \cdot (i)$ So $[I]_{B}^{\varepsilon} = [1 \ 1]$ So $[I]_{B}^{\varepsilon} = [1 \ 1]$ (12) this is the same as operation of B, in order, as columns in a matrix. While I(0) = (0) = 2(1) - 1(2) I(0) = (0) = -1(1) + 1(2) So $[I]_{\varepsilon=2}^{8} = (2 - 1)$ Note $[I]_{\varepsilon}^{\varepsilon} = ([I]_{\varepsilon}^{\varepsilon})^{-1}$ And we have: $[T]_{\mathfrak{B}}^{\mathfrak{B}} = [I]_{\mathcal{E}}^{\mathfrak{E}} [T]_{\mathcal{E}}^{\mathcal{E}} [I]_{\mathfrak{B}}^{\mathcal{E}}$ (note we match diagonals!) or [T] = P'[T] EP where P = [I] E

2201 31-10-16 Here we obtain $(20) = P^{-1}(11)P$ where P = (11)(03) (-24)The matrix $[T]_8^8$ is diagonal because the basis B consists of eigenvectors of T, and 2, 3 are eigenvalues of T. (Note: In general, for any linear map T: C" > C" over C, and bases A, B of C^{2} over C: $[T]_{B}^{3} = [T]_{A}^{A} [T]_{A}^{A} [T]_{B}^{A}$ i.e. (T) = P'[T] AP for some invertible Any two matrices representing T may be related in this way) Consider now $T: \mathbb{C}^2 \to \mathbb{C}^2$, where $T\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix} = \begin{pmatrix} 3\chi_1 + \chi_2 \\ -\chi_1 + \chi_2 \end{pmatrix}$ Then if $\mathcal{E} = \{1/2\}, \{0/2\} : [T]_{\mathcal{E}}^{\mathcal{E}} = \{3/2\} : = M$ Let's determine the eigenvalues and eigenvectors of this matrix: Eigenvalue: 2 Eigenvector: $\begin{pmatrix} x_i \\ -x_i \end{pmatrix} = \chi, \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ for $\chi, \in \mathbb{C}$, $\chi, \neq 0$ Check: $T(-x_1) = (2x_1) = 2(-x_1)$

MATH

Characteristic polynomial: $det(t-I_2-M) = det(t-3-1)$ $= (t-2)^2$ Algebraic multiplicity of the eigenvalue 2 is 2 Geometric " " " " 2 is 1. These are not the same so we deduce that M is not diagonalisable: cannot find an invertible matrix P such that P'MP is diagonal, i.e. there is no basis B such that [T] is diagonal. Let's try to find a basis that includes the eigenvector (-1) and "simplify" the matrix. Try $B = \{(-1), (0)\}$.

Let's compute $[T]_{\mathcal{B}}^{\mathcal{B}}$ T(-1) = (-2) = 2(-1) + 0(0) T(0) = (-3) = 1(-1) + 2(0)So $[T]_{\mathcal{B}}^{\mathcal{B}} = (21)$ So this is "almot" diagonal, but has an entry equal to I "just above" the main diagonal.

MATH 2201	
1-11-16	
	Let's see how some definitions / results concerning
	Let's see how some definitions / results concerning matrices extended to linear maps:
	Suppose that M is an nxn matrix over C:
	proposial det (+T - m) des det de tes
	The characteristic polynomial of M is the polynomial det (tIn-M), where det denotes determinant, and In denotes the nxn identity
	matrix. It is also denoted by chm(t) = det(t In - M)
	and it is a moric polynomial, of degree n,
	in CLt.
	• The characteristic equation of M is $ch_{M}(t) = 0 \equiv det(tI_{M} - M) = 0$.
	$Ch_{M}(t) = 0 = \det(t \perp_{N} - M) = 0.$
	An eigenvector, se, of M is a vector in C", that
	An eigenvector, of M is a vector in C', that is non-tero, and such that Mr = 2x for some
	$\lambda \in \mathcal{C}$.
	Then, I is the eigenvalue of M corresponding to x.
	Note: $M_{x} = \lambda_{x} \Leftrightarrow M_{x} = \lambda I_{n} x \Leftrightarrow M_{x} - \lambda I_{n} x = 0$
	$\Leftrightarrow (M - \lambda I_n) x = 0$
	or $(\lambda I_n - M) = 0$
	So, the set of eigenvectors corresponding to an eigenvalue λ , is: $\{x \in \mathbb{C}^n : (M - \lambda I_n)x = 0, x \neq 0\}$
	eigenvalue λ , ω : $\{\alpha \in \mathbb{C}' : (M - \lambda T_n)\alpha = 0, \alpha \neq 0\}$
	If will include then zero western use olders a
	If we include the zero vector, we obtain a subspace of E', known as the eigenspace.
	corresponding to the eigenvalue ?:
	$V_{1}(\lambda) = \left\{ x \in \mathbb{C}^{n} : (M - \lambda I_{n})x = 0 \right\}$ $Note: V_{1}(\lambda) = \ker (M - \lambda I_{n})$
	$N\delta te: V_1(\lambda) = Ker(M-\lambda I_n)$
le le	

The eigenvalues of M are the roots of the characteristic polynomial of M, i.e. for $\lambda \in \mathbb{C}$: λ is an eigenvalue of $M \Longrightarrow \det(\lambda I_n - M) = 0$ (i.e. λ solves the characteristic equation of M). The algebraic multiplicity of an eigenvalue λ is the number of times that λ appears as a root of $\det(\lambda I_n - M)$. The geometric multiplicity of an eigenvalue to is the odinersion of $V_1(\lambda)$, i.e., it is dim $(V_1(\lambda))$ Given a linear map $T: E^n \to C^n$, we can associate eigenvalues independently of the matrix we choose to represent T. Proposition: Crives bases B, C for C", [T] 3 and [T] have the same characteristic polynomial. Note that there exists an invertible nxn matrix

P such that $[T]_{c}^{c} = P^{-1}[T]_{b}^{3} P$. Consider det (t. In - [T]) = det (t In - P - [7] BP) = det(tP'InP - P'[T]8P) = det (P'+InP-P'[T] P) = det (P- (tIn - [T] P) P) = det (P') det (t In - [T] det (P) = 1 det(t In - [+] B) det(P)

2201	
1-11-16	
	So $\det(tI_n - [T]_{\varepsilon}^{\varepsilon}) = \det(tI_n - [T]_{\varepsilon}^{\mathcal{B}})$ \square
2.0	Eigenvalues are associated to linear maps themselves, and not just to matrices that represent them.
	and not just to matrices that represent them.
	This allows up to extend many sent to
	This allows us to extend many results from matrices to linear maps.
	Important example: Cayley-Hamilton theorem for matrices. "An nxn matrix M satisfies its own characteristic equation characteristic
	"An nrn matrix M satisfies its own characteristic
	(non-trivial result from MATH 1202.)
	Conseguence:
	Cayley - Hanilton Theorem for linear maps.
	Theorem:
	Given a linear map $T: \mathbb{C}^n \to \mathbb{C}^n$, and any bases \mathcal{B} , \mathcal{C} of $\mathbb{C}^n: \operatorname{ch}_{[\tau]_{\mathcal{B}}^{\mathcal{B}}}([\tau]_{\mathcal{B}}^{\mathcal{B}}) = \operatorname{ch}_{[\tau]_{\mathcal{E}}^{\mathcal{E}}}([\tau]_{\mathcal{E}}^{\mathcal{E}})$ \mathcal{D} , for any matrix \mathcal{M} representing $T: \operatorname{ch}_{\mathcal{M}}(\mathcal{M}) = 0$
	So, for any matrix M representing $T: ch (m) = 0$
	as for each section of the company o
	Proof
	Similar to proof of previous proposition.
	E. /
	Examples: ① Let $T: \mathbb{C}^2 \mapsto \mathbb{C}^2$ be defined via $T(x_1) = \begin{pmatrix} \chi_1 + \chi_2 \\ -2\chi_1 + 4\chi_2 \end{pmatrix}$ with respect to the standard basis $\mathcal{E} = \{(0), (1)\}$ $M = [T]_{\mathcal{E}}^{\mathcal{E}} = \begin{pmatrix} -2/4 \end{pmatrix}$
	with respect to the standard basis E = {('o), (')}
	$M = \begin{bmatrix} T \end{bmatrix}_{\mathcal{E}}^{\mathcal{E}} = \begin{pmatrix} 1 & 1 \\ -2 & 4 \end{pmatrix}$
	$\frac{ch_{m}(t) = det(t \cdot T - M) = t - 1 = t^{2} - 5t + 6 = (t - 2)(t - 3)}{2 + 4}$
	$\int \frac{1}{2} \frac{t-4}{t}$
	So $ch_m(t) = (t-2)(t-3)$. Then det's verily the Coulous - He millow Theorem:
	Then, let's verify the Cayley - Hamilton Theorem: $ch_{M}(M) = (M-2I)(M-3I)$

So
$$ch_{M}(M) = \begin{bmatrix} -1 & 1 & 1 \\ -2 & 2 & 1 \\ -2 & 2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 2-2 & -1+1 \\ 4-4 & -2+2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
as required.

Movie divisors of $[t-2](t-3)$ are: $1, t-2, t-3, (t-2)(t-7)$

$$= \begin{bmatrix} 10 & 10 \\ 0 & 1 \end{bmatrix}$$
Substitute' $t=M$ into all of them, use obtain
$$= \begin{bmatrix} 1(M) = (10) \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

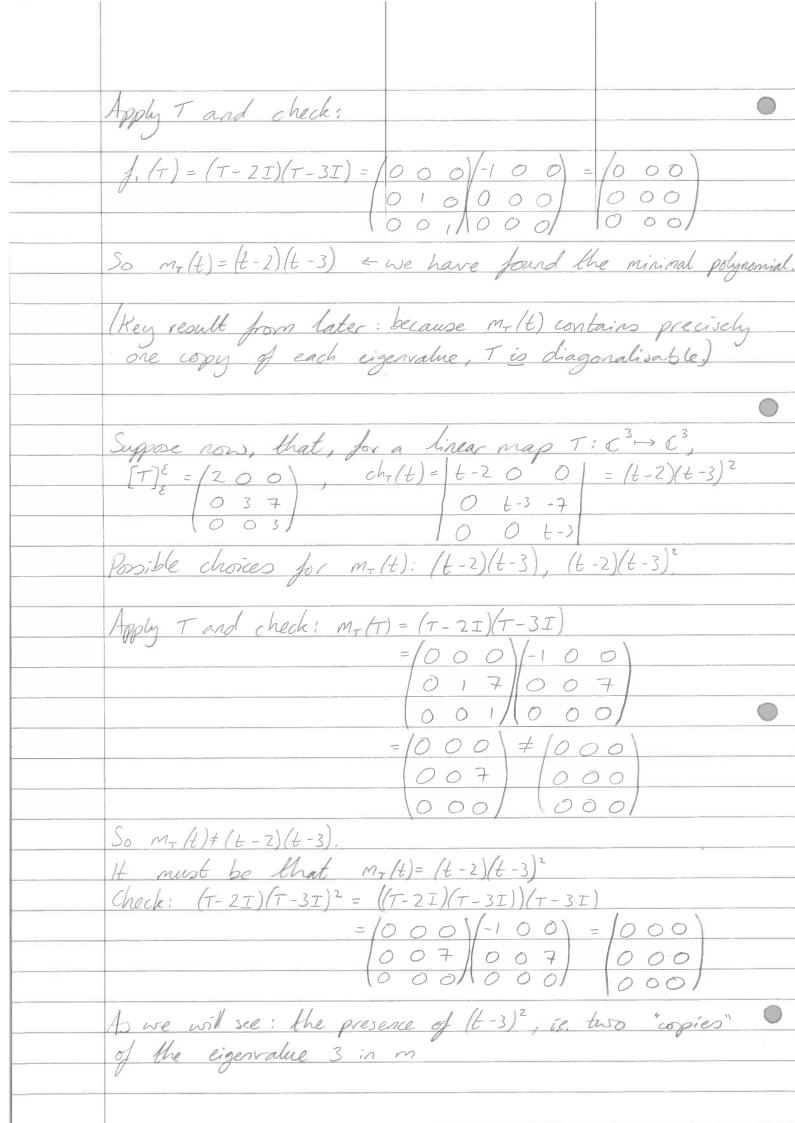
$$= \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ -2$$

MATH 2201 04-11-16 From last time
Trying to find "smallest" polynomial that "ends"
a matrix to zero. Another example Consider the linear map $T: \mathbb{C}^2 \to \mathbb{C}^2$, where $T(x_1) = \begin{pmatrix} x_1 - x_2 \\ x_1 \end{pmatrix} = \begin{pmatrix} x_1 + 3x_2 \end{pmatrix}$ With respect to the standard basis &= {(6), (9)} of $[T]_{\varepsilon}^{\varepsilon} = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$ Characteristic polynomial of T: $ch_{\tau}(t) = det(t I - [\tau]_{t}^{t}) = |t-1| |$ -1 t-3So ch-(t) = (t-1)(t-3) +1 By the Cayley - Hamilton Theorem: $(T-2I)^2 = 0$, $ch_{\tau}(\tau) = 0$ is. $(I\tau)_{\varepsilon}^{\varepsilon} - 2I)^2 = 0$ Let's see if a divisor of $(t-2)^2$ also sends T to O. Possible divisors: $1, t-2, (t-2)^2$ Apply 1 to T: I(T) = I(T) = I(T) = I = (I O)Note: The polynomial I represents f(t)=1, a constant or f(M)=T in terms of matrices. This always gives as output the identity matrix; it is a constant map. The identity map, represented by a poynomial, has the form f(t) = t or f(m) = M in terms of matrices.

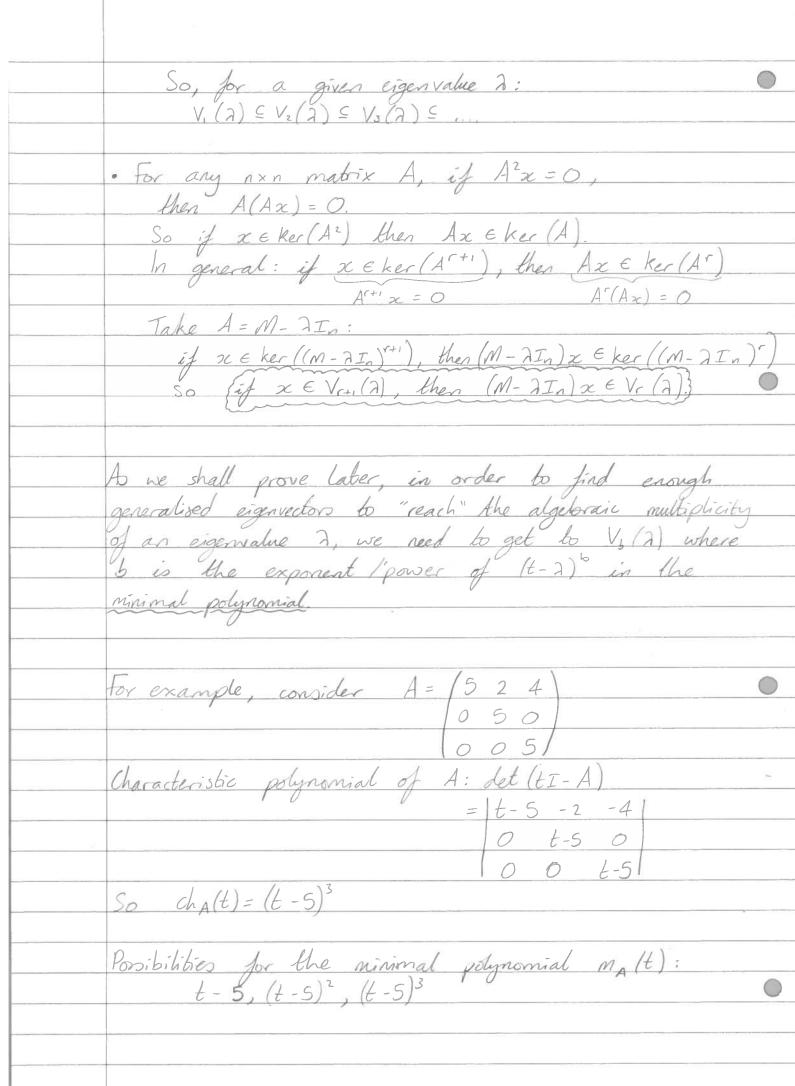
Aggly t-2: $[T]_{\varepsilon}^{\varepsilon}-2I=(1-1)-2(10)=(-1-1)\neq(00)$ So, in fact, $ch_{\tau}(t) = (t-2)^2$ is the "smallest" one that works: $(T-2I)^2 = 0$. This is the minimal polynomial of T. Suppose that, for a field k, T:V is a linear map over k, where V is a finite dimensional vector space Then a minimal polynomial of T is a monic polynomial m(t) in k(t) such that: (2) If, for some $f(t) \in k[t]$: f(T) = 0, then deg(f) > deg(m) or f = 0 (the zero polynomial). Note: for any T, there always exists at least one non-tero polynomial f(t) such that f(T) = 0, e.g. the characteristic polynomial $ch_{\tau}(t)$: $ch_{\tau}(T) = 0 \text{ by the Cayley-Hamilton Theorem.}$ Let's now check that minimal polynomials are unique: Suppose that, for a linear map T, m, (t) and $m_2(t)$ are minimal polynomials for T: m, (T) = 0 and $m_2(T) = 0$. Then (m, -m2)(T) = m, (T) - m2(T) = 0 Since m, is minimal and M2(T) = 0: deg(m2) > deg(m,)
(Note: m, M2 are assumed to be monic, so m, ±0 and Similarly, M2(t) is minimal and m,(T)=0, so deg(m,) > deg(mz). So deg(m,) = deg(m), and so deg(m,-M2) < deg(m)

2201 04-11-16 (Say $m_1(t) = t^n + a_{n-1}t^{n-1} + ... + a_1t + a_0$ $m_2(t) = t^n + b_{n-1}t^{n-1} + ... + b_1t + b_0$ So (m,-m2)(t)=(an-1-bn-1)tn-1+ ...+ (a,-b,)t+ (ao-b.) So, using (2) in the definition of $m_1(t)$ as a minimal polynomial, we see that $(m_1-m_2)(t)=0$, i.e. $m_1-m_2=0$, so that $m_1(t)=m_2(t)$. So (m, -m2)(T) = 0 and deg(m,-m2) < deg(m,) so we must have m,-mz = 0. So minimal polynomials are unique: m.(t) = m2(t). Let's now also show that, if f(7)=0 for some non-zero $f(t) \in k[t]$, then the minimal polynomial m(t) divides f(t)To show this apply Euclidean division to f(t) and m(t): I g(t), r(t) \in k(t) such that: f(t) = q(t)m(t) + r(t) and where deg(r) < deg(m)Apply both sides to T: f(T) = q(T)m(T) + r(T)So 0 = 9(T). 0 + r(T) ig r(T) = 0 Then, r(T) = 0 and deg(r) < deg(m), so, by (2) of definition of the minimal polynomial: -(t)=0 is r is the zero polynomial. Hence: f(t)=q(t)m(t)+c(t) = q(t)m(t)+0 = q(t)m(t) il. m(t) divides f(t) as required.

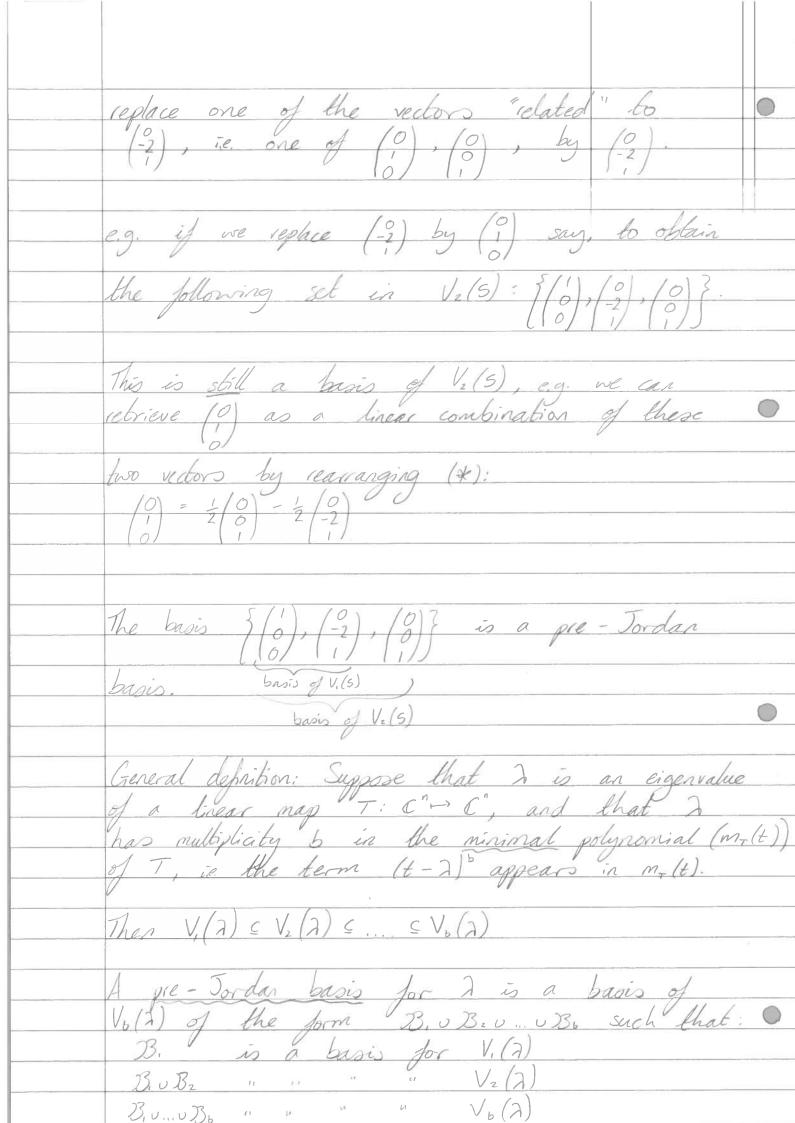

MAITH

In particular, sinch $ch_{\tau}(\tau)=0$, for some linear map \bullet $\tau:$ the minimal polynomial m(t) is a monic divisor of the characteristic polynomial $ch_{\tau}(t)$. So we can "search" for the minimal polynomial of T by starting from ch, (t). Suppose, for some linear map T: ch, (t)=(t-2)(t-3)? Possible choices for the minimal polynomial, $m_{+}(t)$:

1, t-2, t-3, $(t-3)^2$, (t-2)(t-3), $(t-2)(t-3)^2$ Apply T to each of these and find the smallest degree polynomial that "takes" T to O: Compute T-2I, T-3I, (T-3I)2, (T-2I)(T-3I), (T-2I)(T-3I)2 and check. Let's now bry to show that $m_{\tau}(t)$ must have every eigenvalue of T as a root : if λ is an eigenvalue of T, then $m_{\tau}(\lambda) = 0$. tor instance in this example, we have eigenvalues 2 and 3: for some non-zero vectors v, w: Tv = 2v, Tw = 3w ie. (T-2I)v=0 and (T-3I)w=0 and t-2 and t-3 will be factors of m. Why? Let's prove it in general: If I is an eigenvalue of a linear map T, then Tr = Iv for some vector v, $v \neq 0$. Note: If $T(v) = \lambda v$, then, for any $r \in \mathbb{N}$: $T'(v) = \lambda' v$ $(eg. T^2(v) = T(T(v)) = T(\lambda v) = \lambda T(v) = \lambda(\lambda v) = \lambda^2 v$ etc.) Consider the minimal polynomial of T, m+(T) applied


2201 04-11-16 Suppose m_ (t) = t + an, t + ... + a, t + a. ther m+(T)(v)=(Tn+an-1Tn-1+11+a,T+a)(v) $= T^{n}(v) + a_{n-1}T^{n-1}(v) + ... + a_{n}T(v) + a_{0}v$ = 2 v + an ... 2 v + ... + a, 2 v + aov $= (\lambda^n + a_{n-1} \lambda^{n-1} + \dots + a_n \lambda + a_0) v$ SO m_(T)(v) = m_(2). v By definition of m_T , $m_T(T) = 0$, so $(m_T(T))_V = 0$ Hence: $m_T(\lambda) \cdot V = 0$ Then, since $v \neq 0$, must have $m_{\tau}(\lambda) = 0$, as required. So, every eigenvalue of T is a root of $m_{\tau}(t)$ (and of $ch_{\tau}(t)$). So to find m_(t) for a general linear map · first compute $ch_{\tau}(t) = det(tI - T)$ · consider all monic divisors of $ch_{\tau}(t)$ which include every root of $ch_{\tau}(t)$.

• substitute "t = T" into these to find $m_{\tau}(t)$. Consider the linear map $T: \mathbb{C}^3 \to \mathbb{C}^3$ such that $[T]_{\mathcal{E}}^{\mathcal{E}} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix}$ for $\mathcal{E} = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$ $\frac{\overline{l}}{\overline{l}} = \frac{1}{2} \left(\frac{\chi_1}{\chi_2} \right) = \frac{1}{2} \left(\frac{2\chi_1}{3\chi_2} \right)$ $\frac{\overline{l}}{3\chi_1} = \frac{1}{3\chi_1} \left(\frac{2\chi_1}{3\chi_1} \right)$ Conquite $ch_{\tau}(t) = |t-2| 0 0 = (t-2)(t-3)^{2}$ 0 t-3| 0 0 t-3|Possibilities for m= (t): (t-2)(t-3), (t-2)(t-3)2 $f_1(t)$ $f_2(t)$


MATH 2201 14-11-16 If we cannot diagonalise a complex square $n \times n$ matrix M, it means that, for some eigenvalue, λ , say, of M, we cannot find "enough" eigenvectors, i.e. the eigenspace $V_{1}(\lambda) = \{ x \in \mathbb{C}^{n} : (M - \lambda I_{n})(x) = 0 \} = \ker(M - \lambda I_{n})$ is not big enough. In such cases, we look at generalised eigenspaces. Suppose that, for some nxn complex matrix M, \(\tau \) is an eigenvalue of M.

Then the rth generalised eigenspace corresponding to \(\tau \) is $V_r(\lambda) = \left\{ \alpha \in \mathbb{C}^n : (M - \lambda I_n)^r(\alpha) = 0 \right\}$ When r=1, we obtain the "usual" eigenspace.) $V_c(\lambda) = \ker((M - \lambda I_n)^r)$ Every non-zero element of V. (2) is a generalised eigenvector. Two key features of generalized eigenspaces: • For any $n \times n$ matrix A, note that if $A \times x = 0$, then $A^2 \times x = A(A \times x) = A \cdot 0 = 0$ In general, if $A^{r}x = 0$ and $m \ge r$, then $A^{m}x = A^{m-r}(A^{r}x) = A^{m-r}(0) = 0$ So, if $x \in \ker(A^r)$, then $x \in \ker(A^m) \ \forall m \ge r$ Take A=M- \(\frac{1}{2}\)In: if \(\circ \text{Ker}(M-\(\cappa_{\text{In}})^r\) then $x \in \ker((M - \lambda I_n)^m)$. So, for $m \ge r : if x \in V_r(\lambda)$, then $x \in V_m(\lambda)$, 30 (Vr(2) 5 Vm (2))

14-11-16 $A-SI = \{0\ 2\ 4\ \neq 0\ so\ m_A(t) \neq t-5\}$ SO MA(t)=(t-5)2 The algebraic multiplicity of the eigenvalue 5 is 3, and $m_A(t) = (t-5)^2$ suggests that we need to go to $V_2(5)$ to find 3 linearly independent vectors. Let's determine (bases for) $V_1(5)$, $V_2(5)$: for $V_1(5)$, solve: $(A-5I)^2 \approx 0$ We obtain 2x2 + 4x3 = 0 ie, x2 = -2x3 So general solution is $\begin{pmatrix} x_1 \\ -2x_3 \end{pmatrix}$ for x_1 , $x_3 \in C$ $V_{1}(5) = \begin{cases} \langle \chi_{1} \rangle = \chi_{1}/1 \rangle + \chi_{3}/0 \rangle : \chi_{1}, \chi_{3} \in \mathbb{C} \end{cases}$ Basis for V. (5) over C: { [] (0) } For $V_2(5)$, solve $(A-5I)^2x = 0$ i.e. $|000|x_1| = |0|$ $|000|x_2|$ |0|A general solution is $|x_1|$ for $|x_1|$ $|x_2|$ $|x_3| \in \mathbb{C}$.

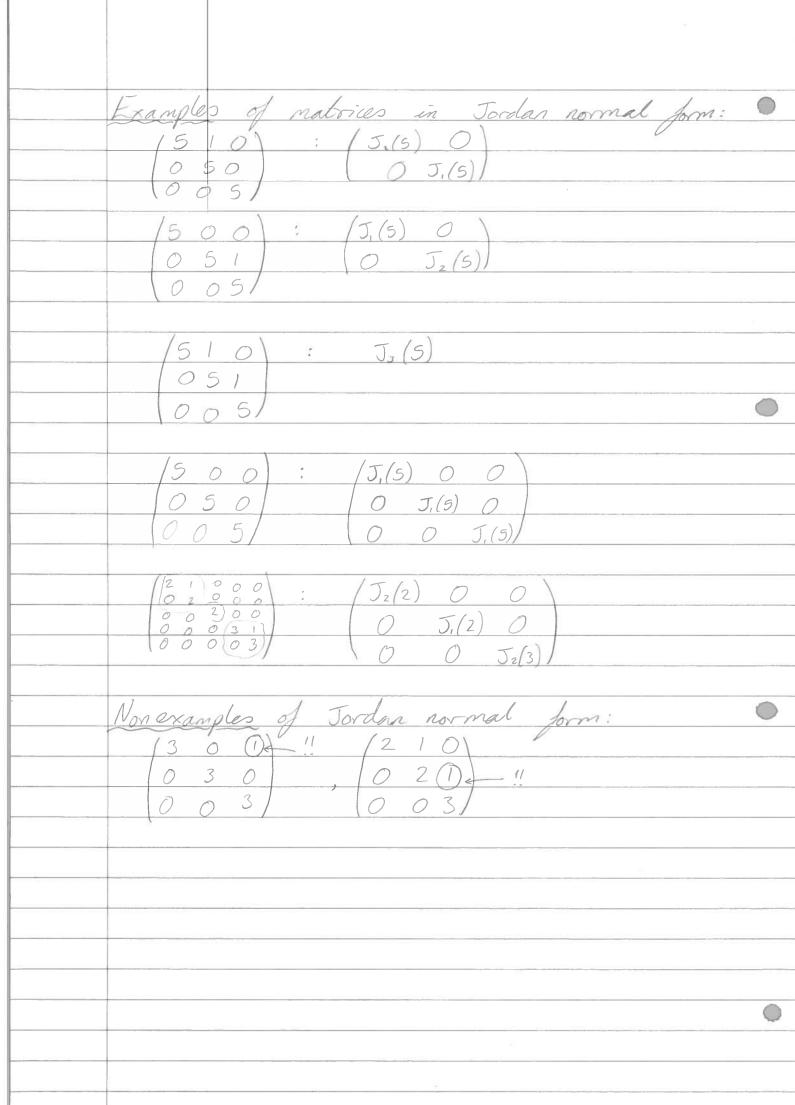
WATH 2201 15-11-16 From yeolerday: A = 15 2 47 0 5 0 0 0 5) Note: A represents a linear map $T: \mathbb{C}^3 \mapsto \mathbb{C}^3$ where $T \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = |5x_1 + 2x_2 + 4x_3|$ with respect to the standard basis $m_{-}(t) = (t-5)^{2}$ Basis for $V_{1}(5) = \frac{3}{3}(\frac{1}{0}), \frac{0}{1}$ Basis for V2(5)= \$\begin{aligned}
\begin{aligned}
\begin{align Try to replace vectors in the basis for $V_2(5)$ by vectors in the basis of $V_1(5)$ in a suitable way, so that we still have a basis of $V_2(5)$ at the end. From the basis of V. (5): (°) already appears in the basis for V2 (5), so no need to take further action. $\binom{0}{-2}$ is inside $V_2(5)$ (since $V_1(5) \in V_2(5)$): $\begin{pmatrix} 0 \\ -2 \end{pmatrix} = -2 \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 1 \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ To obtain a basis of V2(5) containing (2), we

2201 15-11-16 for instance, in our example { (0), (0), (0)} is a pre-Jordan basis for the eigenvalue 5, where $3 = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$, $3 = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$. We next create "links" between vectors in B_2 and B_1 using an earlier result:

If $x \in V_{r+1}(\lambda)$, then $(A - \lambda I)(x) \in V_r(\lambda)$. Take "each" vector in B_2 and use this to find a linked vector in $V_*(5)$:

If $x \in B_2$, then $x \in V_2(5)$. Apply A-5I to (3): (0 2 4 6) = (4) I would like $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$ to be in $B_1: \begin{pmatrix} 4 \\ 0 \end{pmatrix} = 4 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + 0 \cdot \begin{pmatrix} 0 \\ 2 \end{pmatrix}$ To do this and still have a basis,
we replace (4) by the "related" vector (6) in B, lo obtain: $B_i' = \left\{ \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ -\frac{2}{1} \end{pmatrix} \right\}$, $B_2' = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$ no change to B_i' . Why do we want to have both (?) and the "linked" vector (?)? Since $(A-SI)(\stackrel{\circ}{\circ})=(\stackrel{\circ}{\circ})$, we obtain $A(\stackrel{\circ}{\circ})-5(\stackrel{\circ}{\circ})=(\stackrel{4}{\circ})$. Rearranging this: (A(0) = 1. (4) + 5. (0) "nic" formula that leads to a nice" matrix.

ייילאות


We can picture this as We now arrive at the final, Jordan, basis,
by rearranging the three vectors, so that "linked"
vectors appear next to each other in order (from
B. to B2). for instance, a possible Jordan basis here is: $\left\{\begin{pmatrix} 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \end{pmatrix}\right\} = \mathcal{E},$ Another Jordan basis would be \$ (-2), (0) { = E. Let's now express $T: C^3 \rightarrow C^3$, where $T(x_1) = (6x_1 + 2x_2 + 4x_3)$ $(x_3) = (6x_1 + 2x_2 + 4x_3)$ $(x_3) = (6x_1 + 2x_2 + 4x_3)$ · In terms of E .: $T(\frac{4}{0}) = \binom{20}{0} = 5(\frac{4}{0}) + 0(\frac{0}{0}) + 0(\frac{-2}{1})$ $T(\frac{0}{0}) = (\frac{4}{0}) = 1(\frac{4}{0}) + 5(\frac{0}{0}) + 0(\frac{-2}{1})$ $T(\frac{-2}{1}) = (\frac{-10}{5}) = 0(\frac{4}{0}) + 0(\frac{0}{0}) + 5(\frac{-2}{1})$ $S_0 [T]_{\xi}^{\xi_1} = \begin{pmatrix} 5 & 1 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ This is a Jordan normal form for T.

It is a matrix that consists of two Jordan blocks
"placed diagonally". For A∈C, the Jordan block Jm(A) is the mxm matrix defined as follows: Ji; = 2, i = 1, ..., m

2201	
15-11-16	
	eg. $[T]_{\xi_i}^{\xi_i}$ consists of $J_2(5)$ and a $J_1(5)$
	"placed diagonally" to form a 3x3 matrix
-	
VIII 1.5	

MATH 2201	
18-11-16	
	From last time: Linear map $T: \mathbb{C}^3 \mapsto \mathbb{C}^3$ such that $[\tau]_{\mathcal{E}}^{\mathcal{E}} = [5 \ 2 \ 4]$ for standard basis $\mathcal{E} = \{[1] \ [0] \ (0)\}$
	Linear map $T: \mathbb{C}^3 \mapsto \mathbb{C}^3$ such that $[T]_{\varepsilon}^{\varepsilon} = [5 \ 2 \ 4]$
	050
	for standard basis $\mathcal{E} = \frac{5}{1} \frac{1}{1} $
	((0)1(0)1(0)).
******	Found a basis (a Jordan basis) E. = \(\begin{pmatrix} 4 \ 0 \ (0) & (0) \\ (0) & (1) & (-2) \end{pmatrix} \)
	such that [7]: = 1510.
	such that $[T]_{\xi}^{\xi} = 5 0 $.
	10051
	We found a Jordan normal form for T.
	A Jordon block, Jr(2), for some rEN and
	$\lambda \in C$, is a complex ext matrix defined as
	follows: $(J_{c}(\lambda))_{i,i+1} = \lambda$ for $i=1,,c$ $(J_{r}(\lambda))_{i,i+1} = \lambda$ for $i=1,,c$
	$(J_r(\lambda))_{i,i+1} = 1$ for $i=1,,r$ $(J_r(\lambda))_{i,j} = 0$ otherwise.
	So $J_r(\lambda) = \lambda $
	2 ()
	A square complex matrix is in Jordan normal
	form if it is obtained by placing Jordan blocks diagonally (across the main diagonal), i.e. it is
6	diagonally (across the main diagonal), i.e. it is
	a matrix of the form
	$\int_{\Gamma_1(R_1)} \int_{\Gamma_1(R_2)} \int_{\Gamma_2(R_2)} \int_{$
	$J_{r_{i}}(\lambda_{i})$ $\lambda_{i},,\lambda_{n} \in \mathbb{C}$
0	$\int_{\Gamma_n(\lambda_n)} \int_{\Gamma_n(\lambda_n)} \int_{$
	r=r; for some i, j
	$\lambda_i = \lambda_j$ for some i,j

MATH 220 18-11-16 Any square complex matrix can be transformed to one in Jordan normal form.

In general, for any linear map, T: C" \(C'', \)

there exists a basis B such that $[TT_8]^3$ is in Jordan normal form. We can find such a basis, B, using the following algorithm: · Petermine $m_{\tau}(t)$, the minimal polynomial of T(perhaps by finding, $ch_{\tau}(t)$, the characteristic polynomial of T first). $m_{\tau}(t) = (t - \lambda_1)^{b_1} \dots (t - \lambda_r)^{b_r}$ where $\lambda_1, \dots, \lambda_r$ are the distinct eigenvalues of T. · For each eigenvalue λ_i , $1 \le i \le r$:

- determine $V_1(\lambda_i)$, $V_2(\lambda_i)$, ..., $V_b_i(\lambda_i)$ - find bases for V. (\(\partial\), ..., \(\frac{\sqrt{\sinte\sint\sint\sint{\sint{\sint{\sqrt{\sqrt{\sinte\sint{\sin{\sint{\sin{\sint{\sini\sint{\sint{\sint{\sint{\sint{\sint{\sint{\sini\sin{\ such that 8, is a basis for V.(2i), B. U.B. is a basis for V. (7;), ..., B. UB2U... UB5; is a basis for Vb; (2i) - For each vector v in the basis Bs; and, after possibly exchanging suitably:

make $(T-\lambda; I)(v)$ appear in $B_{b;-1}$, then

make $(T-\lambda; I)^2(v)$ " $B_{b;-2}$ make $(T-\lambda_i I)^{b_i-1}(v)$ " B_i .

Then, v, $(T-\lambda_i I)(v)$, $(T-\lambda_i I)(v)$, ..., $(T-\lambda_i I)^{b_i-1}(v)$ is a set of "linked" vectors - Then, rearrange the new basis, so that "linked" vectors appear next to each other

 $\frac{(T-\lambda_i I)^{b_i-1}(v), \qquad (T-\lambda_i I)(v), v}{\epsilon V_i(\lambda_i)} \in V_{b_i-1}(\lambda_i) \quad \epsilon V_{b_i}(\lambda_i)$ This gives a Jordan basis for the eigenvalue Di. · Place together Jordan basis for all eigenvalues

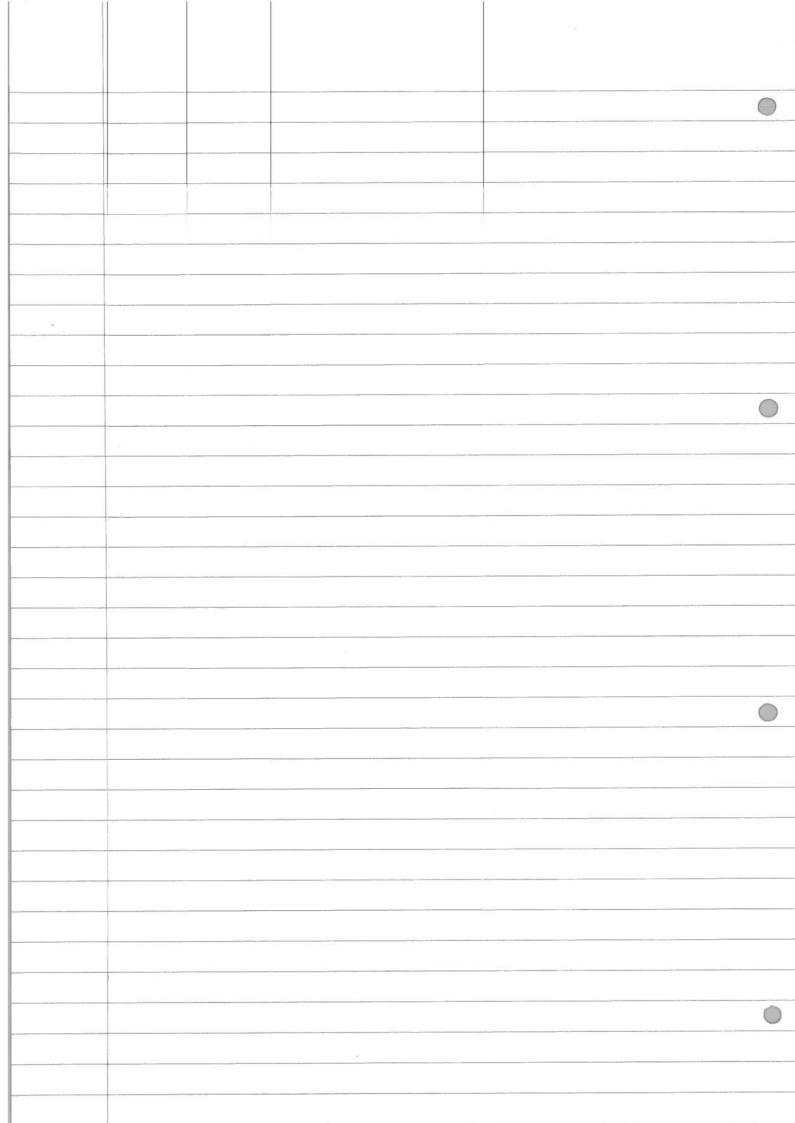
(λ, ..., λ,). This will give a Jordan busis for

T, i.e. a basis B such that [-] ³/₈ is in Tordan normal form. To show that this works in general, need to know:

1) the "powers" in the minimal polynomial will lead to generalised eigenspaces, whose bases will be "large enough" to find a basis in the end.

(2) when we "exchange" vectors in this process, we are allowed to do so, and still have a basis at the end. Let's start with (2): We can exchange vectors using the Exchange Suppose that {v, ..., vr} is a linearly independent set in V, and {w, ..., wn} a spanning set for V (where V is a subspace of ["), then $r \leq m$ and there exists a spenning set of V of the form $\{v_1, ..., v_r, w'_{r+1}, ..., w'm\}$ where each $w'_i \in \{w_1, ..., w_m\}$ for $r+1 \leq i \leq m$.

MATH 2201	
18-11-16	
	We use this result brice in our algorithm:
	(i) to obtain a pre-Jordan basis starting from
	denest in a paris so there are linearly
	independent and we can apply the result.
	(ii) while finding a Jordan basis, when, for each $v \in B_{bi}$, we by to "nake" v , $(T - \lambda I)(v)$,, $(T - \lambda I)^{bi-1}(v)$ appear
	in the new basis. To do this using the
	result, we must check that $v, (T-\lambda I)v,, (T-\lambda I)^{b_i-1/2}$
	are linearly independent.
_	Note that in the pre-Jordan basis:
	B, U B2 U U B5; -, U B5;
	a vector v in Bs; satisfies: νε Vs; (λί) but ν & Vs; (λί)
	ve bi ni) eur va ai-
	Reminder:
	$V_{-}(\lambda_{i}) = \ker\left(\left(\tau - \lambda_{i} I\right)^{r}\right) = \left\{x \in C^{n}: \left(\tau - \lambda_{i} I\right)^{r}(v) = 0\right\}$ $So\left(\tau - \lambda I\right)^{b_{i}}(v) = 0 \text{but} \left(\tau - \lambda I\right)^{b_{i}-1}(v) \neq 0.$
	Similarly, for $V \in \mathcal{B}_{r+1}: (T - \lambda I)^r(V) = 0$, $V \in V_{r+1}(\lambda)$ but $(T - \lambda I)^r(V) \neq 0$, $V \notin V_r(\lambda)$.
	but $(T-\lambda I)(V) \neq 0$, $\forall \notin V_{\Gamma}(\lambda)$.
	Using this we can prove
	Proposition
	Suppose that, for some eigenvalue λ , of a linear map $T: C'' \mapsto C''$, $v \in B$, (where b is the "power" of $(t-\lambda)$ in $m_{\tau}(t)$). Then, the vectors
	"power" of $(t-\lambda)$ in $m_{-}(t)$). Then, the vectors
	$V, (T-\lambda I)(v), (T-\lambda I)^2(v), \dots, (T-\lambda I)^{b-1}(v)$
	are linearly independent.


Proof:

Suppose that, for $\lambda_0, \dots, \lambda_{b-1} \in \mathbb{C}$: $\lambda_0 \vee + \lambda_1 (T - \lambda I \chi \vee) + \dots + \lambda_{b-1} (T - \lambda I)^{b-1} (\vee) = 0$ Apply $(T - \lambda I)^{b-1}$ to both sides: $(T - \lambda I)^{b-1}(\lambda_{0}V + ... + \lambda_{b-1}(T - \lambda I)^{b-1}(v)) = (T - \lambda I)^{b-1}(0)$ So $\lambda_{0}(T - \lambda I)^{b-1}(V) + \lambda_{1}(T - \lambda I)^{b}(V) + ... + \lambda_{b-1}(T - \lambda I)^{2b-2}(V) = 0$ by linearity. Note $v \in B_b$ so $(T - \lambda I)^b(v) = 0$, so $(T - \lambda I)^b(v) = 0$ for each r > b. Hence, the equation reduces to $\lambda_o(T-\lambda I)^{b-1}(v)=0$ Also note that $v \in B_b$, so $(T - \lambda I)^b(v) = 0$ but $(T - \lambda I)^{b-1}(v) \neq 0$. So, since $\lambda_{o}(T-\lambda I)^{b-1}(v)=0$ but $(T-\lambda I)^{b-1}(v)\neq 0$, we must have $\lambda_{o}=0$. Now $\lambda_{1}(T-\lambda I)(v) + \dots + \lambda_{b-1}(T-\lambda I)^{b-1}(v) = 0$. Proceed similarly: apply $(T-\lambda I)^{b-2}$ to this, and use $(T-\lambda I)^{c}(v) = 0$ for $r \geq b$, to obtain Since $(T-\lambda I)^{b-1}(v) \neq 0$, we obtain $\lambda_i = 0$. lloing a similar process: $\lambda_2 = 0, \lambda_3 = 0, ..., \lambda_{b-1} = 0.$ So $\lambda_i = 0$ for each $0 \le i \le b-1$, i.e. the given vectors are, indeed, linearly independent. \square So (2) is O.K. Let's now long to study O: We wish to show that if $m_{\tau}(t) = (t - \lambda_1)^{b_1} \dots (t - \lambda_r)^{b_r}$ then $C^n \cong V_b, (\lambda_1) \oplus \dots \oplus V_b, (\lambda_r)$ "whole space" This will show 1 is O.K.

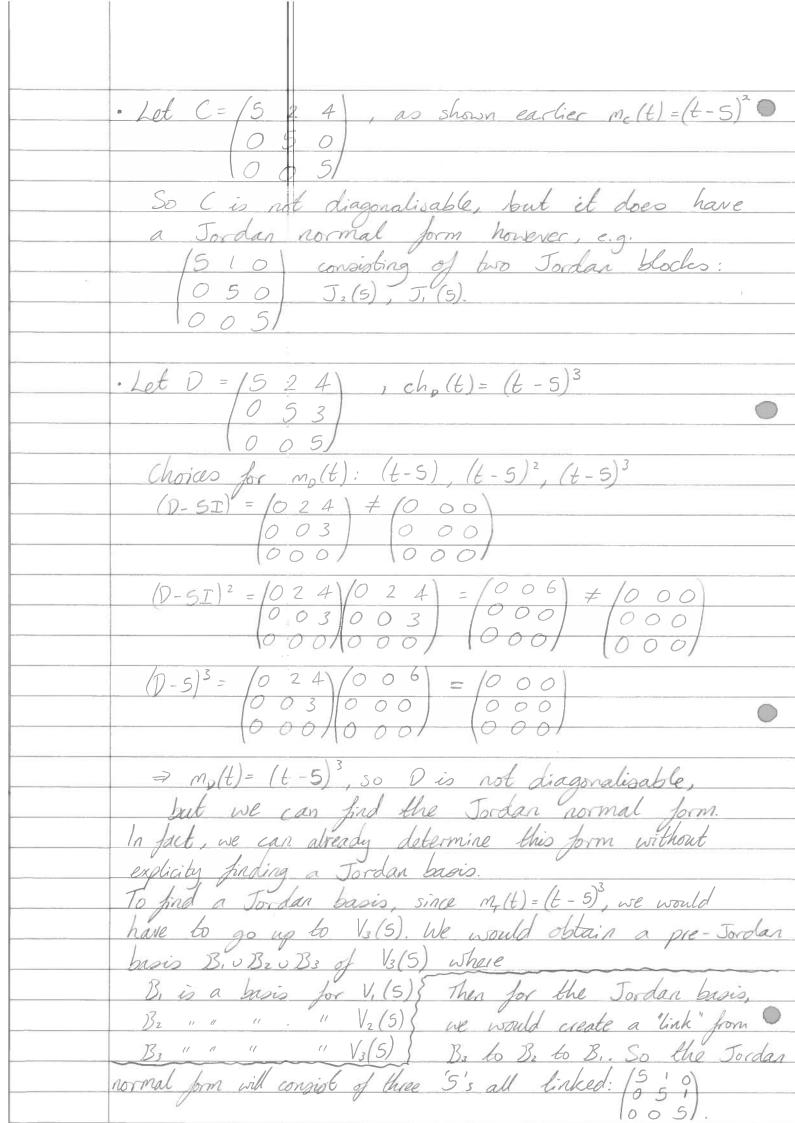
2201 18-11-16 To show this, we first prove: Suppose that the polynomials f(t), g(t) in the sing of polynomials k[t], for a field k, are coprime, i.e. that g(t) = f(t) (for the series) f(t) = f(t) (for the series) product f(x).g(x) Let's first show that ker (fg) = ker (f) + ker (g) and then show that the sum ker (f) + ker (g) is direct. ker(fg) = ker(f) + ker(g)? Suppose that veker (f) + ker(g) Then, for $v=V_1+V_2$ where $v_i \in \ker(f)$ i.e. $g(t)(v_i)=0$ and v2 + ker (g) i.e. (g(t))(v.) = 6 Apply fo v: (f(t)g(t))(v) = (f(t)g(t))(v,+v2) = f(t)g(t)(v,) + f(t)g(t)(v2) $= g(t)f(t)(v_1) + g(t)f(t)(v_2)$ So (f(t)g(t))(v) = g(t)(f(t)(v.))+ f(t)(g(t)(v2)) = g(t)(0) + f(t)(0)So (f(t)a(t))(v) = 0 so v & ker (fg) So ker(f) + ker(g) = ker(fg)

As we will see: the presence of $(t-3)^2$, i.e. two "opies" of the eigenvalue 3 in $m_{\tau}(t)$ means that we will not be able to find enough eigenvectors for 3 to diagonalise T. To find eigenvectors for 3, solve $(\Xi T)_{\varepsilon}^{\varepsilon} - 3I)x = 0$ i.e. $|-1|00|n_1| = |0|$ $|000|n_2|$ $|000|n_3|$ So $-x_1=0$, 0=0, $7x_3=0$ So the general eigenvector for $\lambda=3$ is $\begin{pmatrix} 0 \\ x_1 \end{pmatrix}$, $x_1 \in \mathbb{C}$, $x_1 \neq 0$. The eigenspace $V_{i}(3) = \frac{3}{2} \left(\frac{3}{2} \right) : x_{2} \in C_{\frac{3}{2}}$ with basis $\frac{3}{2} \left(\frac{3}{2} \right)$ Algebraic multiplicity of 3 is 2 } So T not diagonalisable. Geometric " " 3 " 1) The presence of $(t-3)^2$ in $m_T(t)$ reveals that, to find enough vetors to "almost" diagonalise T, we need to consider the "generalised" eigenspace $V_2(3) = \frac{1}{2}x \in C^3 : ([T]_{\xi}^{\xi} - 3I)^2x = 0$ Note $V_{*}(3) = \{x \in \mathbb{C}^{3} : ([T]_{\varepsilon}^{\varepsilon} - 3I)x = 0\} - \text{Eigenspace}$

If T: €" → €" is a linear map and f(t) is in MATH C[t] 2201 then f(T) is also a linear map $f(T): C^{\gamma} \mapsto C^{\gamma}$ 21-11-16 Suppose that T: C" -> C" is a complex linear map, and that the polynomials f(t), g(t), in C[T], are coprime, so that gcd(f,g)=1. Then ker (f(T)g(T)) = ker (f(T)) (ker (g(T)) Let's first show that ker (f(T)g(T)) = ker (f(T)) + ker (g(T)) land, then, that the sum is direct). Suppose $v \in \ker(f(\tau)) + \ker(a(\tau))$ Then $v = v_1 + v_2$ where $v_i \in \ker(f(T))$, i.e. $f(T)(v_i) = 0$ V2 € ker (g(T)), g(T)(V2) = 0 Then, $(f(\tau)g(\tau))(v) = (f(\tau)g(\tau))(v_1+v_2)$ = $(f(\tau)g(\tau))(v_1) + (f(\tau)g(\tau))(v_2)$ by linearity of f(T)g(T) $= g(\tau)f(\tau)(v_1) + f(\tau)g(\tau)(v_2)$ $= g(\tau)(0) + f(\tau)(0)$ $= 0 \text{ by linearity of } f(\tau), g(\tau).$ So $v \in \ker(f(T)g(T))$ Hence $\ker(f(T)) + \ker(g(T)) \subseteq \ker(f(T)g(T))$ Now suppose veker (f(T)g(T)) Since f(t), g(t) are coprime, by Berzout's Lemma, there exist a(t), b(t) in C[t] such that $a(t)f(t) + b(t)g(t) = 1 \qquad \left[1 = \gcd(f,g)\right]$ i.e. a(T)f(T) + b(T)g(T) = Id(identity map)

ie. (a(T)f(T) + b(T)g(T))(v) = v So (a(T)f(T))(v) + (b(T)g(T))(v) = v Let V. = (b(T)g(T))(v) and Vz = (a(T)f(T))(v) Then V = V, + V2 $\frac{1 hen \quad V = V_1 + V_2}{and \quad f(T)(V_1) = \left(f(T)b(T)g(T)\right)(V)} = b(T)\left(f(T)g(T)(V)\right)$ $= b(T)(0) \quad \text{since } v \in \ker\left(f(T)g(T)\right)$ $\Rightarrow f(\tau)(v_i) = 0$ So Vi E ker (ft.)) Similarly: g(T)(V2) = (g(T) a (T) f(T))(V) $= a(\tau)((f(\tau)g(\tau))(v))$ $= a(\tau)(0)$ $g(T)(v_2) = 0$ So $v_2 \in \ker(g(T))$ Hence $V=V_1+V_2$ where $V_1\in\ker\left(f(T)\right)$ and $V_2\in\ker\left(g(T)\right)$ So $v \in \ker(f(T)) + \ker(g(T))$ Thus ker (f(T)g(T)) = ker (f(T)) + ker (g(T)) Overall, we obtain $\ker \left(f(T)g(T) \right) = \ker \left(f(T) \right) + \ker \left(g(T) \right)$ Let's now show the sun is direct. Suppose veker (f(T)) nker (g(T)) So f(T)(v) = 0 and g(T)(v) = 0 Also, from above $V=V_1+V_2$ where $V_1 = b(T)g(T)(v) = b(T)(0) = 0$ since g(T)(v) = 0 $V_2 = a(\tau)f(\tau)(v) = a(\tau)(0) = 0$ since $f(\tau)(v) = 0$ Herce V = V, +V2 = O+O. ie. $ker(f(T)) \cap ker(g(T)) = \{0\}$

2201	
21-11-16	
	Consequently, the sum $\ker(f(\tau)) + \ker(g(\tau))$ is direct
	$\ker(f(T)g(T)) = \ker(f(T)) \oplus \ker(g(T)) \text{ as required.}$
	het's now show the link between minimal polynomials and finding enough vectors for a basis:
	Primary Decomposition Theorem:
	Primary Decomposition Theorem: Suppose that, for a linear map $T: \mathbb{C}^n \mapsto \mathbb{C}^n$, the minimal polynomial $m_T(t)$ is one of the
	the minimal polynomial m_(t) is one of the
	form $m_{\tau}(t) = (t - \lambda_1)^{b_1} \cdots (t - \lambda_r)^{b_r}$
	$\sqrt{\eta_{\tau}(t)} = (t - \lambda_1) \cdots (t - \lambda_r)$
	where $\lambda_1, \dots, \lambda_r \in \mathbb{C}$ are the distinct eigenvalues of T . Then $\mathbb{C}^n = V_b, (\lambda_1) \oplus \dots \oplus V_b, (\lambda_r)$
	Proof
	Note that since $m_{\tau}(t)$ is the minimal polynomial for T , $m_{\tau}(\tau) = 0$, so $\ker(m_{\tau}(\tau)) = \ker(0) = 0$
	$T_{+} m_{\tau}(\tau) = 0$, so $\ker(m_{\tau}(\tau)) = \ker(0) = C^{n}$
	Also ker (M, (T)) = ker ((T-2, I)b, (T-2, I)b, (T-2, I)b,
	$= \ker ((T - \lambda, \underline{I})^{b_1}) \oplus \ker ((T - \lambda_2 \underline{I})^{b_2} \dots (T - \lambda_r \underline{I})^{b_r})$
	[using earlier proposition, $(T-\lambda_i I)^{b_i}$ and $(T-\lambda_2 I)^{b_2}$ $(T-\lambda_r I)^{b_r}$ coprime] $= \ker ((T-\lambda_r I)^{b_r}) \oplus \ker ((T-\lambda_r I)^{b_2}) \oplus \oplus \ker ((T-\lambda_r I)^r)$
	= Ker ((T- \(\bar{\lambda},\bar{\rangle})\) \(\psi\) ker ((T-\(\lambda_2\bar{\rangle})\) \(\psi\) \(\psi\) \(\psi\) \(\psi\)
	So $\mathbb{C}^n = V_b(\lambda_1) \oplus V_b(\lambda_2) \oplus \cdots \oplus V_b(\lambda_r)$
	I
	It follows that, by "placing together" bases for
	Vs. (7,1),, Vy (2) we will have a basis for C", so,
0	as required, we can find "enough" vectors for a basis
	of C" by looking at
	Powers arising in minimal polynomial
	powers arising in minimal polynomial


This is a result of the following: Suppose that, for a field k, and finite dimensional vector spaces U, V, W over k: V = U D W If $\{u_1, \dots, u_n\}$ is a basis for U, and $\{w_1, \dots, w_m\}$ is a basis for W, then $\{u_1, \dots, u_n, w_n, \dots, w_m\}$ is a basis for V.

MATH 2201	
22-11-16	from gesterday
	from grocacoury
	Primary Decomposition Theorem
	for a linear map T: C"→ C": if m+(t) = (t-7)6, (t-2)6
	where $\lambda, \dots, \lambda_r \in C$ are distinct eigenvalues, then
	$C'' = V_b(\lambda,) \oplus \cdots \oplus V_b(\lambda_r)$
9	
	Consequence of this related to diagonalisability:
	Let T: C" be a linear map:
	The map T is diagonalisable if and only if $m_T(t) = (t - \lambda_1) \cdots (t - \lambda_r)$ for distinct eigenvalues
	$\lambda_{i},, \lambda_{r} \in \mathbb{C}$
	Proof
	Suppose that $m_{\tau}(t) = (t - \lambda_1) \cdots (t - \lambda_r) = (t - \lambda_1) \cdots (t - \lambda_r)$.
	Then by the Primary Decomposition Theorem: $C'' = V_{*}(\lambda_{*}) \oplus \oplus V_{*}(\lambda_{*})$
	$C = V_1(A_1) \oplus \cdots \oplus V_1(A_r)$
	So we can form a basis for C" consisting of vectors that form bases for V, (2,),, V, (2,).
	vectors was joint bases for "("),, vi(").
	But V, (2.),, V. (2.) are eigenspaces consisting of
	But V, (2.),, V. (2.) are eigenspaces consisting of eigenvectors (as opposed to generalised eigenvectors). So, there exists a basis for C' consisting of eigenvectors, i.e. the linear map T is diagonalisable
	So, there exists a basis for C' consisting of
	eigenvectors, i.e. the linear map T is diagonalisable
	(in terms of such a basis of eigenvectors).
	Now suppose that T is diagonalisable. So, there exists a basis {v,,, vn} consisting of
	Do, were exists a basis (V,,, Vng consisting of
	eigenvectors of T. Lat $f(t) = (t - \lambda) \cdots (t - \lambda)$
	Let $f(t) = (t - \lambda_1) \cdots (t - \lambda_r)$ We wish to show that $f(t) = m_{\tau}(t)$.

Let's show that f(T) = 0, the zero map. [Mote: for any eigenvalue λ_i , $1 \le i \le c$: $f(\lambda_i) = (\lambda_i - \lambda_i) \cdots (\lambda_i - \lambda_i) \cdots (\lambda_i - \lambda_c) = 0$] Take any vector w in the basis {v, ..., v, }; then, w is an eigenvector of T for some eigenvalue, \(\lambda_i \) say. Compute $f(\tau)(\omega)$: $f(\tau)(\omega) = f(\lambda_i)\omega \quad \text{(since } \omega \text{ is an eigenvector corresponding to } \lambda_i).$ Eg. if $f(t) = t' + a_{1-1}t'' + ... + a_{1}t + a_{0}$ then $f(T)(\omega) = (T' + a_{1-1}T'' + ... + a_{1}T + a_{0}T)(\omega)$ $= (T'(\omega) + a_{1-1}T''(\omega) + ... + a_{1}T(\omega) + a_{0}\omega)$ by Linearity $= \lambda_{1} \omega + a_{1-1}\lambda_{1} \omega + ... + a_{1}\lambda_{1}\omega + a_{0}\omega$ by Linearity $= (\lambda_{1} \omega + a_{1-1}\lambda_{1} \omega + ... + a_{1}\lambda_{1}\omega + a_{0}\omega)$ eigenvector for $\lambda_{1}\omega$ $= (\lambda_{1}\omega + a_{1-1}\lambda_{1}\omega + ... + a_{1}\lambda_{1}\omega + a_{0}\omega)$ This works for any w in the basis $\{v_1, \dots, v_n\}$: $f(\tau)v_n = 0, \dots, f(\tau)v_n = 0$ Let's now consider a general element, vsay, of C?

Since {v, ..., v, 3 is a basis for C?: v=c,v,+ ...+ c,v,n Then $f(T)(v) = f(T)(c, v, + ... + c_n v_n)$ $= c_i f(T)(v_i) + ... + c_n f(T)(v_n) \quad \text{by linearity}$ $= c_i \cdot 0 + ... + c_n \cdot 0$ = 0So f(T)(v) = 0 for each $v \in C^n$. Hence f(T) = 0, the zero

2201	
22-11-16	
	So, using the definition of the minimal polynomial
	So, using the definition of the minimal polynomial $m_{\tau}(t)$, we deduce that $m_{\tau}(t) \mid f(t)$ (since $f(\tau) = 0$).
<u> </u>	But, also, $m_{\tau}(t)$ has each eigenvalue as a root, i.e. $m_{\tau}(t) = (t - \lambda_{\tau})^{b_{\tau}} \dots (t - \lambda_{\tau})^{b_{\tau}}$ for $b, \ge 1, \dots, b_{\tau} \ge 1$ So $f(t) \mid m_{\tau}(t)$ also.
	$S_{D} = \{t - A_{i}\} \dots \{t - A_{e}\} $ for $S_{i} = \{t - A_{i}\} \dots \{t - A_{e}\}$
	J(L)1.7 (L) 1000.
	Since $f(t) \mid m_{\tau}(t)$ and $m_{\tau}(t) \mid f(t)$, and $m_{\tau}(t)$ and $f(t)$ are both monic. Then, using an earlier result: $m_{\tau}(t) = f(t) = (t - \lambda_1) \cdots (t - \lambda_C)$ as required. \square
	are both moric.
	Then, using an earlier result: M=(t) = f(t) = (t-\lambda,) \(\cdots (t-\lambda_c)\)
	as regured. I
	Examples
	Examples Let $A = \begin{pmatrix} 25 \\ 01 \end{pmatrix}$, then $ch_A(t) = (t-1)(t-2)$.
	So, only one choice for minimal polynomial, $m_A(t)$. $m_A(t) = (t-1)(t-2)$
	$m_A(t) = (t-1)(t-2)$
	Since ma(t) contains only linear factors, we conclude that A is diagonalisable.
	conclude that A is diagonalizable.
	· Let B = [25] ch.(t)=(t-2)2
	• Let $B = \begin{pmatrix} 25 \\ 02 \end{pmatrix}$, $ch_{A}(t) = (t-2)^{2}$
	Choices for $M_B(t) = t - 2$, $(t - 2)^2$ $(B - 2I) = (05) \neq (00)$ (00) (00)
	$(B-2I)=(05)\neq(00)$
	$(0.0) (0.0) = (0.0) = (0.0)^{2}$
	$ (B-2I)^{2} = (05)(05) = (00) So M_{B}(t) = (b-2)^{2} $
	Since there is a multiplicity of 2 in ma(t),
	Since there is a multiplicity of 2 in mg(t), B is not diagonalisable.
0	

2201 25-11-16 Let's now see two examples involving Jordan normal Example:

Consider the (complex) linear map $T: C^3 \mapsto C^3$, where $T(x_1) = [5x_1 + 2x_2 + 4x_3]$ $\begin{bmatrix} x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 5x_2 + 3x_3 \\ 5x_3 \end{bmatrix}$ Find a Tordan basis for T, and the corresponding Tordan normal form. Consider the standard basis &= {(0), (0), (0)} Then $[T]_{\xi}^{\xi} = 524$ [053]Then we can use $[T]_{\xi}^{\xi}$ to find the characteristic and minimal polynomials of T: $ch_{\tau}(t) = det(t I_3 - [T]_{\xi}^{\xi}) = (t-5)^3$ Possible choices for m+(t): (t-5), (t-5)2, (t-5)3. $\begin{bmatrix} T \end{bmatrix}_{\varepsilon}^{\varepsilon} - 5T = \begin{pmatrix} 0 & 2 & 4 \\ 0 & 0 & 3 \end{pmatrix} \neq 0$ $\left(\left[T\right]_{\varepsilon}^{\varepsilon} - 5T\right)^{2} = \begin{pmatrix} 0 & 0 & 6 \\ 0 & 0 & 0 \end{pmatrix} \neq 0$ $([T]_{\varepsilon}^{\varepsilon} - 5T)^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \Rightarrow m_{\tau}(t) = (t-5)^{3}$ (y it's the only option left, no need to calcutate)Since $m_{\tau}(t) = (t-5)^{[3]}$, we must go "up to" $V_3(5)$ to find enough vectors for a pre-Jordan or Jordan Let's determine V,(5), V2(5), V3(5):

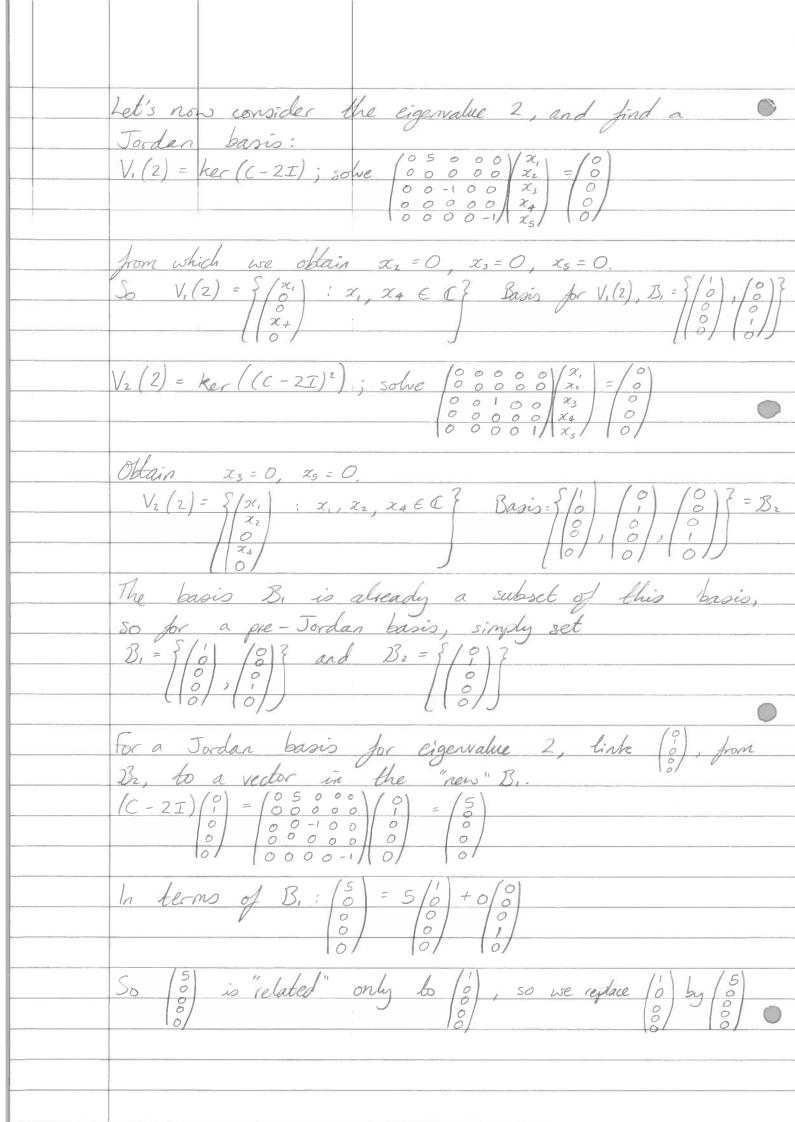
 $V_{1}(5) = ker(T-5I)$ To find this, solve $([T]_{F}^{2} - 5I)x = 0$, i.e. $(003)_{x_{2}}^{x_{1}} = (0)_{000}^{x_{2}}$ We obtain $2x_1 + 4x_3 = 0$, $x_5 = 0$, 0 = 0, so $x_3 = 0 \Rightarrow x_2 = 0$ (x, is a free variable) So $V_{i}(5) = \begin{cases} x_{i} \\ 0 \end{cases} : x_{i} \in \mathbb{C}$ Basis: $\begin{cases} x_{i} \\ 0 \end{cases}$ For $V_2(5)$, solve $([T]_{\varepsilon}^{\varepsilon} - 5I)^2 x = 0$, i.e. $(\begin{array}{c} 0 & 0 & 6 \\ 0 & 0 & 0 \\ \end{array}) \begin{vmatrix} \chi_1 \\ \chi_2 \end{vmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 & 0 \\ \end{array}) \begin{vmatrix} \chi_1 \\ \chi_2 \end{vmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \end{array}$ So we obtain $6x_3 = 0$, 0 = 0, 0 = 0, i.e. $x_3 = 0$ $(\alpha_1, x_2 \text{ are free})$ $S_{0} \quad V_{2}(5) = \begin{cases} x_{1} \\ 0 \end{cases} = \chi_{1} \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \chi_{2} \begin{pmatrix} 0 \\ 0 \end{pmatrix} : \chi_{1}, \chi_{2} \in \mathbb{C} \end{cases}, \quad S_{0} : S_{0$ For a pre-Joxdan basis we require a basis

3, v Bz such that 3, is a basis for V, (5),

B, v Bz " " Vz (5).

Here (2) already appears in \(\begin{pmatrix} \(\cdot \end{pmatrix} \), (0) \(\cdot \end{pmatrix} \), so no

busis of V, (5) need to "exchange".


The may simply set $B_1 = \{0\}$, $B_2 = \{0\}$? for $V_3(5)$, solve $([T]_{\varepsilon}^{\varepsilon} - 5T)_{x=0}^3$, i.e. $(000)_{x_1}^{(x_1)} = (0)_{000}^{(x_2)}$ Here, x_1, x_2, x_3 are all free: $V_3(5) = C^3 = \begin{cases} \binom{x_1}{x_2} : x_1, x_2, x_3 \in C \end{cases}$ Basis $\binom{1}{0}, \binom{0}{0}, \binom{0}{0}$ A pie-Jordan basis is a basis B, v Br v B3 for V3(5) such that B, is a basis for V, (5), B, v Be is a basis

MA7H 2201	
25-11-16	
0	for V2(5) and B10B20B3 is a basis for V3(5).
	The elements in the B., B. found above already
-	appear in our basis for V3(5), so simply choose
	The elements in the B., B. found above already appear in our basis for V3(5), so simply choose $3:=\{0\}$
	Pre-Jordan basis: $B_1 \cup B_2 \cup B_3$ with $B_1 = \{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \}$, $B_2 = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$, $B_3 = \{ \begin{pmatrix} 0 \\ 0 \end{pmatrix} \}$
	$((3))' \qquad ((6)) \qquad ((9))$
	Let's now find a Jordan basis by creating a link going from the "top level", B, dow to the "bottom level", B, for each vector in the "top level"
	link going from the "top level", B. dow to the
	bottom level, Di, got each vector in the top lever.
	Here there is only one vector in B: (8)
F_1	$([T]_{\varepsilon}^{\varepsilon} - 5I)/0 = \begin{pmatrix} 0 & 2 & 4 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} \text{want this to appear}$ $(0 & 0 & 0 & 1) (0) \text{in a basis for } V_{2}(5)$
	Existing basis for V2(5) B. v B.: {(0), (0)}
	and $\begin{vmatrix} 4 \\ 3 \end{vmatrix} = 4 \begin{pmatrix} 1 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.
	107
	So (3) is "related" to both (0), (0).
	11 11- 1 - 1 U 0.1 = 4 (F-78 E-7VO) (4)
	to ansers in the cont of the service
	At this stage of the link, we want $([T]_{\varepsilon}^{\varepsilon} - 5I)(0) = (\frac{4}{3})$ to appear in the 'ren' B_2 , so we exchange $(\frac{4}{3})$ for one of the "related" vectors in $B_2 = \{(\frac{1}{3})\}$.
	So, exchange (3) for (1).
	This leads to B_3 ($\stackrel{\circ}{\circ}$) 2 linked B_2 ($\stackrel{\circ}{\circ}$) 2? B_3 ($\stackrel{\circ}{\circ}$) 2?
	\mathcal{B}_{2} $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$?
	<i>S</i> ₁ (:)

To find a linked vector in the "rew" B_1 , compute $(I + J_{\varepsilon}^{\varepsilon} - 5I) \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 4 & 4 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$ In terms of B. = { (6) } (6) = 6 (6) So we replace (o) in B, by (6) Now we have B_3 ($\frac{6}{2}$) girled B_1 ($\frac{4}{5}$) Circled B_1 ($\frac{6}{5}$) No more vectors to "link" so can now write down the Jordan basis, by writing the "linked" vectors in order, from B, to B: This leads to the Jordan basis, \$\(\begin{picture} 6 \\ 0 \end{picture}, \(\begin{picture} 6 \\ 0 \end{picture}, \\ 0 \end{picture}, \(\begin{picture} 6 \\ 0 \end{picture}, \\ 0 Then, $[-7]_8^8$ is in Jordan normal form: $[-7]_8^8$ is in Jordan normal form: $[-7]_8^6$ is in Jordan normal form: $T\begin{pmatrix} 4\\3 \end{pmatrix} = \begin{pmatrix} 26\\15 \end{pmatrix} = 1\begin{pmatrix} 6\\0 \end{pmatrix} + 5\begin{pmatrix} 4\\3 \end{pmatrix} + 0\begin{pmatrix} 0\\0 \end{pmatrix}$ $T\begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \end{pmatrix} = 0\begin{pmatrix} 6 \\ 0 \end{pmatrix} + 1\begin{pmatrix} 4 \\ 4 \end{pmatrix} + 5\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ in Jordan normal form, as required.

2201 25-11-16 Example Consider C= Find a Jordan basis for C, and, hence, an invertible matrix P, and a matrix I in Jordan normal form, such that P'CP=J. Note: This particular matrix agreers in exercise 2 of Sample Exercises 3'; we will use some of the computations from the relevant solution to save time. from that exercise: che(t)=(t-1)2(t-2)3 We obtain x, + 5x=0, x=0, x+=0 $V_{1}(1) = \begin{cases} 6 \\ 0 \end{cases} : \chi_{3}, \chi_{5} \in \mathbb{C}$ $\begin{cases} 8 \\ 0 \\ \chi_{5} \end{cases}$ $\begin{cases} 6 \\ 0 \\ 0 \end{cases}, \begin{cases} 6 \\ 0 \\ 0 \end{cases}$ This is already a pre-Jordan and Jordan basis for the eigenvalue 1. There is no need to go to V2(1), V3(1), ..., and then construct "linked" sets of vectors.

MATH

2201 25-11-16 Out "new" B_1 is $S_0 > 0$, $S_2 = S_0 > 0$.

Linked then P'CP = [0,000], a matrix in Jordan

Jordan

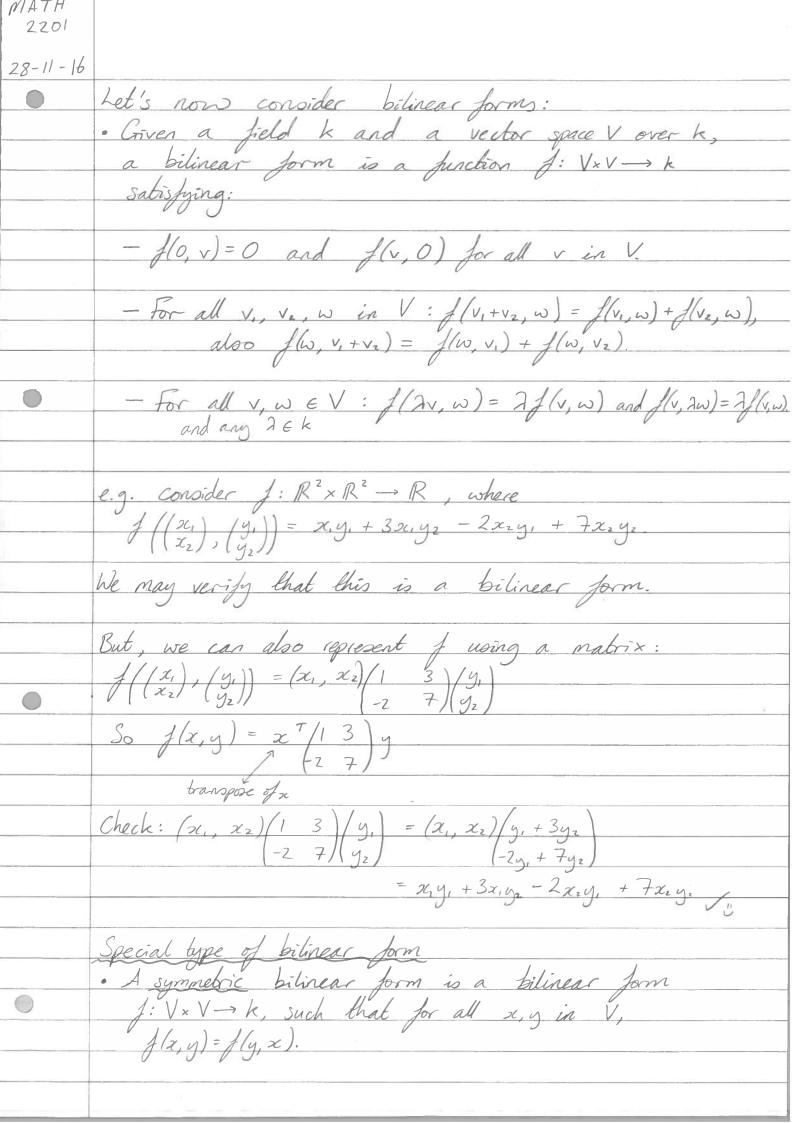
Jordan

Jordan

Jordan We can often determine the Jordan normal form of a linear map using some key data:

Suggood, for a linear map T: $ch_{\tau}(t) = (t-5)^4$ Then the Jordan normal form is $\begin{bmatrix} 5 & 2 & 0 & 0 \\ 0 & 0 & 5 & 2 \\ 0 & 0 & 0 & 5 \end{bmatrix}$ where '?' is O or I in each case. If m=(t)=(t-5), all 4 vectors are in B, and the matrix is diagonalisable. If m_(t)=(t-5)4, the 4 vectors appear in B, B2, B3, B4 then, we have a Jordan block of size 4x4: In general, the multiplicity of an eigenvalue of in the minimal polynomial is the size of the largest block (there may be more than one such block). If $M_{\tau}(t) = (t-5)^3$, then the 4 vectors appear in B_1 , B_2 , B_3 , we obtain $\begin{bmatrix} 5 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix}$ for example.

Finally, if $m_{\tau}(t) = (t-5)^2$, then the 4 vectors are in 3 , 3 :	
B. \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A} \mathcal{A} \mathcal{A} \mathcal{B} \mathcal{A}	


2201 28-11-16 Chapter 3 - Linear and bilinear forms A form is a function on one or more vector spaces over a field k that "returns" values in k itself. Let k be a field and V a (finite dimensional) vector space over k. A linear form over k is a linear map $f: V \mapsto k$. So f(o) = 0, $\forall v_1, v_2 \in V: f(v_1 + v_2) = f(v_1) + f(v_2)$, $\forall v \in V$ and $\lambda \in k: f(\lambda v) = \lambda f(v)$. If V is a vector space over k, of dimension n say, then V is isomorphic to k" This leads to the standard (and, in fact, only) examples of linear forms: Example: Let k = R, and $V = R^2$, a linear form is a linear map $f: R^2 \mapsto R$. e.g. $f: R^2 \mapsto R$ where $f(x_1) = 3x$, -5x. Example: We can choose a basis of R^2 , in order to find a (1×2) matrix representing f:

e.g. f(3) = 3.3 - 5.1 = 4In terms of the standard basis $\mathcal{E} = \{(o), (?)\}$, the vector (3) satisfies (3) = 3(o) + 1(o), so (3) = (3).

MPANY

Suppose $f: k^n \rightarrow k$ is a linear form and $B = \{b_1, \dots, b_n\}$ is a basis for k^n . Then the natrix (of size $1 \times n$) representing f with respect to B is $\{f\}_B = \{f(b_1), f(b_2), \dots, f(b_n)\}$ (Just as for a vector v in k^2 , $[v]_B = (\lambda_1)$ where $v = \lambda_1 b_1 + ... + \lambda_n b_n$ In our example $f(x_1) = 3x_1 - 5x_2$. So f(1) = 3, f(9) = -5 and $[f]_{\epsilon} = (3, -5)$ Then, in terms of E; we can find f(v), where $v = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, using $[f]_{E}[v]_{E} = \begin{pmatrix} 3 \\ -5 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} = 4$. Note:

For a given linear form f, and vector v, the value of f(v) is the same independently of the basis we choose. e.g. consider the basis B = {(b), (!)} Then $v = {3 \choose 1} = 2 {b \choose 0} + 1 {b \choose 1}$ So $[V]_{3} = [\binom{3}{1}]_{R} = \binom{2}{1}$ Also f(0)=3 and f(1)=-2. So $[f]_{g}=(3,-2)$, and: $[f]_{g}[v]_{g}=(3,-2)(2)=4$.

Symmetric bilinear form corresponds to symmetric matrices: e.g. if $f(x,y) = f(x_1) / (y_1) = (x_1, x_2) / (1 2 / (y_1))$ $f(x,y) = x, y, + 2x, y_2 + 2x_2y_1 + 7x_2y_2$ $f(y,x) = y, x, + 2y, x_2 + 2y_2x_1 + 7y_2x_2$ equal So f is a symmetric bilinear form. To con reduce symmetric matrices, while still maintaining their relevance in a bilinear form, we apply pairs of row and (corresponding) column operations:

e.g. let's reduce (12) in such a way. But we cannot reduce (10) (say) over the real numbers (i2=-1).

2201 29-11-16 Duality on linear forms Suppose that V is a vectorspace over a field k. Then, the set of all associated linear forms is $V^* = \{ f : V \mapsto k ; f \text{ is linear } \}.$ Note V^* is also a vector space over k, where:

- for $f, g \in V^*$: $(f+q)(v) = f(v)+g(v) \quad \forall v \in V$ - for $f \in V^*$, $\lambda \in k$: $(\lambda f)(v) = \lambda (f(v)) \quad \forall v \in V$. $eg. \cdot (12)(x_1) + (1-5)(x_1) = (2-3)(x_1)$ $(x_2) + (1-5)(x_1) = (2-3)(x_1)$ where (12) + (1-5) = (2-3) $3\left(\frac{1}{2}\left(\frac{x_{1}}{x_{2}}\right)=\frac{3}{6}\left(\frac{3}{x_{1}}\right)$ $\frac{\lambda}{\lambda} = \frac{1}{2}\left(\frac{x_{1}}{x_{2}}\right)$ $\frac{\lambda}{\lambda} = \frac{1}{2}\left(\frac{x_{1}}{x_{2}}\right)$ We try to indicate a correspondence between V and V* (here, we assume that I has finite dimension, n say): Let Je, en be a basis for V. Consider the set { f., ..., for in V*, where f., ..., for are defined as follows $f_1(e_1) = 1$, $f_2(e_2) = 0$, $f_1(e_3) = 0$, ..., $f_1(e_n) = 0$ $f_2(e_1) = 0$, $f_2(e_2) = 1$, $f_2(e_3) = 0$, ..., $f_2(e_n) = 0$ $f_n(e_n) = 0, \qquad , f_n(e_{n-1}) = 0, f_n(e_n) = 1$ So $f_i(e_i) = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{if } i\neq j \end{cases}$ $= \delta_{ij}$

MATH

Example

Let k = R, $V = R^2$ Basis for $V: \{(1), (0)\}$ e, e_2 Then we should have f'(0)=1, $f'(0)=0 \Rightarrow f'$, is $(10)=e^T$ $f_2(1) = 0, f_2(0) = 1 \Rightarrow f_2 \text{ is } (01) = e_2^T$ The set {f, ..., fn} is a dual set, in V*, to the set {e, ..., en} in V. To show that V* is isomorphic to V, we show that, just as {e, ..., en} is a basis for V, Ef., ..., for is a basis for V*. If, for spand V*: Let's show this

Consider a general linear form, f: V -> k, and
a general vector v in V. Then, since {e,..., en} is
a basis for V: v = 2, e, + ... + 2, en for 2, ..., 2, Ek. Then $f(v) = f(\lambda, e, + ... + \lambda_n e_n)$ = $\lambda_1 f(e_1) + ... + \lambda_n f(e_n)$ by linearity of f. Set $a_n = f(e_n)$, $a_n = f(e_n)$ so that $f(v) = \lambda_n a_n + \dots + \lambda_n a_n$. We want to show that $f = a_n f_n + \dots + a_n f_n = \frac{1}{n}$ (a, f, + ... + anfn)(v) = a, f, (v) + ... + anfn(v) by linearity = a, f, (2, e, + ... + 2nen) + ... + anf, (2, e, + ... + 2nen) = a, (2, f, (e,)+, + 2 n f, (en)) + ... + a, (2, fole) + , + 2 n fole) $f_i(e_j) = \delta_{ij}$ $= a_1 \lambda_1 f_1(e_1) + a_2 \lambda_2 f_2(e_2) + \dots + a_n \lambda_n f_n(e_n)$ = 2, a, + ... + 2, an = F(v)

MATH 2201 29-11-16 So, for all $v \in V: f(v) = (a_1f_1 + ... + a_nf_n)(v)$ i.e. $f = a_1f_1 + ... + a_nf_n$ So $f_1, ..., f_n$ spans V^* Suppose that, for $a_1, \dots, a_n \in k$: $a_1f_1 + \dots + a_nf_n = 0$. i.e. $(a_1f_1 + \dots + a_nf_n)(v) = 0$ for each v in V. Set v=e,: (a,f,+...+anfn)(e,)=0 So a, f.(e,)+...+ anfa(e,)=0 ie. a, 1 + a2 · 0 + ... + an · 0 = 0 In general, set $v = e_i$: $(a_i f_i + ... + a_n f_n)(e_i) = 0$ Then $a_i f_i(e_i) + ... + a_i f_i(e_i) + ... + a_n f_n(e_i) = 0$ Then $a_i = 0$. This works for each i = 1, ..., n. So $a, f, + ... + a_n f_n = 0 \Rightarrow a, = 0, ..., a_n = 0$ Thus $\{f_1, ..., f_n\}$ is a linearly independent set. This leads to the result that, if V is a finite dimensional vector space over a field k, then $V \cong V^*$. Back to bilinear forms
How do we represent bilinear forms using matrices:

Given a vector space V over a field, with a basis $B = \{b, ..., b_n\}$ for V, the matrix representing a bilinear form $f: V \times V \longrightarrow k$ with respect to B is $[f]_{B}^{B} = [f]_{B} = \{f(b_{1}, b_{1}), f(b_{1}, b_{2}), \dots, f(b_{n}, b_{n})\}$ (f(bn, b1) f(bn, b2) --- f(bn, bn) /.

Suppose k=R, $V=R^2$, and let $f: R^2 \times R^2 \longrightarrow R$ be defined by $\begin{cases} |y_1| & = x, y_1 - x, y_2 + 2x_2y_1 + 5y_1y_2 \\ (x_2), (y_2) & = x_1 + 2x_2y_1 + 5y_1y_2 \end{cases}$ Let's find [f], the matrix of f with respect to the basis E, where E = {('o), (9)}. Then fle, e,) = f(1) (1) = 1 Similarly f(e, ez) = -1, f(ez, e,) = 2, f(ez, ez) = 5 So $\begin{bmatrix} f \end{bmatrix}_{\varepsilon} = \begin{pmatrix} 1 & -1 \end{pmatrix} = \begin{pmatrix} f(e_1, e_2) & f(e_2, e_2) \end{pmatrix}$ $\begin{pmatrix} 2 & 5 \end{pmatrix} = \begin{pmatrix} f(e_2, e_2) & f(e_2, e_2) \end{pmatrix}$

2201 02-12-16 From last time: Bilinear form $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ $\int \left(\frac{\chi_1}{\chi_2}, \frac{g_1}{g_2} \right) = \chi_1 y_1 - \chi_1 y_2 + 2\chi_2 y_1 + 5\chi_2 y_1$ With respect to standard basis & = [(i), (i)] $[f]_{\varepsilon}^{\varepsilon} = [f]_{\varepsilon} = \{f(e_1, e_1) \mid f(e_1, e_2)\} = [1 - 1]$ $\{(e_1, e_1) \mid f(e_1, e_2)\} = [2 - 5].$ Let = 2, with respect to E: (2) = 2(1) + 1(0), So $\begin{bmatrix} v \end{bmatrix}_{\varepsilon} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$. Similarly, if w = (0), then [w] = (0). In this case $f(v, w) = f(\binom{2}{1}, \binom{0}{1}) = (2)(0) - (2)(1) + 2(1)(0) + 5(1)(3)$ Also $([v]_{\varepsilon})^{T}[f]_{\varepsilon}^{\varepsilon}[w]_{\varepsilon} = (2, 1)(1 - 1)(0) = (4, 3)(0) = 3$ So $f(v, \omega) = ([v]_{\varepsilon})^{T} [j]_{\varepsilon}^{\varepsilon} [\omega]_{\varepsilon}^{\omega}$ In fact, this holds for any suitable basis. Consider the basis B = {('), (')} Find "change of basis matrices" between E and B. Express B in terms of E, using matrix

[Id] E Id('o) = ('o) = 1('o) + 0(°o) Id('i) = ('i) = 1('o) + 1(°o)So $[Id]_{B}^{\varepsilon} = (1 \ 1)$

MATH

Mea, express
$$\mathcal{E}$$
 is terms of \mathcal{B} :

(b) = 1 (b) + 0 (i)

(c) = -1 (b) + 1 (i)

So $[Td]_{\ell}^{3} \cdot (1-1)$

$$V = (1-1) \cdot ($$

MATH 2201	
02-11-16	
	In general:
	Proposition
	Let k be a field, and V a vector space of
	dimension a over k, with a basis B = {b,, b, }.
	Then, a bilinear form $f: V \times V \to k$ is uniquely determined by $C_1J_3^3$; for all vectors v, ω in $V:$
	determined by []; for all vectors v, w in V:
	f(v,w) = ([v]g) T [f]g [w]g
	Proof:
	Suppose that, in terms of B:
	$V=x,b,++x_nb_n$ for $x_1,,x_n\in k$
	$w = y_1b_1 + + y_nb_n$ for $y_1,, y_n \in k$
	7 57 (2) 57 (10) 5123 (10) 11
	Then $L \vee J_g = \{x_i\}$, $[\omega]_g = \{g_i\}$, $[f]_g = \{f(b_i, b_i) - \dots - f(b_i, b_n)\}$
	Then $[v]_g = \langle x_i \rangle$, $[w]_g = \langle y_i \rangle$, $[f]_g^3 = \langle f(b_i, b_i) - \cdots - f(b_i, b_n) \rangle$ $\langle x_n \rangle$ $\langle y_n \rangle$ $\langle f(b_n, b_i) - \cdots - f(b_n, b_n) \rangle$
	So $([v]_{\mathcal{D}})^T [f]_{\mathcal{B}}^{\mathcal{B}} [w]_{\mathcal{B}} = (x_1, \dots, x_n) [f(b_1, b_1) \dots f(b_n, b_n)] / y_1$
	So $([v]_g)^T [f]_g^s [w]_g = (x_1, \dots, x_n) (f(b_1, b_1) - \dots f(b_n, b_n) / y_1)$ $f(b_n, b_1) - \dots f(b_n, b_n) / y_n$
	$= (x, f(b_1, b_1) + + x_n f(b_n, b_1),, x_i f(b_1, b_n) + + x_n f(b_n, b_1)) / y_i)$
	$= \chi, y, f(b_1, b_1) + \dots + \chi_n y, f(b_n, b_n)$
	$+ x, yn f(b_1, b_n) + \dots + xn yn f(b_n, b_n)$
	$=\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{i}y_{j}f(b_{i},b_{j})$
84.	
	Also
	$f(v, \omega) = f(x, b_1 + \dots + x_n b_n, \omega)$
	= $\int (x,b,\omega) + + \int (x_n b_n, \omega) $ using definition of a
	$f(v, \omega) = f(x, b, + + x_n b_n, \omega)$ $= f(x, b, \omega) + + f(x_n b_n, \omega) \text{fusing definition of a}$ $= x_1 f(b_1, \omega) + + x_n f(b_n, \omega) \text{bilinear map.}$

So $f(v, w) = x, f(b_1, y, b_1 + ... + ynb_n) + ... + x_n f(b_n, y, b_1 + ... + ynb_n)$ $= x, f(b_1, y, b_1) + ... + x, f(b_1, ynb_n)$ + $x_n f(b_n, y_1 b_1) + \dots + x_n f(b_n, y_n b_n)$ = $x_1 y_1 f(b_1, b_1) + \dots + x_n y_n f(b_1, b_n) + \dots$ + $x_n y_1 f(b_n, b_1) + \dots + x_n y_n f(b_n, b_n)$ $= \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i y_j f(b_i, b_j)$ So f(v,w) = ([v]z) [f]z [w]z [Consequence of this:

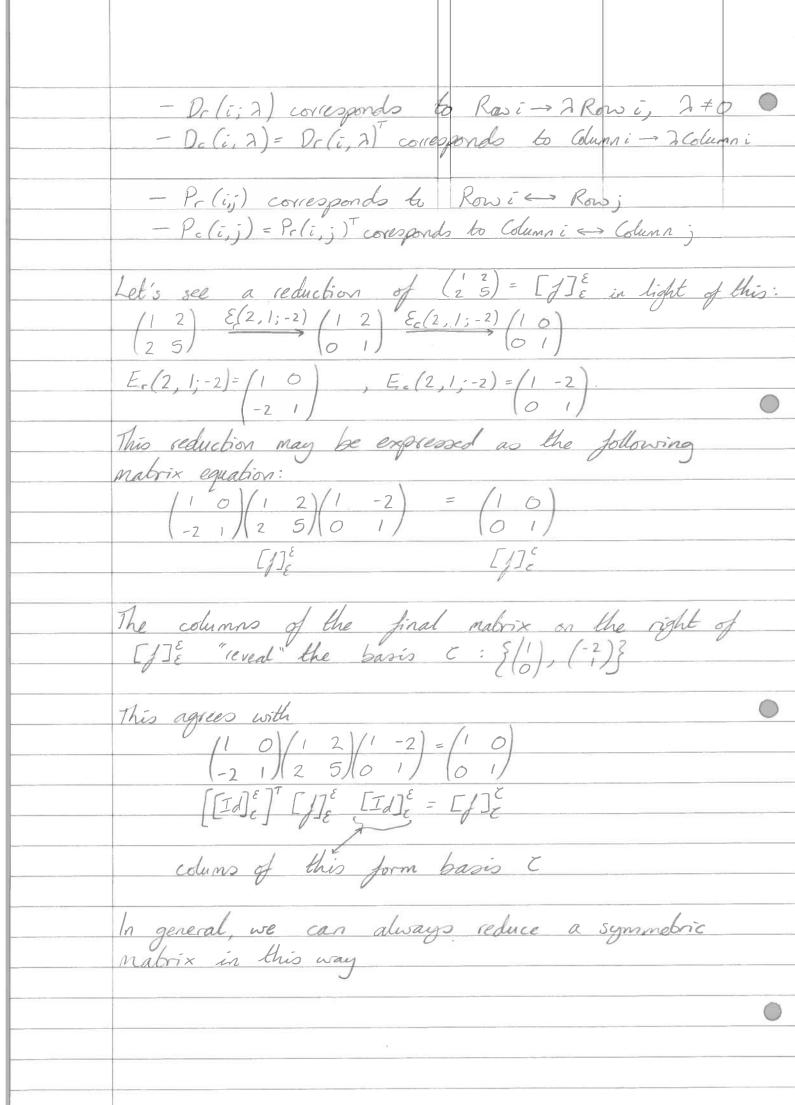
For any two bases, & and C, of V: $\int (v, \omega) = ([v]_B)^T [j]_B^B [\omega]_B$ f(v, w) = ([v]e) T [f] E [w]e So, as in the earlier example: $([V]_{\mathcal{B}})^{\mathsf{T}}[f]_{\mathcal{B}}^{\mathcal{B}}[W]_{\mathcal{B}} = ([V]_{\mathcal{E}})^{\mathsf{T}}[f]_{\mathcal{E}}^{\mathcal{E}}[W]_{\mathcal{E}} \quad (\Re)$ This allows us to find a formula linking $[f]_{\epsilon}^{\epsilon}$ and $[f]_{3}^{8}$. [w] = [Id] [w] = [V] = [Id] [V] $([v]_{c})^{T} [f]_{c}^{z} [w]_{z} = ([v]_{g})^{T} [f]_{g}^{g} [w]_{z}$ $= ([Id]_{c}^{g} [v]_{z})^{T} [f]_{g}^{g} [Id]_{c}^{g} [w]_{z}$ = ([v]r) ([Id] 8) [f] B [Id] 8 [w] E = ([V]z)T[j]z[W]z So [f] = MT [f] 3 M where M= [Id] 2 is an invertible matrix.

MATH 2201	
02-12-16	
	We say that two matrices A, B representing
	bilinear forms, are equivalent if there exists an invertible matrix M such that
	B= MTAM.
	E. xample
	Returing to the bilinear form from earlier:
	Returing to the bilinear form from earlier: $[f]_{\varepsilon}^{\varepsilon} = (1 - 1), [f]_{\overline{s}}^{\overline{s}} = (1 \ 0)$ $(2 \ 5), (3 \ 7)$
	$\begin{bmatrix} Id \end{bmatrix}_{\xi}^{3} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$
	Then $([Id]_{\varepsilon}^{8})^{T}[f]_{B}^{3}[Id]_{\varepsilon}^{8} = (10)(10)(1-1)$
	$= (1 \ 0)(1 \ -1) = (1 \ -1) = [f]_{\varepsilon}^{\varepsilon}$ $(-1 \ 1)(3 \ 4)(2 \ 5)$
	(-1 1/13 4/ (2 5/
- 5-11-313 S	
	bilinear form satisfying $f(v, w) = f(w, v) + v, w$
	- brunear form satisfying f(v, w)= f(w, v) + v, w.
	eg. the bilinear form 1: R2 × R2 -> R gives by
	eg. the bilinear form $f: \mathbb{R}^2 \times \mathbb{R}^2 \longrightarrow \mathbb{R}$ given by $f(x_1), (y_1) = x, y, + 2x, y_2 + 2x_2y, + 5x_2y_2$ is symmetric:
	is symmetric:
	$f((y_1), (x_1)) = y_1 x_1 + 2y_1 x_2 + 2y_2 x_1 + 5y_2 x_2$
	$\frac{f((y_1),(x_1))}{f((y_2),(x_2))} = y_1 x_1 + 2y_1 x_2 + 2y_2 x_1 + 5y_2 x_2$ $= \frac{f((x_1),(y_1))}{(x_2),(y_1)}$
	Note:
	Surveyor diliner 1 as a respect to subject
	matrices ea here $\Gamma 11^{\epsilon} = 112$ to bein $\epsilon = 5/11/212$
	Symmetric bilinear forms correspond to symmetric matrices e.g. here $[f]_{\varepsilon}^{\varepsilon} = [1\ 2]$ for basis $\varepsilon = [1](0)$
	a symmetric matrix: $([f]_{\varepsilon}^{\varepsilon})^{T} = [f]_{\varepsilon}^{\varepsilon}$ or $([f]_{\varepsilon}^{\varepsilon})_{ji} = ([f]_{\varepsilon}^{\varepsilon})_{ij}$ for all i, j

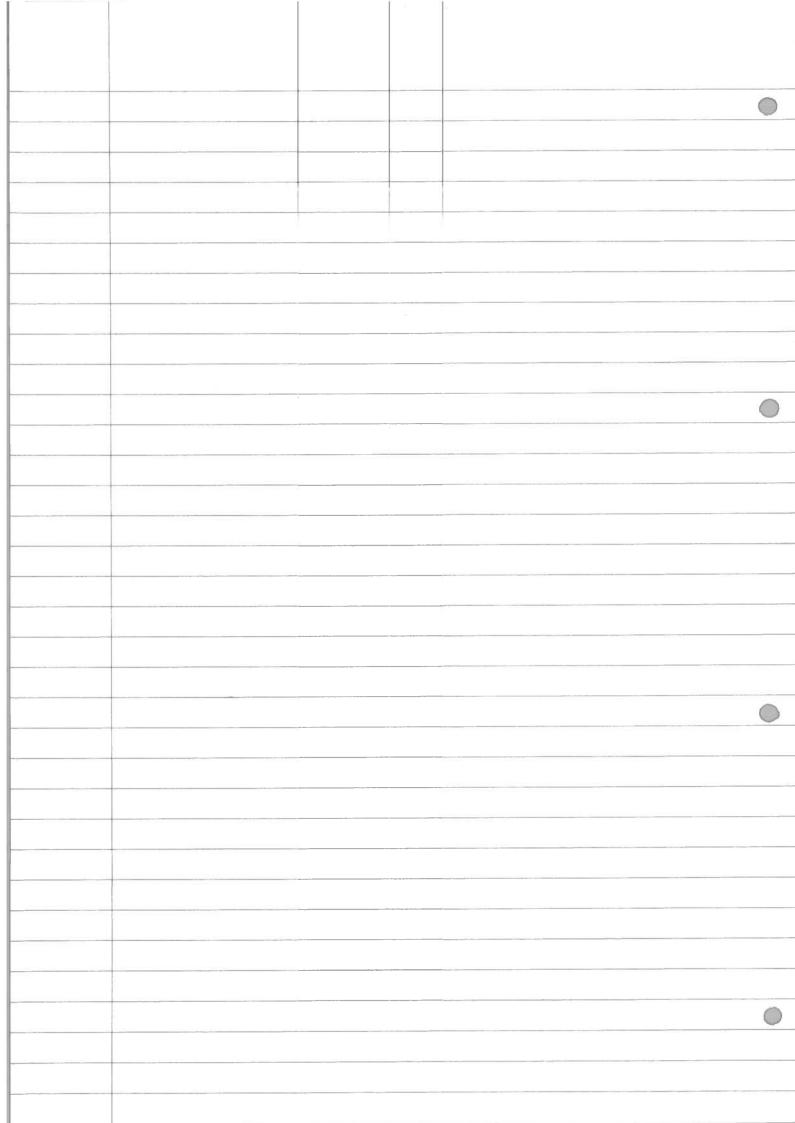
To each symmetric bilinear form $f: V \times V \longrightarrow k$ we can associate a quadratic form $q: V \longrightarrow k$ where for v in V: q(v) = f(v, v). For example: to the bilinear form $j: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$,
from above use associate the following quadratic form: $q: \mathbb{R}^2 \to \mathbb{R}$ where $g(x_1) = f(x_1), (x_2) = x_1^2 + 2x_1x_2 + 2x_2x_1 + 5x_2^2$ So $q(x_1) = x_1^2 + 4x_1x_2 + 5x_2^2$ or $g(x_1) = (x_1, x_2)(1 2 | x_1)$ $(2 5)(x_2)$ Quadratic forms correspond to ways of measuring distances, e.g. a quadratic form $q: \mathbb{R}^2 \mapsto \mathbb{R}$ corresponding to the matrix $\binom{10}{0!}$ is defined by: $q\binom{x_1}{x_2} = (x, x_2)\binom{10}{0!}\binom{x_1}{x_2} = x,^2 + x_2^2$ while bilinear forms correspond to ways of defining "inner products" (dot products): $\frac{f(|x_1|, |y_1|) = (x_1, x_1)(10)(y_1) = x_1y_1 + x_2y_2}{(x_2)(y_2)}$ The same quadratic form can be obtained from more than one bitinear form:

e.g. $(x, x_2)/1 \ge |x_1| = x_1^2 + 4x_1x_2 + 5x_2^2$ from above but also $(x_1, x_2)/1 + (x_1) = x_1^2 + 4x_1x_2 + 5x_2^2$ but it corresponds to a unique symmetric bilinear form.

MATH	
2201	
02-12-16	
	Cover a bilinear forma filly Vin la car dates a
	Given a bilinear form $f: V \times V \rightarrow k$, can define a quadratic form $q: V \rightarrow k$ on all values of V using:
	quadratic form q: V -> k on all values of V using:
	q(v) = f(v, v).
	But, gives a quadratic form q: V - k, does this,
	on its own, completely define a proticular symmetric bilinear form $f: V \times V \mapsto k$?
	symmetric bilinear form f: V × V -> k?
	7
5	For all V, w & V: by to define $f(v, w)$ in terms
	of 9.
	Consider q(v+w)= f(v+w, v+w).
	= f(v, v+w) + f(w, v+w)
	$= \int (v,v) + \int (v,\omega) + \int (w,v) + \int (w,\omega)$
	$= f(v, v) + 2f(v, \omega) + f(\omega, \omega)$
	(since f is assumed to be symmetric)
	$= q(\nu) + 2f(\nu, \omega) + q(\omega)$
	So d(v v) = 1 (a(v+) - a(v))
	So $f(v, w) = \frac{1}{2} (q(v+w) - q(v) - q(w))$
	The delices Mund (Hund) is formed to
	This defines $f(v, w)$ ($\forall v, w$) in terms of q .
	11
	This works in any field k, as long as 2 is invertible (so we can write 'i').
	invertible (so we can write ?).
	ce it works in any field where 2 +0.
	Consider Fi= {0,1} (field with 2 elements, where 1+1=0.
	Then the two natrices (10) and (11) lead to
	the same quadratic form:
	the same quadratic form:
	and $(x_1, x_2)(1/2)(x_1) = x_1^2 + (1+1)x_1x_2 + x_2^2$
	$=\chi_1^2+\chi_2^2$


Criver a symmetric bilinear form $j: V \times V \rightarrow k$ identify a basis B of V such that the matrix C_1J_3 is a diagonal matrix. Suppose that $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$, where $[f]_{\varepsilon} = (12)$. where $\varepsilon = \{1, 1\}$ (0). Now consider the basis 3 = {(1), (-4)} Then $[f]_8^8 = (f(b_1,b_1), f(b_2,b_2)) = (1 0)$ $(b_1,b_2) = (0 4)$ where e.g. $f(b_1, b_2) = b_1^T [f]_{\epsilon}^{\epsilon} b_2 = (1, 0)/(1, 2)/(4) = (1, 2)/(4) = 0$ So with respect to B: [] is a diagonal matrix. Here $f(b_1,b_1)=1$, $f(b_1,b_2)=0$, $f(b_2,b_3)=0$, $f(b_1,b_2)=4$. This is an example of an orthogonal basis: Vectors v, w are orthogonal with respect to a symmetric bilinear form f if f(v, w) = 0. A set {v, ..., vn} is orthogonal with respect to j if $f(v_i, v_j) = 0$ for all i, j, i + j.

MATH 2201 05-12-16 Previously on MATH 2201


Considered symmetric bilinear form $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ given by $f(x_1)(y_1) = x, y_2 + 2xy_1 + 2xy_1 + 5x_2y_2$ w.c.t. $\varepsilon = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \end{pmatrix} \right\}, \quad \left[f \right]_{\varepsilon}^{\varepsilon} = \left[1 \ 2 \right]$ $\omega. r. t = 3 = \{(1), (-4)\}, [4]^3 = (10)$ Note that w.r.t. $\{(1), (-2)\} = \mathcal{E}, [f]_{\epsilon}^{\epsilon} = \{10\}$ Today: Sequel to row reduction from MATH 2201. We will use double operations: row / column. - Er(i,j;) is the matrix corresponding to Rowi -> Rowi + > Rowj Er(i,j; 7) is the same as the identity matrix, but with an entry of 2 in row i, column; eg. on a 2×2 matrix: Er(1,2;2)=(12) Multiplying on the left by $E_r(1,2;2)$ "does" the corresponding operation: $\begin{pmatrix} 1 & 2 & | 1 & 2 \\ 0 & | & 3 & 4 \end{pmatrix} = \begin{pmatrix} 7 & 10 \\ 3 & 4 \end{pmatrix}$ To obtain the corresponding column operation, we multiply by the transpose matrix on the right:

(12/12) = 15 2)

(34/01) (11 4) - Multiplying by $\bar{\mathcal{L}}_c(\bar{\imath},\bar{\jmath};\lambda) = \bar{\mathcal{L}}_r(\bar{\imath},\bar{\jmath};\lambda)^{\mathsf{T}}$ on the right performs the corresponding column operation.

MATH 2201	
05-12-16	
	Examples
	1). $(1 \ 2) \stackrel{\mathcal{E}_{c}(2,1;-2)}{(2 \ 4)} (1 \ 2) \stackrel{\mathcal{E}_{c}(2,1;-2)}{(0 \ 0)} (1 \ 0)$
	most reduced form
	2). $(1 \ 2) \ \mathcal{E}_{c}(2,1;-2) \ (1 \ 2) \ \mathcal{E}_{c}(2,1;-2) \ (1 \ 0)$
3/5/17/4	2). $(1 \ 2) \ \mathcal{E}_{r}(2,1;-2) (1 \ 2) \ \mathcal{E}_{c}(2,1;-2) (1 \ 0)$ $(2 \ 3) \ (0 \ -1) \ (0 \ -1)$
-	nost reduced form over R
	But over C we can do the following:
	But over C we can do the following: $ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} $ $ \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix} $
	which is the most reduced
	form over C.
n'	3), (01)
	(10)
	Try permutations:
	$(01) g_{r}(1,2) (10) g_{e}(1,2) (01)$
	Instead use 'E' type operations
	Instead use E' type operations $-(0) \frac{E_{c}(1,2;\frac{1}{2})}{1} \frac{1}{2} \frac{E_{c}(1,2;\frac{1}{2})}{1} \frac{1}{1}$
	(10) (10)
0	

M/ATH 2201 06-12-16 From yestersay:

Examples of reducing matrices corresponding to symmetric bilinear forms or quadratic forms. In general, we say that two matrices, A, B say, are congruent if there exists an invertible matrix M such that B = MTAM. For example, any two matrices representing the same bilinear form are congruent.

[]3 = ([Id]3) [J] [Id]3 Two quadratic forms are equivalent if we can obtain one from the other using a change of e.g. as we have seen

(1 2) reduces to (10)

(2 3) So the bilinear form given by $f((x_1), (y_1)) = x_1y_2 + 2x_1y_2 + 2x_2y_3 + 2x_2y_3$ is equivalent to $g/(x_1), (y_1) = x_1y_1 - x_2y_2$ OR, equivalently, the quadratic form given by $q(x_1) = x_1^2 + 4x_1x_2 + 3x^2$ is equivalent to the form given by $q'(x_1) = x_1^2 - x_2^2$ Similarly: (12) reduces to (10) So $q: \mathbb{R}^2 \mapsto \mathbb{R}$, $q(\frac{x_1}{x_2}) = x_1^2 + 4x_1 x_2 + 4x_2^2$ is equivalent to $q': \mathbb{R}^2 \mapsto \mathbb{R}$, $q'(\frac{x_1}{x_2}) = x_1^2$ And (12) reduces to (10)

So $q: \mathbb{R}^2 \mapsto \mathbb{R}$, $q(\frac{x_1}{x_2}) = x_1^2 + 4x_1x_2 + 5x_2^2$ is equivalent to $q': \mathbb{R}^2 \mapsto \mathbb{R}$, $q'(\frac{x_1}{x_2}) = x_1^2 + x_2^2$ In general, given a quadratic form $g: \mathbb{R}^2 \rightarrow \mathbb{R}$ there is a basis $g: \mathbb{R}^2 \rightarrow \mathbb{R}$ $[g]_{g: \mathbb{R}^2}^3 = [g]_{g: \mathbb{R}^2} = [g: \mathbb{R}^2]_{g: \mathbb{R}^2}$ $[g: \mathbb{R}^2 \rightarrow \mathbb{R}$ $[g: \mathbb{R}^2 \rightarrow \mathbb{R}]$ $[g: \mathbb$ where $SI_r = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Size = $r \times r$ $-I_{s} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$ $5ize = s \times s$ $O_{n-c-s} = \{O\}$ $Size = \{n-r-s\} = \{n-r-s\}$ This is the real canonical form of q.
The number of nonzero rows is the rank of q.
Here rank (q) = r+s. Suppose $q: C^n \rightarrow C$ is a complex quadratic form. Then there is a basis B of C^n such that $[q]_3^3 = [q]_8 = [I_a]_{0,-a} \text{ where } rank(q) = a$ This is the complex cannonical form of 9

2201	
06-12-16	
	Example, of determining canonical domo one
	Examples of determining canonical forms over R and C, and corresponding bases:
	The corresponding sasts.
	Consider the bilinear form $f: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ given by $f(x_1 /y_1) = x, y_2 + x_2y_1$
	given by {/x, /y,) = x, y2 + x2 y,
	Then $\mathbb{E} f_{\mathcal{E}} = \{0\}$, $\mathcal{E} = \{(1), (0)\}$
	Appriated analogic form: a: R2 ND a(x) = 2 xx
	Associated quadratic form: $q: \mathbb{R}^2 \mapsto \mathbb{R}$, $q(x_1) = 2x_1x_2$ (we also consider corresponding forms over C).
	Joines over C.J.
	Reduction of [1] = [f] " using "double operations"
	Reduction of $[f]_{\varepsilon} = [f]_{\varepsilon}^{\varepsilon}$ using "double operations" $[0]_{\varepsilon} = [f]_{\varepsilon}^{\varepsilon} = [f]_{\varepsilon}^{\varepsilon$
2	
	$\frac{\mathcal{E}_{r}(2,1;-1)(11)}{(0-1)} \frac{\mathcal{E}_{c}(2,1;-1)(10)}{(0-1)} \frac{final form}{over R}$
6.	$(0-1)$ $(0-1)$ over \mathbb{R}
	$\frac{\mathcal{D}_{i}(2;i)}{(0-i)} \frac{(10)}{(01)} \frac{\mathcal{D}(2,i)}{(01)} \frac{(10)}{(01)}$
<u> </u>	(0-i) (01)
	Canonical form of 9 over R is: (60) To find a basis B of R2 such that [9]3 = (10) express the whole reduction in terms of elementary
	To find a basis B of R2 such that [9] = (10)
	express the whole reduction in terms of dementary
	matrices:
	$ \frac{(1 \ 0)(1 \ \frac{1}{2})(0 \ 1)(1 \ 0)(1 \ -1)}{(-1 \ 1)(0 \ 1)(1 \ 0)(\frac{1}{2} \ 1)(0 \ 1)} = (1 \ 0) $ $ \frac{1}{E_{c}(2,1;-1)} \underbrace{E_{c}(1,2;\frac{1}{2})}_{E_{c}(1,2;\frac{1}{2})} \underbrace{E_{c}(2,1;-1)}_{E_{c}(2,1;-1)} $
	(-1/10 1/10)(21/01) (0-1)
	$E_{c}(2,1;-1)$ $E_{c}(1,2;\frac{1}{2})$ $E_{c}(2,1;-1)$
	Jorn basis B of R2
	Jorn basis B of R2
	$(1 \ 0)(1 - 1) = (1 - 1)$ $(\frac{1}{2} \ 1)(0 \ 1) \ (\frac{1}{2} \ \frac{1}{2})$
	2 1/10 1/ (2 2/
	$\frac{1}{1} \frac{1}{2} \frac{1}$
	Then (0-1)= MT(00) M
	$[q]_{\mathcal{B}} = ([Id]_{\mathcal{B}}^{\varepsilon})^{T}[q]_{\varepsilon} [Id]^{\varepsilon}$

MATH

Columns of M = [Id] & form basis B = \$\langle \langle Check: If $b_1 = \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$, $b_2 = \begin{pmatrix} -1 \\ \frac{1}{2} \end{pmatrix}$ then $\begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ (b_1, b_1) \end{bmatrix} + \begin{bmatrix} (b_1, b_2) \\ (b_2, b_2) \end{bmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ 2$ Over C, the canonical form is (0,1).

To find an associated basis C, we again express C.

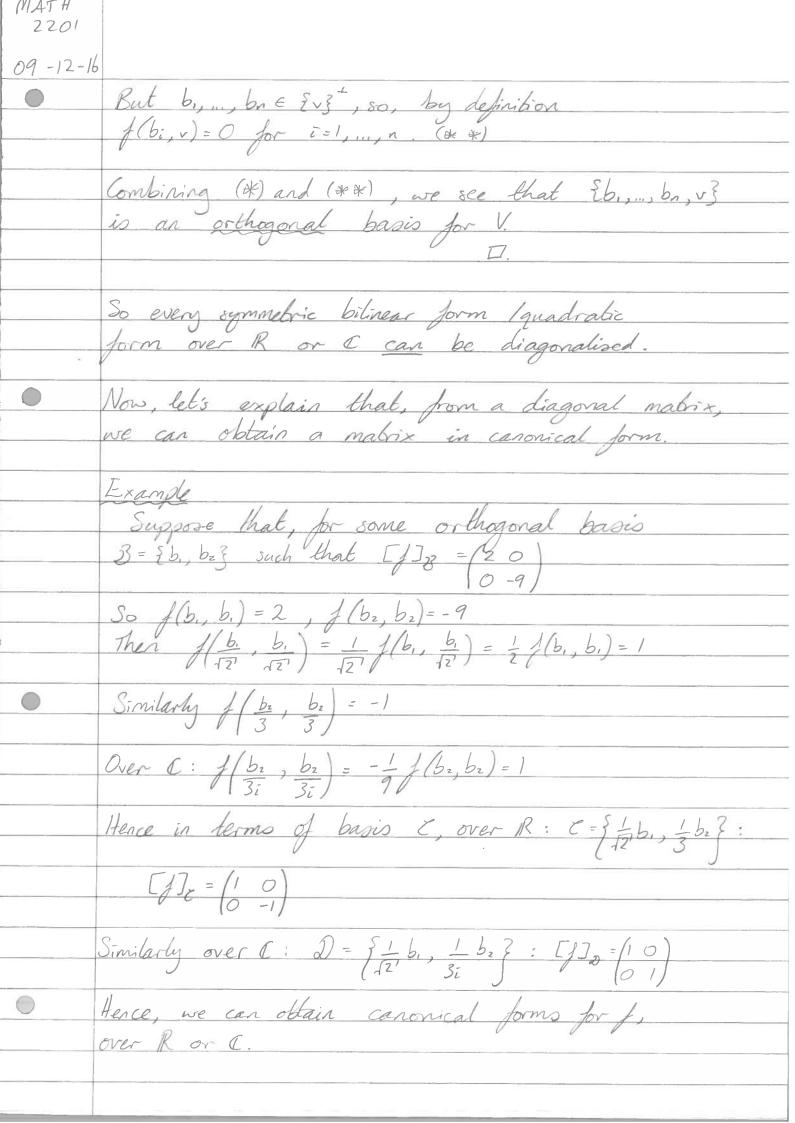
The reduction in terms of elementary matrices: $(1,0)(1,0)(1,\frac{1}{2})(0,1)(1,0)(1,-1)(1,0) = (1,0)(0,1)$ columns of this form & $\begin{pmatrix} 1 & 0 & 1 & -1 \\ \frac{1}{2} & 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}$ $S_0 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -i \\ \frac{1}{2} \end{pmatrix} \right\}$ Then $[f]_{c} = \{f(c_1, c_1) \ f(c_1, c_2)\} = \{10\}$ $\{(c_2, c_1) \ f(c_2, c_2)\}$

MAIH 2201	
09-12-16	
	Some proofs related to canonical forms
	We first prove that we can diagonalise any symmetric bilinear form.
	Suppose that, for a field k, and a vector space
	Vover k, where dim (V) = n, we have a
	Suppose that, for a field k , and a vector space V over k , where $dim_{k}(V) = n$, we have a symmetric bilinear form $f: V \times V \longrightarrow k$, associated to a quadratic form $q: V \longrightarrow k$.
	Then, if there exists a basis 3 of V such that [1] is diagonal, i.e. [1] = [16, b.) - 16, b.)
	1/3 is diagonal, i.e. L/3 = (f(b, b,) f(b, bn)
	$(1/b_n, b_1)$ (b_n, b_n)
	$ \begin{cases} f(b_n, b_1) & \dots & f(b_n, b_n) \\ f(b_1, b_1) & \dots & \dots \\ f(b_1, b_2) & \dots & \dots \end{cases} $
	() f(b1, b2)
	then $f(b_n, b_n)$ Then $f(b_n, b_n)$
0.2.30000	then $f(b_i, b_j) = 0$ if $i \neq j$. The basis B is orthogonal with respect to f .
ζ [†]	The Dasis is orthogonal with respect to f.
	So diagonalising I -> binding an orthogonal busin
	So diagonalising f inding an orthogonal busic with respect to f.
	Let's now show that any such bilinear form of case be diagonalised (at least over R or C).
	be diagonalised lat least over R or C).
	Ken achani
	Key notion: Given a subset S of V the orthogonal compliment
	of S, denoted by S' with respect to I is
	Given a subset S of V, the orthogonal compliment of S, denoted by S' with respect to f is $S' = \{v \in V : f(v, w) = 0 \mid \forall w \in S\}$

Then; for any set S in V, S is a subspace of V. Check; 1). Consider OEV. Then f(0, w) = 0 $\forall w \in S$ (in fact, $f(0, v) \forall v \in V$, by definition of a bilinear form). So 0 € 5 -. 2). Suppose $a,b \in S^{\perp}$ i.e. $\forall w \in S$, f(a,w) = 0 and f(b,w) = 0. Then $\forall w \in S$: f(a+b,w) = f(a,w) + f(b,w) = 0 + 0 = 0. So $a+b \in S^{\perp}$. 3). Suppose that $a \in S^{\perp}$: $\forall w \in S$, f(a, w) = 0. Then, $\forall w \in S$ and a constant $\lambda \in k$: $f(\lambda a, w) = \lambda f(a, w) = \lambda \cdot 0 = 0$. So Zaest. So Stis a subspace of V. Now the key proposition that leads to diagonalisability Proposition

For any vector $v \in V$, if $f(v,v) \neq 0$, then $V = span \{v\} \oplus \{v\}^{\frac{1}{2}}$ set $S = \{v\}$ Proof Suppose that w is a vector in V. Set $w_1 = f(w_1 v) v$, $w_2 = w - f(w_1 v) v$ $f(v_1 v)$ Then $w = w_1 + w_2$ and w, is a multiple of v, SO W, € Span {v} (span {v} = {2v: 2 ∈ k}) Let's also check that $\omega_2 \in \{v\}^+$ $f(\omega_2, v) = f(\omega - f(\omega, v))$

2201	
09-12-16	
	So $f(\omega_2, v) = f(\omega, v) + f(-f(\omega, v) \cdot v, v)$
	$= f(\omega, v) - f(\omega, v) f(v, v)$
	f(v,v)
	= f(w,v) - f(w,v) = 0
	So wie span {v}, wie {v}
	So V= span {v} + {v}.
	Let's now check that the sum is direct:
	Suppose that we span {v} and we {v} "
	Since wespan {v}: w= 2v for some 2 Ek.
	Since $\omega \in \{v\}^{\perp}: f(v, \omega) = 0$.
	is. $f(v, \lambda v) = 0$, is $\lambda f(v, v) = 0$.
	Then, by assumption, $\lambda = 0$ and $w = \lambda v = 0$.
	So $w = 0$, and span $\{v\} \cap \{v\} = \{0\}$
	Hence, the 8Um is direct:
	Hence, the sum is direct: $V = span \{v\} \oplus \{v\}^{\perp}$ \square
	This proposition leads to the required result:
	Viagonalisation Theorem:
	Suppose that k is a field in which 1+1 #0,
	Suppose that k is a field in which 1+1 ≠ 0, and that V is a vector space over k, of finite
	dimension.
	Any symmetric bilinear form f: V x V - k can be
	Any symmetric bilinear form $f: V \times V \rightarrow k$ can be diagonalised, i.e. these exists an orthogonal basis $g = g = g = g = g = g = g = g = g = g $
	Is of with respect to f.


(By induction on the dimension of V, dim (V).) If dim(V)=1, then with respect to any basis C:

[j] is a 1×1 matrix. Every 1×1 matrix is

diagonal, so any basis E is orthogonal with respect

to j. Suprose that the result holds for all vector spaces of dimension smaller than or equal to n, and If for all v in V, f(v,v) = 0. Then, using an earlier result:

for u, w in V: $f(u, w) = \frac{1}{2} \left(f(u+w, u+w) - f(u, w) - f(w, w) \right)$ $= \frac{1}{2} (0 - 0 - 0)$ i.e. $f(u, w) = 0 \quad \forall u, w$. let dim(v)=n+1. is $f(u, w) = 0 \quad \forall u, w$. So f must be the zero bilinear form, i.e. f = 0 is the zero matrix for any basis f = 0 which is diagonal. Let's now consider the case where there exists at least one v in V such that f(v, v) +0 Then, using the previous proposition: V = span {v} + {v} + {v} + Since the sum is direct: dim(V) = dim(span {v}) + dim({v}) Hence, $\dim(\{v\}^{\pm}) = n$ and, by the inductive assumption, there is an orthogonal basis, $B = \{b_1, ..., b_n\}$ of $\{v\}^{\pm}$. Thus f(bi, b;) = 0 for i, j=1,..., n, i +j. (*) Then, since {v} is a basis for spun {v} and the {b, ..., bo} is a basis for V.

Caronical forms, over R and C are unique. Let's consider two forms over C:
Suppose that, for bases B, B' of C':

[] [] = [Im O] = ['..., O]

(O On-m)

(O On-m) $\begin{bmatrix} J_{g}, = /\overline{I_{m'}} & O \\ O & O_{n-m'} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$ Let $3 = \{b_i, ..., b_m, b_{m+1}, ..., b_n\}$, $3' = \{b'_i, ..., b_{m'}, b_{m'+1}, ..., b'_n\}$ $f(b_i, b_i) = 1$ for $1 \le i \le m$ $f(b_i', b_i') = 1$ for $1 \le i \le m'$ $f(b_i, b_i) = 0$ for $m+1 \le i \le n$ $f(b'_i, b'_i) = 0$ for $m'+1 \le i \le n$ Consider the set $C = \{b_1, ..., b_m, b_{m'+1}, ..., b_n\}$ in C^n Let $U = span \{b_1, ..., b_m\}$, $W = span \{b_1', ..., b_{m'}\}$ $m + (n - m') \le n \implies m \le m'$. $dim(U \oplus W)$

MATH 2201	
12-12-16	
	From last line:
	Suppose that for a failinear form 1:
	$[I]_{3} = I_{3} 0 [I]_{3} = [I_{3} 0]$
	Suppose, that, for a bilinear form f : $ \begin{bmatrix} f \end{bmatrix}_{3} = \begin{bmatrix} Im & 0 \\ 0 & 0n-m \end{bmatrix}, \begin{bmatrix} f \end{bmatrix}_{3}, = \begin{bmatrix} Im' & 0 \\ 0 & 0n-m' \end{bmatrix} $
	for bases 8 = 3 b,, bm, bm+1,, bn }
- 10 m	for bases 3 = {b,, bm, bm+1,, bn} 3' = {b',, bm', bm'+1,, bn}
	Let's Show that m=m', i.e. that the complex caronical form of f is unique.
	Caronical form of f is unique.
	Suppose that II is a subspace of C' with basis
	{b ₁ ,,b _m }
	and w is a subspace of [with basis { bin bis}
	General elements qui u: u= u.b. + + umbm
	$lw in W: W = w_{m+1}b_{m+1} + w_nb_n$
	TO TOM TO THE TOP OF
	Then $f(u,u) = f(u,b,++ambon, u,b,++ambo)$
	= uif(b, b,) + + um f(bm, bm)
	Then $f(u,u) = f(u,b, + + umbm, u,b, + + umb,)$ = $u^2 f(b_1,b_1) + + um^2 f(b_m,b_m)$ = $u^2 + + um^2$
	If we assume that u,, un ER, then f(u,u)>0
	and $f(u,u) = 0$ if and only if $u_1 = 0,, u_m = 0$
	i.e. if and only if u=0, the zero vector.
	Similarly: f(w,w) = f(wm'+1 bm'+1 + + wn b'n, wm'+1 bm'+1 + + wn b'n)
	$= W_{m'+1}^{2} f(b_{m'+1}, b_{m'+1}) + + W_{n}^{2} f(b_{n'}, b_{n'})$ $= W_{m'+1} \cdot O + + W_{n}^{2} \cdot O$
	$= W_{n'+1} \cdot O + \dots + W_n^2 \cdot O$
	S / // // // // // // // // // // // //
	So if $v \in U_n W$, then $f(v,v) \geq 0$ and $f(v,v) = 0$, i.e. $v = 0$ So $U_n W = \{0\}$. Hence, the sum $U + W$ is direct: $U + W = U \oplus W$.
	→ UnW={O}. Hence, the sum U+W is direct: U+W=U®W.

So dim (U DW) = dim (U) + dim (W) $\mathbb{U}\oplus\mathbb{W}$ is a subspace of $\mathbb{R}^n/\mathbb{C}^n$, so $\dim(\mathbb{U}\oplus\mathbb{W})\leq n$ So $m+(n-m')\leq n$ and then m ≤ m'. Similarly, if we choose U with basis {bi, ..., bin.}

and w " " {bm+1, ..., bn} we will show that $m' \leq m$.

Overall, we obtain m = m'. We now try to use quadratic / bilinear forms to measure lengths. Key requirement: $q(v,v) \approx real number$ and $q(v,v) > 0 \forall v \in V$. Suppose q is a real quadratic form corresponding to the bilinear form f.

Then, to ensure the above conditions hold, we require the canonical form of f to be In. Any such form is positive definite.

A bilinear form $f: \mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$ is positive definite.

if the real canonical form of f is the identity matrix.

Equivalently: $f(v,v) \ge 0 \quad \forall v \in \mathbb{R}^n$, and f(v,v) = 0 only if v = 0. Example $f: \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}, \text{ where } f\left(\begin{pmatrix} \chi_1 \\ \chi_2 \end{pmatrix}, \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}\right) = \chi_1 y_1 + \chi_2 y_2$ $= (\chi_1 \chi_2) \left(10\right) \left(y_1\right)$

2201 12-12-16 Then $f((\frac{x_1}{x_2}), (\frac{x_1}{x_2})) = x_1^2 + x_2^2$ which satisfies the definition. Whereas if a bitness form is represented by

[] = (0000 eg. (0.00,1) 000 (000)

(000-1) 000 eg. (0.00,1) 000 (000) This lends to the notion of a product space. An inner product space, over R, is a vector space V over R, together with a positive definite symmetric bilinear form $f: V \times V \mapsto \mathbb{R}$. So, f satisfies, for all $u, v, w \in V$, $\lambda \in \mathbb{R}$: f(u+v, w) = f(u, w) + f(v, w)f(u, v+w) = f(u,v) + f(u,w) $f(\lambda u, v) = \lambda f(u, v) = f(u, \lambda v)$ f(u, v) = f(v, u)f(u,u) >0, and f(u,u) = 0 only if u=0. Take V to be R" and f to be any symmetric bilinear form f: R" × R" - R whose canonical form is e.g. for earlier V=R2 and of represented by (125) $(x_1 x_2)/12/x_1 = x_1^2 + 4x_1x_2 + 5x_2 \ge 0 \quad \forall x_1, x_2 \in \mathbb{R}$ $(25/x_2)$ and $x_1^2 + 4x_1x_2 + 5x_2 = 0$ if x=0, x=0.

NIATH

In an inner product space, the norm of a vector v in

V is \f(\mu,\v)

This is denoted by \(\mu\). Often, in an inner product space, f(u,v) is written as $\langle u,v \rangle$.

2201 13-12-16 Let's now by to find forms linner products that measure lengths of complex vectors. To do so, we modify the way bilinear forms are defined. Consider "standard form", represented by ('o'): $\ln R^2: (x_1 x_2)(10)(x_1) = x_1^2 + x_2^2 \leftarrow square root is$ $\int (01)(x_1) = x_1^2 + x_2^2 \leftarrow square root is$ the length / norm

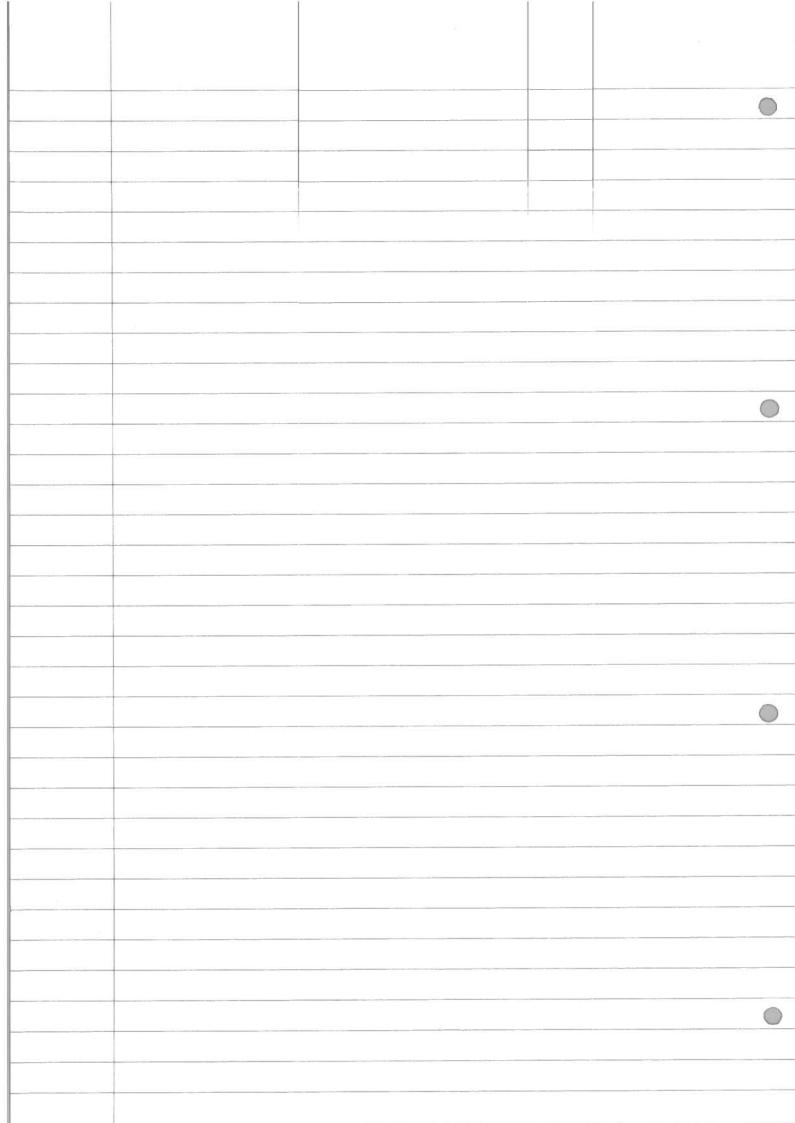
of $\int (x_1)^2 + x_2^2 \leftarrow does not relate$ $\int (01)(x_2) = x_1^2 + x_2^2 \leftarrow does not relate$ directly to length. The length of $z \in C$ is given by $\sqrt{z}\overline{z}$.

To obtain such a product define forms as follows: $\langle v, w \rangle = v^T A \overline{w} = \text{conjugate of the second vector}$ matrix e.g. if $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $V = \begin{pmatrix} \overline{z}_1 \\ \overline{z}_2 \end{pmatrix}$, $W = \begin{pmatrix} \overline{z}_1 \\ \overline{z}_2 \end{pmatrix}$ then $(z_1, \overline{z}_2) \begin{pmatrix} 1 & 0 \\ \overline{z}_1 \end{pmatrix} = z_1 \overline{z}_1 + z_2 \overline{z}_2$ we want this expression to be real and nonnegative.

To ensure this, we need the matrix A to satisfy $A^{T} = \overline{A}$ and to be positive definite. e.g. Suppose A is a 2×2 complex matrix: $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ $A = \begin{bmatrix} a_{11} & a_{22} \\ a_{21} & a_{22} \end{bmatrix}$ Then if $A^{T} = A$: $\begin{bmatrix} a_{11} & a_{21} \\ a_{22} & a_{22} \end{bmatrix} = \begin{bmatrix} \overline{a_{11}} & \overline{a_{12}} \\ \overline{a_{21}} & \overline{a_{22}} \end{bmatrix}$ $S_0 = \overline{a_{11}} + \overline{a_{12}} = \overline{a_{21}} + \overline{a_{21}} = \overline{a_{12}} + \overline{a_{22}} = \overline{a_{22}}$ So $a_{11}, a_{22} \in \mathbb{R}$, $a_{12} = \overline{a_{21}}$.

MATIN

Then $(Z, Z_2)(a_{11}, a_{12})(\overline{Z_1})$ $(a_{21}, a_{22})(\overline{Z_2})$ = a112, Z, + a122, Zz + a2, Zz Z, + a222, Zz $= \frac{a_{11}|z_{1}|^{2} + a_{12}z_{1}z_{1} + a_{21}z_{2}z_{1}}{\epsilon R} + \frac{a_{22}|z_{2}|^{2}}{\epsilon R}$ e.g. consider $A = \begin{bmatrix} -3 & 1+i \\ 1-i & 2 \end{bmatrix}$ Then (2, 1-i)/-3 1+i/2 $\in \mathbb{R}$ (1-i)/-i (1+i)/-iBut this is not positive definite


e.g. (10)(-3 1+i)(1) = -3

(1-i 2)(0) | want a positive number so can take root. The general definition is the following: A Hermitian form on a complex on a complex vector space, C" say, is a form <.,.>: C"× C" > C 020 satisfying: (a+b, c> = (a, c> + <b,c> -- b> + (a,c) $\langle a, b+c \rangle = \langle a, b \rangle + \langle a, c \rangle$ (a, b) = (a, $\langle 2a, b \rangle = 2 \langle a, b \rangle$ <a, 26> = 7 < a, 6> $\langle a, b \rangle = \langle b, a \rangle$ Any Hermitian form can be represented by a Hermitian matrix: a square $n \times n$ complex matrix A satisfying $A^{T} = \overline{A}$. e.g. if A=(1 i), then if we define $\langle (a_1), (b_1) \rangle = (a_1, a_2)(1 i)(\overline{b_1})$ all conditions in the $(a_1), (b_2)$ definition will hold.

MATH 2201 13-12-16 $= a_1 \bar{a}_1 + i a_1 \bar{a}_2 - i a_2 \bar{a}_1 + a_2 \bar{a}_2$ $\in \mathbb{R} \quad \text{since} \quad i a_1 \bar{a}_2 = a_1 \bar{a}_1 + a_2 \bar{a}_2 = a$ A complex inner product space is a vector space C" with a Hermitian form <., > that is also positive i.e. <v, v>>0 for non-zero v, <v, v>=0 if v=0. A termitian matrix A corresponds to a positive definite form if the canonical form of A is the identity matrix. In. is row reduce to see if you get In] Real and complex inner products satisfy some mortant results: * Cauchy-Schwarz inequality:

Let <., > represent a real or complex inner product,

then for any vectors a, b: | < a, b > | < | | a || || || || ||

MAT7+ 2201	
16-12-16	
10 12 10	From last line
	Cauchy - Schwarz inequality
	Let V be an inner product space.
	For all u, v ∈ V : < u, v > ≤ u v
1830	Some rules:
	$\langle u, v \rangle = \langle v, u \rangle$
	$\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$
	$\langle u, \lambda v \rangle = \lambda \langle u, v \rangle$
	$ u = \sqrt{\langle u, v \rangle}$
	It follows < u, v > < v, u > = < u, v > < u, v > = < u, v > 2
	0.1
	Sugasse v=0.
	Then $\langle u, v \rangle = \langle u, 0 \rangle = 0$, so $ \langle u, v \rangle = 0$
	The (in)equality holds for v=0.
	The strainty region for the strainty
	Suppose v + O.
_	Consider <u- 2v,="" u-2v=""></u->
	This is of the form $\langle w, w \rangle$, so $\langle u - \lambda v, u - \lambda v \rangle \ge 0 \ \forall \lambda$.
	Also $\langle u - \lambda v, u - \lambda v \rangle = \langle u, u \rangle - \langle \lambda v, u \rangle - \langle u, \lambda v \rangle + \langle \lambda v, \lambda v \rangle$
	$= \langle u, u \rangle - \lambda \langle v, u \rangle - \overline{\lambda} \langle u, v \rangle + \lambda \overline{\lambda} \langle v, v \rangle$
	Set $\lambda = \langle u, v \rangle$ (note $v \neq 0$ by assumption, so $\langle v, v \rangle \neq 0$)
	< v, v >
	we obtain from <u->v,u->v>>0</u->
	$\langle u, u \rangle - \langle u, v \rangle \langle v, u \rangle - \langle u, v \rangle \langle u, v \rangle + \langle u, v \rangle ^2 \langle v, v \rangle \geq 0$
	(V,V) (V,V) ²
	Note $\langle v, v \rangle \in \mathbb{R}$, so $\langle v, v \rangle = \langle v, v \rangle$; also $\langle v, v \rangle = \langle v, v \rangle$
	So we may multiply through by <v,v> to obtain <u,u><v,v> - <u,v><v,u> - <u,v><u,v> + 1<u,v>12 > 0</u,v></u,v></u,v></v,u></u,v></v,v></u,u></v,v>
	$ u ^2 v ^2 - \langle u, v \rangle ^2 - \langle u, v \rangle ^2 + \langle u, v \rangle ^2 \geqslant 0$
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

 $S_6 \|u\|^2 \|v\|^2 > |\langle u, v \rangle|^2$ All terms are non-negative, so may safely take square roots: e roots:

||u|| ||v|| > | < u, v > | or | < u, v | < ||u|| ||v||, as required. This leads to The Triangle Inequality
Let V be an inner product space.
For all a, b ∈ V : ||a + b|| ≤ ||a|| + ||b|| Consider 1/a+b112= <a+b, a+b> = <a,a>+<a,b> + <b,a> + <b,b> $= \langle a, a \rangle + \langle a, b \rangle + \langle a, b \rangle + \langle b, b \rangle$ = 11a112 + 2 Re <a, b> + 11 b112 < 11a112 + 211a1111b11 + 11b112 = (11a11 + 11b11)2 So since ||a+b||2 = (4all + 11bll)2 ||a+b|| ≤ ||a|| + 11b|| □ All real inner products correspond to an identity matrix as a canonical form, there is a basis Ed., ..., do 3 of V such that the matrix representing the inner product is

(b, b, > --- < b, bn >

(bn, b, > --- < bn, bn >

(bn, b, > --- < bn, bn >) So <5i, b; >= 0 for all i, j, if i + 5
ie. {b., ..., b.3 is orthogonal and <bi, bi>= 1 \ i = 1,..., n

MATH 2201	
16-12-16	
	Overall, we have an orthonormal basis:
	· ⟨bi, bi⟩ = O if i ≠ j · bi = √⟨bi, bi = 1
	· bi = √ <bi, bi="1</th"></bi,>
	1/ / - / / / / / / / / / / / / / / / / /
13	If A is a complex symmetric matrix (i.e. if $A = A^T$), then can also reduce A to canonical form using
21	then can also reduce to canonical form using
	row/column operations.
	But complex inner products involve Hermitian mabrices instead (where $\overline{A} = A^{T}$). Can reduce by pairing
	matrices instead (where A = AT). Can reduce by priving
	ow operations with their conjugate column operations. (1 i) R ₂ -> R ₂ +iR, (1 i) C ₂ -> C ₂ - iC, (1 0) (-i 1) (0 0)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	(-11) 100)
	Another way to obtain an orthonormal basis for
	any inner product < , > :
	Gran-Schmidt process
	Start with any basis {a, ,, an} of the space V.
	Compute the following vectors: (note: for each vector a: in abasis, a: +0, so <ai, ai=""> +0)</ai,>
	b. = a.
	$b_1 = a_1 - \langle a_1, b_1 \rangle b_1$
	<b, b,=""></b,>
	$b_3 = a_3 - \langle a_3, b_1 \rangle b_1 - \langle a_3, b_2 \rangle b_2$
	<b, b,=""> < b2, b2></b,>
	$b_n = a_n - \langle a_n, b_i \rangle b_i - \dots - \langle a_n, b_{n-1} \rangle b_{n-1}$
	<b, b,=""> < b_n-1, b_n-1></b,>
	Then Eb., ,, bn } is an orthogonal basis for V.

Check $\langle b_1, b_2 \rangle = \langle b_1, a_2 - \langle a_2, b_1 \rangle b_1 \rangle$ <b, b, > = <b, a,> - <b, ,<a, b,> b,> (assume over R) = <b, a2> - <a2, b,> <b, b,> < 5, 6, > $= \langle b_1, a_1 \rangle - \langle a_2, b_1 \rangle$ To obtain an orthonormal basis set $c_1 = b_1$, $c_2 = b_2$, ..., $c_n = b_n$ $||b_1|| \qquad ||b_2|| \qquad ||b_n||$ Then {c, ..., cn} is an orthonormal basis for V. Example Consider the standard inner product on R3 $|a_1|$ $|b_2|$ = $|a_1|$ $|a_2|$ $|a_3|$ $|a_3|$ |aApply the process to the following basis of R3: $\begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 7 \\ 5 \end{pmatrix}$ b, = a, = (2) $b_2 = a_2 - \langle a_2, b_1 \rangle b_1 = \begin{vmatrix} 1 \\ 2 \end{vmatrix} - \langle \binom{2}{2}, \binom{2}{0} \rangle \langle \binom{2}{0} \rangle = \begin{vmatrix} 0 \\ 2 \end{vmatrix}$ $\langle b_1, b_1 \rangle \langle \binom{2}{0}, \binom{2}{0} \rangle \langle \binom{2}{0}, \binom{2}{0} \rangle$ b3 = a3 - \(\alpha_3, b_1 \rangle \b1, - \langle a3, b_2 \rangle \b2, $\frac{\langle b_1, b_1 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_1 \rangle}{\langle b_1, b_1 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} - \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_1 \rangle}{\langle b_1, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_1 \rangle}{\langle b_1, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_1 \rangle}{\langle b_1, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_1 \rangle}{\langle b_1, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_2 \rangle}{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_2 \rangle}{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_2 \rangle}{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_2 \rangle}{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_2 \rangle}{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_2 \rangle}{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} = \frac{\langle b_1, b_2 \rangle}{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2, b_2 \rangle} \frac{\langle b_2, b_2 \rangle}{\langle b_2$ $\langle \begin{pmatrix} 2 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix} \rangle$ $\langle \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} \rangle$

MATH 2201 16-12-16 So {\(\frac{2}{0}\), \(\frac{2}{2}\), \(\frac{9}{2}\), \(\frac{9}\), \(\frac{9}{2}\), \(\frac{9}{2}\), \(\frac{9}{2}\), \(\fr $\|\binom{2}{6}\| = 2$ so $C_1 = \frac{b_1}{2} = \binom{6}{6}$ $\left\| \begin{pmatrix} 0 \\ 2 \\ 2 \end{pmatrix} \right\| = 2\sqrt{2}$ so $C_2 = \frac{b_1}{2\sqrt{2}} = \begin{pmatrix} 0 \\ 4\sqrt{2} \\ 2\sqrt{2} \end{pmatrix}$ $\| \cdot \| = \sqrt{2}$ So $c_3 = b_3 = \begin{vmatrix} 0 \\ \sqrt{42} \\ -1/ - \end{vmatrix}$ and {c, c, c, c, } is an orthonormal basis. Hermitian matrices are related to the notion of the adjoint of a matrix / linear map. Consider an inner product <, > in terms of an orthonormal basis, so that for $u, v \in V$ $(\dim V = n)$ $< u, v > = u^{T} \begin{pmatrix} 1 & 0 \end{pmatrix} \nabla = u^{T} \nabla$ With respect to this, the adjoint of an nxn matrix A is a matrix A* such that, < Au, v> = < u, A*v> het's by to determine A* in terms of A: $\langle Au, v \rangle = (Au)^T \overline{v} = u^T A^T \overline{v}$ $\begin{cases} so A^T = A^* \\ \langle u, A^*v \rangle = u^T (A^*v) = u^T A^* \overline{v} \end{cases}$ A matrix A is is self-adjoint if A = A, i.e. if A = A, i.e. if A is Hermitian.

Key result of M is a Hermitian matrix, then all its eigenvalues are real, and M can be diagonalised using an orthonormal basis of eigenvectors. $M = \begin{pmatrix} 1 & i \\ -i & 1 \end{pmatrix}$ characteristic equation: $|\lambda-1-i|=(\lambda-i)^2-(-i^2)$ $|+i||\lambda-1|=|\lambda^2-2|\lambda|$ eigenvalues: 0, 2. Eigenvectors for $\lambda=0$: $|M-OI|_{x=0}$ We obtain $x_1 + ix_2 = 0$ $\begin{cases} x_1 = -ix_1 \\ -ix_1 + x_2 = 0 \end{cases}$ General eigenvector: $\left(-ix_{1}\right) = x_{2}\left(-i\right) \quad x_{2} \in \mathbb{C}, \quad x_{2} \neq 0.$ Basis of eigenvectors for C2: {(-i), (i)} If $P = \begin{bmatrix} -i & i \end{bmatrix}$ then $P'MP = \begin{bmatrix} 0 & 0 \end{bmatrix}$ Check that (-i), (i) are orthogonal: $\langle (-i), (i) \rangle = (-i)(i) + (1)(1) = 0$