2401 Mathematical Methods 3 Notes

Based on the 2016 autumn lectures by Prof J M Vanden-Broeck

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility whatsoever for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

MATH Z401 Office Hour: Friday 4 pm 07-10-16 Mathematical Methods 3 3 lecturo - friday P. dass - Mon (Bowles) * Fourier Series * Partial differential equations - separation of variables - characteristics * Calculus of variation Modle # Notes * Exercise Sheets (due Fridays, 11.00) 1.2 fourier Series Any sufficiently rice function $F: [-L, L] \rightarrow \mathbb{R}$ can be written as a fourier series $f(x) = c + \sum_{n=1}^{\infty} \left[a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right]$ (*) F(x) is defined for -Lexel Lemma (.2)

If $n \ge 0$ is an integer then $\int_{1}^{\infty} \sin(n\pi x) dx = 0$ Kronecker Della: $\int_{-\infty}^{\infty} \cos\left(\frac{n\pi x}{L}\right) dx = 2L \, \delta_{n,o}$ $\delta_{\bar{i},j} = \begin{cases} 0 & \bar{i} \neq j \\ 1 & \bar{i} = j \end{cases}$ If m>0 and n>0 are integers

1). $\int_{-\infty}^{\infty} \frac{\sin(m\pi x)}{L} dx = L \int_{m,n}^{\infty}$ 2). $\int_{L}^{L} \cos\left(\frac{n\pi x}{L}\right) \cos\left(\frac{m\pi x}{L}\right) dsc = L \delta_{m,n}$

3). $\int_{-\infty}^{\infty} \cos\left(\frac{n\pi x}{L}\right) \sin\left(\frac{m\pi x}{L}\right) dx = 0$

$$\frac{\rho oof \ qf \ 1}{cos(A-B)-cos(A+B)} = 2 sin A sin B$$

$$A = \frac{m\pi x}{L} , B = \frac{n\pi x}{L}$$

$$\frac{\sin(m\pi x)\sin(n\pi x)}{L} = \frac{1}{2} \left[\cos((m-n)\pi x) - \cos((m+n)\pi x) \right]$$

$$\int_{-L}^{L} \frac{\sin(m\pi x)\sin(n\pi x)}{L} \sin(n\pi x) dx = \frac{1}{2} \int_{-L}^{L} \frac{\cos((m-n)\pi x)}{L} dx - \frac{1}{2} \int_{-L}^{L} \cos((m+n)\pi x) ds$$

(alculating integrals:

$$\int_{-L}^{\infty} \frac{\cos\left(\frac{m+n}{\pi}\right)\pi \times ds}{\left(\frac{m+n}{\pi}\right)} ds = \frac{\left[\frac{\sin\left(\frac{m+n}{\pi}\right)\pi \times c}{L}\right]}{\left[\frac{m+n}{L}\right]} \frac{L}{\left[\frac{m+n}{L}\right]} = 0$$

$$= \frac{1}{\pi\left(\frac{m+n}{L}\right)} \left[\sin\pi\left(m+n\right) + \sin\pi\left(m+n\right)\right] = 0$$

$$\int_{-L}^{L} \cos\left(\frac{(m-n)\pi x}{L}\right) dx = \left[\frac{\sin\left(\frac{(m-n)\pi x}{L}\right)}{\frac{(m-n)\pi}{L}}\right]_{-L}^{L}$$

$$= \frac{1}{\pi\left(\frac{m-n}{L}\right)} \left[\frac{\sin\pi(m-n) + \sin\pi(m-n)}{\pi(m-n)}\right] = 0$$

$$\int_{-L}^{L} \frac{dx}{dx} = \int_{-L}^{L} dx = 2L$$

So
$$\int_{-L}^{L} \frac{\sin(m\pi x)}{L} \sin(n\pi x) dsc = L S_{mn}$$

(VIA-117 Z401

Integrating (**): (we want to find c)
$$\int_{-L}^{L} F(x) dx = \int_{-L}^{L} c dx + \int_{n=1}^{\infty} \left[a_n \int_{-L}^{L} cop/\underline{n\pi}x \right) dx + b_n \int_{-L}^{L} sin/\underline{n\pi}x dx$$

$$= C \int_{-L}^{L} dx = C2L$$
So $C = \frac{1}{2L} \int_{-L}^{L} f(x) dx$

Try bo find az:

Multiply fourier series by
$$\cos\left(\frac{2\pi x}{L}\right)$$
 and integrale:

$$\int_{-L}^{L} f(x) \cos\left(\frac{2\pi x}{L}\right) dx = c \int_{-L}^{L} \left(\frac{2\pi x}{L}\right) dx + a \int_{-L}^{L} \left($$

So
$$a_2 = \frac{1}{L} \int_{-L}^{L} f(n) \cos\left(\frac{2\pi x}{L}\right) dx$$
.

How to find
$$a_{m}$$
:

(Mulbedy (*) by $co(m\pi x)$ and integrale:

$$\int_{-L}^{L} f(x) co(m\pi x) dx = c \int_{-L}^{L} co(m\pi x) dx + \sum_{n=1}^{\infty} \left[a_{n} \int_{-L}^{co(n\pi x)} co(m\pi x) co(m\pi x) dx\right] + b_{n} \int_{-L}^{co(n\pi x)} co(m\pi x) dx$$

$$= \sum_{n=1}^{\infty} a_{n} \int_{-L}^{L} co(m\pi x) co(m\pi x) dx$$

$$= \sum_{n=1}^{\infty} a_{n} L S_{m,n}$$

$$= a_{m} L$$
So $a_{m} = \frac{1}{L} \int_{-L}^{L} f(x) co(m\pi x) dx$. $(m \ge 1)$
Finding b_{m} :

We can use the same method with $sin(m\pi x)$

we get:
$$\int_{-L}^{L} f(x) sin(m\pi x) da = \int_{-L}^{\infty} b_{n} \int_{-L}^{L} sin(m\pi x) sin(m\pi x) dx$$

$$= \int_{-L}^{\infty} b_{n} L S_{m,n}$$

So
$$b_m = \frac{1}{L} \int_{-L}^{L} F(x) \sin(\frac{m\pi x}{L}) dx$$

07-10-16

$$f(x) = c + \sum_{n=1}^{\infty} \left[a_n \cos(\underline{n\pi}x) + b_n \sin(\underline{n\pi}x) \right]$$

$$c = \frac{1}{2L} \int_{-L}^{L} f(x) dx$$

$$a_n = \frac{1}{L} \int_{-L}^{L} F(x) cos(\frac{n\pi x}{L}) dx$$

$$b_n = \frac{1}{2} \int_{-L}^{L} f(x) \sin(n\pi x) dx$$

Example
$$F(x) = x \quad \text{on the interval } [-\pi, \pi]. \quad (50 \ L = \pi)$$

$$\frac{9}{\pi}$$

$$C = \frac{1}{2\pi} \int_{-\pi}^{\pi} x \, dx = \frac{1}{2\pi} \left[\frac{x^2}{2} \right]_{-\pi}^{\pi} = \frac{1}{2\pi} \left[\frac{\pi^2}{2} - \frac{\pi^2}{2} \right] = 0$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \kappa \cos nx \, dx = \frac{1}{\pi} \left[\frac{\alpha \sin nx}{n} \int_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \sin nx \, dx \right]_{parts}^{by}$$

$$= -\frac{1}{n^2\pi} \left[conc \right]^{\pi} = 0 \qquad \Rightarrow \quad a_n = 0 \quad \forall n.$$

$$b_{n} = \frac{1}{\pi} \int_{-\pi}^{\pi} c \sin nx \, dx = \frac{1}{\pi} \left[\left[-\frac{x \cos nx}{n} \right]^{\pi} + \inf_{\pi} \frac{\pi}{\cos nx} \, dx \right]$$

$$= \frac{1}{n\pi} \left[-\pi \cos n\pi - \pi \cos(-n\pi) \right]$$

$$= -\frac{2 \cos n\pi}{n} = -\frac{2}{n} (-1)^n = \frac{2}{n} (-1)^{n+1}$$

$$So \quad C = 0, \quad a_n = 0, \quad b_n = \frac{2}{n} (-1)^{n+1}$$

$$x = \sum_{n=1}^{\infty} \frac{2}{n} (-1)^{n+1} \frac{1}{\sin(nx)}$$

$$= 2 \left[\frac{\sin x - \sin 2x}{2} + \frac{\sin 3x}{3} - \frac{\sin 4x}{4} + \dots \right]$$

If F is an odd function
$$(f(-x) = -f(x))$$

(then $c = 0$, $a_n = 0$ $\forall n$.)
If F is an even function $(f(-x) = f(x))$
then $b_n = 0$ $\forall n$.

Lemma 1.5
$$f(x) = C + \sum_{n=1}^{\infty} \left[a_n \cos(n\pi x) + b_n \sin(n\pi x) \right]$$

If
$$f(x)$$
 is even then
$$b_n = 0$$

$$a_n = \frac{2}{L} \int_0^L f(x) \cos(n\pi x) dx$$

$$c = \frac{1}{L} \int_0^L f(x) dx$$

If
$$f(x)$$
 is odd then
$$a_n = 0$$

$$c = 0$$

$$b_n = \frac{2}{L} \int_0^L f(x) \sin(n\pi x) dx$$

07-10-16

In general

1). If g(x) is even then $\int_{-L}^{L} g(x) dx = 2 \int_{0}^{L} g(x) dx$

eg.

2). If g(x) is odd then $\int_{-L}^{L} g(x) dx = 0$

eg.

Proof of 1).

 $\int_{-L}^{L} g(x) dx = \int_{-L}^{0} g(x) dx + \int_{0}^{L} g(x) dx$ Let u = -x

so $\int_{-L}^{L} g(x) dx = -\int_{-L}^{6} (-u) du + \int_{0}^{L} g(x) dx$ $= \int_{0}^{L} g(u) du + \int_{0}^{L} g(x) dx \quad \text{note } g \text{ even.}$

 $= 2 \int_{0}^{L} g(x) dx$

Examples:

even: n^2 , cox, x^+ , 1x1,...

odd: x, sinx, ...

neither: x+x2, ex,...

$$F(x) = \begin{cases} 0 & -1 \le x < 0 \\ \frac{1}{2} & x = 0 \\ 1 & 0 < x \le 1 \end{cases}$$

$$G(x) = f(x) - \frac{1}{2} = \begin{cases} -\frac{1}{2} & -1 \le x < 0 \\ 0 & x = 0 \end{cases}$$

$$\frac{1}{2} \quad 0 < x \le 1$$

$$G(x)$$
 is odd! (L=1)
 $\Rightarrow an = 0$, $c = 0$

$$b_n = 2 \int_0^1 G(sc) \sin(n\pi sc) dsc$$

when
$$0 < x \le 1$$
, $G(x) = \frac{1}{2}$

So
$$b_n = \int_0^1 \sin(n\pi n x) dx$$

$$= \left[\frac{-\cos(n\pi n x)}{n\pi} \right]_0^1$$

$$= \frac{-\cos n\pi}{n\pi} + 1 = \frac{-(-1)^n}{n\pi} + 1$$

$$= \frac{(-1)^{n+1}}{n\pi} + 1 = \int_0^1 0 n e^{n\pi x} e^{n\pi x} dx$$

So
$$G(x) = \sum_{n=1}^{\infty} b_n \sin(n\pi x)$$

= $\frac{2}{\pi} \sin \pi x + \frac{2}{3\pi} \sin 3\pi x + \dots$

$$f(x) = G(x) + \frac{1}{2} = \frac{1}{2} + \frac{2}{\pi} \sin \pi x + \frac{2}{3\pi} \sin 3\pi x + \dots$$

$$f(x) = x^2 - \pi < x < \pi , L = \pi$$

$$even$$

$$\Rightarrow b_n = 0$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} x^2 \cos nx \, dx = \dots = \frac{4(-1)^n}{n^2}$$
 (notes p.14)

(calculate as exercise)

$$c = \frac{1}{\pi} \int_0^{\pi} \pi z^2 dx = \frac{1}{\pi} \left[\frac{x^3}{3} \right]_0^{\pi} = \frac{\pi^2}{3}$$

So
$$x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx$$
.

Half-range Fourier series f(x) defined for 0 < x < LWe want to represent f(x) as a series of sin (half range sine series).

Fixed f(x) defined for f(x) and f(x) and f(x) in f(x) and f(x) and f(x) are f(x) and f(x) and f(x) and f(x) are f(x) are f(x) and f(x) are f(x) are f(x) are f(x) are f(x) and f(x) are f(x) are f(x) are f(x) are f(x) are f(x) and f(x) are f(x) are f(x) and f(x) are f(x) are f(x) and f(x) are f(x)

Extend f(x) for -L < x < 0 so that f(x) is an odd function: $f_{odd}(x) = f(x)$ x > 0 (-f(-x)) x < 0

$$f_{odd}(x) = \sum_{n=1}^{\infty} b_n \sin(\frac{n\pi x}{L}) \qquad \qquad f_{odd}(x) = f(x) \text{ for } 0 < x < L$$

$$b_n = \frac{2}{L} \int_{0}^{L} f(x) \sin(\frac{n\pi x}{L}) dx$$

To represent f(x) as a series of cos (half range cosine series), we extend f(x) for -1 < x < 0 so that f(x) is an even function

$$f_{even}(x) = \begin{cases} F(x), & x > 0 \\ F(-x), & x < 0 \end{cases}$$

$$f_{even}(x) = C + \sum_{n=1}^{\infty} a_n \cos(\frac{n\pi x}{L})$$

$$a_n = \frac{2}{L} \int_0^L F(x) \cos(\frac{n\pi x}{L}) dx$$

$$C = \frac{1}{L} \int_0^L F(x) dx$$

Half range sine series of
$$f(x) = \alpha(\pi - \alpha)$$
 $0 \le \alpha \le \pi$

$$f(\alpha) = \sum_{n=1}^{\infty} b_n \sin(n\alpha)$$

$$b_n = \frac{2}{\pi} \int_{0}^{\pi} f(\alpha) \sin(n\alpha) d\alpha$$

Half range copine series:

$$f(x) = c + \sum_{n=1}^{\infty} a_n conx$$

$$a_n = \frac{2}{\pi} \int_0^{\pi} f(x) cosnx d\alpha$$

$$c = \frac{1}{\pi} \int_0^{\pi} f(x) d\alpha$$

07-10-16

Parseval's Theorem

$$\frac{1}{L} \int_{-L}^{L} f^{2}(x) ds = 2c^{2} + \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2})$$

$$\frac{P_{roof}}{L} = \int_{-L}^{L} f(x) f(x) dx$$

$$= \int_{-L}^{L} f(x) \left[c + \int_{n=1}^{\infty} a_n cox/n\pi x \right] + b sin(n\pi x) dx$$

$$= \int_{-L}^{L} f(x) dx + \int_{n=1}^{\infty} \left[\frac{a_n}{L} \int_{-L}^{L} f(x) cox/n\pi x \right] dx$$

$$+ \int_{-L}^{L} \int_{-L}^{L} f(x) sin(n\pi x) dx$$

$$= 2c^2 + \int_{-L}^{\infty} (a_n^2 + b_n^2)$$

Recall
$$f(x) = \infty$$
, $-\pi < x < \pi$
 $C = 0$, $a_n = 0$, $b_n = \frac{2(-1)^{n+1}}{n}$, $L = \pi$
 $f(x) = \sum_{n=1}^{\infty} \frac{2(-1)^{m+1}}{m} sin(mx)$
 $\frac{1}{\pi} \int_{-\pi}^{\pi} x^2 dsc = \sum_{n=1}^{\infty} \frac{4}{n^2}$

$$\Rightarrow \frac{2\pi^2}{3} = 4 \sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\Rightarrow \frac{\pi^2}{6} = \frac{2}{\sqrt{1-1}} \frac{1}{n^2}$$

MATH LAUI

14-10-16

Fourier Series
$$f(x) = C + \sum_{n=1}^{\infty} \left(a_n \cos(n\pi x) + b_n \sin(n\pi x) \right)$$
defined for
$$-L < x < L \qquad c = ? \qquad a_n = ? \qquad b_n = ?$$

Convergence
Partial Sums
$$F_{N}(x) = C + \sum_{n=1}^{N} \left(a_{n} \cos \left(\frac{n\pi x}{L} \right) + b_{n} \sin \left(\frac{n\pi x}{L} \right) \right)$$

 $f_N(x) \to f(x)$ as $N \to \infty$.

We require f'(x) is integrable, i.e. $\int_{-L}^{L} f'(x) dx$ exists and is finite.

$$\int_{-L}^{L} (F_{N}(x) - F(x))^{2} dsc \rightarrow 0 \text{ as } N \rightarrow \infty.$$

Periodic functions
$$\cos\left(\frac{n\pi}{L}(x+2L)\right) = \cos\left(\frac{n\pi x}{L} + 2n\pi\right) = \cos\left(\frac{n\pi x}{L}\right)$$

$$\sin\left(\frac{n\pi}{L}(x+2L)\right) = \sin\left(\frac{n\pi x}{L} + 2n\pi\right) = \sin\left(\frac{n\pi x}{L}\right)$$

Chapter 2 Second order partial differential equations (PDEs)

Heat equation:

 $\partial \phi = K \partial^2 \phi$ ∂t ∂z^2

\$(x,t), hyperbolic

Wave equation:

 $\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial x^2}$

, $\phi(x,t)$, parabolic

Laplace equation:

 $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 , \phi(x,y) , \text{ elliptic}$

Contrast with ordinary differential equations (ODE) $e,g. \frac{d^2y}{dx^2} + y = 0$

Method of seperation of variables

We will use the heat equation with K=1,

 $\phi(x,t) = \chi(x)T(t)$ (assume this)

 $\frac{\partial \phi}{\partial t} = X(\pi) \frac{dT}{dt} = X(\pi) T'(t)$

 $\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 X}{\partial x^2} + T(t) = X''(x) + T(t)$ $\partial x^2 dx^2$

So $\partial \phi = \partial^2 \phi$ becomes X(x)T'(t) = X''(x)T(t)

So
$$T(t) = X''(x)$$

 $T(t) = X''(x)$
 $X(x)$
does not
depend on x

does not
depend on t

$$\Rightarrow \underline{T'(t)} = \underline{X''(c)} = constant = -\lambda$$

$$T(t) = \underline{X''(c)} = constant = -\lambda$$

So
$$T'(t) = -\lambda$$
, $X''(z) = -\lambda$
 $T(t)$ $X(z)$

So
$$T'(t) + \lambda T(t) = 0$$
, $X''(x) + \lambda X(x) = 0$

$$T'(t) + \lambda T(t) = 0 \Rightarrow T(t) = \tilde{A}e^{-\lambda t}$$
 (can choose $\tilde{A} = 1$ here)

$$X''(x) + \lambda X(x) = 0$$

$$\Rightarrow \begin{cases} \lambda > 0, \text{ so } \lambda = p^{2} \text{ so } X''(x) + p^{2}X(x) = 0 \\ \lambda = 0, \text{ so } \lambda = -p^{2} \text{ so } X''(x) = 0 \end{cases}$$

$$\begin{cases} \lambda < 0, \text{ so } \lambda = -p^{2} \text{ so } X''(x) - p^{2}X(x) = 0 \end{cases}$$

$$\begin{cases} X(x) = A\cos(\rho x) + B\sin(\rho x) \\ X(x) = Ax + B \\ X(x) = A\cosh(\rho x) + B\sinh(\rho x) \left[= Ce^{\rho x} + De^{-\rho x} \right] \end{cases}$$

Note:
$$coh(px) = \frac{e^{px} + e^{-px}}{2}$$
, $sinh(px) = \frac{e^{px} - e^{-px}}{2}$

$$cosh(px) + sinh(px) = e^{px}$$
, $cosh(px) - sinh(px) = e^{-px}$

$$X(x) = (e^{px} + De^{-px})$$

$$= (\sum_{x} \cosh(px) + \sinh(px) + D \left[\cosh(px) - \sin(px)\right]$$

$$= (C + D) \cosh(px) + (C - D) \sinh(px)$$

Boundary conditions

Dirichlet boundary conditions: \$(0,t)=M \$(L,t)=N

Neuman boundary conditions: $\frac{\partial \phi}{\partial x}(0,t)=0$ $\frac{\partial \phi}{\partial x}(L,t)=0$

distribution of temperature in a rod.

Initial condition $\phi(x,0) = F(x)$ given

Summary $\frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial x^2}$

<u>Virichlet</u>: $\phi(0,t)=M$, $\phi(L,t)=N$

Initial: $\beta(x, 0) = F(x)$

Define $\theta(x,t) = \phi(x,t) - \phi_0(x,t)$ where $\phi_0(x,t) = M + N - Mx$.

Then $\begin{cases} \frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial x^2} \\ \theta(0,t) = 0 , \quad \theta(L,t) = 0 \\ \theta(x,o) = F(x) - \phi_o(x,o) \end{cases}$

14-10-16

$$\frac{\partial \mathcal{O}}{\partial t} = \frac{\partial \phi}{\partial t} - \frac{\partial \phi}{\partial t} = \frac{\partial \phi}{\partial t}$$

$$\frac{\partial^2 \mathcal{O}}{\partial x^2} = \frac{\partial^2 \phi}{\partial x^2} - \frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi}{\partial x^2}$$

$$\frac{\partial^2 \mathcal{O}}{\partial x^2} = \frac{\partial^2 \phi}{\partial x^2} - \frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi}{\partial x^2}$$

$$\theta(o,t) = \phi(o,t) - \phi_o(o,t) = 0$$

$$\theta(L,t) = \phi(L,t) - \phi_o(L,t) = 0$$

$$\theta(x,0) = \phi(x,0) - \phi_0(x,0)$$
$$= F(x) - \phi_0(x,0)$$

$$\frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial x^2}$$

$$\phi(0,t) = 0 \qquad \phi(L,t) = 0$$

$$\phi(x,0) = F(\infty)$$

$$\phi(x,t) = \chi(x)T(t)$$

$$\phi(0,t) = 0 \Rightarrow \chi(0)T(t) = 0 \Rightarrow \chi(0) = 0$$

$$\phi(4,t) = 0 \Rightarrow \chi(1)T(t) = 0 \Rightarrow \chi(1) = 0$$

Lemma 2.5

A separated solution X(x)T(t) of the heat equation satisfying X(o) = X(L) = 0 has the form $B \sin(n\pi x) e^{(-n^2\pi^2t)}$ Proof

(i) $\lambda = -\rho^2$

$$X(x) = A \cosh px + B \sinh px$$

 $X(0) = A = 0$
 $X(L) = B \sinh(pL) = 0 \Rightarrow B = 0$
 $\neq 0 \text{ when } pL \neq 0$

(ii)
$$\lambda = 0$$

 $X(\alpha) = Ax + B$
 $X(0) = B = 0$
 $X(L) = AL = 0 \rightarrow A = 0$
 $X(\alpha) = 0$ (brivial).

(iii)
$$\lambda = \rho^2$$

 $\chi(x) = A \cos(\rho x) + B \sin(\rho x)$
 $\chi(0) = A = 0$ so $\chi(\infty) = B \sin(\rho x)$
 $\chi(L) = B \sin(\rho L) = 0$
 $B = 0$ (brivial) or $\sin(\rho L) = 0$
 $\Rightarrow \rho L = n\pi$, $n = 1, 2, 3, ...$
So $\lambda = \frac{n^2 \pi^2}{L^2}$

$$T(t) = e^{-\lambda t} = e^{-\frac{n^2 n^2}{L^2} t}$$

$$\chi(x) = B \sin(\rho x) = B \sin(\frac{n\pi}{L} x)$$

Lemma 2.6
A seperated solution X(x)T(t) of the heat equation satisfying X'(0) = 0 X'(L) = 0 has the form $-\frac{n^2\pi^2t}{L^2}$

(proof as exercise).

Neumann
$$\frac{\partial \phi}{\partial x}(0,t) = 0 \qquad \frac{\partial \phi}{\partial x}(L,t) = 0$$

$$\chi'(0) T(t) = 0 \qquad \chi'(L) T(t) = 0$$

$$\chi'(0) = 0 \qquad \chi'(L) = 0$$

(i)
$$\lambda = -\rho^2$$
 (brivial)
(ii) $\lambda = \rho^2$
(iii) $\lambda = \rho^2$
 $\chi(x) = A\cos(\rho x) + B\sin(\rho x)$
 $\chi'(x) = -A\rho\sin(\rho x) + B\rho\cos(\rho x)$
 $\chi'(0) = B\rho = 0 \Rightarrow B = 0$
 $\Rightarrow \chi'(L) = -A\rho\sin(\rho L) = 0$
 $\rho L = n\pi$
 $\chi(x) = A\cos(n\pi x)$
 L

Cont. of lemma 2.5
Superposition of the seperated solutions
$$\phi(x, t) = \sum_{n=1}^{\infty} B_n \sin(\frac{n\pi x}{L}) e^{\left(\frac{n^2\pi^2 t}{L^2}\right)}$$

Check
$$\frac{\partial \phi}{\partial t} - \frac{\partial \phi}{\partial x^2} = \sum_{n=1}^{\infty} \frac{\partial}{\partial t} \left(\frac{\sin(n\pi x)}{L} e^{\left(-\frac{n^2\pi^2}{L^2}t\right)} \right) - \frac{\partial^2}{\partial x^2} \left(\frac{\sin(n\pi x)}{L} e^{\left(-\frac{n^2\pi^2}{L^2}t\right)} \right) = 0$$

Bn = ?

Initial condition
$$\phi(x, 0) = F(x)$$

$$\sum_{n=1}^{\infty} B_n \sin(n\pi x) = F(x)$$

Fourier series

$$F(x) \text{ gives } 0 < x < L$$

$$\frac{\partial d}{\partial t} = \frac{\partial^2 \phi}{\partial z^2} \qquad 0 < x < \pi$$

$$\phi(0,t) = 0 \qquad \phi(\pi,t) = -\pi^2 \qquad (Dinichlet) \quad (BC)$$

$$\phi(x,0) = -\alpha^2 \qquad (IC)$$

$$\phi_0(x,t) = M + \frac{N-M}{\pi} \quad x = -\pi z$$

$$M = 0 \qquad N = -\pi^2$$

$$\phi_0(x,t) = x \quad \alpha + \beta$$

$$\phi_0(0,t) = 0 \qquad \phi_0(2,t) = -\pi^2$$

$$\alpha = -\pi^2, \quad \alpha = -\pi^2 = -\pi$$

$$2\theta = \phi - \phi_0 = \phi + \pi x$$

$$\frac{\partial \theta}{\partial t} = \frac{\partial^2 \theta}{\partial z^2}$$

$$\phi(0,t) = 0 \qquad \phi(\pi,t) = 0$$

$$\phi(x,0) = \phi(x,0) + \pi zc$$

$$= -x^2 + \pi zc = x(\pi-x)$$

$$\phi(x,t) = \int_{n=1}^{\infty} B_n \sin(nx)e^{-n^2t}$$

$$x(\pi-x) = \int_{n=1}^{\infty} B_n \sin(nx)$$

$$B_n = \frac{4}{n^3\pi} \left[(-1)^{n+1} + 1 \right]$$

$$\phi = \theta - \pi x$$

$$= \sum_{n=1}^{\infty} \frac{4}{n^2\pi} \left[(-1)^{n+1} + 1 \right] \sin x e^{-n^2t} - \pi x$$

Ø → Ø = -πx as t → ∞

111X1H 2401

Heat equation
$$\frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial x^2} \qquad 0 < x < \zeta$$

$$\phi(x,t) = \sum_{n=1}^{\infty} B_n \sin(\frac{n\pi x}{2}) e^{\left(-\frac{n^2\pi^2}{2}t\right)}$$

$$\sum_{n=1}^{\infty} B_n \sin(n\pi x) = F(x)$$
(fourier)

Neumann BC
$$\frac{\partial \phi}{\partial x}(o,t) = 0 \qquad \frac{\partial \phi}{\partial x}(L,t) = 0$$

$$\frac{\partial \phi}{\partial x}(x,t) = \sum_{n=0}^{\infty} B_n \cos(\frac{n\pi x}{L}) e^{-\frac{n^2\pi^2}{L}t}$$

$$\frac{\partial \phi}{\partial t} = \frac{\partial^2 \phi}{\partial x^2} \qquad L = \pi , so \quad 0 < \infty < \pi$$

$$\frac{\partial \phi}{\partial x}(o,t) = 0 \quad \frac{\partial \phi}{\partial x}(\pi,t) = 0$$

$$\frac{\partial \varphi}{\partial x}$$
 $(0,0) = 0$

$$/\phi(x,0) = \sin^2 x$$

$$\phi(x,0) = \sin^2 x$$

$$\phi(x,t) = \sum_{n=0}^{\infty} B_n \cos nx e^{(-n^2t)}$$

$$\sum_{n=0}^{\infty} B_n \cos nx = \sin^2 x = \frac{1}{2} - \frac{1}{2} \cos 2x$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}$

So
$$\phi(x,t) = \sum_{n=0}^{\infty} B_n cos(nx) e^{-n^2 t}$$

$$= B_0 + B_2 cos 2x e^{-4t}$$

$$= \frac{1}{2} - \frac{1}{2} cos 2x e^{-4t}$$

Wave Equation
$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial x^2}$$

$$\phi(x,t) = X(x)T(t)$$

$$\frac{\partial^2 \phi}{\partial t^2} = X(x)T''(t)$$

$$\frac{\partial^2 \phi}{\partial t^2} = X''(x)T(t)$$

$$\frac{\partial^2 \phi}{\partial x^2} = X''(x)T(t)$$

$$\frac{1}{c^2} \times (x) T''(t) = \times ''(x) T(t)$$

So
$$\int T''(t) = X''(x) = constant = -\lambda$$
 $C^2 T(t) = X''(x)$

does not depend does not depend
on t on x

ODE:
$$\begin{cases} X''(x) + \lambda X(x) = 0 \\ T''(x) + \lambda c^2 T(t) = 0 \end{cases}$$

Boundary conditions

Pirichlet BC:
$$\phi(0,t) = 0$$
 $\phi(L,t) = 0$

Neumann BC: $\Delta \phi(0,t) = 0$ $\Delta \phi(L,t) = 0$
 δx

$$\times \chi(0) T(t) = 0 \rightarrow \chi(0) = 0$$

$$\times \chi(1) T(1) = 0 \rightarrow \chi(1) = 0$$

$$X(L) T(t) = 0 \rightarrow X(L) = 0$$

$$\begin{cases} X'' + \lambda X = 0 \\ X(0) = 0, X(L) = 0 \end{cases}$$

positive
$$\lambda = p^2$$
, $X(x) = Acos(px) + Bsin(px)$ 0
 $\lambda = 0$, $X(x) = Ax + B$ 0
 $\lambda = -p^2$, $X(x) = Acosh(px) + Bsinh(px)$ 0

0 & 3 are trivial.

$$0: X(0)=0 \Rightarrow A=0$$

$$X(L)=Bsin(pL)=0$$

$$so pL=n\pi, n=1,2,3,...$$

$$\Rightarrow p=\frac{n\pi}{L}$$

$$so \lambda = \frac{n^2\pi^2}{L^2}$$

So
$$X(x) = B sin(n\pi x)$$
, $n = 1, 2, 3, ...$

$$T''(t) + \frac{m^2\pi^2}{L^2}c^2T(t) = 0$$

$$T(t) = C \cos(n\pi c t) + D \sin(n\pi c t)$$

$$\chi(x) = \sin(\frac{n\pi x}{L})$$

$$\phi(x,t) = \sum_{n=1}^{\infty} \left[C_n \cos \left(\frac{n\pi ct}{L} \right) + D_n \sin \left(\frac{n\pi ct}{L} \right) \right] \sin \left(\frac{n\pi x}{L} \right)$$

$$IC \quad \phi(x,0) = f(x) \quad , \quad \partial \phi(x,0) = G(x)$$

$$= \sum_{n=1}^{\infty} C_n \sin(n\pi x) \quad = \sum_{n=1}^{\infty} \left[C_n \left(-\frac{n\pi c}{L} \right) \sin(n\pi ct) \right] + V_n \left(-\frac{n\pi c}{L} \right) \cos(n\pi ct) \int \sin(n\pi x) dt$$

So from the second condition
$$\sum_{n=1}^{\infty} D_n(\frac{n\pi c}{L}) \sin(\frac{n\pi x}{L}) = G_r(sc)$$
 (fourier).

$$\frac{1}{c^2} \frac{\partial^2 \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial x^2} \quad 0 < x < \pi \qquad L = \pi$$

B.C.
$$\phi(0,t)=0$$
 $\phi(\pi,t)=0$

I.C.
$$\phi(x,0) = x(\pi-x)$$
 $\frac{\partial \phi(x,0) = 0}{\partial t}$

$$f(x) = x(\pi - x) \qquad G(x) = 0$$

$$\Rightarrow D_n = 0.$$

$$\sum_{n=1}^{\infty} C_n \sin(n\pi x) = x(n-x)$$

$$C_n = \frac{4}{n^3 \pi} \left[\left(-1 \right)^{n+1} + 1 \right]$$

$$\phi(\alpha,t) = \sum_{n=1}^{\infty} \frac{4}{n^3\pi} \left[\left(-1\right)^{n+1} + 1 \right] cos(nct) sin(ncc).$$

Laplace equation
$$\phi(x,y) = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$$

$$\phi(x,y) = \chi(x) \chi(y)$$

$$\chi''(x) \chi(y)$$

$$\frac{\partial^2 \emptyset}{\partial x^2} = X''(x) Y(y)$$

$$\frac{\partial^2 p}{\partial y^2} = X(\pi) Y''(y)$$

So
$$\phi(x,y) = X''(x)Y(y) + X(x)Y''(y) = 0$$

14-10-16

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{X(y)} = constant = -\lambda$$

$$\frac{X(x)}{X(x)} = -\frac{Y''(y)}{X(y)} = constant = -\lambda$$

$$\frac{X''(x)}{X(y)} = -\frac{Y''(y)}{X(y)} = constant = -\lambda$$

$$\frac{X''(x)}{X(y)} = -\frac{X''(y)}{X(y)} = constant = -\lambda$$

$$\frac{X''(x)}{X(y)} = -\frac{X''(y)}{X(y)} = constant = -\lambda$$

$$\frac{X''(x)}{X(y)} = -\frac{X''(y)}{X(y)} = constant = -\lambda$$

$$\frac{X''(y)}{X(y)} = constant = -\lambda$$

$$\begin{cases} X''(x) + \lambda X(x) = 0 \\ Y''(y) - \lambda Y(y) = 0 \end{cases}$$

$$X(x) = \begin{cases} A\cos(\rho x) + B\sin(\rho x), & \text{if } \lambda = \rho^2 \\ Ax + B, & \text{if } \lambda = 0 \end{cases}$$

$$A\cosh(\rho x) + B\sinh(\rho x), & \text{if } \lambda = -\rho^2$$

$$Y(y) = \begin{cases} C\cosh(py) + D\sinh(py), & \text{if } \lambda = p^2 \\ Cy + D, & \text{if } \lambda = 0 \\ C\cos(py) + D\sin(py), & \text{if } \lambda = -p^2 \end{cases}$$

2401 21-10-16 Laplace's equation $\phi(x,y)$, $\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$ $\frac{\phi(x,y,z)}{\partial x^2}, \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$ Dirichet Problem. p(x,y) = X(x) Y(y) $\Rightarrow X''(x)Y(y) + X(x)Y''(y) = 0$ \Rightarrow X''(z) = -Y''(y) = constant = -3So { X"(x) + 7 X(x) = 0 Y"(y) - 7 Y(y) = 0 So $X(bc) = \int A\cos(px) + B\sin(px)$, $\lambda = p^2$ Ax + B, $\lambda = 0$ $A\cosh(px) + B\sinh(px)$, $\lambda = -p^2$ $\frac{Y(y) = \left\{ \left(\cosh(\rho y) + D \sinh(\rho y) , \lambda = \rho^2 \right\} \right.}{\left(\left(\cos(\rho y) + D \sin(\rho y) \right) , \lambda = 0}$ $\left(\left(\cos(\rho y) + D \sin(\rho y) \right) , \lambda = -\rho^2$

MATH

Lemma 2.15

The only expectated solution satisfying

$$\beta(x,0) = 0 \rightarrow X(x)Y(0) = 0 \rightarrow Y(0) = 0$$
 $\beta(0,y) = 0 \rightarrow X(x)Y(y) = 0 \rightarrow X(x) = 0$
 $\beta(0,y) = 0 \rightarrow X(x)Y(y) = 0 \rightarrow X(x) = 0$
 $\beta(x,y) = 0 \rightarrow X(x)Y(y) = 0 \rightarrow X(x) = 0$

in $D_n \sin(n\pi x) \sin(n\pi y)$, $n = 1, 2, 3, ...$

$$\begin{cases} X'' + \lambda X = 0 \\ X(x) = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow A = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow A = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow A = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) + B \sin(n\pi x) \\ X(x) = 0 \rightarrow C = 0 \end{cases}$$

$$\begin{cases} X(x) = A \cos(n\pi x) + B \sin(n\pi x) +$$

All ATH

24-10-15

$$\sum_{n=1}^{\infty} \int_{n} \sin (n\pi x) \sinh (n\pi) = F(x)$$

$$= \sum_{n=1}^{\infty} \int_{n} \sin (n\pi x)$$
where $\int_{n} = \ln \sinh (n\pi)$

$$\sum_{n=1}^{\infty} \int_{n} \sin (n\pi x) \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

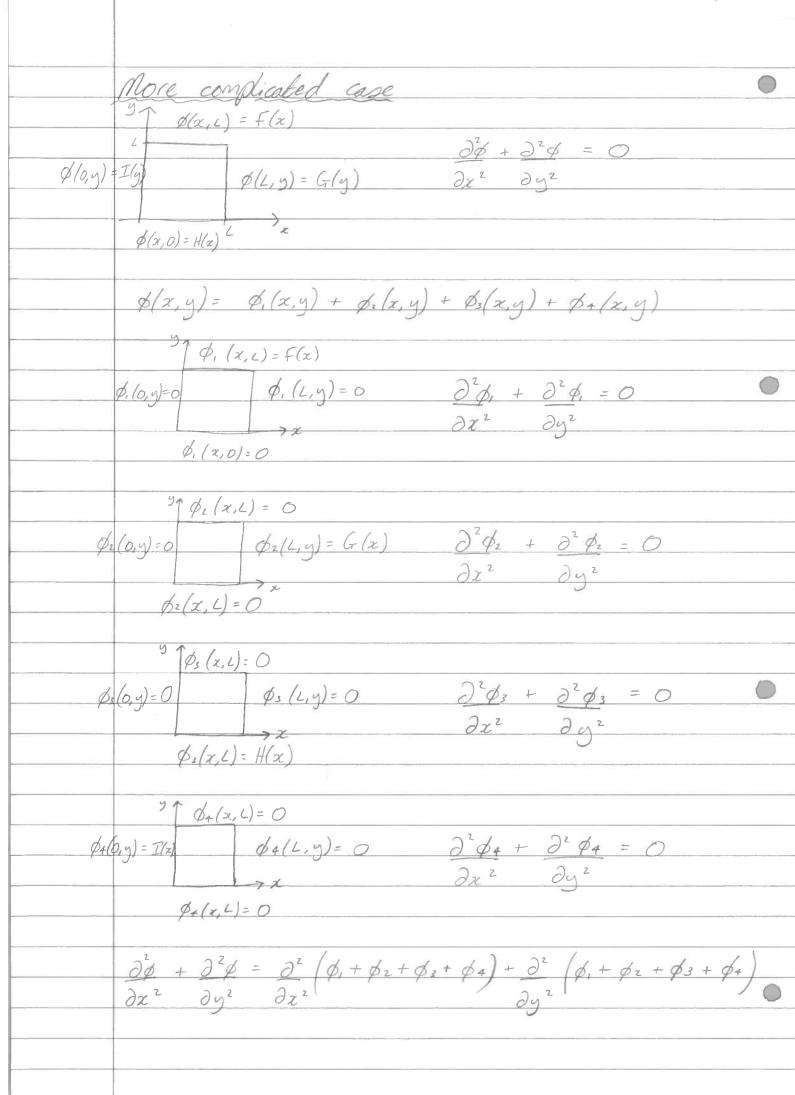
$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$


$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n} \sin (n\pi x) \sin (n\pi x)$$

$$\frac{1}{2} \int_{n} \int_{n}$$

2401
21-10-16

So
$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial$$

$$\frac{g_{2}}{dz} = \frac{1}{2}$$

$$\frac{g_{2}}{dz} = \frac{1$$

$$\phi_{2}(x, o) = H(x)$$
So $\sum_{n=1}^{\infty} C_{n} \sin n\pi x$ = $M(x) = \sum_{n=1}^{\infty} H_{n} \sin n\pi x$

$$\Rightarrow C_{n} = H_{n}$$

$$\frac{dx}{3imilar ln} \text{ for lattices} x$$

$$\int_{n=1}^{\infty} \frac{dx}{2} \sin n\pi x = \frac{1}{2} \sin n\pi x$$

$$\int_{n=1}^{\infty} \frac{dx}{2} \sin n\pi x = \frac{1}{2} \sin n\pi x = \frac{1}{2} \sin n\pi x$$

$$\phi(0, y) = \sin y = \frac{1}{2} \sin n\pi x = \frac{1}{$$

21-10-16

So
$$\phi_{0} = \sin \phi_{0} \sin h(\pi - x)$$
 $\sinh \pi$

$$= \sin 2x \sinh 2y + \sin \phi_{0} \sinh \pi - x$$
 $\sinh \pi$

$$\sinh \pi$$

Sinh π

Sinh π

Remark about the heat operation

 $\partial \phi = \partial \phi$
 $\partial t = \partial x$

3. C. $\phi(0,t) = M$, $\phi(t,t) = N$

T. C. $\phi(\pi,t) = f(\pi)$

(ax 1 $M = N = O$
 $\phi(\pi,t) = \sum_{n=1}^{\infty} B_{n} \sin(n\pi x) e^{-\frac{n\pi x^{2}}{4x^{2}}t}$

(ax 2 $M \neq 0$, $N \neq 0$
 $\phi_{0}(0,t) = M$ $\phi_{0}(t,t) = N$, $\phi_{0}(\pi,t) = M + M - N = e^{-\frac{n\pi x^{2}}{4x^{2}}t}$

Define $\phi(\pi,t) = \phi(\pi,t) - \phi_{0}(\pi,t) = 0$
 $\phi(\pi,t) = \phi(\pi,t) = \phi(\pi,t) = 0$
 $\phi(\pi,t) = \phi(\pi,t) - \phi_{0}(\pi,t) = 0$
 $\phi(\pi,t) = \phi(\pi,t) - \phi_{0}(\pi,t) = \sum_{n=1}^{\infty} B_{n} \sin(n\pi x)$
 $\phi(\pi,t) = \phi(\pi,t) - \phi_{0}(\pi,t) = \sum_{n=1}^{\infty} B_{n} \sin(n\pi x)$

$$E \times A \cap A = 0$$

$$\partial^2 b + \partial^2 b = 0$$

$$\partial x^2 - \partial y^2$$

$$| \beta(x, x) = x^3 - \pi^2 x$$

$$| \beta(x, y) = 0$$

2401 21-10-16 Case when the values at the corners are non zero \$ (0,0)=M \$ (0,4)=Q Ø(L,O)=N Ø(L,L)=P \$\(\((x,y) = Axy + Bx + Cy + D \) We want to find A, B, C and D such that Øo (0,0) = M → D=M \$ (O, L) = Q -> CL + D = Q $\phi_0(L,0) = N \rightarrow BL + D = N$ Øo(L, L) = P → AL2+BL+CL+D=P SO D=M, C=Q-M, B=N-M, A = P - BL - CL - DWant to know if do (x,y) satisfies the Laplace equation: $\partial \phi_0 = Ay + B$ $\partial \phi_0 = Ax + C$ $\partial^2 \beta = 0$ $\partial^2 \beta = 0$ $\frac{\partial \chi^2}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0$

MATH

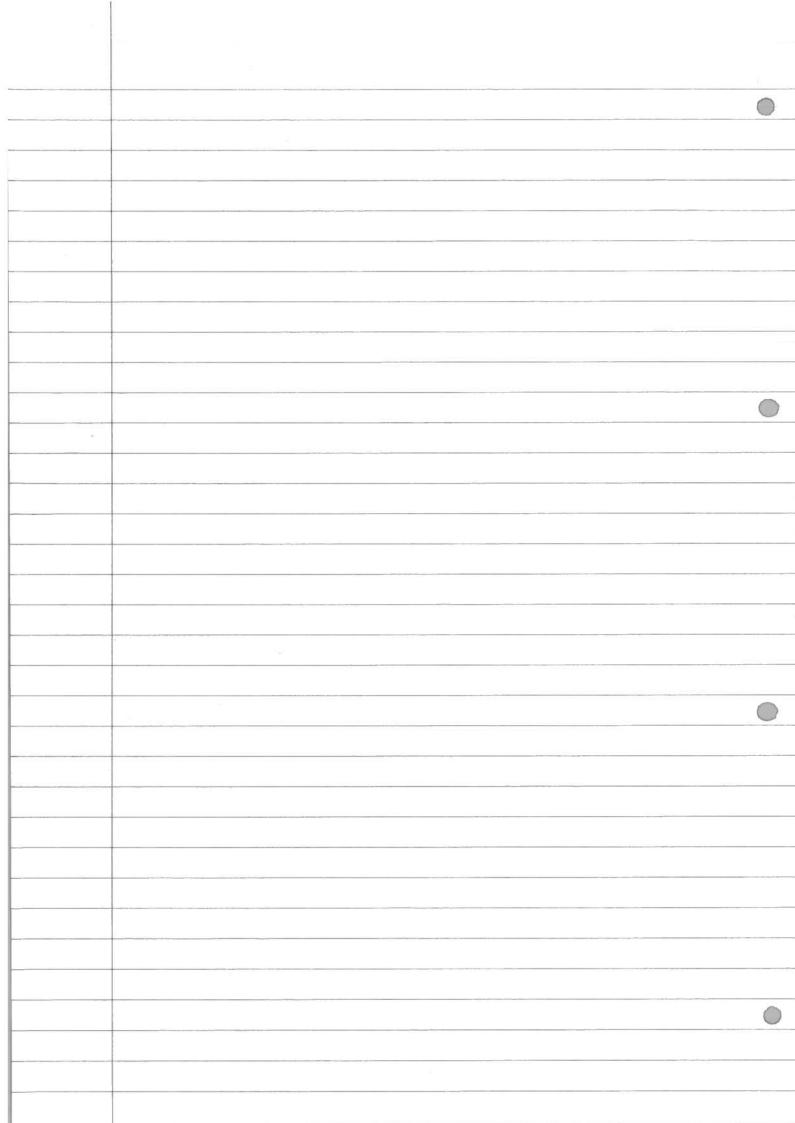
Define
$$\theta(x,y) = \phi(x,y) - \phi_{\pi}(x,y)$$
 $\frac{\partial^2 \theta}{\partial x^2} + \frac{\partial^2 \theta}{\partial y^2} = 0$
 $\frac{\partial x^2}{\partial y^2}$
 $\theta = 0$ at the corners.

$$\frac{\partial (x,L) = f(x)}{\partial (x,y) = b(y)}$$
 $\theta(x,0) = H(x)$

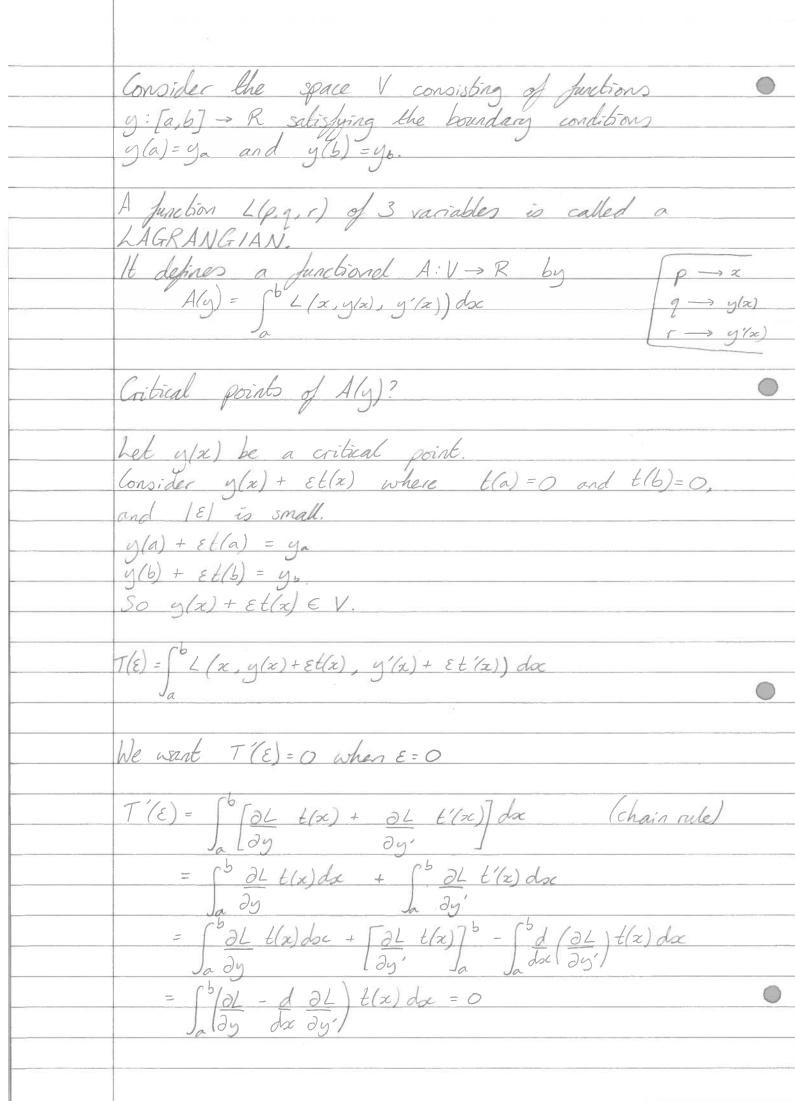
$$\frac{\partial (x,z) = f(x)}{\partial (x,y) = b(y)}$$
 $\theta(x,0) = f(x)$

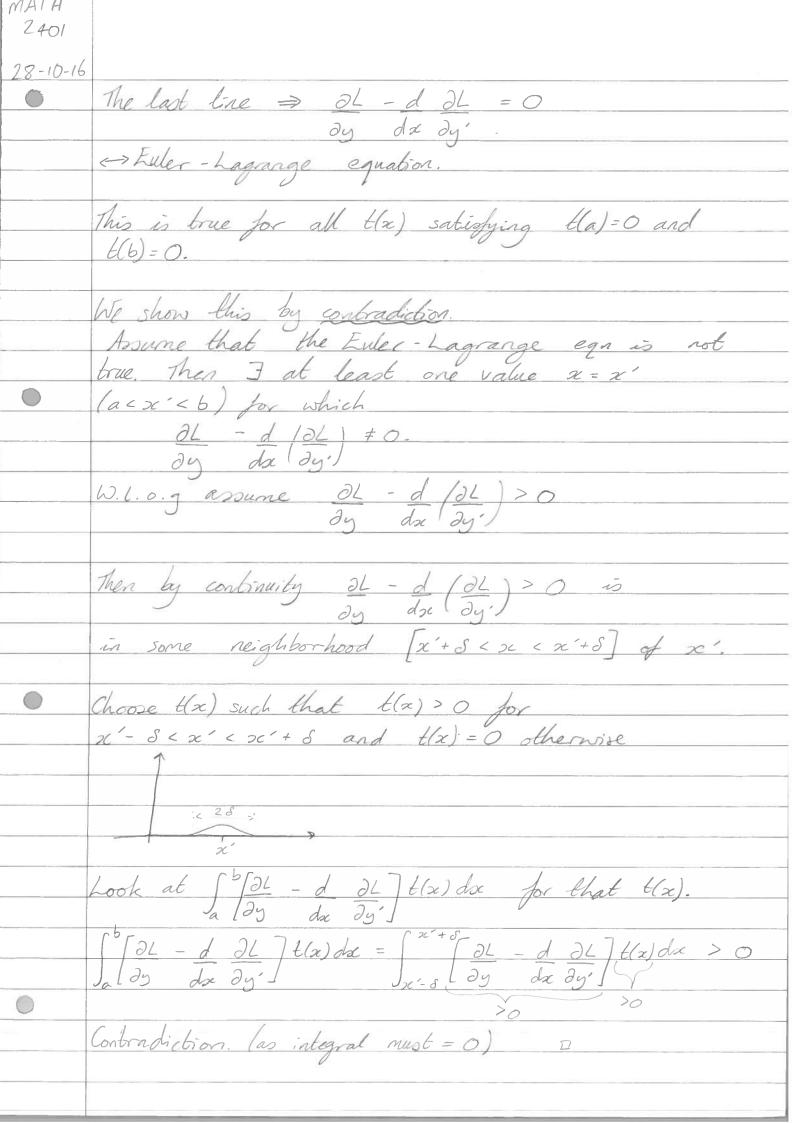
$$\frac{\partial (x,z) = f(x)}{\partial (x,y) = b(y)}$$
 $\theta(x,0) = f(x)$

$$\frac{\partial (x,z) = f(x)}{\partial (x,y) = b(y)}$$
 $\frac{\partial (x,z) = f(x)}{\partial (x,y) = b(y)}$
 $\frac{\partial (x,z) = f(x)}{\partial (x,y) = b(y)}$


Example

$$\frac{\partial (x,z) = x^3}{\partial (x,y) = xy^2}$$


$$\frac{\partial (x,z) = x^3}{\partial (x,y) = xy^2}$$


$$\frac{\partial (x,z) = 0}{\partial (x,z) = 0}$$

MATH 2401 21-10-16 Фo(x,y) = Axy + Bx + CG + 8 Qo(n, TL) = TC3 -> ATT = TT3 -> A=TT $\phi_0(0,0)=0 \rightarrow D=0$ Ø(0,π)=0 → (π=0 → (=0 $\phi(\pi,0)=0 \rightarrow B\pi=0 \rightarrow B=0$ φ. (x,y) = πxy Define O(x,y) = \$ (x,y) - Toxy $\Theta(\alpha,\pi) = \chi^3 - \pi^2 x$ O(0,y)=0 $O(\pi,y)=\pi y^2-\pi^2 y$ O(x,0)=0 Q(0,y) = \$(0,y) - 0 = 0 $\theta(x,0) = \phi(x,0) - 0 = 0$ $O(\pi, y) = O(\pi, y) - \pi^2 y = \pi y^2 - \pi^2 y$ $\theta(x,\pi) = \phi(x,\pi) - \phi_0(x,\pi) = x^3 - \pi^2 x$ $O(\alpha, y)$ is $\phi(x, y)$ in previous example $\phi(x,y) = \Theta(x,y) + \pi x y.$

MATH 2401	
28-10-16	Part I of Course - Calculus of variations
	Recall Function $f(x)$: "associate a number $f(x)$ to the number x , has al maxima / minima at $f'(x) = 0 \Rightarrow x_0$ (critical points). $f''(x_0) > 0 \Rightarrow minimum$ $f''(x_0) < 0 \Rightarrow maximum$ [$[x - x_0] = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)^2 f''(x_0) +$ [$[x - x_0] = f(x_0) + (x - x_0)f'(x_0) + (x - x_0)^2 f''(x_0) +$ $f''(x_0) > 0 \Rightarrow f(x) - f(x_0) = (x - x_0)^2 f(x_0)^2 +$ $f''(x_0) > 0 \Rightarrow f(x) - f(x_0) > 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) < f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0) < 0 \Rightarrow f(x) > f(x_0)$ $f''(x_0) < 0 \Rightarrow f(x) - f(x_0)$ $f''(x$

 $\int_{-\infty}^{\infty} L(x, y(x), y'(x)) dsc$ y(a) = y, y(b) = yb $\frac{\partial \mathcal{L}}{\partial y} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial y'} = 0$ $\int_{1+y^2}^{b} dx$ L(x, y(x), y'(x)) = 11+y'2 [L(p,q,r) = 11+r2] I TI+y'2 doc is the length of the curve y(x). $\frac{\partial L}{\partial y} = 0 \qquad , \qquad \frac{\partial L}{\partial y'} = \frac{g'}{\sqrt{1+g'^2}} \qquad \frac{\partial}{\partial x} \frac{\partial L}{\partial y'} = \frac{d}{dx} \left(\frac{g'}{\sqrt{1+g'^2}}\right) = 0$ So we ned to solve $\frac{d}{dx}\left(\frac{y'}{1+y'^2}\right)=0$, $y(a)=y_a$, $y(b)=y_b$ $\frac{y'=c}{2}\left(\frac{1+y'^2}{1+y'^2}\right)=0$ $y'^{2} = c^{2}(1+y^{-2})$ So $y'^{2}(1-c^{2}) = c^{2}$ $y' = c = \bar{c}$ $\sqrt{1-c^{2}}$ So y = Cx + D

MATH

240-16

(a) =
$$g_{a} = \tilde{C}a + P$$

(b) = $g_{b} = \tilde{C}b + P$

$$\tilde{C}(a-b) = g_{a} - g_{b}$$

$$\tilde{C}$$

28-10-16

So
$$C \int 1+g^{-1}' = C$$
 $C^{2}(1+g^{-1})' = C$

So $g' = \int_{C^{2}}^{1} -1' = C$

So $g = Cx + D$.

Example

 $L = \frac{1}{2}[mg^{-2} - kg^{2}]$ from keface

Woing Beltranis identity:

 $L - g' \partial L = C$
 $\partial g'$

So $\frac{1}{2}[mg^{-1} - kg^{2}] - g'(mg^{-1}) = C$

So $-\frac{1}{2}mg^{-2} - \frac{1}{2}kg^{2} = C$
 $mg^{-2} + kg^{2} = -2C$
 $g'^{2} - \frac{1}{2}(mg^{-2}) - \frac{1}{2}(mg^{-2}) = C$
 $g'^{2} - \frac{1}{2}(mg^{-2}) - \frac{1}{2}(mg^{-2}) = C$

MAIN

So
$$\int \frac{dy}{1+2k-y^2} = \int \frac{k}{k} dx$$

Let $y = \int \frac{2k}{k} \sin \theta$

So $\int \frac{1+2k}{k} \cos \theta d\theta = \int \frac{k}{k} dx$
 $\Rightarrow \int \frac{\cos \theta}{k} d\theta = \int \frac{k}{k} dx$
 $\Rightarrow \theta = \int \frac{k}{k} x + D$

So $y = \int \frac{2k}{k} \sin \int \frac{k}{k} x + D$

HTAIN 2401 28-10-16 Calculus of variations $\int_{-\infty}^{b} L(x, y(x), y'(x)) dx$ y(a) = ya , y(b) = yb Euler-Lagrange egn: $\frac{\partial L}{\partial y} = \frac{d}{dx} \left(\frac{\partial L}{\partial y'} \right) = 0$ If L does not depend on x we can use
Beltrami's identity: L-y' DL = C

dy' Example 1 $\int_{a}^{b} y \sqrt{1+(y')^{2}} dx \qquad y(a) = y_{a}, \quad y(b) = y_{b}$ $L = y\sqrt{1+(y')^{2}}$ $\frac{\partial L}{\partial y'} = yy'$ $\frac{\partial y'}{\sqrt{1+(y')^{2}}}$ Beltrami's identity: So y = C $\frac{\sqrt{1+(y')^2}}{y^2} = C^2$ $\frac{1+(y')^2}{C^2}$ So $y' = \sqrt{y^2 - 1}$ So $\int dy = \int dsc$ using y = Ccosho we get Scinhodo = sdx

So
$$\theta = x + D$$

C

So $y = C \cosh(x + D)$

Mho $\int_{0}^{x} y_{a} = C \cosh(x + D)$
 $\int_{0}^{x} y_{a} = C \cosh(x + D)$

Brachistochrome goblem

"shortest 6me".

3

B (b, y_b)

A

Conservation of evergy

 $\int_{0}^{x} y_{a} = \int_{0}^{x} \int_{0}^{x} \int_{0}^{x} y_{a} dx$
 $\int_{0}^{x} y_{a} = \int_{0}^{x} \int_{0}^{x} \int_{0}^{x} y_{a} dx$

Also $ds = \sqrt{1 + (y_{a})^{2}} dx$

So $\int_{0}^{x} ds = \int_{0}^{x} \int_{0}^{x} \int_{0}^{x} \int_{0}^{x} y_{a} dx$

So $\int_{0}^{x} ds = \int_{0}^{x} \int_{0}^{x} \int_{0}^{x} \int_{0}^{x} y_{a} dx$

22-10-16

$$L = \sqrt{1 + (x_1')^2} \qquad \partial L = 1 \qquad \forall 1 \qquad 2g'$$

$$\sqrt{1 - 2gg} \qquad \partial g' \qquad \sqrt{1 - 2gg} \qquad k \sqrt{1 - 2g'}$$

$$doing Bollomai's inequality:$$

$$\sqrt{1 + (y_1')^2} - (y_1)^2 = C$$

$$\sqrt{1 - 2gg} \qquad \sqrt{1 + (y_1)^2}$$

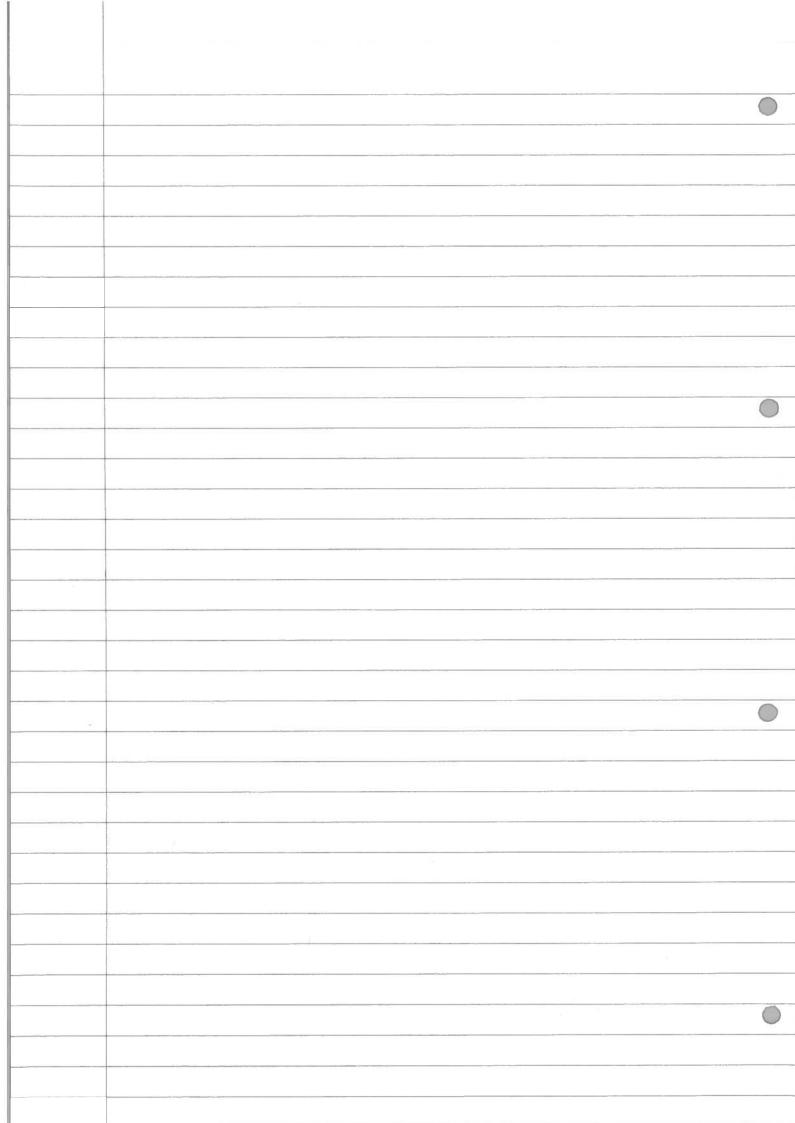
$$So \qquad 1 + (y_1')^2 = C$$

$$\sqrt{1 - 2gg} \sqrt{1 + (y_1)^2}$$

$$So \qquad 1 = C^2$$

$$(-2gg)(1 + (y_1)^2)$$

$$So \qquad 1 = (y_1)^2$$


$$-2gg C^2$$

$$So \qquad \int dy = \int dx$$

$$\sqrt{1 - 2gg} = \int dx$$

$$\sqrt{1 - 2gg}$$

MATH 2401 28-10-16 {y(a) = ya = Clog(1+a) + D (g(b) = yb = Clog(1+b)+D ya-ys = Clog (1+a) $= C = y_a - y_b$ $\log(\frac{1+a}{1+b})$ $D = y_a - Clog(1+a)$ $\Rightarrow D = y_a - (y_a - y_b) log(1+a)$ $log(\frac{1+a}{1+b})$

MATH 2401 04-11-16 A(y) = \(\begin{aligned} \(\L(\alpha, \ng, \, \g') \dsc \end{aligned} \) is minimised [maximised by y satisfying $\frac{\partial L}{\partial y} = \frac{d}{dx} \left(\frac{\partial L}{\partial y'} \right)$ $\frac{1}{2}\frac{\partial L}{\partial x} = 0 \text{ then } L-y'\frac{\partial L}{\partial y'} = const.$ Constraints We wish to find the extremal for the functional $A(y) = \int_{a}^{b} L(x, y, y') dx$ among the functions y that additionally satisfy a constraint of the form $G(y) = \int_{a}^{b} M(x, y, y') dx = 0.$ Example

Find a curve of a given length that

encloses a maximum area. $A(y) = \int_{a}^{b} y \, dx$ & $\int_{a}^{b} \sqrt{1+y'} \, dx = L$ $\begin{cases} \int_{a}^{b} \sqrt{1+(y')^{2}} - \frac{L}{b} dx = 0 = G(y) \end{cases}$ We use Lagrange multipliers.

Find the extreme values of flag) subject to the Form the new function $h(x,y,\lambda) = f(x,y) - \lambda g(x,y)$ & then find the extreme values of $h(x,y,\lambda)$ as functions of x & y. il solve the Th = 0 in conjunction with the

third equation g(x,y) = C. eg. find the minimum value of z^2+y^2 , subject to the constraint x+y=1.

Form $h(x,y,\lambda) = x^2+y^2 - \lambda(x+y-1)$ Solve $\begin{cases} \partial h = 2x - \lambda = 0 \\ \partial x \end{cases}$ $\partial h = 2y - \lambda = 0$ $g(x,y) = 0 \Rightarrow \partial h = x + y - 1 = 0$ => {x = 2/2 $\frac{y = \lambda/2}{\Rightarrow \frac{\eta_2 + \frac{\eta_2 - 1}{2} = 0}$ So x2+y2 = 1 +1 = 1 So minimum distance = 1 We form the new functional

F(y, \(\lambda \)) = \(\begin{array}{c} 1 - \lambda M dx \end{array} and then we solve $\partial(L-\lambda M) = d(\partial(L-\lambda M))$ (a second order ode, with I as a parameter) together with the constraint G(y)=0 which fixes 2

MATH 2401 04-11-16 Example

Find the extreme value of

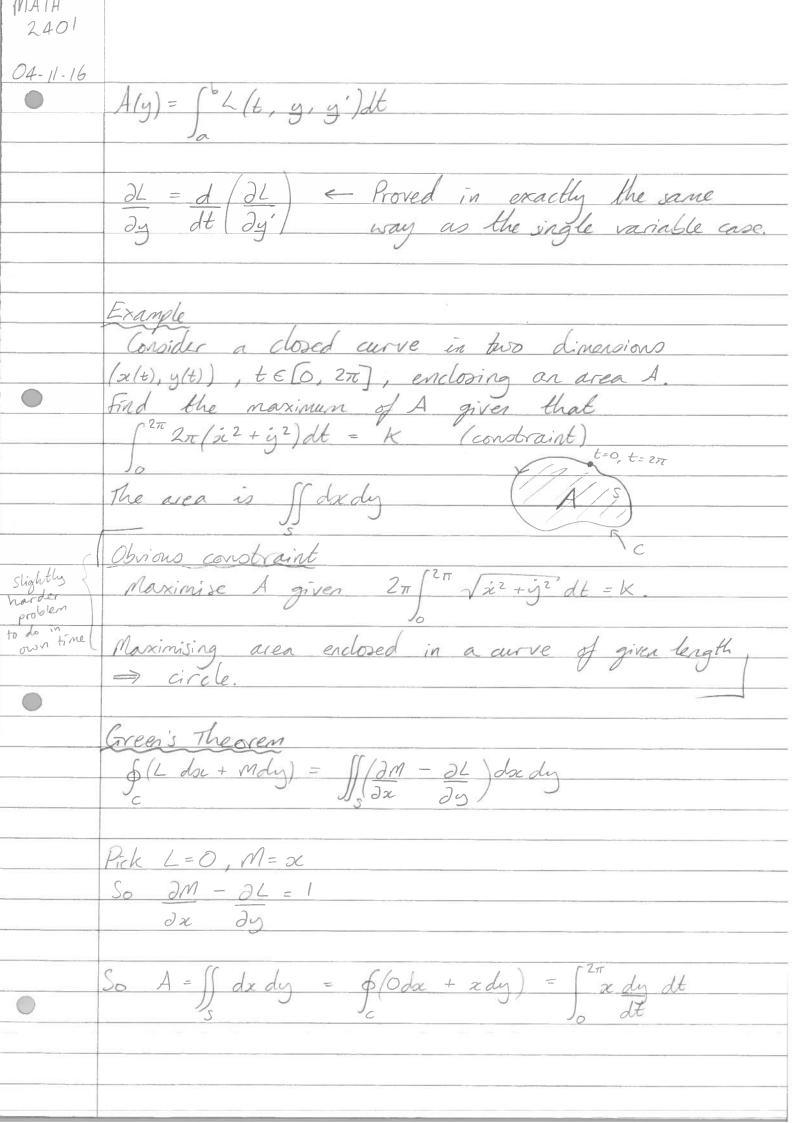
\[\begin{aligned} & \frac{1}{3} & \frac{1}{2} & \ subject to the constraint fyda = 1/6 We consider the functional \[\left(y^2 + 2yy'\right) - \alpha \left(y - \frac{1}{6}\right) dx ie. (2y'-2)=d(2y'+2y) So 24'-7 = 24" + 24' y' = -7 x + A So $y = -\frac{\lambda}{2}x^2 + Ax + B$ y(0) = y(1) = 0 gives A&B So $y = \frac{\lambda}{\lambda}(x - x^2)$ Now use Judac = 1/6 which gives $\lambda = 4$ so $y = 2c - x^2$

OR using the Belbrani integral, [(g-2+2/g')-2/y-1/6)]-y'[2y'+3g]=Gnst. y-2 + 2y = C $\frac{dy}{dx} = \frac{1}{2}\sqrt{C - \lambda y} \implies \frac{dy}{\sqrt{C - \lambda y}} = \int d\alpha$ can be brought -2 \(\int C - Ay' = xC + A\)
back if necessary \(\frac{1}{A} \) Use y(0) = y(1) = 0 to find $C \otimes A$ $-2 \sqrt{C} = 0 + A$ This can be fixed by
introducing the two $-2 \sqrt{C} = 1 + A$ possible branches of \sqrt{C} or 3 = 1 + A squaring. $\frac{4}{3^2}\left(C-\lambda_y\right)=(z+A)^2$ giving $\begin{cases} 4 & C = A^2 \\ \hline{\lambda^2} \end{cases} = A^2$ $\left(\frac{A}{A^2}C = (1-A)^2 = 1 + 2A + A^2\right)$ $\Rightarrow SA = -\frac{1}{2}$ $C = \frac{3^{2}}{16}$ $\frac{4}{3^{2}} - \frac{3}{4}y = \left(x - \frac{1}{2}\right)^{2} \text{ and now completes as before.}$ $\frac{3^{2}}{16} = \frac{3^{2}}{16}$

Example
Minimise pgfy 11+yi2 da subject to potty doc = L Form \[\begin{aligned} \left(\text{gy} \sqrt{1+y'^2} - \frac{1}{2} \left(\sqrt{1+y'^2} - \frac{1}{2} \right) \, \dots \\ \dots \dots \\ \dots \dots \\ \d Use the Beltrami identity: L-y'dL = constant.

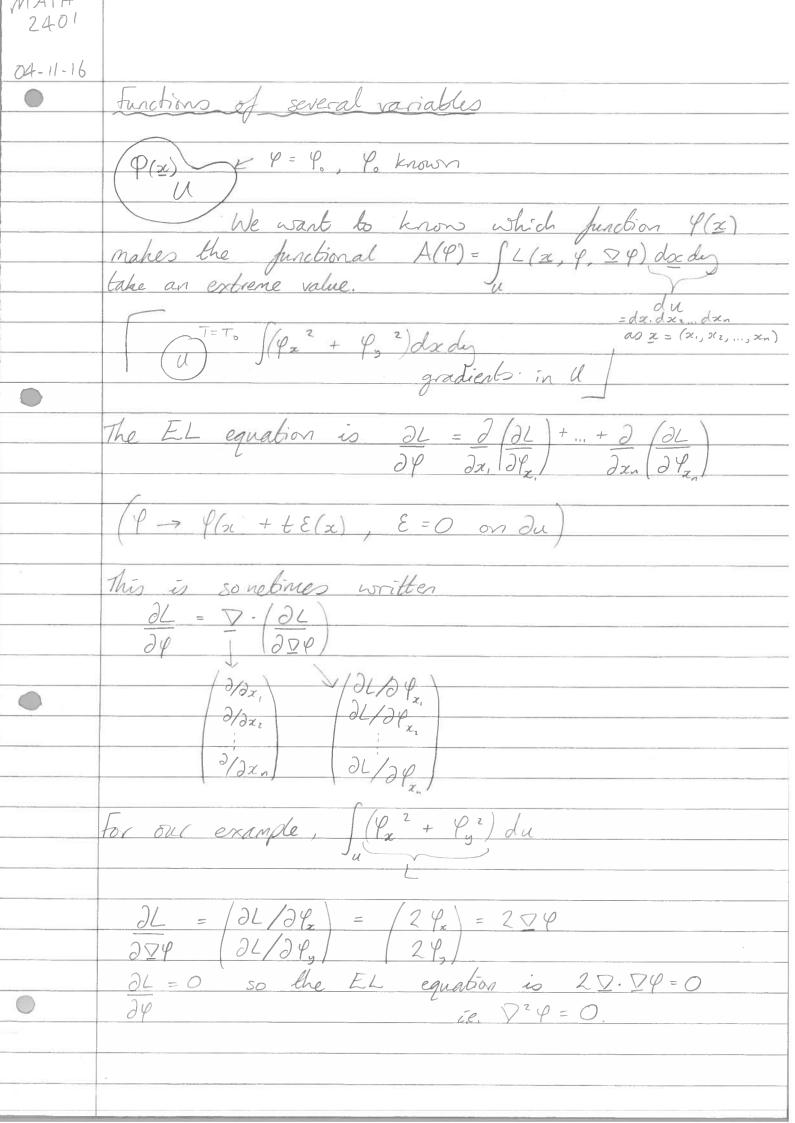
giving [pgy/1+y'2' - 2[\sqrt{1+y'2'} - \text{L'}]

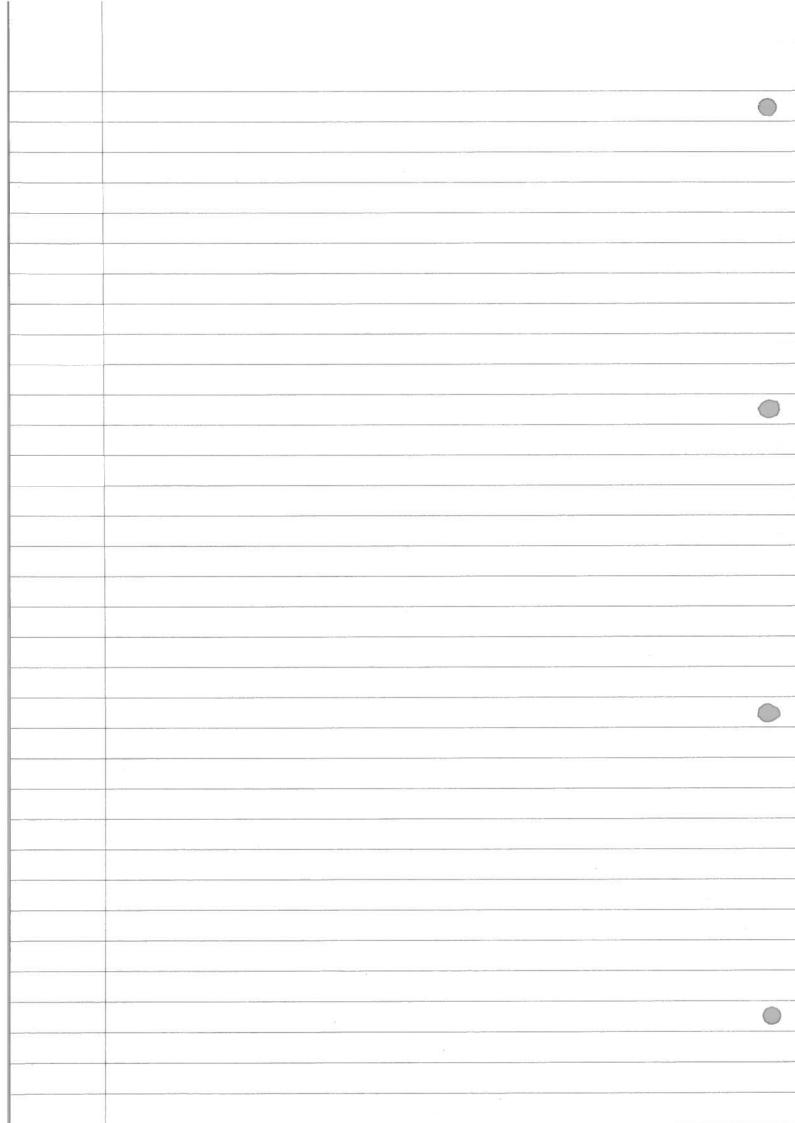
b-a] $-y'\left[\frac{gg'}{\sqrt{1+y'^2}} - \frac{\lambda y'}{\sqrt{1+y'^2}}\right] = const$ $\frac{pgy}{\sqrt{1+y'^{2}}} \left[\frac{1+y'^{2}-y'^{2}}{\sqrt{1+y'^{2}}} \right] - \frac{\lambda}{\sqrt{1+y'^{2}}} \left[\frac{1+y'^{2}-y'^{2}}{\sqrt{1+y'^{2}}} \right] = C$ pgy - 2 = C√1+y,2' (+) (first order ODE for y with 2 as a parameter $\frac{dy}{dz} = \pm \left[\frac{1}{2} \frac{99}{3} - 3 \right]^2 - 1$ write pgy-2 = cosh v so that pg dy = sinhv dv & C sight dr = / coph2 -1


So v = pg x +D $cohv = coh\left(\frac{pgx}{c} + D\right)$ $y = \frac{\lambda}{pg} + \frac{c}{pg} \left(\frac{coh(pg + D)}{c} \right)$ unknowns: C, D, 2 which can be found from boundary conditions on a y & from the constaint

John the constaint

John the constaint = $\int_{-\infty}^{\infty} pgy - 2 dx$ using (ax)= [b cosh (pg oc + D) doc = L More Variables
So far we have $A(y) = \int_{a}^{b} L(x, y, y') dx.$ (as we extend this to $A(y) = \int_{a}^{b} L(x, y, y') dx, \quad fy = (y, (x), y_{2}(x), ..., y_{n}(x))$ $(y' = (y'_{1}(x), y'_{2}(x), ..., y'_{n}(x))$ => A(y, y2, ..., yn) = \ \(\frac{1}{2} \left(\alpha, y, y2, ..., yn, y', y', y', ..., y') \) doc. We can treat this as $A(\underline{r}) = \int_{t_{1}}^{t_{1}} L(t_{1}, \underline{r}, \underline{r}') dt$ eg. [1/2 mr 2 - V(r) dt


We have a system of n Euler Lagrange (EL) equations, essentially an EL equation for each variable. $\frac{\partial y_i}{\partial L} = \frac{d}{dx} \left(\frac{\partial y_i}{\partial y_i} \right) = \frac{d}{dx} \left(\frac{\partial L}{\partial y_i} \right)$ $\frac{\partial L}{\partial y_i} = \frac{d}{dx} \left(\frac{\partial L}{\partial y_i} \right)$ $\frac{\partial L}{\partial y_i} = \frac{d}{dx} \left(\frac{\partial L}{\partial y_i} \right)$ if DL = 0, we have the Beltrami identity: $L - y' \frac{\partial L}{\partial y'} - y' \frac{\partial L}{\partial y'} = conot.$ we can write y rather than each you explicitly) Motivation of proof Stope magnitude of pertubation $I = \int_{a}^{b} L(x, y, y') dsc \qquad y \text{ is extremal}$ $y \to y + \varepsilon t$ $y' \to y' + \varepsilon' t$ subobilition, differentiation w.r.t which needs


 $0 = \int_{a}^{b} \varepsilon \frac{\partial L}{\partial y} - \varepsilon \frac{d}{dx} \left(\frac{\partial L}{\partial y'} \right) dx + 0 \quad \text{as } \varepsilon = 0$ at ends.

So we want to find the curve (x(t), y(t)) which maximises $\int_{0}^{2\pi} x \, dy \, dt$ subject to $2\pi \int_{0}^{2\pi} (ic^{2} + ij^{2}) dt = K$. We use Lagrange multipliers and form the functional $\int_0^{2\pi} x \, dy - \lambda(\dot{x}^2 + \dot{y}^2) \, dt$ (ignore constant K) We exact two, inter-dependent, EL equations.

From $x: \partial L = d/\partial L \Rightarrow dy = d(-2\lambda x)$ $\exists x dt (\partial x) dt dt$ From $y: \partial L = d(\partial L) \Rightarrow 0 = d(x - 2\lambda y)$ $\exists y dt (\partial y) dt$ We have $dy = -2\lambda d^2x$ and $0 = dx - 2\lambda d^2y$ $dt dt^2$ $dt dt^2$ take Substitution gives $rq(-\sin(qt)) = -2\lambda(-q^2)r\sin qt$ - 9 = 27g², ie. 9 = - 1/27 $0 = qrcos(qt) - 2\lambda(-q^2)rcot, q = -\frac{1}{2}\lambda$ r can be found from the constraint $2\pi \int_{-2\pi}^{2\pi} \frac{1}{2^2} + \frac{1}{2^2} dt = K$.

MATH 2401	
10 11	
18-11-16	Part II
	Method of characteristics for 1st order PDEs.
	- Lineau equations with constant coefficients $A \frac{\partial \phi}{\partial x} + B \frac{\partial \phi}{\partial x} + C(x,y) = 0 , \phi(x,y)$
	$A\partial\phi + B\partial\phi + C(\alpha, y) = 0, \phi(\alpha, y)$
	$\partial x \qquad \partial y$
	A and B are constant.
	- Linear equations with variable coefficients
	$A(x,y) \partial \phi + B(x,y) \partial \phi + C(x,y) = 0$
	- Linear equations with variable coefficients $A(x,y) \frac{\partial \phi}{\partial x} + B(x,y) \frac{\partial \phi}{\partial y} + C(x,y) = 0$
	- Quasilinear equations $A(x,y,\phi) \frac{\partial \phi}{\partial x} + B(x,y,\phi) \frac{\partial \phi}{\partial y} + C(x,y,\phi) = 0$
	$A(x,y,\phi) \partial \phi + B(x,y,\phi) \partial \phi + C(x,y,\phi) = 0$
	∂x ∂y
	- Nonlinear equations
	Example: $(\frac{\partial \phi}{\partial x})^2 + \frac{\partial \phi}{\partial y} = \sin(x, y)$
	(∂x) ∂y
	Linear equations with constant coefficients
	Example
	$\partial \phi = 0 \Rightarrow \phi(x,y) = C(y)$
	220
	Ē 1
-	Example
	$\frac{\partial \phi - \partial \phi = 0}{\partial x}$
	Looks like chain rule: $\frac{\partial \phi}{\partial u} = \frac{\partial \phi}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial \phi}{\partial y} \frac{\partial y}{\partial u}$
	with $\frac{\partial x}{\partial u} = 1$, $\frac{\partial y}{\partial u} = -1$

Let's change to new coordinates (u, v)satisfying $\frac{\partial x}{\partial u} = 1$, $\frac{\partial y}{\partial u} = -1$ This gives us many choices, $\begin{cases} 3x = u \\ y = -u + v \end{cases} \begin{cases} x = u + 7v \\ y = -u \end{cases}$ note same first column

-1st column contains the values of 2x and 2y

- matrix non singular → det A ≠ 0

∂u

∂u $= (1 \ 0)(x) \qquad (u) = 1(0 \ -7)$ $(1 \ 1)(9) \qquad (v) = 7(1 \ 1)(1)$ lloing first choice: $\phi(u,v)$, $\partial \phi = \partial \phi \partial x + \partial \phi \partial y$ $\partial u \quad \partial x \partial u \quad \partial y \partial u$ $= \frac{\partial \phi}{\partial x} - \frac{\partial \phi}{\partial y} = 0$ $\partial \phi = 0 \Rightarrow \phi(u, v) = C(v)$ $\mu = 2C$, v = x + ySo $\phi = C(x+y)$

18-11-16

(S) =
$$(1-\frac{1}{2})^2$$

($(x)^2 = (1-\frac{1}{2})^2$

($(x)^2 =$

MATH

$$\frac{\partial \beta}{\partial x} + 2 \frac{\partial \beta}{\partial y} = \sin y$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (1 \text{ O})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(y)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x) + \frac{1}{2} (2 \text{ I})(x)$$

$$\frac{\partial \beta}{\partial x} = \frac{1}{2} (2 \text{ I})(x) + \frac{1}$$

2401 18-11-16 General Case $\phi(x_1, x_2, \dots, x_n)$ New coordinates u, uz, ..., un A. 20 + A220 + ... + Ando = 0 ∂x_1 ∂x_2 ∂x_n $\partial \phi \partial x_1 + \partial \phi \partial x_2 + ... + \partial \phi \partial x_n = 0$ ∂x , ∂u , ∂x_2 ∂u_1 ∂x_n ∂u_1 $\partial \phi = 0$, $\phi = C(u_2, u_3, ..., u_n)$ Linear equations with variable coefficients $A_1(x_1, x_2, ..., x_n) \partial \phi + A_2(x_1, x_2, ..., x_n) \partial \phi + ... + A_n(x_1, x_2, ..., x_n) \partial \phi = 0$ Change of variables $u_1, u_2, u_3, \dots, u_n$ such that $\partial x_i = A_i(x_1, x_2, \dots, x_n)$, $1 \le i \le n$. $\partial \phi \ \partial x_1 + \partial \phi \ \partial x_2 + \dots + \partial \phi \ \partial x_n = \partial \phi$ ∂x , ∂u , ∂x , ∂u , ∂x , ∂u , ∂u ,

MIATH

Example $\frac{\chi}{\partial x} \frac{\partial \phi}{\partial y} + \frac{1}{y} \frac{\partial \phi}{\partial y} = 0$ $\frac{\partial x}{\partial u} = x \qquad \frac{\partial y}{\partial u} = y$ $\frac{\partial x - x = 0}{\partial u} - \frac{\partial y - y = 0}{\partial u}$ $\Rightarrow x = A(v)e^{u} \qquad \Rightarrow y = B(v)e^{u}$ Choice: A=1, B=v $x = e^{u}, y = ve^{u}$ $u = \ln x$, $v = \frac{y}{2c}$ $\partial \phi = 0 \Rightarrow \phi = C(v) = C\left(\frac{\omega}{2}\right)$ Back to previous example $\frac{\partial \phi - \partial \phi = x}{\partial x}$ $\frac{\partial x}{\partial x} = 1$ $\frac{\partial u}{\partial u}$ $\frac{\partial u}{\partial x} = u + A(v)$ $y = -u + B(v) \Rightarrow v = y + u = x + y$ Chorce: A=O, B=v So oc = u, y = -u+v $\frac{\partial \phi}{\partial x} \frac{\partial x}{\partial u} + \frac{\partial \phi}{\partial y} \frac{\partial u}{\partial u} = x$ => 20 = x = u $\Rightarrow \phi = \frac{u^2 + C(v)}{2} \rightarrow \phi = \frac{x^2 + C(x+y)}{2}$ So this new method works in both cases.

```
24.01
18-11-16
                Example
                  \frac{\partial}{\partial x} + \frac{\partial}{\partial y} = 0 \Rightarrow \frac{\partial}{\partial y} = 0
\frac{\partial}{\partial x} + \frac{\partial}{\partial y} = 0
                                                                   => 20 =0
                      \frac{\partial x}{\partial u} = -y \qquad \frac{\partial y}{\partial u} = x
                   \frac{\partial^2 x}{\partial u^2} = -\frac{\partial y}{\partial u} = -xc
                 \partial^2 x + x = 0
                 » x = A(v)cosu + B(v)sinu
                      y = -\partial x = A(v)sinu - B(v)cosu
                 Choice: B=0, A=v
                 So x = v \cos u, y = v \sin u \Rightarrow x^2 + y^2 = v^2
                 Ø = C(v) = C(\siz + y^2)
                 \frac{\partial x}{\partial x} = \frac{\partial x}{\partial y} = 0 \Rightarrow \frac{\partial x}{\partial y} = 0 \Rightarrow \phi = C(y)
                 \frac{\partial x}{\partial u} = \frac{x}{u}, \quad \frac{\partial y}{\partial u} = 1
                 \partial x - x = 0
                  oc = A(v)e" y = -u + B(v)
               Chorce: B=0, A=v
                x = ve^{u}, y = -u
                 v = xe^{-u} = xe^{y} \Rightarrow \phi = C(xe^{y})
```

אוון אוון

2201 18-11-16 Method of Characteristics (1st order PDE) - quasi linear $\frac{-xampe}{\phi(x,y)} \frac{1}{x} \frac{\partial \phi}{\partial x} - y \frac{\partial \phi}{\partial y} = 0$ $(x,y) \rightarrow (u,v): \frac{\partial x}{\partial u} = \frac{1}{x} \frac{\partial y}{\partial u} = -y$ $\frac{\partial u}{\partial u} = \frac{1}{x} \frac{\partial x}{\partial u} = 1$ $\frac{\partial \phi}{\partial u} = \frac{\partial x}{\partial u} \frac{\partial \phi}{\partial x} + \frac{\partial y}{\partial u} \frac{\partial \phi}{\partial y} = 0 \qquad \frac{\partial}{\partial u} \left(\frac{2z^2}{z}\right) = 1$ $\partial \phi = 0 \rightarrow \phi = C(r)$ $\frac{\partial y}{\partial x} + y = 0$, $y = B(v) e^{-u}$ So $\emptyset = C(ye^{\frac{x}{2}})$ $\frac{\partial \phi + 3y^{2/3}}{\partial x} \frac{\partial \phi}{\partial y} = 2 , B.C. \phi(x, 1) = 1+x$ $\partial x = 1 \rightarrow x = u + A(v)$ $\frac{\partial y}{\partial u} = 3y^{2/3} \qquad y^{3} = u + B(v)$ Chorce: B=O, A=v $\phi = 2u + C(v)$ $y = u^{3} \Rightarrow u = y'^{3}, v = 2\ell - y'^{3}$ $= 2y'^3 + C(x - y'^3)$

B. C.

$$1+x=2+C(x-1)$$

So $C(x-1)=x-1$
 $W=x-1 \Rightarrow C(w)=w$

So $\phi=2y^{3}+x-y^{3}$
 $=x+y^{3}$
 $=x+y^{3}$

Consider considers

 $A(x,y,\phi) \ge \phi+B(x,y,\phi) \ge \phi+C(x,y,\phi)=0$
 δx
 δx

18.11-16

So we have

$$x = t + s$$
 $y^2 = t + 1$
 $d = 2t + 1 + s$
 $d = 2t + 1 + s$
 $d = 2t + 1 + s$

Example

 $d = x + y^3$

Example

 $d = x + y^3$

Example

 $d = x + y^3$

Example

 $d = x + y^3$
 $d = x + y^3$

Example

 $d = x + y^3$
 $d = x + y^3$

Example

 $d = x + y^3$
 $d = x + y^3$

MAIA	
2401	
25-11-16	
25-11-10	
	First order PDE (method of characteristics)
	- linear equations
	- quasilinear equations
	- quasilinear equations - fully nonlinear equations (chapter 9 - not examinable)
	Chapter 10 - Linear second order hyperbolic equations with constant coefficients.
	with constant coefficients.
	D'Alembat's method.
	Wave equation
	$\frac{1}{C^2} \frac{\partial^2 \phi}{\partial t^2} = \frac{\partial^2 \phi}{\partial x^2} , \phi(x, t)$
	Change of variables:
	Change of variables: $ \{x_* = x + ct \} $
	$x_{-} = x - ct$
	$x = \frac{1}{2}(x_{+} + x_{-}), t = \frac{1}{2}(x_{+} - x_{-})$
	20
	$\phi(x,t) = \phi\left(\frac{1}{2}(x_{+} + x_{-}), \frac{1}{2c}(x_{+} - x_{-})\right) = \overline{\phi}(x_{+}, x_{-})$
	$\partial^2 \mathcal{I} = 0??$
	$\frac{\partial}{\partial x_{-}} \frac{\partial}{\partial x_{+}}$
	$\frac{\partial \overline{\Phi}}{\partial x_{+}} = \frac{\partial x}{\partial x_{+}} \frac{\partial \phi}{\partial x_{+}} + \frac{\partial \phi}{\partial t_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} + \frac{1}{2} \frac{\partial \phi}{\partial x_{+}} = \frac{1}{2} \frac{\partial \phi}{\partial x_{+$
	$\partial \overline{\Phi} = \partial \partial \overline{\Phi} = \partial \partial \overline{\Phi} + \partial \overline{\Phi}$
	$\partial x_{-}\partial x_{+}$ ∂x_{-} $\left[\partial x_{+} \right]$ ∂x_{-} $\left[\left[\left[\partial x_{-} \right] \right] \partial x_{-} \right]$
	$\frac{\partial^2 \overline{D}}{\partial x \partial x_+} = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x_+} \right] = \frac{\partial}{\partial x} \left[\frac{\partial}{\partial x} \right] + \frac$
	$\partial x_{-} \partial x / \partial x_{-} \partial t /$
	$=\frac{1}{2}\frac{\partial}{\partial x}\left[\dots\right]-\frac{1}{2}\frac{\partial}{\partial z}\left[\dots\right]^{2}$
	Lance 2c at
	$= \frac{1}{2} \left[\frac{1}{2} \frac{\partial^2 \phi}{\partial x^2} + \frac{1}{2} \frac{\partial^2 \phi}{\partial x^2} \right] - \frac{1}{2} \left[\frac{1}{2} \frac{\partial^2 \phi}{\partial x^2} + \frac{1}{2} \frac{\partial^2 \phi}{\partial x^2} \right]$
	$=\frac{1}{2}\begin{bmatrix}\frac{1}{2}\partial^{2}\phi + \frac{1}{2}\partial^{2}\phi - \frac{1}{2}\begin{bmatrix}\frac{1}{2}\partial^{2}\phi + \frac{1}{2}\partial^{2}\phi \\ \frac{1}{2}\partial^{2}\chi^{2} & \frac{1}{2}\psi & \frac{1}{2}\psi \end{bmatrix} - \frac{1}{2}\begin{bmatrix}\frac{1}{2}\partial^{2}\phi + \frac{1}{2}\partial^{2}\phi \\ \frac{1}{2}\partial^{2}\psi & \frac{1}{2}\psi & \frac{1}{2}\psi \end{bmatrix}$
	, , , , , , , , , , , , , , , , , , ,

$$\frac{\partial^2 \sigma}{\partial x_1 \partial x_1} = \frac{1}{4} \left[\frac{\partial^2 \sigma}{\partial x_1} - \frac{1}{2} \frac{\partial^2 \sigma}{\partial x_2} \right] = 0$$

$$\frac{\partial^2 \sigma}{\partial x_1} = \frac{\partial^2 \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = \frac{\partial^2 \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = \frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x_1} = 0$$

$$\frac{\partial \sigma}{\partial x_2} = 0$$

$$\frac{\partial \sigma}{\partial x$$

So
$$g(x,t) = \frac{1}{2}e^{-(x-ct)^2} \cdot \frac{1}{x} + \frac{1}{2}e^{-(x+ct)^2} + \frac{1}{x^2}e^{-(x+ct)^2} \cdot \frac{1}{2}e^{-(x+ct)^2} \cdot \frac{1}{2}e^{-(x+ct)^2$$

2401 25-11-16 Hyperbolic Equations $\frac{A \partial^2 \phi + B \partial^2 \phi + C \partial^2 \phi}{\partial x^2} = \mathcal{D}(x, y)^{(4)}, \quad \phi(x, y)$ A, B, C constants, D given. Charge of variables: $(x,y) \rightarrow (s,t)$ so that (*) becomes $A \partial^2 \phi = D$, $A \neq O$ dsdt 8x = s+t (y = -Bs - xt $\frac{\partial x}{\partial t} \frac{\partial}{\partial x} + \frac{\partial y}{\partial t} \frac{\partial}{\partial y} = \frac{\partial}{\partial x} - \frac{\partial}{\partial y}$ $\frac{\partial}{\partial s} = \frac{\partial x}{\partial s} \frac{\partial}{\partial x} + \frac{\partial y}{\partial s} \frac{\partial}{\partial y} = \frac{\partial}{\partial x} - \frac{\beta}{\beta} \frac{\partial}{\partial y}$ $\frac{\partial}{\partial s} = \frac{\partial x}{\partial s} \frac{\partial}{\partial x} + \frac{\partial y}{\partial s} \frac{\partial}{\partial y} = \frac{\partial}{\partial x} - \frac{\beta}{\beta} \frac{\partial}{\partial y}$ $\frac{\partial^2}{\partial s \partial t} = \left(\frac{\partial}{\partial s} \middle/ \frac{\partial}{\partial t}\right) = \left(\frac{\partial}{\partial x} - \frac{\partial}{\partial y} \middle/ \frac{\partial}{\partial n} - \frac{\partial}{\partial y}\right)$ $= \frac{\partial^2 - \alpha \partial^2 - \beta \partial^2 + \alpha \beta \partial^2}{\partial x^2 + \alpha \beta \partial^2}$ dx² dxdy dydx dy² $= \frac{\partial^2}{\partial x^2} - (\alpha + \beta) \frac{\partial^2}{\partial x^2} + \alpha \beta \frac{\partial^2}{\partial x^2}$ dx2 dxdy dy2 We want $A \partial^2 \phi = A \partial^2 \phi + B \partial^2 \phi + C \partial^2 \phi$ $\frac{\partial s}{\partial t} \frac{\partial x^2}{\partial x^2} \frac{\partial x}{\partial y} \frac{\partial y^2}{\partial y^2} + A\alpha\beta\frac{\partial^2 \phi}{\partial y} = A\frac{\partial^2 \phi}{\partial y} + B\frac{\partial^2 \phi}{\partial y} + C\frac{\partial^2 \phi}{\partial y}$ $\frac{\partial x^2}{\partial x} \frac{\partial x \partial y}{\partial y} \frac{\partial y^2}{\partial x^2} \frac{\partial x^2}{\partial x \partial y} \frac{\partial y^2}{\partial y^2}$ $\frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial y} \frac{\partial y}{\partial y} \frac{\partial y}{\partial y}$ $\frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} \frac{\partial x}{\partial y} \frac{\partial x}{\partial y} \frac{\partial y}{\partial y} \frac{\partial y}{\partial y}$ $\frac{\partial x}{\partial y} = \frac{\partial x}{\partial y} \frac{\partial y}{\partial y} \frac{\partial x}{\partial y} \frac{\partial y}{\partial y} \frac{\partial y}{\partial y}$ DX= ... B= ...

We see that a and
$$\beta$$
 are the roots of the quadratic equation

AT' + BT + C = O

 $\cos b = -B \pm \sqrt{B^2 - 4AC}$
 $2A$
 $T_+ = -B + \sqrt{B^2 - 4AC}$
 $2A$
 $T_+ + T_- = -B/A$, $T_+ T_- = C/A$ ($B^2 - 4AC > O$)

Example

 $3^2b + 53^2b + 43^2b = xy$ [$x = S + t$]

 $3^2b + 53^2b + 43^2b = xy$ [$x = S + t$]

 $3^2b + 53^2b + 43^2b = xy$ [$x = S + t$]

 $3^2b + 53^2b + 43^2b = xy$ [$x = S + t$]

 $3^2b + 53^2b + 43^2b = xy$ [$x = S + t$]

AT' + BT + C = O

 $x = -B + \sqrt{B^2 - 4AC}$
 $x = A^2b + A^2b = A^2$

MATH 2401 25-11-16 D'Alembert's method Example $\frac{\partial^2 \phi + 5 \partial^2 \phi + 4 \partial^2 \phi = 0}{\partial x^2 \partial x^2 \partial x^2}$ B.C. $\phi(x,0)=x$, $\frac{\partial}{\partial x}\phi(x,0)=x^2$ A=1, B=5, C=4, D=0 AT2+ BT + C = 0 $T^2 + 5T + 4 = 0$ → T=-1,-4 $\Rightarrow \beta = -1, \alpha = -4$ $\begin{cases} x = s + t \\ y = -\beta s - \alpha t \end{cases} \Rightarrow \begin{cases} x = s + t \\ y = s + 4t \end{cases} \Rightarrow \begin{cases} t = \frac{1}{3}(y - \alpha) \\ s = \frac{1}{3}(4\alpha - y) \end{cases}$ $\phi = C_1(s) + C_2(t) = C_1(4x-y) + C_2(y-x)$ since $\partial^2 \phi = 0$ $\phi(x,0)=x$, $C_1\left(\frac{4x}{3}\right)+C_2\left(\frac{-x}{3}\right)=x$ (i) $\frac{\partial \phi}{\partial y} = \frac{-1}{3} C_1 \left(\frac{4x - y}{3} \right) + \frac{1}{3} C_2 \left(\frac{y - x}{3} \right)$ $\frac{\partial \phi(x,0) = -\frac{1}{3}C_{1}'(\frac{4x}{3}) + \frac{1}{3}C_{2}'(\frac{-x}{3}) = x^{2}}{\partial y}$ Integrate: $-\frac{1}{3} \frac{3}{4} C_1 \left(\frac{4x}{3}\right) + \frac{1}{3} \left(-3\right) C_2 \left(-\frac{x}{3}\right) = \frac{x^3}{3} + k \quad (ii)$ $\frac{3}{4} - \frac{1}{4} \left(\frac{4x}{3} \right) - \left(\frac{2}{3} \left(\frac{-x}{3} \right) \right) = \frac{x^3}{3} + k$ Solving (i) and (ii) for C, and C2 we get $\frac{3}{4}C_1\left(\frac{4x}{3}\right) = \frac{x^3}{3} + k + 3c$ $\Rightarrow C_1\left(\frac{4x}{3}\right) = \frac{4}{9}\left(x^3 + 3x\right) + \frac{4}{3}k$

$$C_{1}\left(\frac{-x}{3}\right) = x - C_{1} = x - \frac{4}{7}\left(x^{3} + 3x\right) - \frac{4}{3}k$$

$$= -\frac{4x^{3}}{3} + 3x - \frac{4}{3}k$$

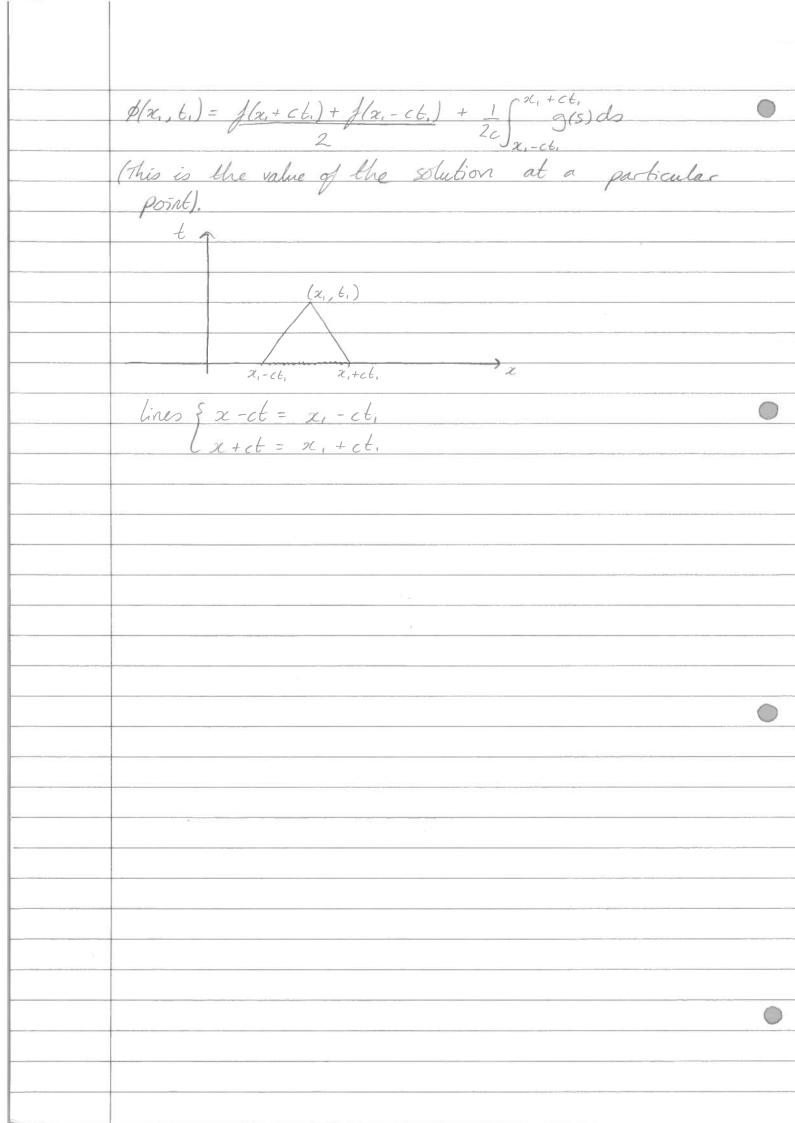
$$C_{1}\left(\frac{4x}{3}\right) = \frac{4}{7}\left(x^{2} + 3x\right) + \frac{4}{3}k$$

$$ket \quad u = \frac{4x}{3} \rightarrow x = \frac{3u}{4}$$

$$C_{1}(u) = \frac{4}{7}\left(\frac{27}{64} + \frac{9u}{4}\right) + \frac{4}{3}k$$

$$= \frac{3}{16}u^{3} + u + \frac{4}{3}k$$

$$ket \quad w = -\frac{x}{3} \Rightarrow x = -3w$$


$$C_{2}(w) = -3w - \frac{4}{7}\left(-27w^{3} - 9w\right) - \frac{4}{3}k$$

$$= 12w^{3} + w - \frac{4}{3}k$$

$$p = C_{1}\left(\frac{4x - 9}{3}\right) + C_{2}\left(\frac{9 - x}{3}\right)$$

$$So \quad p = \frac{3}{16}\left(\frac{4x - 9}{3}\right)^{3} + \left(\frac{4x - 9}{3}\right) + \frac{4}{3}k + 12\left(\frac{9 - x}{3}\right)^{3} + \left(\frac{9 - x}{3}\right) - \frac{4}{3}k$$
Then simplify.

Note that interchanging β and α does not change the solution.

MATH 2401	
02-12-16	
	Non-linear first order PDE
Not in	
Exam.	Weak nonlinear first order PDE
1	$A(x,y,\phi) \frac{\partial \phi}{\partial x} + B(x,y,\phi) \frac{\partial \phi}{\partial y} + C(x,y,\phi) = 0$
	dx dy
	$G(x, y, \emptyset, \partial \emptyset(x, y), \partial \emptyset(x, y)) = 0$
	$\partial x \partial y$
	Examples
	$\phi_{x}^{2} + \phi_{y}^{2} = 1$
	Øx Øy -1 = 0
	Notations
	$u = \varphi$, $p = \frac{\partial \varphi}{\partial x}$, $q = \frac{\partial \varphi}{\partial y}$
70-00-00-00-00-00-00-00-00-00-00-00-00-0	G (x, y, u, p, q) = 0
	Examples become:
2000	$\rho^2 + q^2 = 1$
	P9-1=0
	Rocall 20 - 00 20 - 0
	Recall $\partial \varphi = \varphi_x$, $\partial \varphi = \varphi_y$
	The general weak nonlinear hot order PDE
	The general weak nonlinear first order PDE becomes $G(x, y, u, \rho, q) = A(x, y, u)\rho + B(x, y, u)q + C(x, y, u)=0$
	Constitution of the Carolina C
	So $dx = A(x, y, u) = \partial G$
	$ \frac{So \ dx = A(x,y,u) = \partial G}{dt} $
	$dy = B(x, y, u) = \partial G$
0	dt
	$\frac{dt}{du} = -C(x, y, u)$
	dt

 $\frac{dx}{dt} = \frac{\partial G}{\partial \rho}$ in general depends on $\frac{dy}{dt} = \frac{\partial G}{\partial \rho}$ $\frac{\partial G}{\partial \rho}$ $\frac{\partial G}{\partial \rho}$ in general depends on $\frac{\partial G}{\partial \rho}$ du = p dG + q dG $\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt}$ $\frac{d\rho = -\partial G - \partial G \rho}{dt}$ = p dae + g dy dt $\frac{dq = -\partial G - \partial G q}{dt \partial y \partial u}$ $= \rho \frac{\partial G}{\partial \rho} + q \frac{\partial G}{\partial q}$ Derivation of the last two equations above: $\frac{d\rho = d(\partial u) = \partial^2 u \, dx + \partial^2 u \, dy}{dt \, dt \, (\partial x)} = \frac{\partial^2 u}{\partial x^2} \, dt + \frac{\partial^2 u}{\partial y \partial x} \, dt$ $= p_n \frac{dx}{dt} + p_y \frac{dy}{dt}$ = Px 2G + Py 2G dp dg $\frac{dq}{dt} = \frac{d(\partial u)}{dt} = \frac{\partial^2 u}{\partial x \partial y} \frac{dx}{dt} + \frac{\partial^2 u}{\partial y^2} \frac{dy}{dt}$ $= \frac{q \times dx}{dt} + \frac{q_0 dy}{dt}$ $= \frac{q \times dG}{\partial \rho} + \frac{q_0 dG}{\partial \rho}$ Eliminate Px, Py, qx, 29. Differentiating G with x and y $dG = \partial G + \partial G u_x + \partial G p_x + \partial G q_x = 0$ $dx \partial x \partial u \int \partial \rho \partial q$ So $\frac{\partial G}{\partial x} + \frac{\partial G}{\partial u} \rho = -\left(\frac{\partial G}{\partial \rho} \rho_x + \frac{\partial G}{\partial q} q_x\right)$ but $q_x = \rho_y$ $\frac{\partial g}{\partial x} = \frac{\partial g}{\partial u} + \frac{\partial G}{\partial u} \rho_x + \frac{\partial G}{\partial q} q_x = \frac{\partial g}{\partial u} \rho_y + \frac{\partial G}{\partial u} \rho_y +$

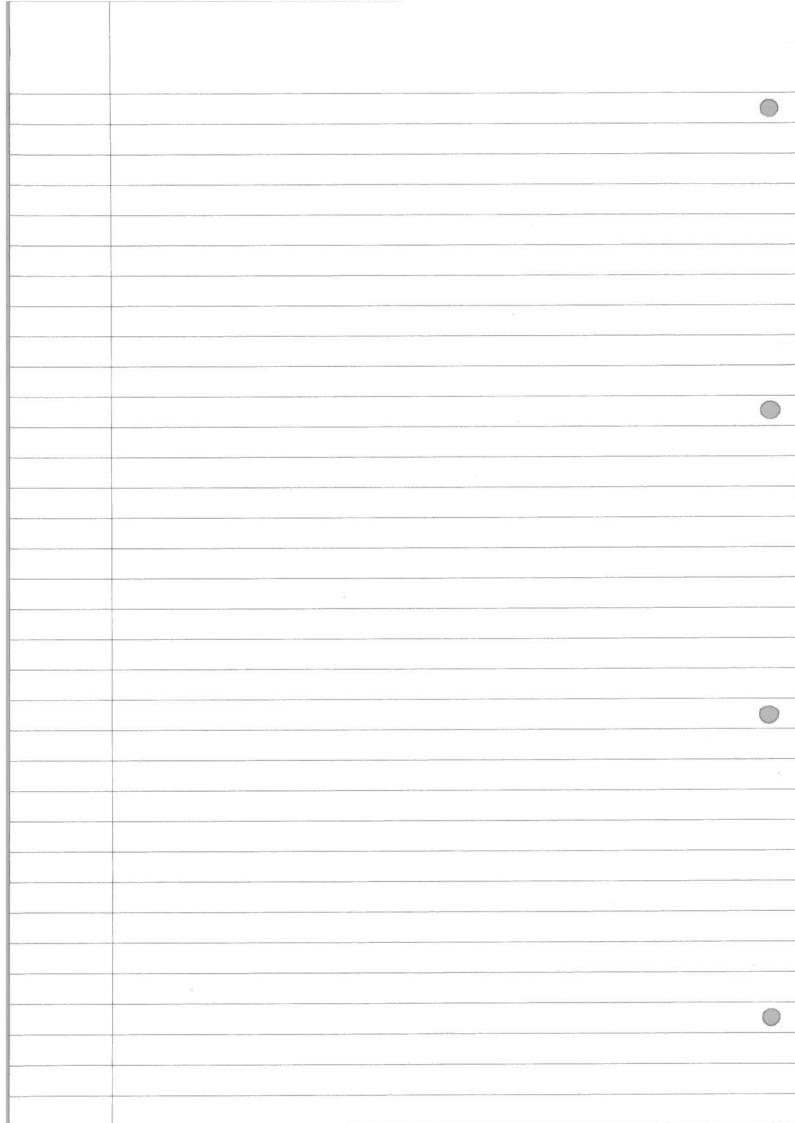
2401 02-12-16 So $\frac{\partial G}{\partial \rho} \rho_x + \frac{\partial G}{\partial \rho} \rho_y = -\frac{\partial G}{\partial x} - \frac{\partial G}{\partial u} \rho$ $\frac{\partial \phi}{\partial x} = -\frac{\partial G}{\partial x} - \frac{\partial G}{\partial u} \rho$ dG = 2G + 2G us + 2G ps + 2G qs = 0 $\frac{\partial y}{\partial y} \frac{\partial u}{\partial u} = -\left(\frac{\partial G}{\partial p} \frac{p_y}{\partial q} + \frac{\partial G}{\partial q} \frac{q_y}{\partial q}\right)$ $\frac{\partial}{\partial \rho} \frac{\partial}{\partial q} \frac{\partial}$ So dg = - 2G - 2G g dt dy du Initial conditions Ex = 7, (s) 1 y = 82(5) $u = \widetilde{\varphi}(s)$ Also $p = Y_1(s)$, $q = Y_2(s)$ which we can specify in terms of given conditions. G(x,y,u,p,q)=0 $G(y_1(s), y_2(s), \tilde{\phi}(s), v_1(s), v_2(s)) = 0$ $\frac{du}{ds} = \frac{\partial u}{\partial x} \frac{dx}{ds} + \frac{\partial u}{\partial y} \frac{dy}{ds} \qquad \text{by chain rule } \left(u(x,y)\right)$ $= \rho \frac{dx}{ds} + q \frac{dy}{ds}$ $\tilde{\phi}'(s) = \psi_{1}(s) \, \chi'(s) + \psi_{2}(s) \, \chi'(s)$

Example

$$\frac{\partial g}{\partial x} + a \partial g = 0$$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial g}{\partial x} + a \partial g = 0$
 $\frac{\partial$

MATH 2401 02-12-16 $x = t + A \rightarrow A = 0$ y = at + B -> B = s p= C = -acos q = D = coss u = (C + Da)t + Ey = at + s $\int s = y - at = y - ax$ $p = -a\cos \rightarrow \{p = -a\cos(y - ax)\}$ $q = \cos s$ $l = \cos (y - ax)$ $u = sins \rightarrow \phi = sin(y - ax)$ Example $\phi_{x}\phi_{y}=1$, $\phi(x,0)=\infty$ ⇒ pq = 1 G = pq -1 = 0 P= 4, (s) $\frac{\int da = \partial G = q}{dt}$ dy = 2G = p du = pdG + qdG = pq + qp = 2pq dt op og $dp = -\partial G - \partial G \rho = 0 \rightarrow \rho = A = 1$ dt dx du dg = - 2G - 2G - 2 = 0 → g = B=1 dt dy du

So
$$d\alpha = 1 \rightarrow x = t + C \rightarrow C = 5 \rightarrow x = t + 5$$
 dt
 $dy = 1 \rightarrow y = t + D \rightarrow D \cdot D \Rightarrow y = t$
 dt
 $\Rightarrow S = 2 - y$
 $du = 2 \rightarrow u = 2t + E \rightarrow E = 5 \Rightarrow u = 2t + 5$
 dt
 $\Rightarrow u = 2y + z - y = z + y$


Example

 $t \Rightarrow y = 0$
 $t \Rightarrow y = 0$

2401 02-12-16 $G(x,y,\phi(x,y),\frac{\partial\phi}{\partial x}(x,y),\frac{\partial\phi}{\partial y}(x,y))=0$ $u = \phi$, $\rho = \partial \phi$, $q = \partial \phi$ ∂x G/2c, y, u, p, g/ = 0 } t = 0 5 doc = 2G x = y, (s)y= 72 (5) $\frac{dy}{dt} = \frac{\partial G}{\partial q}$ $\frac{du}{dt} = \frac{\partial G}{\partial p} + \frac{\partial G}{\partial q}$ $\frac{dt}{dt} = \frac{\partial G}{\partial p} + \frac{\partial G}{\partial q}$ $u = \widetilde{\phi}(s)$ P = Y, (s) 9= 4(5) $d\rho = -\partial G - \rho \partial G$ dg = - 2G - 92G dt dy du G(X(S), X2(S), \$(S), 4,(S), 42(S)) = 0 \$\doldred{\psi'(s)} = \forall_1(s)\forall_1(s) + \forall_2(s)\forall_2(s) Example Py + & = y , & (x,0)=0 {t=0 $G = q + p^2 - y = 0$ x=S ã = 0 P = 4.(s) $du = 2p^2 + q$ g = 42(s) $\psi_1^2 + \psi_2 = 0, 0 = \psi_1 \Rightarrow \psi_2 = 0$ $\frac{dq}{dt} = 1 \rightarrow q = t$

MATTH

MATH 2401 02-12-16 So $\int dx = 2\cos \rightarrow x = (2\cos t) + \cos = \cos(2t + 1)$ $dy = 2 \sin s \rightarrow y = (2 \sin s)t + \sin s = \sin s (2t+1)$ <u>du</u> = 2 cos²s + 2 sin²s = 2 → u=2t $x^2 + y^2 = (2t + 1)^2$ So Ø = -1+ 122+y2 $\phi = 1 - \sqrt{3c^2 + y^2}$ Example 1/2 dy - u = 0, \$(0,y) = y2 $\begin{cases} x = 0 \end{cases}$ G = pg - u = 0 $p = \psi_1(s) = \underline{s}$ 9 = 42(s) = 25 V, 1/2 - 52 = 0 $\frac{du = pq + pq = 2pq}{dt}$ 25 = 4 (0) + 42 $\psi_2 = 2s$, $\psi_1 = s$ $\frac{d\rho = \rho \rightarrow \rho = Ae^{t} \rightarrow \rho = se^{t}}{11}$ $\frac{dg}{dt} = q \rightarrow q = Be^{t} \rightarrow q = 2se^{t}$ So $\begin{cases} dx = 9 = 2se^t \rightarrow x = 2se^t - 2s \end{cases}$ $\frac{du = 2p = 2s^2e^{2t} \rightarrow u = s^2e^{2t}}{dt} = \frac{5e^{2t}}{4} = \frac{5e^{2t}}{4}$

2401 09-12-16 Separation of variables

Laplace's equation $y = \phi(x, L) = F(x)$ Example of problem $\phi(y) = 0$ $\phi(L, y) = 0$ prox + py = 0 $\phi(x,y) = X(x)Y(y)$ So X"(x) Y(y) + X(x) Y"(y) = 0 $\frac{\chi''(x)}{} = -\frac{\chi'''(y)}{} = -\frac{\lambda}{}$ $(ODE) \Rightarrow \begin{cases} X''(x) + \lambda X(x) = 0 \end{cases}$ Y"(y) - 2 /(y) = 0 with {\(\delta(0,y) = 0 \Rightarrow \times \((0) \times (y) = 0 \Rightarrow \times \((0) \times (y) = 0 \Rightarrow \times \((0) \times (0) \Rightarrow (0) \Rightarrow \((0) \times (0) \Rightarrow \(0) \Rightarrow \((0) \times (0) \Rightarrow \((0) p(x,0)=0 => X(x)Y(0)=0=>Y(0)=0 $|\phi(L,y)=0\Rightarrow X(L)Y(y)=0\Rightarrow X(L)=0$ $\phi(x,L) = F(x)$ Solving Laplace's egn with different coordinates Cartesian - use a square spherical coords - use a sphere cylindrical coords-use a cylinder Example in polars $\frac{1(x,y):}{\partial x^2} \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial y^2} = 0$

$$T(r, \rho) = T(read, rsin\theta)$$

$$\frac{\partial T}{\partial x} = \frac{\partial T}{\partial r} \frac{\partial r}{\partial x} + \frac{\partial T}{\partial \theta} \frac{\partial \theta}{\partial x}$$

$$\frac{\partial r}{\partial x} = \frac{\partial r}{\partial x} \frac{\partial r}{\partial \theta} + \frac{\partial T}{\partial \theta} \frac{\partial \theta}{\partial x}$$

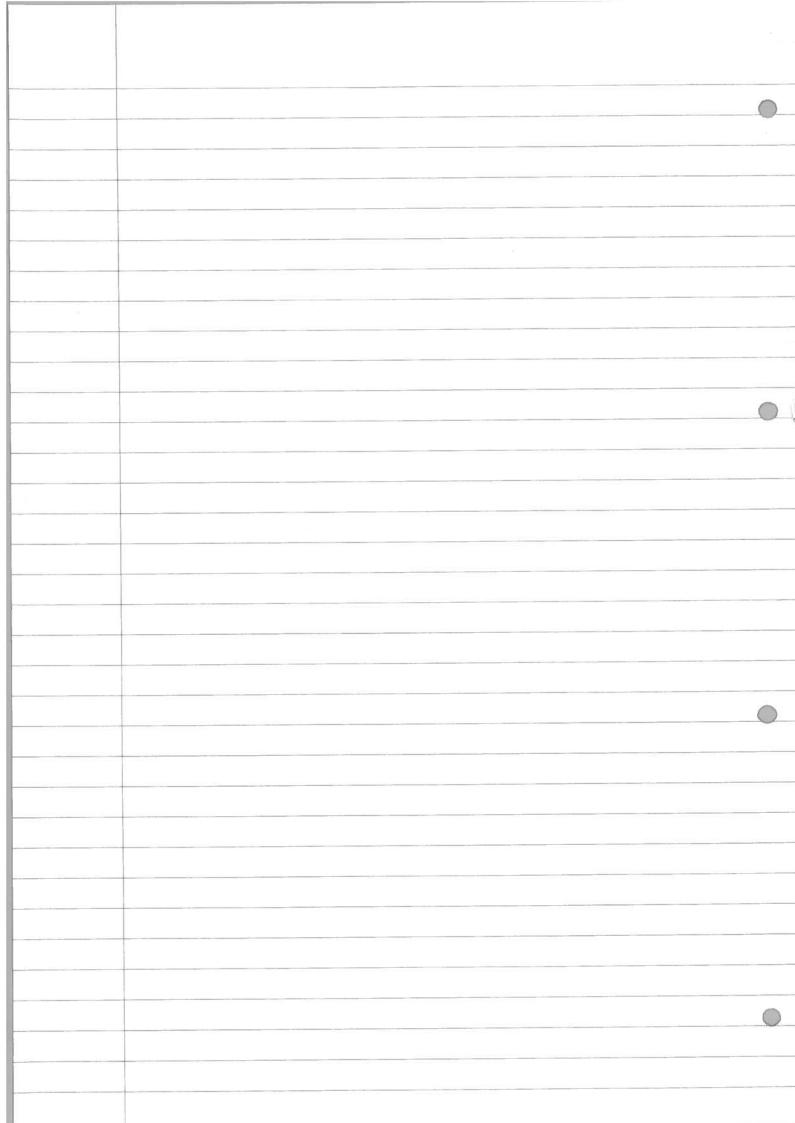
$$\frac{\partial r}{\partial x} = \frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x} + \frac{\partial r}{\partial x} \frac{\partial \theta}{\partial x}$$

$$\frac{\partial r}{\partial x} = \frac{1}{4x^2 + y^2} \frac{1}{r^2} \frac{1}{r^2$$

2401 09-12-16 $\frac{\partial^{2}T}{\partial y^{2}} = \frac{\partial^{2}T}{\partial r^{2}} \sin^{2}\theta + \frac{\partial^{2}T}{\partial r^{2}} \sin\theta \cos\theta - \frac{\partial T}{\partial \theta} \sin\theta \cos\theta + \frac{\partial^{2}T}{\partial \theta} \sin\theta \cos\theta$ $+ \frac{\partial T}{\partial r^{2}} \cos^{2}\theta + \frac{\partial^{2}T}{\partial \theta^{2}} \cos^{2}\theta - \frac{\partial T}{\partial \theta} \sin\theta \cos\theta$ $\frac{\partial^{2}T}{\partial r^{2}} = \frac{\partial^{2}T}{\partial \theta^{2}} \sin\theta \cos\theta + \frac{\partial^{2}T}{\partial \theta^{2}} \sin\theta \cos\theta$ $\frac{\partial^{2}T}{\partial \theta^{2}} = \frac{\partial^{2}T}{\partial \theta^{2}} \sin\theta \cos\theta - \frac{\partial T}{\partial \theta^{2}} \sin\theta \cos\theta + \frac{\partial^{2}T}{\partial \theta^{2}} \sin\theta \cos\theta$ $\frac{\partial^{2}T}{\partial \theta^{2}} = \frac{\partial^{2}T}{\partial \theta^{2}} \sin\theta \cos\theta - \frac{\partial T}{\partial \theta^{2}} \sin\theta \cos\theta + \frac{\partial^{2}T}{\partial \theta^{2}} \sin\theta \cos\theta$ $\frac{S_0}{\partial z^2} \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial r^2} = \frac{\partial^2 \widetilde{T}}{\partial r} + \frac{1}{r^2} \frac{\partial \widetilde{T}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \widetilde{T}}{\partial \theta^2}$ as most terms cancel. $\frac{\int_{0}^{2} \frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} = \frac{\partial^{2} T}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial^{2} T}{\partial \theta^{2}} + \frac{1}{r^{2}} \frac{\partial^{2} T}{\partial r^{2}} + \frac{1}{r^{2}} \frac{\partial^{2} T}{\partial r^{2}}$ drop ~ Separation of variables T(r,0) = R(r)G(0)we get R"(r)G(0) + - R(r)G"(0) + - R'(r)G(0) = 0 So (-2R''(r) + rR'(r))G(0) = -R(r)G''(0) $So \frac{r^2R''(r) + rR'(r)}{R(r)} = -\frac{G''(0)}{G(0)} = k$ $\begin{cases} G''(0) + kG(0) = 0 \\ -2R''(r) + -R'(r) - kR(r) = 0 \end{cases}$ Recall B. C. T(1,0) = f(0), $0 \le 0 \le 2\pi$ we need $T(r,0) = T(r,2\pi)$, $0 \le r \le 1$ G(0) = A cos TRO + B sin TRO, k > 0 $G(0) = G(2\pi)$, so $\sqrt{k} = n$, n = 0, 1, 2, ...So G(0) = A cosno + Bsinno

(YIA TH

.2401 09-12-16 Hw question 3. (Hyperbolic equations) Fxx + 2 fxy + fyy = 0 (Afaz + Bfxy + Cfyy = 0) → A=1, B=2, C=1 B2 - 4AC = 4 - 4 = 0 -> Parabolic. u(x,y) = Px + QyV(x,y) = Rx + Sy, RS-QR $\neq 0$ Fun = 0 $|x| = |PQ|^{-1}|u| = |ab||u| \Rightarrow |x| = au + bv$ $|y| = |RS||v| = |ab||u| \Rightarrow |x| = au + bv$ $\frac{\partial}{\partial u} = \frac{\partial x}{\partial u} \frac{\partial}{\partial x} + \frac{\partial y}{\partial u} \frac{\partial}{\partial y} = \frac{\partial}{\partial x} + \frac{\partial}{\partial y}$ $\frac{\partial}{\partial r} = \frac{\partial x}{\partial x} \frac{\partial}{\partial x} + \frac{\partial y}{\partial y} \frac{\partial}{\partial z} = \frac{\partial}{\partial y} \frac{\partial}{\partial x} + \frac{\partial}{\partial y} \frac{\partial}{\partial y}$ $\frac{\partial^2}{\partial x^2} = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2$ ∂u^2 ∂x^2 $\partial x \partial y$ ∂y^2 So $\partial^2 f = a^2 \partial^2 f + 2ac \partial^2 f + c^2 \partial^2 f$ $\frac{\partial u^2}{\partial x^2} \frac{\partial x^2}{\partial x^2} \frac{\partial x \partial y}{\partial y^2} \frac{\partial y^2}{\partial x^2}$ But $0 = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial x \partial y} + \frac{\partial^2 f}{\partial y^2}$ $\Rightarrow a=1, c=1$ choose b = 0, d = 1 (so matrix non singular)


MATH 2401	
16-12-16	
	PDE, More variables
	Heat equation
	$\partial \phi = K \partial \phi$.
	$\frac{\partial t}{\partial x^2}$
	And the second s
	$\phi(x,t) BC, \phi(o,t) = M$ $\phi(t,t) = N$
	x=6 $x=L$ $x=1$
	. 4
	77
	plate plx, y, t)
	π
	^ -
	$\phi(x,y,\pm,\pm)$
	y y
L	Z Z
	22
	V: arbitrary volume (bounded by S) \hat{n}: outward unit normal
	(B) V S) à : outrand unit normal
	temperature
	heat evenergy in DV: cp \$DV specific heat density
	specific heat density
	heat energy inside V: [cp&dV
	-/ / / / / / / / / / / / / / / / / / /
	rate of change of this heat energy d & cp & dV = & cp & d & dV = amount of heat entering V dt & (through the surface S) per
	dt dt (thank the surface s) me
	unit line.

Flux of heat \vec{q} is given by $\vec{q} = -k \operatorname{grad} \phi$ thermal conductivity

amount of heat crossing ΔS per unit time is $\vec{q} \cdot \vec{m} \Delta S$ Scode dV = - []. mdS = - [div] dV (divergence than) (cp2 p + divg) dV = 0 VV $\Rightarrow c \rho \frac{\partial \phi}{\partial t} + div \vec{q} = 0$ div = - div (k grad p) = -koliv (grad o) $=-k \left[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \right]$ $\frac{\partial}{\partial t} = k \left[\frac{\partial^2 \phi}{\partial z^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \right]$ So $\partial \phi = K \left[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \right]$ K = k $\frac{1}{4} \phi(n,t), \quad \frac{\partial \phi}{\partial t} = K \partial^2 \phi \\
\frac{\partial \phi}{\partial t} = \lambda x^2$ $\frac{1}{4} \left\{ \delta(x, y, t), \frac{\partial \phi}{\partial t} = K \left[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right] \right\}$ $\phi = 0$ $\phi(\pi, y, t) = 0$ $\phi(x, 0, t) = 0$ 6/x, n, t) = 0 I.C. { \$(x,y,0) = f(x,y)

MATH 2401 16-12-16 $\phi(x,y,t) = \chi(x) \gamma(y) T(t)$ assume K = 1. X(x) Y(y) T(t) = X (x) Y(y) T(t) + X(x) Y (y) T(t) So T'(t) = X''(x) + Y''(y) by dividing by X(x)Y(y)T(t) $T(t) \qquad X(x) \qquad Y(y)$ Let $X''(x) = T'(t) - Y''(y) = \alpha$ X(x) T(t) Y(y)so $\frac{Y''(q)}{Y(q)} = \frac{T'(t)}{T(t)} - \alpha = \beta$ $ODE = \begin{cases} \times "/n - \alpha \times (n) = 0 \\ \times (0) = 0, \times (\pi) = 0 \end{cases}$ $Y''(y) - \beta Y(y) = 0$ Y(0) = 0, $Y(\pi) = 0$ $T'(t) - (x+\beta) T(t) = 0$ $\frac{\partial \phi}{\partial t} = K \left[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} \right]$ X''(x)-xX(x)=0, $X(0)=X(\pi)=0$ x>0 and x = 0 brivial. $\alpha < 0$, $\alpha = -p^2$ so X"(x) + p2 X(x) = 0 X(x) = A cospx + Bsinpx $X(0)=0 \Rightarrow A=0$ X(n)=0 => Bsingn=0 -> B=0 (brivial) SO p=n, n=1, 2, 3,... So X(x) = Bsinnx, n=1,2,3,... Similarly Y/y) = Dsinmy, m=1, 2,3,...

MATH 2401 16-12-16 B.C. {X(0) = X(7) = 0 Y(0)= Y(n)=0 2(0)=2(71)=0 So { X(n) = Asinnx $\frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2$ So $\phi(x,y,z,t) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{l=1}^{\infty} (n_{l}m_{l}u) \sin nu \sin nu \sin ly e^{-(n^{2}+m^{2}+l^{2})t}$ Wave Equation $\frac{\phi(x,t)}{\partial t^2} = c^2 \frac{\partial^2 \phi}{\partial x^2}$ $B.C. \begin{cases} \emptyset(o,t)=0 \\ \emptyset(L,t)=0 \end{cases}$ I.(. $\phi(x,0) = f(x)$ $\frac{\partial \phi(x,0) = g(x)}{\partial t}$ B.C. Ø=O on sides I.(. $\phi(x,y,0) = f(x,y)$ $\frac{\partial \phi(x,y,0) = g(x,y)}{\partial x}$

