3109 Multivariable Analysis Notes

Based on the 2013 autumn lectures by Dr I Petridis

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility whatsoever for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

MATH 3109 - Multivariable Analysis.	
Thirt in I have a straight the state of the	2 Outober 2013
	Dr. Yizminis PETRADIS
Lectures by Dr. Y Retridis. Office Hours Mon Ipm, Fri Marm. Room 504B.	Moths 706.
Homenorks due at 4pm on Fridays. Will be different problems.	
recommended toxt: Boby Spivist, Calculus on manifolds. Notation in course follows this book. Get newest edition.	
3 hours of leasures 2 meet, 4 hours from efter reading wheet (ind tri 9-10).	
$\int \omega = \int d\omega$	1 /
course sinus at unifying moderial concred in Methods 2. State's theorem : $\int_{M} w = \int_{M} dw$.	- Contraction of the second se
All derviced theorems of multivariable calculus are derived from this.	(Earth) E
In this course, we discuss functions $\vec{F}: \mathbb{R}^n \to \mathbb{R}^m$, if $m=1$, this is a scalar field. If $m>1$, it is a vector field.	gravitational field .
STOKES' THEOREM .	
Theorem first spreaved in 1850, in a letter of Lord Kelvin to Rof Stakes.	
Key ides "Differential forms are meant to be integrated". Differential forms were introduced in 1899 by Élire Cartan	
Recoll the Fundamental Theorem of Colonus: Ia FGO dx = F(b) - F(a), where F is a function.	
	- Ta 1-1
hotesd of colling F2 function, we adopt a new perspective consider here F(x) dx to be a 1-form on the singular on	be cales.
More generally, Ja glud dx is a 1-form in R.	الم المراجعة الما المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع المراجع والمراجع والمراجع الم المراجع المراجع والمراجع والمراجع المراج
	A F=aitbj
Then consider s 2D field. In R2, let F be s another force field. A particle is mored from A to B.	
If $\overline{AB} = xT + yJ$, then work done is $\overline{F} \cdot \overline{AB} = ax + by = \int_{B}^{B} a dx + b dy$ (if $\overline{AB} = xT + yJ$, then work done is $\overline{F} \cdot \overline{AB} = ax + by = \int_{A}^{B} a dx + b dy$	
horizontal vertical displacement displacement.	thow much most is done. Moving a particle from A to B in
	this force field?.
Consider constant fluid flow with $\vec{v} = v_i \vec{1} + v_2 \vec{j}$. A barrier AB is placed across the flow, $\vec{AB} = x\vec{1} + y\vec{j}$.	$A \xrightarrow{\overrightarrow{v}} \overrightarrow{v}$
How much fluid passes the barrier in a unit of time? We must calculate the area of the parallelogram.	$ \rightarrow + \rightarrow \rightarrow \rightarrow \rightarrow + \rightarrow \rightarrow + \rightarrow \rightarrow + \rightarrow +$
This is computed by determinants - step of phollelogram = $\begin{vmatrix} V_1 & V_2 \end{vmatrix} = -V_2 \times + V_1 Y_2$.	
Then the flow through AB in \ge unit of time is $-V_2 \times + V_1 Y = \int_A^B \frac{1-\text{form}}{-V_2 dx + V_1 dy}$	
	A
Fir & closed contour, recall Green's Theorem: I foks + g dy = II (========) dx dy.	$\left(\begin{array}{c} P \end{array} \right)_{C}$
This is also a differencial form.	den sen en e
Maning on to \mathbb{R}^3 , consider scalar fields $f:\mathbb{R}^3 \to \mathbb{R}$. In modern terminology, this is a 0-form on points of a 3-for	m flwy,z) dx ^ dy ^ dz intograted over solids
For vector fields, $\vec{F}: \mathbb{R}^3 \rightarrow \mathbb{R}^3$, $\vec{F} = f(x, y, z)\vec{1} + g(x, y, z)\vec{1} + h(x, y, z)\vec{k}$.	
- In the case of a force field, we have 1-form w= f dix + g dy + hdz.	
· in the case of a fluid flow, we have 2-form N= fdy/d=+ gd=/dx+ h dx/dy.	a a tura na ang mang mang mang mang mang mang m
when the second such as	
we do have greating, such as · V. f = grad f = $\frac{2}{3}$, \vec{r} + $\frac{2}{3}$, \vec{j} + $\frac{2}{5}$, \vec{k} in densical notation. This is a 0-form $df = \frac{2}{3}$, dx + $\frac{2}{3}$, dy + $\frac{2}{5}$, dd	Z ·((- fra))
$V \cdot f = grad f = 3\chi \cdot $	[9///
- IFF is a reador field, current = not (1) = 1 f g h 1 - (a) - 32) + (32 - 32)	
This gives 1-form $dw = d(f dx + g dy + h dz) = (\frac{2h}{24} - \frac{2f}{22}) dy \wedge dz + (\frac{2f}{24} - \frac{2h}{24}) dz \wedge dx + (\frac{2g}{24} - \frac{2f}{24}) dx \wedge dy \wedge dz$ $div \vec{F} = \frac{2f}{24} + \frac{2h}{24} + \frac{2h}{24}$. Then $\frac{3}{4w} = (\frac{2f}{24} + \frac{2h}{24}) dx \wedge dy \wedge dz$.	ay (2-form).
· div下= 哉+ \$\$ + \$\$. Then dw = (\$\$ + \$\$ + \$\$) dx ~ dy ~ dz.	2-form

· div $\overline{F} = \overline{a} + \overline{a} + \overline{b} + \overline{b} + \overline{c}$. Then $aw = (\overline{a} \times a_y)$ $\overline{b} + \overline{b} + \overline{c} + \overline{c$

consider also the following integrals:	
· line integrals { Fdr. This is { f dx + g dy + h dz.	
· surface integrals IIF. In do This is I f dy Az + g dz Ax + h dx Ad	y.
· Triple integrals over a solid T: III f(x,y,z) dx dy dz . This is a 3-form:	「f(x,y, z) dx^ dy A 起 .

ath-independent A. B kecoll the following theorems: · Fundamental Theorem of calculus: & Vf · dr = f(B) - f(A). This is the differential form I df = f(B) - f(A). · stokes' theorem . [F. dr = f curl F. n do. in domical language . This is f f dx + g dy + h dz = f (3 - 3) dy A dx +(-쁲+號) dx A dz + (읊-꽢) dz A dy. · Divergence (Gours's) Theorem: IF. in do = III div F dix dy dz, where T is a solid with boundary S. [of the form I w = I dw]. This is a z-form w: $\begin{cases} f dy dz + g dz dx + h dx dy = \int dw = \int (\frac{2}{3x} + \frac{2}{3y} + \frac{2}{3y}) dx dy dz. \end{cases}$ vector coordinates. Notation - Let $\mathbb{R}^n = \{X = (X^1, X^2, ..., X^n)\}$ Note the use of superscripts rather than subscripts. ith slot. $|x| = \int (x^{1})^{2} + (x^{2})^{2} + \dots + (x^{n})^{2}$ is the norm of a vector. We also introduce the standard basis in \mathbb{R}^{3} , $\langle e_{1}, e_{2}, \dots, e_{n} \rangle$ where $e_{1} = (o, o, \dots, 1, \dots, o, o)$ Recall inner products, $\langle x, y \rangle = \sum_{i=1}^{n} x^{i} y^{i}$, $y = (y^{1}, y^{2}, ..., y^{n})$. Properties a. IN 30 and IN=0 iff x=0 e. <xiy>= <yix> b. |<x,y7| ≤ |x| |y| (Couchy-Schwartz inequality) $f. \quad \langle x_1 + x_2, y \rangle = \langle x_1, y \rangle + \langle x_2, y \rangle$ c. IXtyl < IXt + lyl. (Triangle Inequality) g. lax,y>= <x, ay>= <x,y> where a ER X,yER 4 1 a.x1 = 1 al. 1x1 if a ER h. <x, x> = 1×12. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, i.e. T(x+y) = T(x) + T(y) and $T(hx) = h \cdot T(x) - for x, y \in \mathbb{R}^n$, $h \in \mathbb{R}$. Note - some symbol may not imply some operation! adding in R adding in R multiplication multiplication in Rm. Then we consider matrix representation of liveor transformation T > [T] "B. For us, it suffices to use the standard bases $\text{ for each } e_i \in \mathbb{R}^n, \quad T(e_i) = \underbrace{\underset{j=1}{\overset{m}{\sum}} a_{ji} e_j}_{X_i}. \quad \text{ Then } [T] = (a_{ij})_{1 \leq i \leq n}, \quad i \leq j \leq m = \begin{pmatrix} a_{ij} \\ a_{mi} \\ \dots \\ a_{mn} \end{pmatrix}. \quad \text{ This is an maximum matrix}.$ Let y = T(x). $x \in \mathbb{R}^{m}$, $y \in \mathbb{R}^{m}$ so $x = (x^{1}, ..., x^{n})$, $y = (y^{1}, ..., y^{m})$. Then we get $\begin{pmatrix} y^{2} \\ y^{m} \end{pmatrix} = [T] \begin{pmatrix} x^{2} \\ y^{m} \end{pmatrix}$ mx1 mxn mx1 Mohix representations are compatible under our standard operations on linear transformations: ·if $\underline{T}: \mathbb{R}^n \to \mathbb{R}^m$, $\underline{T}_2: \mathbb{R}^n \to \mathbb{R}^m$, $\underline{T}_1 + \underline{T}_2] = [\underline{T}_1] + [\underline{T}_2]$ where $(\underline{T}_1 + \underline{T}_2)(\underline{W} = \underline{T}_1(\underline{x}) + \underline{T}_2(\underline{W}) \forall \underline{x} \in \mathbb{R}^n$. • $T: \mathbb{R}^n \to \mathbb{R}^m$, $S: \mathbb{R}^m \to \mathbb{R}^k$. Then $[S \circ T] \times [S] \cdot [T]$. This is sensible as $S \circ T: \mathbb{R}^n \to \mathbb{R}^k$ gives a kinn matrix. kinn minn Functions, Limits, continuity. Consider functions f: ℝ^h → ℝ^m. Occosionally, f is defined on a subset, so f: A→ ℝ^m where A ⊆ ℝⁿ. then f(x',...,x") = f¹(x',...,x") e1 + f²(x',...,x") e2 + ... + f^m(x',...,x") em = (f¹(x), f²(x),..., f^m(x)), where fⁱ are scalar fields fⁱ: A→ R. We also have projections: $\Pi^i: \mathbb{R}^m \to \mathbb{R}$, $\Pi^i(y^i, ..., y^m) = y^i$. Then $\mathbb{R}^n \xrightarrow{f} \mathbb{R}^m$ norm in Rn normin Rm Hof= pi R (Definition x→a fix)=b if VE>0, 38>0 st. 0< |x-a|<8 ⇒ 1 fix)-b < E for f. R"→R" f is continuous at a if x a fin = flar. f is continuous on A if it is continuous for all a EA. Remark - lim fw=b ⇔ lim fath2=b ⇔ lim [fath)-b]=0. rending to a vector Theorem Assume f,g: Rn -> Rm and time f(x) = b, time g(x) = c. Then dot products in RM, yields a real number. (a) $\lim_{x \to a} f(x) \cdot g(x) = b \cdot c \quad (\in \mathbb{R}!)$ (a) $\lim_{x \to a} (f(\lambda + g(x)) = b + c,$ (b) $\lim_{x \to a} (\lambda \cdot f(x)) = \lambda \cdot b, \lambda \in \mathbb{R}$ (d) x > a |f(x)| = 161, where 1.1 is a norm in R^m. Proof - (d) NTP: $\forall \epsilon > 0 = \delta > 0$, $0 < |x-a| < \delta \Rightarrow ||f(x)| - |b|| < \epsilon$. We have $x \to a f(y) = b \Leftrightarrow \forall \epsilon > 0$, $0 < |x-a| < \delta \Rightarrow |f(y) - b| < \epsilon$. Thus, by triangle inequality, [[fw1-1b] \$ [f(x)-b] < E, so we can use some &, q.e.d. (c) Try f(x)·g(x) → b.c Then consider difference, f(x)·g(x) - b.c = f(x)·g(x) - f(x)·c + f(x)·c - b·c = f(x)·(g(x)-c) + (f(x)-b)·c $T_{I} = \{w, g(w) \rightarrow b: c \} = \left[f(w, (g(w) - c) + (f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] \leq \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] = \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] = \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] = \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] = \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] = \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] = \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right] = \left[f(w), (g(w) - c)\right] + \left[(f(w) - b) \cdot c\right]$ Here, 1.1 is norm in Rm. since xia for = b, for is bounded close to b. Thus, If(x) ||g(x)-c| ~> 0.

feveral Remarks: . F: 18th -> Rt, f= (f1,..., fm) . f is continuous (> fi is continuous at a for i=1,..., m 4 October 2013 Dr. Vishnis PETRIPIS Maths 706 . · A polynomial in x¹, ..., xⁿ is a (finite) linear containation of monomials in terms of the form (x)¹ (x)² ... (xⁿ)¹ m where in ..., In E IN U tot. Relynomials are continuous. Rational functions R(x) = (A(x), where P.Q are polynomials are continuous V x where q(x) = 0 Show that f(x,y) = 0 f(x,y) = 0 for (x,y) = 0 f(x,y) = 0,0 $holds. |f(x,y) - 0| = \frac{|xy|}{1x^2 + y^2} \le \frac{1x^2 + y^2}{1x^2 + y^2} = 1|xy| \to 0$ as $(x,y) \to 0$. \Rightarrow continuous at (0,0). IE. Ihi h2 x2+y2 y Let $f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$ for $(x,y) \neq (0,0)$. Prove that $(x,y) \neq (0,0)$ flive) does not exist. Ex Note: Assume (1,1) (1,0) f(x,y)= l. i.e. ∀E>O =5>0 s.T. D< f(x,y)-(0,0) < S ⇒ | f(x,y)-l|<E. Let $(x_1,y) = (x_1,0)$. $f(x_1,0) = \frac{x^2 - 0^2}{x^2 + 0^2} = \frac{x^2}{x^2} = 1 \Rightarrow |1-l| < \varepsilon \Rightarrow l = 1$. I does not exist \Rightarrow (init does not exist/g.e.d. $let (x_1,y) = (0, y) \qquad f(0, y) = \frac{0^2 \cdot y^2}{0^2 + y^2} = \frac{-y^2}{y^2} = -1 \Rightarrow |-1 - l| < \varepsilon \Rightarrow l = -1$ Remark - Moreover, we could approach slong any direction and get a different l. For intrance, let y=mx for arbitrary x. $f(x,y) = f(x,mx) = \frac{x^2 - (mx)^2}{x^2 + (mx)^2} = \frac{1 - m^2}{1 + m^2}$, which depends on the slope Note - Even if the limit along all stasight lines is the same, limit may not exist. We still must consider all curves (e.g. parabolae). what happens when we try to compute iterated limits? Using previous example $f(x,y) = \frac{\chi^2 - y^2}{\chi^2 + y^2}$, $\lim_{x \to 0} \left(\lim_{y \to 0} \frac{\chi^2 - y^2}{(\chi \to 0)} + \lim_{x \to 0} \left(\lim_{x \to 0} \frac{\chi^2 - y^2}{(\chi \to 0)} + \lim_{$ It is thus important to note that numerous pathologies of multivariable functions exist. If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $\exists M > 0$ st. $|TW| \leq M|X| \quad \forall x \in \mathbb{R}^n$ Lemma Remark - In functional analysis, we say T is a bounded linear operator. Roof - X = X1 e1 + X2 e2 + ... + Xn en. TW = T(= xiej) = 2 xi T(ej) by lineshity. Taking norms and using triangle inequality, $|T(W)| = |\sum_{i=1}^{\infty} x^{i} T(e_{i})| \leq \sum_{i=1}^{\infty} |x^{i}||T(e_{i})| = \sum_{i=1}^{\infty} |x^{i}||T(e_{i})| \leq \sum_{i=1}^{\infty} |x|||T(e_{i})| = \left(\sum_{i=1}^{\infty} |T(e_{i})|\right) |W|. \text{ Let } M = \sum_{i=1}^{\infty} |T(e_{i})| \text{ with is finitely q.e.d.}$ aturner of T: R" → R" is a linear transformation, then it is continuous for all a GR" $\operatorname{Reef}_{-} |T(a+h)-T(a)| = |T(a+h-a)| = |T(h)| \leq M|h|. \quad \text{given } \varepsilon > 0, \quad \text{take } S = \frac{\varepsilon}{H}, \quad \text{then } |h| < S \Rightarrow |T(a+h)-T(a)| < M|h| < M: \frac{\varepsilon}{H} = \varepsilon$ ". Tis continuous at a GR" 1 q.e.d. Theorem If f is continuous at a and g is continuous at flad, then gof is continuous at a. Proof - omitted, similarts MATHIIOI. The first on the first of the postial desiration $\frac{\partial f}{\partial x^{2}}(a) = \lim_{h \to 0} \frac{f(a^{1}, a^{2}, \dots, a^{1-1}, a^{1} + h, a^{1+1}, \dots, a^{n}) - f(a^{1}, \dots, a^{1-1}, a^{1}, a^{1+1}, \dots, a^{n})}{h}$ In \mathbb{R}^{2} , $\frac{\partial f}{\partial x}(a,b) = \lim_{x \to a} \frac{f(x,b) - f(a,b)}{x - a}$ and $\frac{\partial f}{\partial y}(a,b) = \lim_{y \to b} \frac{f(a,y) - f(a,b)}{y - b}$. [Notation : $\frac{\partial f}{\partial x}(a,b) = f_{x}(a,b) = b_{x}f(a,b)$]. $\overline{z} = f(x,y)$ if it exists Geometric meaning: Consider x=a, which is a plane intersecting the surface at a curve fla, y). The slope of the tangent line at f(a,b) is If(a,b). (itemise, for the y=b plane, the slope of the adaptant line is $\frac{3E}{3x}(a,b)$ curre is flary Consider $f(x,y) = \begin{pmatrix} x^2 \cdot y^2 \\ x^x \cdot y^2 \\ 1 \end{pmatrix} = \begin{pmatrix} (x,y) \neq (0,0) \\ (x,y) = (0,0) \end{pmatrix}$. Consider partial derivatives at (0,0) w-r.t. x and y. Ady. $\frac{2f}{7k}(0,0) = \frac{1}{x \to 0} \frac{f(x,0) - f(0,0)}{x - 0} = \lim_{x \to 0} \frac{\frac{x^2 - 0^2}{x + 0} - 1}{\frac{x}{x}} = \lim_{x \to 0} \frac{1 - 1}{x} = \lim_{x \to 0} 0 = 0.$ EX fla, b) $\frac{2f}{2y}(q_0) = \lim_{y \to 0} \frac{f(o_1y) - f(o_10)}{y - 0} = \lim_{y \to 0} \frac{\frac{D^2 - y^2}{Q^2 + y^2} - 1}{y} = \lim_{y \to 0} \frac{-1 - 1}{y} = \lim_{y \to 0} \frac{-2}{y} \frac{does}{y} \text{ does not exist}.$ We know that $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$. It owner, this definition notes no sense if $f: \mathbb{R}^n \to \mathbb{R}^m$ so it is not well-defined. Recall that if $f:\mathbb{R}^{n} \to \mathbb{R}^{m}$, the derivative is given by $\frac{f(a+h)-f(a)}{h}$. For $f:\mathbb{R} \to \mathbb{R}$, $f'(a) = \lim_{h \to 0} \frac{f(a+h)-f(a)}{h} \Rightarrow 0 = \lim_{h \to 0} \frac{f(a+h)-f(a)-hf'(a)}{h}$. For x-a=h. 9 Outober 2013 Dr. Yishinis PETRIDIS Mattur 706. For $f: \mathbb{R} \rightarrow \mathbb{R}$, $f'(a) = \lim_{h \rightarrow 0} \frac{f(a+h) - f(a)}{h}$ y= f(a) + (1-a) f (a) gives the equation of the tangent line at (a, f(a)). Then h→ f(a) + f'(a) h is an affine transformation. (a, fw) Infinition We say f: R"→ R" (or f: U→ R", U open in R", a ∈ U) is differentiable at a if we can find a linear transformation $\lambda: \mathbb{R}^n \to \mathbb{R}^m$ s.t. $\lim_{h \to 0} \frac{|f(ath) - f(a) - \lambda(h)|}{|h|} = 0.$ ting The linear transformation λ is called the (total) derivative of fat a. Notation: Df(a= λ the R", Df(a)(h)= λ (h). s linear transformation The normix representation of) w.r.t. signdand loses of R", R" is called the sacobian matrix of (a) & Mmin .

Internet If f is differentiable at a and the definition works for two linear transformations $\lambda, \mu: \mathbb{R}^n \to \mathbb{R}^m$, then $\lambda = \mu$. $\frac{\operatorname{Rind} - \operatorname{Since} \lambda_{i,\mu} \operatorname{stre} (\operatorname{linestr}_{i}, \lambda(b)) = \mu(0) = 0. \quad \text{So} \operatorname{NiTP}: \quad \text{that} \quad \lambda(x) = \mu(x) \quad \forall x \in \operatorname{R}^{n} \setminus \{0\}^{n}. \quad \text{By definition, we have that} \\ \underset{h \to 0}{\underset{h \to 0}{\atop_h}}$ Examples of derivatives -1. f: ℝⁿ→ ℝ^m, fw=k, conservet. Then D f(a)= O: ℝⁿ→ ℝ^m, O(h)=0 ∈ ℝ^m V h ∈ ℝⁿ. f(a+W-f(a)->f(a)(h) = k-k-O(h)=0-0=0.1. 2. f: ℝⁿ→ ℝ^m is 2 linear transformation. Df(a) = ℝⁿ→ ℝ^m is also 2 linear transformation. We examine numerator: flath)-fa)-Df(a)(h) = f(a) + f(h)-f(a)-Df(a)(h) ⇒ f(ath) - f(a) - D f(a)(h) = f(h) - D f(a) (W = D. We con thus take D f(a) = f: R" → R". Remork - of: R→R is linear, so fw=c.x. Then f'w=c=1×1 secoloion matrix for Df(a). [i.e. Df(a)=F]. since f'(a) is the matrix representation of Df(a), let $h = (h^1, h^2, ..., h^h) \in \mathbb{R}^n$. Then we can calculate action: $Df(a)(h) = f'(a) \begin{pmatrix} h^2 \\ h^2 \\ h \end{pmatrix}$ Theorem If f: R" -> R" is differentiable at a, then it is continuous a $Broof - |f(a+h) - f(a)| = |f(a+h) - f(a) + Df(a)(h) - Df(a)(h)| \leq |f(a+h) - f(a) - Df(a)(h)| + |Df(a)(h)| = \frac{|h||f(a+h) - f(a) - Df(a)(h)|}{|h|} + \frac{|Df(a)(h)|}{|h|} + \frac{|Df(a)(h)|}{|h|} = \frac{|h||f(a+h) - f(a) - Df(a)(h)|}{|h|} + \frac{|Df(a)(h)|}{|h|} + \frac{|Df(a)(h)|}{$ Toking limits as $h \rightarrow 0$, $h \rightarrow 0$ $|DF(a)(h)| = \lim_{h \rightarrow 0} DF(a)(h)| = |DF(a)(b)| = |DF(a)(b)| = |0|=0 \Rightarrow h \rightarrow 0 |f(a+h) - f(a)|=0.$ Theorem (Choin Rule) let f: Rn→UCR be differentiable at a, and let q: U → RP be differentiable at b= f(a). Then gof: Rn→RP is differentiable at a. Then $D(g\circ f)(a) = Dg(f(a)) \circ Df(a)$ is the derivative. In Jacobian matrices, $(g\circ f)'(a) = g'(f(a)) \cdot f'(a)$ where composition takes form of matrix multiplication takes form of the second second matrix multiplication takes form of the second sec matrix multiplication. Then $Df(a) = \lambda \iff \lim_{x \to a} \frac{14(x)}{1x-a} = 0$. Using this, let b = f(a), $\lambda = Df(a)$, $\mu = Dg(b)$. $HTP: D(g_0f)(a) = \mu \circ \lambda$. $\tilde{\mathbb{R}}^n \longrightarrow \mathbb{R}^p$. $g(y) - g(b) - \mu(y-b) = \psi(y)$, with y = 0. we have $(g \circ f)(w) - (g \circ f)(a) = g(f(w)) - g(b)$ $By \bigoplus_{\lambda \neq a} (g \circ f)(\lambda) - (g \circ f)(\alpha) = \mu(f(\kappa) - b) + \psi(f(\kappa)) = \mu(\lambda(x-\alpha) + \psi(\kappa)) + \psi(f(\kappa)) = \mu(\lambda(x-\alpha)) + \mu(\psi(\kappa)) + \psi(f(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (\mu \circ \lambda)(x-\alpha) = \mu(\psi(\omega)) + \psi(f(\kappa)) = \mu(\lambda(x-\alpha) + \psi(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (\mu \circ \lambda)(x-\alpha) = \mu(\psi(\omega)) + \psi(f(\kappa)) = \mu(\lambda(x-\alpha) + \psi(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (\mu \circ \lambda)(x-\alpha) = \mu(\psi(\omega)) + \psi(f(\kappa)) = \mu(\lambda(x-\alpha) + \psi(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (\mu \circ \lambda)(x-\alpha) = \mu(\psi(\omega)) + \psi(f(\kappa)) = \mu(\lambda(x-\alpha) + \psi(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (\mu \circ \lambda)(x-\alpha) = \mu(\psi(\omega)) + \psi(f(\kappa)) = \mu(\lambda(x-\alpha) + \psi(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (\mu \circ \lambda)(x-\alpha) = \mu(\psi(\omega)) + \psi(f(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (\mu \circ \lambda)(x-\alpha) = \mu(\psi(\omega)) + \psi(f(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (\mu \circ \lambda)(x-\alpha) = \mu(\psi(\omega)) + \psi(f(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (\mu \circ \lambda)(x-\alpha) = \mu(\psi(\omega)) + \psi(f(\kappa)) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $(g \circ f)(\omega) - (g \circ f)(\omega) - (g \circ f)(\omega) = 0.$ $\frac{|Y-a|}{|Y-a|} = \frac{|Y(fsx)|}{|X-a|} = \frac{|Y(fsx)|}{|X-a|} = \frac{|Y(y)|}{|X-a|} = \frac{|Y(y)|$ The limit will tend to 0 only if we can show that the quantity $\frac{|y-b|}{|x-a|}$ remains bounded. $\frac{|y-b|}{|x-a|} = \frac{|\lambda(x-a)+\varphi(w)|}{|x-a|} \leq \frac{|\lambda(x-a)|}{|x-a|} + \frac{|\varphi(w)|}{|x-a|} \leq \frac{|x-a|}{|x-a|} + 0 = K$ (:: $\exists K st. |\lambda(x)| \leq k|x|)_{f}$ q.e.d. Theorem (a) let $s: \mathbb{R}^2 \rightarrow \mathbb{R}$, s(x,y) = x+y. Then s is differentiable and Ds = s. (b) Let $p: \mathbb{R}^2 \to \mathbb{R}$, p(x,y) = xy. Then p is differentiable and $Dp(a,b)(h_1^{\prime},h_2^{\prime}) = ah^2 + bh^2$. Roof - (a) It suffices to show s is linear: let (x,y), (x', y') = R². 5((x,y)+(x',y')) = 5(x+x', y+y') = (x+x')+(y+y') = (x+y) + (x'+y')=s(x,y)+s(x',y'). s(λ(x,y)) = s(xx, xy) = xx + xy = x(x+y) = xs(x,y) ⇒ s is linear ⇒ s is differentiable, Ds=s/, q.e.d. (b) $p((a,b)+(h^{1},h^{2})) - p(a,b) - Dp(a,b)(h^{1},h^{2}) = p(a+h^{1},b+h^{2}) - ab - (ah^{2}+bh^{1}) = (a+h^{1})(b+h^{2}) - ab - ah^{2} - bh^{1}$ $= ab + h^{4}b + ah^{2} + h^{4}h^{2} - ab - ah^{2} - bh^{4} = h^{4}h^{2}.$ Then $\frac{|p(a+h^{2}, b+h^{2}) - p(a,b) - Dp(a,b)(h^{4}, h^{2})|}{|(h^{4}, h^{2})|} = \frac{|h^{4}, h^{2}|}{\int (h^{2} + (h^{2})^{2}} \leq \frac{\int ((h^{2} + (h^{2})^{2})^{2}}{\int ((h^{2} + (h^{2})^{2})^{2}} = \int ((h^{2} + (h^{2})^{2})^{2}$ Remark - If h: $\mathbb{R}^n \to \mathbb{R}$ is linear, it is called a linear functional: $h(x+y) = h(x) + h(y) \Leftrightarrow h(\lambda x + y) = \lambda h(x) + h(y) \forall x y \in \mathbb{R}^n$, $\lambda \in \mathbb{R}$. →0/19.e.d. let g¹: Rⁿ→ R be linear functionals i=1,2,...,M. Then we can construct linear g: Rⁿ→ R st. g(x)=(g¹(x),g²(x),...,g^m(x)) ∈ R^m. linearity of 9: whe check that g is linear · g(hx+y) = (g'(hx+y), ..., g''(hx+y)) = (hg'(x) + g'(y), ..., hg''(x) + g''(y)) = (hg'(x), ..., hg''(x)) + (g'(y), ..., g''(y)) = $\lambda \left(g^{1}(x), \dots, g^{m}(x)\right) + \left(g^{1}(y), \dots, g^{m}(y)\right) = \lambda g(x) + g(y) \Rightarrow g$ is indeed linear. Matrix representation of each g^i is a new vector. $Eg^i J = Eg^i_{11} g^i_{2}, ..., g^i_{n} J$. Then representation of g is $Eg^J = \begin{bmatrix} g^{i}_{11} \\ g^{i}_{22} \end{bmatrix} = \begin{bmatrix} g^{i}_{12} \\ g^{$ let f: Rⁿ → R^m, f=(f¹, f², ..., P^m). Then f is differentiable at a ⇔ each fⁱ is differentiable at a for i=1,2,...,m. Theorem (1f1)'(a)) Moreover, Df(a)(b) = (Df¹(a)(b), Df²(a)(b), ..., Df^m(a)(b). [or in terms of Jacobians, Df¹: Rⁿ → R, f['](a) = (IT 1 100) ((m)(a)) Here, fi: Rn -> R are linear functionals.

3109-04.

		Proof - (=>). Assume f is differentiable. consider linear function $\Pi^{i}(y^{i},,y^{m})=y^{i}$. Then $f^{i}=\Pi^{i}\circ f$. By chain Rule, we have $Df = D\Pi^{i}(f(a)) \circ Df(a) = \Pi^{i}\circ Df(a)$.	ία) = D (Π ¹ οf)(α)
		$ = \text{OTT}(f(a)) \circ \text{D}(a) = (f^{0}(a+h) - f^{0}(a),, f^{m}(a+h) - f^{m}(a)) - (Df^{0}(a)(h),, Df^{m}(a)(h)) = (f^{0}(a+h) - f^{0}(a) - Df^{0}(a)(h)) = (f^{0}(a+h) - f^{0}(a)(h)) = (f^{0}(a+h) - f^{0}(a+h) - f^{0}(a)(h)) = (f^{0}(a+h) - f^{0}(a+h) - f^{0}(a+h) - f^{0}(a+h) - f^{0}(a+h) - f^{0}(a+h) = (f^{0}(a+h) - f^{0}(a+h) - f^{0}(a+h)) = (f^{0}(a+h) - f^{0}(a+h) - f^{0}(a+h) - f^{0}(a+h) = (f^{0}(a+h) - f^{0}(a+h) = (f^{0}(a+h) - f^{0}(a+h) - f^{0}(a+h) = (f^{0}(a+h) - $	(a)(h),, f ^m (ath)-f ^m (a)-Df(add)
		Then [h] 1yl≤≤zlý] h h →	of g.e.d.
			11 October 2013 Tanington 19 (1-19) 115. Dr Yishnis PETRIPIS ·
	Theorem	Act $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}$ be differentiable at a. Then	
		(1) ftq is differentiable at a: D(ftg)(a) = Df(a) + Dg(a) [sum of linear transformations]	
		 (2) Let NER, Nf is differentiable at a: D(Nf)(a) = N·Df(a) (Product Rule) (3) fig: Rⁿ → R is differentiable at a: D(fig)(a) = g(a)·Df(a) + f(a)·Dg(a) (Quotient Rule) 	
		(i) if $g(a) \neq 0$, then $\frac{p}{g}$ is differentiable at a : $D(\frac{p}{g})(a) = \overline{g(a)^2} \left[g(a) \cdot Pf(a) - f(a) \cdot Dg(a) \right]$.	
		Reminder - By chain Rule, f: R"→R", g: R"→R", D(gofila) = Dg(fa)) o Df(a). If s(x,y) = x+y, then Ds=s and p(x,y)	$x \cdot y \Rightarrow Dp(a,b)(h^{1},h^{2}) = bh^{2} + ah^{1}.$
		Proof-10 g= (f.g) => f+g. Then D(f+g)(a)=D(so(f,g))(a)=Ds(f(a),g(a)) = D(f,g)(a) = S(f(a),g(a)) = (Df(a),Dg(a)) = So	
		$(5) \times \rightarrow (f(n,g(n)) \xrightarrow{P} f(n,g(n)) \cdot \text{ then } f \cdot g = p \circ (f,g) : \mathbb{R}^n \rightarrow \mathbb{R} \cdot \text{ then we have, for he } \mathbb{R}^n, p(f \cdot g)(a) (\underline{h}) = D(p \circ (f,g))(a) (h) \cdot (h)$	
-		= $[Dp(f(a), g(a)) \circ ((Df(a), Dg(a))](h) = Dp(f(a), g(a)) [(Df(a), Dg(a))(h)] = Dp(f(a), g(a)) (Df(a)(h), Dg(a)(h))$	
		= $g(a) \cdot Df(a)(h) + f(a) Dg(a)(h) = Eg(a) \cdot Df(a) + f(a) \cdot Dg(a)](h) + q.e.d$	
	Thegen	If f: Rn -> RM is differentiable at a, then all partial derivatives Diffical exist and f'(a) = (Dj files), i=1,, m and j=1,, n.	
		$\begin{array}{l} Prop = Recent \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	P: D; f(a) exists.
		$D_{i}f(a) = \lim_{x_{i} \to a_{i}} \frac{f(a^{1}, a^{2},, a^{i-1}, x^{j}, a^{j+1},, a^{n}) - f(a^{1},, a^{j-1}, a^{j}, a^{j$	x, a ^{j+1} ,, a ⁿ)
		They to be \mathbb{R}^{\rightarrow} \mathbb{R} , (fob)(x) = f(a^1,, x,, a^n), then $D_i f(a) = \frac{d}{dx} (fob)(a^1) = (fob)(a^1) = f(h(a^1)) \cdot h(a^1) + h(a^1) \cdot h(a^1) = f(h(a^1)) \cdot h(a^1) + h(a^1) \cdot h(a^1) + h(a^1) \cdot h(a^1) + h(a$	(a)· h' (a') − ⊕
		h(x) = (a', a ² ,, a ⁱ⁻¹ , x, a ⁱ⁺¹ ,, a"). Here, h'(x)=a' V i except ;, h'(x) = x > all components are differentiable. Dh'(a'	$1=0$. $(h^{1})'(a^{j})=0$.
		And sise, $Dh^{i} = h^{i}$ (linest) \Rightarrow $(h^{i})^{\prime}(a^{i}) = I_{1} \Rightarrow h^{\prime}(a^{i}) = \begin{pmatrix} i \\ j \end{pmatrix} \leftarrow i \\ i \\ j \leftarrow a \\ in \\ j \\ component. \\ So, \\ from \\ \mathfrak{S}, \\ D_{j}f(a) = f^{\prime}(a) \cdot e_{j}$	
			- Journy of Tax
		$\Rightarrow f(a) = (D_{j}f'(a)) exists, q.e.d.$	
	Theorem	$\begin{array}{l} f:\mathbb{R}^{n} \rightarrow \mathbb{R} \text{ is differentiable at a if differentiable at a if the following hdd: } \exists an open set U, acU s.t. D; f'(n) exist \forall x \in U \text{ and are} \\ & - \Theta \\ \text{Reaf-Let } n=2 \cdot \text{Then} f(a^{1}+h^{1},a^{2}+h^{2}) - f(a^{1},a^{2}) = f(a^{1}+h^{1},a^{2}+h^{2}) - f(a^{1}+h^{1},a^{2}) + f(a^{1}+h^{1},a^{2}) - f(a^{1},a^{2}). \\ \text{By Mean Value Theorem } \end{array}$	Pif is derivative
		$= b^{1} \in (a^{1}, a^{1} + h^{1}), f(a^{1} + h^{2}, a^{2}) - f(a^{2}, a^{2}) = D_{1} f(b^{1}, a^{2}) \cdot h^{4}. \text{likewise}, \exists b_{2} \in (a^{2}, a^{2} + h^{2}) \text{ st. } f(a^{1} + h^{2}, a^{2} + h^{2}) - f(a^{1} + h^{2}, a^{2}) = D_{2} f(b^{1}, a^{2}) \cdot h^{4}.$	$(a^{1}+h^{1},b^{2})\cdot h,$ (a^{1},a^{2}) $(a^{1}+h^{1},a^{2}).$
		If f is differentiable, $D_1 f(a^2, a^2)h^2 + D_2 f(a^2, a^2)h^2$ is the function we need to consider. Then we have: $\frac{f(a+h) - f(a) - D_2 f(a^2, a^2)h^2 - D_2 f(a^2, a^2)h^2}{h} = \frac{I(D_1 f(b^2, a^2)h^4 - D_1 f(a^4, a^2)h^4) + (D_2 f(a^4+h^4, b^2)h^2 - D_2 f(a^4, a^2)h^2)}{h}$	18 october 2013
1.		$ \begin{cases} (a) & \frac{ D_{1}f(b^{4},a^{4}) - P_{4}f(a^{4},a^{2}) h^{4} }{ h } + \frac{ D_{2}f(a^{4}+h^{4},b^{2}) - D_{2}f(a^{4},a^{2}) h^{4} }{ h } \leq P_{4}f(b^{4},a^{2}) - D_{4}f(a^{4},a^{2}) + P_{2}f(a^{4}+h^{4},b^{2}) - D_{2}f(a^{4},a^{2}) h^{4} } \leq P_{4}f(b^{4},a^{2}) - D_{4}f(a^{4},a^{2}) + P_{2}f(a^{4}+h^{4},b^{2}) - D_{2}f(a^{4},a^{2}) h^{4} } \leq P_{4}f(b^{4},a^{2}) - D_{4}f(a^{4},a^{2}) h^{4} } \leq P_{4}f(b^{4},a^{2}) - D_{4}f(a^{4},a^{2}) h^{4} } \leq P_{4}f(b^{4},a^{2}) - D_{4}f(a^{4},a^{2}) h^{4} } \leq P_{4}f(b^{4},a^{2}) - P_{4}f(a^{4},a^{2}) h^{4} } \leq P_{4}f(b^{4},a^{2}) - P_{4}f(a^{4},a^{2}) h^{4} } \leq P_{4}f(b^{4},a^{2}) - P_{4}f(b^{4},a^{2}) h^{4} } \leq P_{4}f(b^{4},a^{2}) h^{4}$	ריין (
		By continuity, as $h \rightarrow 0$, $b^{1} \rightarrow a^{1}$, $b^{2} \rightarrow a^{2}$. so, expression $\rightarrow 0 + 0 = 0$, so f is differentiable, g.e.d.	1
<i>i</i>	ki	lim flattu)-fla	J. C.
	(Definition)	let $f: \mathbb{R}^n \to \mathbb{R}$, $a \in \mathbb{R}^n$, $u \in \mathbb{R}^n$. Then the directional derivative of f at a in the direction of u is $\operatorname{Du} f(a) = \frac{\operatorname{Hart} u}{t} - \frac{\operatorname{Hart} u}{t}$	
		Note - compare this to definition of partial derivative, then $D_i f(a) = De_i f(a)$.	
	Having all	l directional derivatives does not necessarily imply continuity at a.	
	A	$f(x_1,y) = \begin{cases} \frac{x_1}{y_1} \\ (x_1,y) = (y_1,y) \\ (x_1,y) = (y_1,y)$	
		$\frac{Soly. Let \ \underline{u} = (u^{1}, u^{2})}{t} = \frac{t^{2}(u^{1})^{2} + u^{2}}{t(t^{4}(u^{1})^{4} + t^{2}(u^{1})^{2})} = \frac{(u^{1})^{2}u^{2}}{t^{2}(u^{1})^{4} + (u^{1})^{4}} \xrightarrow{t \to 0} \frac{(u^{1})^{2}u^{2}}{(u^{2})^{2}} = \frac{(u^{1})^{2}}{u^{2}} \in \mathbb{R} \text{ exists. However, if } u^{2} = 0, \frac{G(tu^{1}, tu^{2})}{t} = \frac$	$\frac{tu'_{0}}{t} = \frac{0}{2} \xrightarrow{t \to 0} 0.$
		Hence all directional derivatives existing q.e.d. However, Q is not continuous at (0,0). Take $y=x^2$, then $Q(x, x^2) = \frac{x^4}{2x^{44}} = \frac{1}{2}$.	
4	Definition	f is continuously differentiable if Djfiw exist and are continuous Vijj.	
	Theorem	f is continuously differentiable if $v_j + w$ exist and are continuous $v_{1 j}$. Let $g_{1,,}g_m : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable at $a, f : \mathbb{R}^m \to \mathbb{R}$ be differentiable at $(g_1(a),, g_m(a))$.	f De
	LinkerLin	Define $F:\mathbb{R}^{n} \rightarrow \mathbb{R}$, then $F(x) = f(g_{1}(x),, g_{m}(x))$. Then $D_{i}F(a) = \bigcup_{j=1}^{M} D_{j}f(g_{1}(a),, g_{m}(a)) D_{i}(g_{j}(a))$. F	91 92 9m (f)
G		Proof - Let F= fog and use chain rule. Specifies mitted /1.	XY × 117
	Summing	up all terms, we get the derivative.	т.

Inverse function theorem. case let us consider for n=1, let ICR, f: I => in be continuously differentiable. f'(d)>0 => f is strictly increasing in some JCI s.t. $\frac{I}{a}$ R. (the point a € J > fis injective. Likewise, f'(a)<0 > f strictly decreasing in JCI st. a € J > f is injective. Then f'(a) =0 > f + exits: W > R, f(J)=W. Theorem (Inverse function theorem) $\begin{array}{l} f^{-1} \text{ is differentiable, } f^{-1}(y) = \frac{1}{f^{-1}(y+1)} & \forall y \in W. \\ \text{Risef-} (f^{-1})'(y) = \lim_{h \to 0} \frac{f^{-1}(y+1) - f^{-1}(y)}{h} = \lim_{h \to 0} \frac{x+\delta-x}{f^{-1}(x+\delta) - f^{-1}(x)} = \frac{1}{f'(x)} = \frac{1}{f'(x)} \\ \end{array}$ Note - If $f: \mathbb{R}^n \to \mathbb{R}^n$, then f'(d) is an nxn matrix, $f^{-1}(y) = (f'(f^{-1}(y))^{-1} \Rightarrow \det f(a) \neq 0$. let f: IR" → R" be conditionously differentiable at an opencet A with a ∈ A, det f'a) ≠0. Then I open V ⊆ A, a ∈ V and open W: f(a) ∈ W st. $f: V \rightarrow W$ is bijective, $f^{-1}: W \rightarrow V$ is continuous differentiable and $(f^{-1})'(y) = (f'(f^{-1}(y)))^{-1} \forall y \in W$. 23 Outdoor 2013 Dr. Yishnis PETRIPIS. Today's lecture focuses on the inverse function theorem - refer to Handour 2! Moths 706. Theorem (Invene function theorem, vertated). let f: Rⁿ→Rⁿ be continuously differentiable (i.e. D; f' exist and are continuous). det f'(a) = 0. Then ∃ V, W open in Rⁿ with a ∈ V, f(a) ∈ W st. $f: V \rightarrow W$ is bijedive, f^{-1} contributions differentiable on W, st. $(f^{-1})'(y) = \left[f'(f^{-1}(y))\right]^{-1} \forall y \in W$. Roof - For proof of theorem and Lemma, see handout 2. 25 October 2013 Dr. Yismis PETRIDIS [Convider f(1,1)= (×y, ×2+ y2)=(2, W), f: R2→R2. Find 2× 3× 3× 3× 3× Matters Fob $\Delta \underline{a}_{0}, \quad f^{4}(x,y) = xy, \quad f^{2}(x,y) = x^{2}+y^{2}, \quad \text{Then} \quad f^{1}(x,y) = \binom{y}{2x} \frac{x}{2y}, \quad \text{det} \quad f^{1}(x,y) = 2y^{2}-2x^{2} = 2(x+y)(y-x) \neq 0 \quad \text{if} \quad x \neq \pm y.$ We could substitute $y=\frac{3}{2}$ to get $x^2+\frac{2^2}{2^2}=w \Rightarrow x^4-wx^2+z^2=0 \Rightarrow x^2=\frac{w\pm (w^2-4z^2)}{2}$, $x=\pm \sqrt{\frac{w\pm (w^2-4z^2)}{2}}$. From here, we could technically calculate $\frac{\partial x}{\partial z}, \frac{\partial x}{\partial w}$; but this is troublesome. So instead, we use the inverse function theorem: $[f^{-1}](z_1,w) = (f'(x_1y))^{-1}$ if $(z_1,w) = f(x_1y) = f(x_1y)^{-1}$ if $(z_1,w) = f(z_1y)^{-1}$ if $(z_1,w) = f(z_1,w) = f(z$ Note - This summer suffices - there is no need to express answers in terms of Z and w in practice. Consider graphs Z=Xy. This gives a family of hyperbolae based on volues of Z: Likewise w= x2+ y2 gives a family of circles - 2=-1 Former points of intersect (up to) For our previous example, this gives us a geometric interpretation. (Z, W) are given by points of intersection. If we jiggle both curves a liftle bit, we get snother solution for (x,y) in the neighbourhood of our original solution. However, our graph need not appear this way: for instance, if we started with one point of intersection, juggling the curve could result in two or no solutions > no unique preimage. This occurs, as mendioned, at y=x or y= ±x. Consider x2+y2=1. How many functions can we derive from it? Winitely many. However, only two are continuous let (a, b) be a point on the circle. b>0: Then y= 1-x2 and = IE (-1,1) VXEI = unique y st. x2+y2=1, and this function is y= JI-X2. If b<0: y=-JI-X2. If we let y=g(H) to find a functional representation for f, $x^{2} + (g(x))^{2} = 1 \Rightarrow 2x + 2g(x) \frac{dq}{dx} = 0 \Rightarrow \frac{dq}{dx} = -\frac{2x}{2g(x)} = \frac{-x}{g(x)} : \quad \text{if } g(x) = \sqrt{1-x^{2}}, \quad \text{if } g(x) = -\sqrt{1-x^{2}}, \quad \text{if }$ We can extend this notion to a sphere, $z=\pm\sqrt{1-x^2-y^2}=g(x,y)$ (could be eithersign) Wirt. x, $2x+2z\frac{9z}{9x}=0$, $\frac{9z}{9x}=-\frac{x}{2}$; wirt. y, $\frac{9z}{9y}=-\frac{y}{z}$. Then consider y2+x+z2-e2-4=0. We cannot express Z=g(x,y) explicitly, but we try it implicitly and seek values for 32, 39. With x, $1+2\frac{\partial z}{\partial x} - e^{z}\frac{\partial z}{\partial x} = 0 \Rightarrow \frac{\partial z}{\partial x}(zz-e^{z})=1 \Rightarrow \frac{\partial z}{\partial x} = \frac{-1}{2z-e^{z}}$ with y, $2y+0+2z\frac{\partial z}{\partial y} - e^{z}\frac{\partial z}{\partial y} - 0 = 0 \Rightarrow \frac{\partial z}{\partial y} = \frac{-2y}{2z-e^{z}} = \frac{-2f(2y)}{\partial z}$ For the general situation, we consider a system of equations: $f^{(x_1^1, \dots, x_n^n, y_1^1, \dots, y_n^m)}, f^{(x_1^1, \dots, x_n^n, y_1^1, \dots, y_n^m)}, \dots, f^{(x_1^1, \dots, x_n^n, y_1^1, \dots, y_n^m)}$ Then we solve for $y^1, y^2, ..., y^m$ depending on $(x^1, ..., x^n)$. We start with a point $(a_1, a_1, ..., a^n, b^1, ..., b^m)$ satisfying the system \bullet for $(x_1^1, ..., x^n)$ doe to $(a_1^1, ..., a^n)$, $y^{(1)}(x_1^1, ..., x^n)$ when con we find a solution of the system depending differentiably on $x^1, ..., x^n$? $y^{(1)}(x_1^1, ..., x^n) = (g^1(.), g^2(.), ..., g^m(.))$. $g: \mathbb{R}^n \to \mathbb{R}^m$, f(x, g(x))=0.

3109-06.

(Implifit Function Theorem)	
,f(a,b)=0	
f: R ^M × R ^M → R ^M is continuously differentiable in U, (a, b) ∈ U, a∈ R ^M , b∈ R ^M , lf M= (Djen f ¹ (a, b)) i=1,, M, j=1,, M is not singular (i.e.	det M‡0).
Then 3 open set ASR", asA, BSRM, beB. YXEA 3 unique yEB with flowy)=0. Coll y=g to sit. g:A->B then g is differentiable.	
Roof - Refer to Handout 3 (and sundations).	30 October 2013
First attaget at implicit solutions to functions came from Newton (1669); implicit differentiation introduced by leibnit (1684); furthered by lagrange (1770)	Dr. Yisunis PETRIPIS Norths 706.
to solve w=f(z) for holomorphic, cauchy did it with power series (lator). Finally formally stated by Dini (1876).	
Let $f(x_1,y)=0$, $y=g(x)$, $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$, $g=(g^1,,g^m)$. i.e. $f(x_1,,x^n,g^1(x_1^1,,x^n),,g^m(x_1^1,,x^n))=0$. Differentiate this wirt: $x_1^{\frac{1}{2}}$, $\frac{\partial f^1}{\partial x^1} + \frac{\partial f^1}{\partial x^2} = 0 + \cdots + \frac{\partial f^1}{\partial x^n} = 0 + \frac{\partial f^1}{\partial x^1} + \cdots + \frac{\partial f^1}{\partial x^n} = 0$. f los in components, in equations. Need to This yields a linear system. \Rightarrow $2f^{(1)}(x_1^1,,x^n) = 0 \Rightarrow M(\frac{\partial g^{(1)}(\partial x^1)}{\partial g^{(1)}(\partial x^1)})=0$. det $M \neq 0 \Rightarrow$ solution exists p .	$\left(\frac{\partial g^{1}}{\partial x^{1}}, \frac{\partial g^{2}}{\partial x^{1}}, \dots, \frac{\partial g^{m}}{\partial x^{1}}\right)$ solve for m unknowns
This yields a linear system. ⇒ (apm/ay apm/aym/(agm/ax)=0 ⇒ M (agm/ax)=0. det M = 0 > solution exists 2	
integration.	.1
(minister a function $f: [a_1b] \rightarrow \mathbb{R}$. Recall that a partition of $[a_1b]$, $a=to < t_1 < \cdots < t_n = b$. on \mathbb{R}^n , we have a partition of $[a_1,b_1]$ called P_1 , of $[a_2, \cdots, c_{n-1}, c$	es la la la
in R" of the form S= [t1], t1(j+1)] × [t2] (+1)] × ··· × [th s, + n (s+1)]. The subscore of the partition will be denoted by S, f: A	→ R bounded.
set ms(f)= inf flo, Ms(f)= sigs flow, Also, volume of rectangle is v(s)= [t1j-t1(j+1)] t2(k+1)-t2] [tn(s+1)-tns].	
Me define Darboux/Riemann sums: U(f,P) = ≥ Ms(P)·V(s), Uf,P) = ≥ Ms(P).V(s) ≤ U(f,P). Then we conduct a refinement: let P'be.	refinement of P:
(Definition) P' is a refinement of P if every subrectangle S of P' is contained in a subrectangle T of P.	
terminal if P' is a refinement of P, $L(f,P) \leq L(f,P')$ and $U(f,P) \geq U(f,P')$.	
Roof - (for upper, lower sums are analogous). Let I denote subrectangles of P. 5 denote subrectangles of P. Let S be a subrectangle of	P, then 3 & T, subreator
of P sit. SST. Then Steps F(k) = Ms(f) < My(f) = sup f(k). = Ms(f) V(S) < My(f) V(S). Then fix T and sum up or	
SCT: SET MS (F) V(5) & SET MT (F) V(5) = MT (F) SET V(5) = MT (F) V(T). Then we sum up over all T st. we get	5
$\begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array}{l} \displaystyle \displaystyle \displaystyle \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \begin{array} \\ \displaystyle \displaystyle \end{array} \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \\ \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \\ \displaystyle \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	
landburg if P1, P2 are suy partitions, L(F, P2) ≤ U(F, B2). €	
(lemma)	

Thefinitian Define TAF = inf U(F,P) to be the upper Riemann integral, JA = Sup L(F,P) to be the lower Riemann integral: If IA fre JR, we say that f is Riemann integrable.

Theorem (Riemann's crite

fis integrable (>> YETO, 3 partition P st. U(f, ?)-L(f, ?)<E.

f is integrable ⇐> VEZO, 3 partition r st. ulf, P)-L(f, P)<E. Froof-(⇐) let ulf, P)-L(f, P)<E. inf [ulf, P)-L(f, P)] = inf ulf, P) - sup L(f, P)<E VEZO. [Lf, P)<E J_A f, ulf, P)>J_A f → J_A f-LA f<E] 4 since this quantity is non-negative, JAF - JAF = 0 ⇒ JAF = JAF ⇒ f is integrade.

(⇒) JAf= Infulfip). Then AJAf+ = is not a lower bound for Ulfip) => = partition Pist. U(f, Pi) & JAf+ =. Fix E>0, assuming f is integrable. In f = Jn f = Jn f. Inf = sup L(F, P), then Inf - & is not an upper band for L(f, P). IP, partition st.

 If f - 5 < Uf, P2) ≤ Uf, P) ≤ U(f, P) ≤ U(f, P4) < ΓAft 5. Take common refinement P of P1 and B2. i.e. we have found partition P s.T.
</p> $\int_{A} f - \frac{e}{2} \leq u(f, P) \leq u(f, P) \leq \int_{A} f + \frac{e}{2} \Rightarrow u(f, P) - L(f, P) \leq \epsilon_{1} e^{ed}$

Notall functions are integrable). For instance, define f: [0,1] × [3,5] -> R. Let f(x,y) = 11, x is rational. Then f is not integrable in [0,1] × [3,5]. 5 For this example, MT(f)=0 and MT(f)=1. Here, we simply consider interval (projected) x ∈ (ty, tj+1). Then 3 x rational and x invation Then ulf, P)= 1x [(1-0) (5-3)] = 2, Llf, P)=0. ¥ 1 projection

Theorem (Fubini's Theorem, 2 dimension

Let ASR", BSIR" be rectangles, f: AXB -> R be integrade. He define $L(x) = \int_B f(x,y) \, dy$ and $U(x) = \int_B f(x,y) \, dy$ [These always crist, but might not agree] Then $\underline{\mathcal{L}}, \mathcal{U}: A \to \mathbb{R}$ and Riemann integrable and $\int \underline{F} = \int \underline{f}(w) dx = \int \mathcal{U}(w) dx = \int (\int \underline{F}(\underline{k}, y) dy) dx = \int_A (\int \underline{F}_B - \underline{f}(x, y) dy) dx$.

Proof - Ne need a partition of AXB, P=(P1, B2). Here, let P1 be a partition of A, P2 be a partition of B; SA be a subrectangle for P1, SB be a subrectangle for P2.

consider a neurangle of this partition S= SAX SB. Fix XE SA. Then we get the vertical segment 1x7 × SB. Notwoodly, 1x7×58 + SAX B + M XX XE = M XX

then SEM the xSB f. V(SB) ≥ SEMSAXSB f. V(SB) ⇒ HS is U(gx, B2). L(gx, B2) ≤ L(x) because LB = sup. These inequalities are true VX on SA. However, RHS of

	inequality in (1) is x-independent, so it is a lower bound. ±(x) ≥ = msAxsolf) v(sB) YxESA. xEFA ±W > == msAxsolf) v(sB) >
	$\begin{bmatrix} \inf_{x \in S_A} f(x) \end{bmatrix} v(S_A) \ge \sum_{S_B} M_{S_A \times S_B}(f) \cdot v(S_B) \cdot v(S_A) \Rightarrow \sum_{S_A} \begin{bmatrix} \inf_{x \in S_A} f(x) \end{bmatrix} v(S_A) \ge \sum_{S_A} \sum_{S_B} M_{S_A \times S_B}(f) \cdot v(S_B) \cdot v(S_A) \Rightarrow L(f, P)$
	using similar approach for upper sums - meget LIF, P) < L(L, P1) < U(L, P1) < U(21, P1) [since if f≤g, U(F, P) < U(g, P)] ≤ U(F, P).
	As f is integrable, we apply Picmann's underion: given €>0, 3P at. U (f, P)-L(f, P)<€ ⇒ U(L, P1)-L(L, P1)<€. Since JAXB f is the unique number
	tropped between all L(fiP); and Int is the unique number trapped between L(L, Pg) and U(L, Pg). L(fiP) = Aref (U(fiP))
	$\Rightarrow \int_{A\times B} \frac{f}{f} = \int_{A} \frac{f}{f} \frac{g}{g} \frac$
	1(x) = IB f(x,y) dy b dways exist i.e. VXEA. If f(r,y) is integrable in y, then £(x)=21(x). percents - 21(x) = FB f(x,y) dy b dways exist i.e. VXEA. If f(r,y) is integrable in y, then £(x)=21(x).
	pervorts - $\mathcal{U}(x) = \overline{f_{B}} - f(x,y) dy$) and construction of the transformation of the state of the s
	1. If this holds $\forall x \in A$, $\underline{f}(x) = 21k)$ $\forall x \in A$ and they both = $\int_{B} f(x,y) dy$. Then write conclusion of Fubini's Theorem: $\int_{A \setminus B} = \int_{A} (\int_{B} f(x,y) dy) dx$.
	2. We can consider $A_{XB}f = \int_{B} (\int_{A} f(x_{1}y) dx) dy = \int_{B} (\bar{J}_{A} f(x_{1}y) dx) dx$
	If $\int_A f(x_1y) dx exists \forall y \in B$ then we have the familiar formula: $\int_{A \times B} f = \int_B \left(\int_A f(x_1y) dx \right) dy$.
	3. If C is a "nice" subset of R" that is bounded, we can put it inside a rectangle A. we define X (ar sometimes denoted Ic) as the
	Choroschevistic function, where $\chi_{c}(a) = 10$ if $a \notin c$. Define $\int_{c} f = \int_{A} \chi_{c} \cdot f$ we fix χ_{s} so we T we fix χ_{s} so we T where $\chi_{c}(a) = 10$ if $a \notin c$. Define $\int_{c} f = \int_{A} \chi_{c} \cdot f$ theorem T we fix χ_{s} so we T where $\chi_{c}(a) = 10$ if $a \# c$.
f .	$For example, \int_0^{\infty} \left(\int_y \frac{\sin x}{x} dx \right) dy = \left[\operatorname{Gym} \left[\operatorname{I}_{\mathcal{C}}(x, y), \frac{\sin x}{x} \right]_{\mathcal{O}} \left(\int_{\mathcal{O}} \operatorname{II}_{\mathcal{C}}(x, y), \frac{\sin x}{x} dy \right) dx \qquad $
	$= \int_{0}^{\pi} \left[\left(\frac{x}{2} + \frac{\sin x}{2} dy \right) dx \right]$
	4. It is possible that IB f(x,y) dy does not exist $\forall x \in A e.g. f(x, v) \in [0,13], set f(x,y) = 10 if x = x_0, y \in Q.(1) if x = x_0, y \in Q.(2) if x = x_0, y \in Q.(3) is not independent(4) if x = x_0, y \in Q.(5) is not independent(5) is not independent.(5) is not independent.(6) is not independent.(7) if x = x_0, y \in Q.(8) is not independent.(7) if x = x_0, y \in Q.(8) is not independent.(8) is not independent.(8) is not independent.(8) is not independent.(9) is not independent.(9) if x = x_0, y \in Q.(9) is not independent.(9) is not independen$
	13 Hovesber Dr. Hilanois PETRIOS - Motor 200
	Monifields in R ⁿ .
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$\ln \mathbb{R}^3 - 1$ -dam
	Not every surface is a manifold, such as the following:
2	surface is surface is self-indenecting.
	() ovanine
	Examine a point x on the surface of a manifold - e.g. a tons: we surround it by a ball x smooth
	(3D), which is "smooth" - can be "flattened out". Uh
	Remort = From here on, "differentiable" means all partials of all orders exist and are continuous.
	[Definition] let U, V be open sets in ℝ ⁿ . h:U→V is collect a difference philmen if h ⁻¹ exists and h, h ⁻¹ are difference idde. h ⁻¹ x ² VCR ²
	considers curre in R, M, which is a 10 mompho. rice on x with on open set u sit. Let u consider which is a 10 mompho. rice on x with on open set u sit. Let u consider which is a 10 mompho. rice on x 1
	the intersection of the curre with open cet U. U maps to V, and the regment UNM maps to a straight line along X axis. M UNM
	There is an analogous treatment for higher definitions:
	segment for toms x cut through x1, 2 plane.
1	Definition A k-dimensional menifold M in R ⁿ is a set of points in R ⁿ st. the following condition holds for all x GM:
	(condition M). 3 opensets U, VCR ⁿ st. XEU, 3 diffeomorphism h: U->V st. h(U(M)=V ∩ f y ∈ R ⁿ y ^{k+1} =y ^{k+2} ==y ⁿ =0. F.
	permark - In V for 2D example, x ² =0; in V for 3D example, x ³ =0 [no x ³ component]
	Theorem let $A \subseteq \mathbb{R}^n$, $g \colon A \to \mathbb{R}^p$, $n \ge p$. Assume that $g'(x)$ pxn has rank p for all x with $g(x)=0$. Then $g^{-1}(0)$ is a $(n-p)$ -dimensional manifold in \mathbb{R}^n (g is called submension).
	Remark - Recall that g'(x) is the motivix representation of Dg 60: R"-> R", rank g'(x) = dim Im [Dg(x)], rk g'(x) = p means Im (Dg(x))= R", so Dg(x) is surjective.
	Examples of manifeds -
	$1 = \frac{1}{(x_1^4, x_2^2, x_3^2) \in \mathbb{R}^3} : (x_1^4)^2 + (x_2^3)^2 = 1 : g : \mathbb{R}^3 \to \mathbb{R}$ $1 = 3 : \text{ Then let } g(x_1^4, x_1^2, x_3^2) = (x_1^4)^2 + (x_2^3)^2 - 1 : f : g^{-1}(0) = S^2, g^{-1}(x_1^2) = (x_1^4, x_2^2, x_3^2).$
	$(0,0,0) \Rightarrow rank g'(x) = 0$ $(1,0,0,0) \Rightarrow rank g'(x) = 0$ $(2x^{1}, 2x^{2}, 2x^{2}) = 0 \Leftrightarrow x^{1}, x^{2}, x^{2} = 0. \text{ However,}$
	$(0,0,0) \notin S^2 \Rightarrow \forall f: g'(k) = 1. By theorem, \forall x \in g^{-1}(0), \forall x \notin g'(k) = 1 \Rightarrow g^{-1}(0) = S^2 \text{ is } a = 3-1=2-dimensional manifold in \mathbb{R}^3.$
	$(0, 0, 0) \in S \implies Pre g(N = 1. By, theorem, TX e.g. (0), Pre g(N = 1 \Rightarrow 0) = 2, (1) = 3, (1) =$
Υ. Υ	
	$g_{1}^{1}(x_{1}^{1}, x_{2}^{1}, x_{1}^{2}) = (\frac{2x^{2}}{a^{2}}, \frac{2x^{2}}{b^{2}}, \frac{2x^{2}}{c^{2}}) = (0, 0, 0) \Leftrightarrow x^{1} = x^{2} = x^{3} = 0.$ However $(0, 0, 0) \notin ellipsoid \Rightarrow \forall (x_{1}^{1}, x_{1}^{2}, k) \in g^{-1}(0), rk : g^{1}(0) = 1 \Rightarrow g^{-1}(0) is 2D = nonif(x_{1}^{1}, x_{2}^{2}, k) = 0.$
	3. Sphere of dimension n in \mathbb{R}^{n+1} . $\mathbb{S}^{n} = f(x_{1}^{1},,x^{n+1}): \frac{nT}{(x_{1}^{1})^{2}} = 1$, $g: \mathbb{R}^{n+1} \to \mathbb{R}$, $g(x_{1}^{1},,x^{n+1}) = (x_{1}^{1})^{2} + + (x^{n+1})^{2} - 1$, $\mathbb{S}^{n} = g^{-1}(0)$.
	$g'(x'_1,,x^{n+1}) = (2x'_1,,2x^{n+1}) \neq 0$ do long as $(x'_1,,x^{n+1}) \neq 0$, which is not on S'' . Thus $rk g'(x'_1,,x^{n+1}) = 1$ on $g^{-1}(o) \Rightarrow S''$ is a n-dim manifold on \mathbb{R}^{n+1} .
	4. (Monge patch) f(x,y) = Z. Assume that f is continuously differentiable. Then graph of f is a 2D manifold in R ³ . (Similarly pace). 2 (X,y)(fing))
	then $g(x_1y_1,z) = f(x_1y_1)-z$, $g: \mathbb{R}^3 \to \mathbb{R}$. Then graph is given by $g^{-1}(0)$. $g'(x_1y_1,z) = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \frac{\partial f}{\partial y_1})$ which is always non-zero.
	∴ rk g ¹ (X;Y;Z)=1 ⇒ Monge patch is 3-1=2-dimensional manifold in R ³ . X/ E.

3109-08 .

	5. Hyperbolic n-space: Ht ⁿ = $4(x_1^r, x_2^r, x^{n+1}) \in \mathbb{R}^{n+1}$ with $x^2 > 0$ and $(x^1)^2 - [(k^2)^2 + (x^3)^2 + \dots + (x^{n+1})^2] = 1$ is a n-dimensional manifold in \mathbb{R}^{n+1} . Then we have $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$.
	$q_{1}(x_{1}^{1}, x_{2}^{2},, x^{n+1}) = (x^{1})^{2} - [(x^{2})^{2} + (x^{2})^{2} + + (x^{n+1})^{2} - 1], H^{n} = q^{-1}(0) \land f(x_{1}^{1},, x^{n+1}), x' > 0; g'(x_{1}^{1},, x^{n+1}) = (2x_{1}^{1}, -2x_{2}^{2}, -2x_{2}^{2},, -2x^{n+1}) = 0 \iff x^{1} = 0 \forall $
	However, (0,,0) & H1". Borticular example: n=2 (x ¹ /x ² , x ³) = (x,y,z), H ² = x ² -y ² -z ² =1 (two-sheeted hyperboloid). Set y=0; then x ² -z ² =1
	This is a hyperhola. We repeat this by fixing x, then we get the two-sheeted hyperboloid. [Note that for 111?, x>0, so only the top half is 111?]. y
	Remoth - we can also have 1-sheeted hyperholoids of from x2+ y2-z2=1, which are also manifolds by some logic.
	Instead of thinking of manifolds as "fattened out" regions, we can think of them as parametrisations (or charts).
	Theorem M is a k-dimensional manifold if tixe M the following condition holds:
	(landition c) ∃ open cots W≤ R ^k , U≤ R ⁿ , x∈U. Then =f: W→U injective st.
	(a) $f(w) = M \cap U$ (b) $f'(y)$ has rank k $\forall y \in W$ (c) f^{-1} : $f(w) \rightarrow W$ is continuous.
	Examples - Z (rtt), z(t)) (must be z (rtt), z(t)) (must be z z z z z z z z z z z z z z z z z z z
	1. (Surface of revolution). Using the disgram on the right, we can parametrise the surface of revolution by the formula:
	f(t;0)= (r(t) cos,0, r(t) sin θ, =(t)) eff. r(t) ² = x ² + y ² . We set that 0 < θ < 2π to maintain injectivity of f. ["quite" done].
	NTP: f ((a,b) × (0,217)) is a 2D-monifold in R ³ . To do this, we check our conditions: relating=(r'(t), Z(t))
	$(a) = (W) = U \cap M, M = lmf, U = R^2 \checkmark (b) \text{ NTP: } f'(y) has rank 2 Yye W. We note f'(t, 9) = \begin{pmatrix} r'(t) \sin \theta \\ r'(t) \sin \theta \\ r'(t) \sin \theta \\ r'(t) = V \cap H \end{pmatrix} = \begin{pmatrix} r'(t) \sin \theta \\ r'(t) \sin \theta \\ r'(t) \sin \theta \\ r'(t) = V \cap H \end{pmatrix}$
	To find the rank, columble the largest square submitting with determinent $\neq 0$. Try $ r'(t) \cos \theta - r(t) \sin \theta = r'(t)r(t) [\cos^2 \theta + \sin^2 \theta] = r'(t)r(t)$. We know $r(t) \neq 0$,
	case 1: so r'(t)r(t) = 0 if r'(t)=0. Is it? Yes, in most instances: r'(t)=0, then we have submatrix of rank 2 satisfying conditions. Otherwise, we have "bad" attemative-
	$(sol 2: r(t) = 0, r(t) sol 0), then \begin{vmatrix} v - r(t) \sin \theta \\ z'(t) \end{vmatrix} = z'(t) r(t) \sin \theta \\ z'(t) = 0, r(t) \cos \theta, r(t) = z'(t) r(t) \sin \theta \\ z'(t) = z'(t) r(t) a \\ z'(t) = z'(t) r(t) r(t) a \\ z'(t) = z'(t) r(t) a \\ z'(t) = z'(t) r(t) r(t) r(t) r(t) \\ z'(t) = z'(t) r(t) r(t) r(t) r(t) r(t) r(t) r(t) r$
	Since sin 0 and cos 0 are namer simultaneously 0, one of the determinants is \$0. i.e. rk fi(1,0)=2., g.e.d.
	2. (Torus do a surface of revolution). We can obtainedrise this do $(r-2)^2 + Z^2 = 1$. Attemptively, this is also: $f(\theta, \varphi) = ((2+c_0, \varphi) c_0, \theta, (2+c_0, \varphi) sin \theta, sin \theta, with \theta < \theta < 2T.$
	$-\pi < \varphi < \pi \cdot (r-2)^2 + z^2 = \omega s^2 \varphi + \sin^2 \varphi = 1 \cdot f'(\theta, \varphi) = \begin{pmatrix} -(2+\cos\varphi)\sin\theta & -\sin\varphi\cos\theta \\ (2+\cos\varphi)\cos\theta & -\sin\varphi\sin\theta \end{pmatrix}$ we evaning the concepts determinent of colour times.
	$-(2+\cos\varphi)\sin\theta - \sin\varphi\sin\varphi = -(2+\cos\varphi)(\sin\varphi) \left[\sin\theta \cos\theta \right] = (2+\cos\varphi)(\sin\varphi) = 0 \text{ when } \sin\varphi = 0. \text{ for } if \sin\varphi > 0, f'(\theta, \varphi) = \left(\frac{3+\sin\theta}{2+\sin\theta} - \frac{3}{2} \right)$
	Then we get the two deterministry - (27 cos 4) sin 0 cos 4, (27 cos 4) cos 4 cos 4. So deterministry are never smultipleandy 0, so the f (0,4)=0.
	15 Notember 2013 -
	$\begin{array}{c} X=V(t)\cos\theta \\ \hline \\ $
	Then $\frac{4}{x} = \tan \theta \Rightarrow \theta = \arctan \frac{4}{x}$ or $\theta = \arctan \frac{2}{y}$. Moreover, $x^2 + y^2 = r(t)^2$, $r(t) = \sqrt{x^2 + y^2} > 0$, $z(t) = z$. Since $(r(t), z(t))$ is bijective anto its image,
	Given $(x_i, y_i, z) \in M$, $(r(t)_i, z(t))$ can be inverted to give $t: t = z^{-1}$ or r^{-1} .
	x= (2+ cosif) cos θ for En2 (torus), me try to invert our parametrisation f. W=(π,π) × (-Π,π). Why is f ⁻¹ , f(W) → W continuous? y= (2+ cosif) sin θ = sin θ.
	0= dectan # or declot \$. P= decisin Z. [4 may not be uniquely defined as sin is not injective on the interval.
	We now more towards some theory . binding some concepts together.
	Theorem if g: R" -> R" is convinuously differentiable, M = g"(O) YXEM rank g'(X)=p. Then M is on (n-p)-dimensional manifold in R"
1	Roof - Refer to Handows 3 and 4.
	20 November 2013
	Let y be a finite dimensional vector space over R, f: V→R a linear functional. then f(1x+y)= hf(x)+f(y) Vx(y∈ V, h∈ R. Norther Tob.
	Definition The dual space of V is V*= 1f: V-> IR linear functionals.
	if fig: V→ R ste linest functions, define ftg: V→ R, (ftg) W= fW+g(x) VXEV. If NER, (Af)(x)= N-fw.
	Itucoon) V* is a vector space with the operations defined above.
	$\frac{(portid)}{poof} - \frac{(f+g)(\lambda x+g)}{poof} = \frac{f(\lambda x+g) + g(\lambda x+g)}{poof} - \frac{(f+g)(\lambda x+g)}{poof} + \frac$
	Repetition dan V* = dim V-
	holf - To construct a book for V*, start with 141,, Vn 5 to a book for V. XEV, X= x ¹ V1++ x ⁿ Vn. Define linear functionals $q^{i}(x) = x^{i}$ i=1,2,,n. Then $1q^{i}$ is a book for V.
	(1) $\lambda \in \mathbb{R}$ (1) $\psi^{i} is a linear functional: \psi^{i} (hx+y) = f(hx^{2}+y^{2})v_{1}, (hx^{2}+y^{2})v_{2},, (hx^{n}+y^{n})v_{n}) = \lambda x^{i} + y^{i} = \lambda (\psi^{i}(x) + \psi^{i}(y)), so \psi^{i}(x) = hinter functional.$
	(a) (a) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
	(3) (3) Apir group V*: Given fev*, we doin = 1 bit st. f= := bipi. Then f(vj) = := bipi(vj) = := bisij = bj. Then apply for j=1,1". Then obviously,
	f(v) = (b, p' ++ b_n p")(v) bodds for V a basis element. ⇒ they agree for any v6V, so f= b; p' ++ b_n p" ⇒ 1(p' ++ b_n p"); (v) thus, 1(p' forms basis for V") que.
	The art in the many of the many examples of the grant of the grant of the grant of the stand of the stand bout for Vige.

let V be a finited dimensional vector epose over R. Define the K-fold product V = V X XV by (W1, W2,, WK) where W1, W2,, WK E V.	
This has operations $(w_1,, w_k) + (z_1,, z_k) = (w_1 + z_1,, w_k + z_k)$, $\lambda \in \mathbb{R}$ then $\lambda(w_1,, w_k) = (\lambda w_1,, \lambda w_k)$. $\lambda \in \mathbb{R}$ $A \in \mathbb{R}$ $A = (\lambda w_1,, \lambda w_k) + (z_1,, z_k) = (w_1 + z_1,, \lambda w_k + z_k)$, $\lambda \in \mathbb{R}$ $A = (\lambda w_1,, \lambda w_k) + (\lambda + z_1,, \lambda + z_1)$, $\lambda \in \mathbb{R}$ $A = (\lambda + z_1,, \lambda + z_1)$, $\lambda = (\lambda + z_1,, \lambda + z_1)$, $\lambda = (\lambda + z_1,, \lambda + z_1)$, $\lambda = (\lambda + z_1,, \lambda + z_1)$, $\lambda = (\lambda + z_1,, \lambda + z_1)$, $\lambda = (\lambda + z_1,, \lambda + z_1)$, $\lambda = (\lambda + z_1,, \lambda + z_1)$, $\lambda = (\lambda + z_1,, \lambda + z_1)$, $\lambda = (\lambda + z_1,, \lambda + z_1)$, $\lambda = (\lambda + z_1)$,	R.
$T(v_{i_1}v_{j_2}\cdots,v_{i-i_1},Nv_{i_1}\cdots,v_{k_1})=\lambda T(v_{i_1}v_{j_2}\cdots,v_{i-1}v_{i-1},v_{i_1},v_{i+1}\cdots,v_{k_1})$	
The set of k-multimear maps is $J^{k}(v) = \{T: V^{k} \rightarrow \mathbb{R}\}$. Each $T: V^{k} \rightarrow \mathbb{R}$ is called a k-tensor.	
let Tis: VK→ R be multilinear, then TFS: VK→ R is defined as (TTS) (V1,, VK) = T(V1,, VK) + 5(V1,, VK), if he R, UhT) (V1,, VK) = h. T(V1,, VK).	
$\frac{\text{Definition}}{\text{Definition}} \text{let SEJ}^{k}(V), \ T\in J^{k}(V). \ \text{Define S} \otimes T: V^{k+l} \rightarrow \mathbb{R} \text{by} (S\otimes T)(v_{1},, Vk; v_{k+1},, v_{k+k}) = S(v_{1},, v_{k}) \bullet T(v_{k+1},, v_{k+k}).$	× - >
Note - We see in Homework 7) that SOTE J ^{K+Q} (V). Also, observe that SOT = TOS. (TOS)(Y1,,Yk, Yk+1,,Yk+2)=T(Y1,,Y2)-S(Ye+1,	, VK+2).
(Repetited (Repetites of Tensor Roducts).	
$(f) (S_1 + S_2) \otimes T = (S_1 \otimes T) + (S_2 \otimes T) $ $(2) S \otimes [T_1 + T_2] = S \otimes T_1 + S \otimes T_2 . \text{where } S \in J^k(V), T_1, T_2 \in J^{\ell}(V) $	
(3) $\alpha \in \mathbb{R}$, $(\alpha S) \otimes T = S \otimes (\alpha T) = \alpha (S \otimes T)$. (4) $(S \otimes T) \otimes U = S \otimes (T \otimes U)$, $S \in T^k(U)$, $T \in J^k(U)$, $U \in T^m(U)$	
(5) $J^{1}(v) = V^{*}$.	
(Part) Ready - (4): let (V1,, VK+1,, VK+2, VK+2+1,, VK+2+1) = (S@T)@U](V) = (S@T)(V1,, VK+2) · U(VK+2+1,, VK+2+1) = socialitivity of vest numbers.	
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	term) uq.e.d.
$\frac{\mathcal{J}^{l}(v)}{Methered} \frac{\mathcal{J}^{l}(v)}{We} \frac{\mathcal{J}^{l}(v)}{W} \frac{\mathcal{J}^{l}(v)}{We} \frac{\mathcal{J}^{l}(v)}{We} $	
Roof-let 141,, 1K5 (11,2,,1N5, 141, V2,, Yn5 is a benis for V, 44,, 4" + is a benis for V. then + 4 pin @ pix @ @ pik, 1 = 11,, ik = 15 is a 1	basis for Jul(V).
To prove LI, let 1,, ik q1 a is is ik q1 a q1	4 (V;k)=0
Hts reduces to Zaigais aik Sinja Sizjo Sikijk = ajajo ajk = 0 > each coefficient is 0 > set is UI.	
To pore sponning, NTP: (p ⁱⁿ @ @ (P ^{ik} spon J ^k (V) do 1 ≤ i1, i2,, ik ≤ n. Tate any TE J ^k (V), write T = 2 Ci1ik (P ⁱⁿ @ @ (P ^{ik}), plug in	the K-tuple
(výra Viza, Výra), then $T(Viza, Viza, Vira) = \sum_{i r=1}^{n} Ciaik SizijaSirija = Cia.jajr vic. the still need to prove that such an expression$	on is legitimate.
$Phy_{2} any vectors W_{1}, WK on both sides. let W_{1} = a^{1} v_{1} + a^{12} v_{2} + + a^{1N} v_{N}, W_{2} = a^{24} v_{1} + + a^{2N} v_{N},, W_{K} = a^{K1} v_{1} + + a^{KN} v_{N}.$	
$RHS = \underbrace{Ci_{1}\cdotsi_{k}}_{\mathbf{k}_{1}} \underbrace{Ci_{1}\cdotsi_{k}}_{\mathbf{k}_{1}} \left(e^{i_{1}} \otimes \cdots \otimes e^{i_{k}_{k}} (w_{1},\ldots,w_{k}) = i_{1}\cdotsi_{k}z_{1} \underbrace{Ci_{1}\cdotsi_{k}}_{\mathbf{k}_{1}} \operatorname{ci_{1}}_{\mathbf{k}_{1}} z_{1} \underbrace{ki_{k}}_{\mathbf{k}_{1}} z_{1} \underbrace{ki_{k}}_{\mathbf{k}} z_{1} \underbrace{ki_{k}}_{\mathbf{k}_{1}} z_{1} \underbrace{ki_{k}}_{\mathbf{k}_{1}} z_{1} \underbrace{ki_{k}}_{\mathbf{k}_{1}} z_{1} \underbrace{ki_{k}}_{\mathbf{k}_{1}} z_{1} \underbrace{ki_{k}}_{\mathbf{k}} z_{1} \underbrace{ki_{k}}_{\mathbf{k}_{1}} z_{1} \underbrace{ki_{k}}_{\mathbf{k}} z_{1} \underbrace{ki_{k}} z_{$	
The firm of the sequence of th	i.
	.a
Note - For k=2, these correspond to T(V1,V2)= T(V2,V1) ⇒ inner products if positive definite i.e. T(V,V)≥0 ∀V.	
A TEJK (N is called attravating if T(1,, Vi-1, Vi, Vi+1,, Vi=1, Vi, Vi+1,, Vk) = -T(V1, V2,, Vi-1, Vi, Vi+1,, Vj-1, Vi, Vi+1,, Vk).	
Note - An example of these are k-determinants.	
	and college what
Record that f is an oren function if $f(x) = f(-x)$, an odd function if $f(y) = -f(-x)$. For instance then, if $f(x) = x^2 + x^3$, it is the sum of an area and odd function. More g	yenerally, man-
about any f_1 , e.g. $f(x) = \cos(\sin(x^5 + \cos x))$? let us have $f(x) = \frac{f(x) + f(-x)}{2} - \frac{f(x) - f(-x)}{2}$. Then $g(x) = \frac{f(x) + f(-x)}{2}$ is even, we can be called in the form $f(x) = \frac{f(x) - f(-x)}{2}$.	ke
$\sigma: x \mapsto -x, \text{ then } \sigma^2 = 1. gov(x) = g(-x) = g(x), h(-x) = -h(x). \text{thus,} g(x) = \frac{f(x) + f(\sigma x)}{2}, h(x) = \frac{f(x) - f(\sigma x)}{2}, \text{suppose we start with any } k-\text{tensor TET} $	"(V), which is
reither symmetric nor alternating. He can dotain such tensors (symmetric or alternating) out of them. Consider pormutations OE SK, O: (o(1)o(2) o(k)).	
Then the tonior $\overline{k}!$ $\overline{\sigma}$ \overline{c} \overline{k} \overline{c}	we that
given TE $J^{k}(V)$, we define Att TE $J^{k}(V)$ by $(NT-T)(V_{1},,V_{N}) = \frac{1}{k!} \sum_{\sigma \in S_{K}} sgn(\sigma) T(V_{\sigma(V_{1},,V_{\sigma(K)})})$.	
Hardward (a) If TE J ^k (V), than Att T is alternating. (or Alt(T) E A ^k (M).	
(b) let $\Lambda^{k}(v)$ be the set of attenuating k-tensors. Then $\Lambda^{k}(v)$ is a subspace of $J^{k}(v)$. Chood-left to exercise the Homemort 7] [w∈ $\Lambda^{k}(v) \Rightarrow w$ is of degree	e K].
(a) If $\omega \in \Delta^k(V)$, $AH(\omega)=\omega$. (a) $AH(AH T) = AH T$. 22 Norem	s PETRIDIS
$\frac{T(w_1,w_2) + T(w_2,w_1)}{Note - \ln the billineducese, TEJ^2(V) \Rightarrow w_1,w_2eV. S(w_1,w_2) = \frac{T(w_1,w_2) + T(w_2,w_1)}{2}$ $\frac{T(w_1,w_2) + T(w_2,w_1)}{2}$ is symmetric, Att (T)(w_1,w_2) = \frac{T(w_1,w_2) - T(w_2,w_1)}{2} is attensive. Method 70	
ρ is all ρ is an end ρ ρ in ρ	- Alt (wq,, wk). y 6→ 0 (i i)
145 - ALF (7) (W. W. Will) = FI Zer Sqn(o) T(Work), Work),, Work), work), Define o'= o' (ij), Work). Define o'= o'. (ij)	
$\frac{1}{k!} = \frac{1}{k!} \sum_{i=1}^{k} \frac{1}{2} \sum_{i$	
But (0): If we (N), then w(w1,, wk) = - w(w1,, w1,, w1,, wk). = w (w2, w1,, N;, wk). Thus, if oresk, we get that	
$\omega(W \sigma(1), W \sigma(2),, 1 W \sigma(1)) = sg_{N}(\sigma) \cdot w(w_1,, w_K). w \in \Lambda^{k}(w), MH(w)(w_1,, w_K) = \frac{1}{K!} \sum_{e \in S_{K}} sg_{N}(\sigma) w(w_{\sigma(1)},, w_{\sigma(K)}) = \frac{1}{K!} \sum_{e \in S_{K}} (sg_{N}(\sigma)]^{2} w(w_{1},, w_{K}) = \frac{1}{K!} \sum_{e \in S_{K}} (sg_{N}(\sigma))^{2} w(w_{1},, w_{K}) = \frac{1}{K!} \sum_{e \in S_{K$	w(w1,, wk) fled

3109-10.

	let we $\Lambda^{k}(v)$ and $\eta \in \Lambda^{k}(v)$. Wome J ^{k+l} (v) is a tensor, but does not have to be alternating. We define the wedge of wand η to be $wn = \frac{(k+l)!}{k! !!}$ Alt (wor) $\in \Lambda^{k+l}(v)$.
	troposition IF w, w2, h3E AKN, n, n, n, n, n E A W. Then the following properties hold:
<u>.</u>	(a) $(\omega_1 + \omega_2 \wedge \eta + \omega_2 \wedge \eta$ (b) $(\omega \wedge (\eta_1 + \eta_2) = \omega \wedge \eta_1 + \omega_2 \wedge \eta_2$
	(i) If a.e.R, $(\alpha\omega)^{\gamma} = \alpha(\omega\wedge\gamma) = \omega\wedge(\alpha\gamma)$ (d) $\omega\wedge\gamma = (-1)^{k}\gamma_{\Lambda}\omega$
	Roof- Port(a), (d) in homework, (b) similar to (a), (c) multipled.
	Let V, W be finite dignerional rector spaces, V + W where fiss linear transformation. If T: W -> R is a linear functional on V, then Top is a linear functional V + W
	on N. Thus, if TEW*, then Tof EV*. For notation, we write Tof = f*(T), which gives a mapping f*: W*-> V*, we note also that = f*
	W*= J'(W), V*= J'(V). We can generalize this to tensors: if TEJK(W) then f*(T) EJK(V). Then f*(T)(U1, V2,, VK) = T(f(N), f(W),, f(VK)) (pullback)
	$\frac{1}{10000001} (0) f^{*}(T) \in J^{k}(V) \qquad (b) f^{*}(T \otimes S) = f^{*}(T) \otimes f^{*}(S) \qquad (c) f^{*}(w) \cdot f^{*}(w) \cdot f^{*}(v)$
	Read - (b) left as exercise, (c) in Homework 7. (w): Need to show f ²⁴ (1) is K-multilinear on V. Take V1,, VK, Vi+ X & R. Then we have that
	Te J ^k (v) f [*] (r) (v ₁ ,, λv:+v ₁ ',, v _k) = T (f(v ₁), f(v ₂),, f(v _k)) = T(f(v ₁),, f(v _k)) = T(f(v ₁),, f(v _k)) + T(f(v
	$= \lambda f^*(t)(v_1,, v_K) + f^*(t)(v_1,, v_K) \Rightarrow f^*(t) \in I^k(v)_{l-q} \cdot e \cdot d$
	Theorem (a) if se IK(V), TE J ^l (V) and AH(S)=0, then AH (SBT)=0 and AH (TBS)=0.
	(b) $Alt(Alt(wort) \otimes \theta) = Alt(wort \otimes \theta) = Alt(w \otimes Alt(t \otimes \theta))$ where $w \in J^k(V)$, $\eta \in J^k(V)$ and $\theta \in J^m(V)$.
	(c) if $\omega \in \Lambda^{k}(V)$, $\eta \in \Lambda^{\ell}(V)$ and $\theta \in \Lambda^{m}(V)$, then $(\omega \otimes \eta) \wedge \theta = \frac{(k + \ell - rm)!}{k! \ell! m!} \operatorname{AH}(\omega \otimes \eta \otimes \theta) = \omega \wedge (\eta \wedge \theta)$
	sign(τ) Reaf-(a): Given that Att (5)=0. Thus for w1, WK eV, Att (5). (W1, WK) = th. tesp. S(WT(1), WT(2),, Wt(k)) = 0. Then Att (5 @T) = (1+1). or Swither (5 @T) (W(1),, Wo(k+2))
	We split these into parts: Kr G=1065k: 0(k+1)=k+1, o(k+2)=k+2,, o(k+2)=k+2, G ≤ 5kd Then these terms contribute: = 2
	$= T(W_{k+1},, W_{k+2}) \xrightarrow{\Sigma}_{\sigma \in SK} squiter S(W_{\sigma(1)},, W_{\sigma(K)}) since G \cong SK, so = T(W_{k+1},, W_{k+2}) Alt(S)(W) = 0. consider coset decomposition of Sk+2 by subgrap G$
	Let or 6 Skee but or \$6 st. Goo = G. Then or (Wy,, WK, WK+1,, WK+2) = (Wy, WX, WK+1,, WK+2). Then elements of Goo have the form or or,
	with orea, i.e. oro, (w1,, wk, wk+1,, wk+e) = (Wo-(1), Wo(2),, Wo(k), Wk+1,, Wk+e). Then we sum over oro, 6 900, i.e. or 6 9,
	$\sum_{\sigma \in G} s_{gn}(\sigma \sigma_{\sigma}) S(\widetilde{W}_{\sigma(1)}, \widetilde{W}_{\sigma(2)}, \dots, \widetilde{W}_{\sigma(K)}) \cdot T(\widetilde{W}_{K+1}, \widetilde{W}_{K+2}, \dots, \widetilde{W}_{K+\ell}) = s_{gn}(\sigma_{\sigma}) T(\widetilde{W}_{K+1}, \widetilde{W}_{K+2}, \dots, \widetilde{W}_{K+\ell}) S(\widetilde{W}_{\sigma(1)}, \dots, \widetilde{W}_{\sigma(K)}) = \sigma$
	complete sum of both parts gives Att (S@T)= 0+0=0/ q.e.d.
	(b): Take S= AH (w@7)-w@7, T=0. AH (S)= AH (AH (w@7)- w@7)= AH (w@7)- AH (w@7)=0. Apply part (a), then AH [(AH (w@7)- w@7)@0]=0.
	ATT (MOR) 00 - (WOR) 00 - (A (MOR) 00) - ATT (MOR) 00) - ATT (MOR) 00) - 000 (NON) - 000 (NON) 00)
	$(k): (k+l)tm! AH ((k+l)tm!)! AH ((k+l)tm!) AH ((k+l)tm!) AH [k+l! AH (k \otimes l) \otimes 0] = (k+l+m)! AH [AH (k \otimes l) \otimes 0] = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! AH (k \otimes l \otimes 0) A = (k+l+m)! A = ($
0	Theread ket V hore a bois Av1,, Vnt (dim V=n), and let V* hore the dual boois 19,, 9" I where $q^i(v_j) = \delta_{ij}$. Then a bois for $\Lambda^k(V)$ is given by $q^{i_1} \Lambda q^{i_2} \Lambda \dots \Lambda q^{i_k}$
	where $1 \leq i_1 \leq i_2 \leq \dots \leq i_K \leq n$, $\dim \Lambda^k(V) = \binom{N}{k}$.
/	Remark- if $k > n$, dim $(\Lambda^{k}(V)) = 0$.
	Also also be $\sum_{i=1}^{n} \alpha_{i,i}$ is in $\beta_{i,j}$ and $\beta_{i,j}$
	$\frac{1}{100} = \frac{1}{100} = \frac{1}$
	$w = \sum_{i_1,\dots,i_k}^{n} \alpha_{i_1}\dots 1_k c_{i_1}\dots c_{i_k} (\varphi^{i_1} \wedge \varphi^{i_k} \wedge \dots \wedge \varphi^{i_k}).$ For linear independence, note that $(\varphi^{i_1} \wedge \varphi^{i_2} \wedge \dots \wedge \varphi^{i_k})(\varphi_{i_1} \cdot \psi_{i_2} \dots \dots \psi_{i_k}) = \delta_{i_1 i_1} \cdot \delta_{i_2 i_2} \dots \delta_{i_k i_k}$
	Att (q ⁱ¹ @ q ⁱ² @ @ q ^{ik})(y _{j1} ,, y _{jk}) = k oresk equ(or) q ⁱ¹ (vo(j1)) q ⁱ² (vo(j2)) q ^{ik} (vo(jk)), which contributes a term only if ir=jy dy. A q. ed.
	$\begin{aligned} & \int_{\mathbb{R}^3} \int_{$
	Then (ψ^1, ψ^2, ψ^3) is the birth for $\Lambda^1(\mathbb{R}^3)$. Then try $k=2$ (attemating 2-tensors). dim $\Lambda^2(\mathbb{R}^3) \equiv (\frac{3}{2})=3$. Recall $(\psi^1 \wedge \psi^1 = \psi^2 \wedge \psi^2 = \psi^3 \wedge \psi^3 = 0$.
	$\Rightarrow bdris for \Lambda^2(\mathbb{R}^3) is \Lambda 4^n \Lambda 9^2, 9^n \Lambda 9^2 f exponents in increasing order). consider (Y^n \Lambda 9^2)(W_1, W_2) = \frac{1}{111} Att (9^1 \otimes 9^2)(W_1, W_2)$
	$=\frac{2!}{1!1!}\sum_{i_1,\cdots,i_n\in S_2} (\psi^1 \otimes \psi^2)(w_{\sigma(1)_1}, w_{\sigma(2)}) s_{q_1n}(\sigma) = (\psi^1 \otimes \psi^2)(w_{1,1}, w_{2}) - (\psi^1 \otimes \psi^2)(w_{2,1}, w_{1}) = \psi^1(w_{1})\psi^2(w_{2}) - \psi^1(w_{2,1})\psi^2(w_{1}) \Rightarrow \psi^1 \wedge \psi^2 = \psi^1 \otimes \psi^2 - \psi^2 \otimes \psi^1$
	$similarly_1 \varphi^4 \wedge \varphi^5 = \varphi^1 \otimes \varphi^3 - \varphi^3 \otimes \varphi^1 \text{and} \varphi^7 \wedge \varphi^3 = \varphi^2 \otimes \varphi^3 - \varphi^3 \otimes \varphi^2, \text{we chearly set that} \varphi^7 \wedge \varphi^1 = -\varphi^1 \wedge \varphi^3, \varphi^3 \wedge \varphi^3 = -\varphi^3 \wedge \varphi^3 = $
	Then if has dim $N^3/R^{3/2} = (3) = 4$ and $V = T = T = T = T = T = T = T = T = T = $
0	Then if k=3, dim $(A^{2}(\mathbb{R}^{3}) - (3)^{-1} \Rightarrow 1 \leq 2 \leq 3 \Rightarrow basis element is \varphi^{1} \land \varphi^{2} \land \varphi^{3}. We obtable its significance: (\varphi^{1} \land \varphi^{2} \land \varphi^{3})[W_{1},W_{2},W_{3}) = \frac{3!}{4!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$
	$=\frac{3!}{4!4!!}\frac{1!}{3!}\sum_{\sigma\in S_3} (t^4 \otimes t^2 \otimes t^3)(W_{\sigma(1)}, W_{\sigma(2)}, W_{\sigma(3)} S_{qn}(\sigma) = \sum_{\sigma\in S_3} s_{qn}(\sigma) t^2(W_{\sigma(4)}) t^2(W_{\sigma(3)}) = t^2(W_{q}) t^2(W_{q}$
	$- \Psi^{(W_3)}\Psi^{(W_2)}\Psi^{(W_1)} - \Psi^{(W_1)}\Psi^{(W_2)}\Psi^{(W_3)} + \Psi^{(W_2)}\Psi^{(W_3)}\Psi^{(W_3)} + \Psi^{(W_3)}\Psi^{(W_3)}\Psi^{(W_3)} \dots \text{ Thus in conclusion, we have that } \Psi^1 \wedge \Psi^2 \wedge \Psi^3 \text{ is}$ equivalent to $\Psi^1 \otimes \Psi^2 \otimes \Psi^3 - \Psi^2 \otimes \Psi^2 \otimes \Psi^1 - \Psi^1 \otimes \Psi^3 \otimes \Psi^2 + \Psi^2 \otimes \Psi^3 \otimes \Psi^1 + \Psi^3 \otimes \Psi^1 \otimes \Psi^2$
	ϕ

Remark - 19 dim V = n, dim $\Lambda^{n}(v) = \binom{n}{n} = 1$. Let $w_{1}, w_{2}, \dots, w_{n}$ be vectors in V. $w_{1} = \binom{w_{11}}{w_{21}}, w_{2} = \binom{w_{12}}{w_{12}}, \dots, w_{n} = \binom{w_{nn}}{w_{nn}}$. Then consider the nxn metrix 27: November 2013 Dr. Yishunis PETRIDIS. Martus 706. tied, initial standard vector. Let pER". let Rp = 1(p, V), VER" } (i.e. set of all rectors beginning from pER". This is a vector space, with (p, V1) + (p, V2) = (p, V1+V2) P/w we will not and aGR => a(p,v1)= (p,av1). This space Rp" is called the tangent space of R" at p. Note - IF p=q, (p, 11) + (q, 12) is not well-defined. Notation - We write (p,v) = Vp [ie. tiel at point p]. P piq. qi clearly, $\mathbb{R}_{p}^{n} \in \mathbb{R}^{n}$, so \mathbb{R}_{p}^{n} has basis $f(e_{i})_{p}$, $(e_{i})_{p}$, \dots , $(e_{n})_{p}$. Take a vector at p. then $\forall p = a^{1}(e_{i})_{p+1} a^{2}(e_{i})_{p+1} + a^{n}(e_{i})_{p}$, $a^{i} \in \mathbb{R}$. A rector field Fon Rⁿ (or a subset $A \subseteq \mathbb{R}^n$) is a function $F: A \longrightarrow \bigcup_{P \in \mathbb{R}^n} \mathbb{R}^p$ st. $F(p) \in \mathbb{R}^n_p$ [i.e. choose a rector at each point]. Then E(p) = F1(p)(e+)p + F2(p)(es)p + ... + Fn(p)(en)p, where for a fixed p, F1(p) < R. As p varies, we get F1(p),..., Fn(p) to be scolar functions. 121 The rector field is called continuous (respectively differentiable) if the functions $F_1^1 E_2^2 \dots, F^n : \mathbb{R}^n \to \mathbb{R}$ are continuous (respectively differentiable). Recall that we can sum vector fields by adding components respectively. We can also multiply a rector field F with a solar function f: |R"→ R. let F(p) ∈ R"p, f(p) ∈ R, f(p). F(p) ∈ R. Then p +> f(p). F(p) & ER" defines a rector field with components $PE^1, PE^2, ..., FE^1 \to \to$ If Fissvector field, divergence div F: R" -> R (scaled) given by (div F)(p) = $\frac{3F^1}{3x^1}(p) + \frac{3F^2}{3x^2}(p) + \dots + \frac{3F^n}{3x^n}(p) = \frac{2}{3x^n}D_i(F^2(p))$. If Fison R³, we define curl of F by $\operatorname{curl}(F)(p) = \begin{bmatrix} 1 \\ 2^{\frac{1}{2}3} + 3^{\frac{1}{2}} \\ -\frac{3}{24} \end{bmatrix} = \begin{bmatrix} 3F^{\frac{3}{2}} - 3F^{\frac{3}{2}} \\ -\frac{3}{22} \end{bmatrix} + \begin{bmatrix} 3F^{\frac{3}{2}} - 3F^{\frac{3}{2}} \\ -\frac{3}{24} \end{bmatrix} + \begin{bmatrix} 3F^{\frac{3}{2}} - 3F^{\frac{3}{2}} \\ -\frac{3}{24} \end{bmatrix} + \begin{bmatrix} 3F^{\frac{3}{2}} \\ -\frac{3}{24} \end{bmatrix} + \begin{bmatrix} 3F^{\frac{3}{2}} \\ -\frac{3F^{\frac{3}{2}}}{24} \end{bmatrix} + \begin{bmatrix} 3F$ This gives a new vector field. Tor our coundensions, take V=Rp, with bois 1(e)p,..., (enpt. ler wp) & A^k(Rp). Then a k-form is a choice of w(p) & A^k(Rp) for every p & R^h. At p, what does w(p) look lite? w(p) & A^k (Rp), then 1sigenciken winn ikplipⁱⁿ(p) A 4^{ik}(p) A... A 9^{ik}(p) where 4^{ik}(p) is the dual bois of 3(e) p, les) p,..., levipt. w(p) is determined by Winnik(p), so we have functions pt = Win Wik(p) for in <i2 <... <ik, in, i2,..., ik e 11,2,..., nt. A continuous (respectively differential) k-form on Rn is a k-form where all these functions Winiz... in (p) are continuous (respectively differentiable) on Rn. Given wing the differential k-forms on ℝ^h, we can define with to be a differential k-form on ℝⁿ by w(p), 7(p) ∈ Λ^k (ℝ^p), (w+n)(p)=w(p)+n(p) ∈ Λ^k (ℝ^p). ∈ℝ ∈Λ^k(ℝ^p). let f:ℝⁿ→ℝ be a scalar field, then we can define f:w to be a differential k-form on ℝⁿ by f(p) = (f:w)(p). Given f: Rn > R differentiable, fix p. Then Df(p): Rn > R is a linear map/functional, so Df(p) ((Rn p) = J1(Rn p) = 1(Rn p) = A (Rn p) = A is an attenuating 1-tensor, so then so 1 det $p \rightarrow Pf(p)$ is a differential 1-form on \mathbb{R}^n . We denote it by df, (df)(p)=Df(p). i.e. $df(p)(Vp)=Pf(p)(V) \in \mathbb{R}$ with Vp=(p,V). Let if $1, \dots, n^{\dagger}$. $\mathbb{R}^{n} \rightarrow \mathbb{R}$ $\Pi^{i}(x^{1}, \dots, x^{n}) = x^{i}$. Since Π^{i} is linear, $D\Pi^{i}(p) = \Pi^{i}$. So $D\Pi^{i}(p)(u) = \Pi^{i}(v) = v^{i} = \varphi^{i}(v)$. By definition, $d\Pi^{i}(p)(v_{p}) = D\Pi^{i}(p)(v)$. Thus, $\varphi = d\Pi^{i}(p)(v_{p}) = \Pi^{i}(p)(v_{p}) = \Pi^{i}(p)(v_{p}$ Nototion - $T_i^i = x^i$, $dT_i^i = dx^i$, so that $dx^i = q^i$. So $w(p) = i_1 < i_2 < \dots < i_K W_{i_1 i_2 \dots i_K} (p) dx^{i_1}(p) \wedge dx^{i_2}(p) \wedge \dots \wedge dx^{i_K}(p)$. Thus, $w = i_1 < \dots < i_K w_{i_1 i_2 \dots i_K} dx^{i_1} \wedge dx^{i_2} \wedge \dots \wedge dx^{i_K}(p)$ We then classify differential forms -For R1, dim 1k (Rp)=(k) +0 <> k=0 or 1. If k=0, only 0-form is w= f(w). If k=1, w= f(x) dx is a 1-form. For R², dim $\Delta^{k}(\mathbb{R}_{p}^{2}) = [\frac{k}{k}] \neq 0 \iff k = 0, 1, 2$. We normally use $(x_{1}, y) = (x_{1}^{2}, y^{2})$ for this case. If k = 0, $w = f(x_{1}, y)$ is only 0-form. If k = 1, dim $\Delta^{1}(\mathbb{R}_{p}^{2}) = 2$. Then we have w=P(x,y) dx + Q(x,y) dy is the 1-form. If K=2, w= fory) dx A dy. Hote that dx A dx=0, dy A dy=0, dx A dy=-dy A dx For R3, dim $\Lambda^{k}(R_{2}^{3}) = (k) = 0 \iff k = 0, 1, 2, 3$. If k = 0, $w = f(x_{1}, y_{1}, z)$ is 0-form. [Hore, $(x_{1}, y_{1}, z) = b^{1}, x^{2}, x^{3}]$. If k = 1, $w = f(x_{1}, y_{1}, z) dx + g(x_{1}, y_{2}) dy + h(x_{1}, y_{1}, z) dz$. is 1-form If K=2, w= P(x,y,z) dx Ady + Q(x,y,z) dx Adz + R(x,y,z) dy Adz with dx Adx = dy Ady = dz Adz =0, dx Ady = -dy Adx, dx Adz = -dz Adx, dy Adz = -dz Ady. Thus, wis equivalent also to w=-R(Try, Z) dZAdy - P(X, Y, Z) dyAdx + Q(X, Y, Z) dXAdZ = fr(X, Y, Z) dZAdy + f2(X, Y, Z) dyAdx + f3(X, Y, Z) dxAdy. If k=3, w= flory, Z) dx A dy A dz is the 3-form. [total derivative]. Theorem Let f: RM -> R be differentiable. Then df= D1 f dx + D2 f dx + D n f dx" ; e. 2f dx + 3f dx + 3f dx + ... + 3f dx". Book - Mt pe R", (p,N)=Vp st. V ∈ R". df(p) (Vp) = Df(p) (V) = f(p) (V) = (p, fp), D_f(p), ..., Dn f(p)) (Vin) = Z D_f(p) V . Then, we have for the RHS, (D1Fdx¹+...+Dn f dx¹)(p) (Vp) = [D1F(p) dx²(p) + D2 f(p) dx²(p) +...+Dn f(p) dxⁿ(p)](Vp) = 21 f(p) dx²(p)(Vp) +...+Dn f(p) dxⁿ(p) (Vp) = 21 f(p) dx²(p) V¹ +...+Dn f(p) dxⁿ(p) V¹ +...+Dn f(p) dxⁿ(p) (Vp) = 21 f(p) dxⁿ(p) V¹ +...+Dn f(p) dxⁿ(p) (Vp) = 21 f(p) (Vp) (Vp) = 21 f(p) dxⁿ(p) (Vp) = 21 f(p) dxⁿ(p) (let w be ≥ 0-form on R^M. w=f(x1,...,xⁿ). We define dw = $\frac{2E}{2\pi}$ dx¹ + $\frac{2E}{2\pi}$ dx²+...+ $\frac{2E}{2\pi}$ dxⁿ. Then now let w be s k-form with k≥1. Then w= i_1 - c_{i_1} w_{i_1}... i_n dx^{i_1} ... ∧ dx^{i_n} (refinition) dw = if ... is a wig 12... is dx ^ dx ^ dx it ... A dx ... This is now a kt1 form, and is called the extension derivative. For \mathbb{R}^n , K=0, w=f(x), dw=f(x) dx. If K=1, w=f(x) dx. So $dw=f(x) dx \wedge dx = 0$. For \mathbb{R}^2_{1} , k=0, w=f(x,y), $dw=\frac{2f}{2x}dx+\frac{2f}{2y}dy$. For k=1, w=f(x,y)dx+Q(x,y)dy. Then $dw=\frac{2f}{2x}dx \wedge dx+\frac{2f}{2y}dy \wedge dx+\frac{2g}{2y}dx \wedge dy+\frac{2g}{2y}dy \wedge dy=(-\frac{2f}{2y}+\frac{2g}{2y})dx \wedge dy$. If K=2, W= f(x,y) dx Ady. dw = 2f dx Adx Ady + 2f dy Adx Ady = 0 (dear, since there is no 3-dim attensing form on R?).

109-12

For R3, k=0. N= f(x,y,z), dN= 3 dx + 2 dy + 2 dz. For K=1, N= f(x,y,z) dx + g(x,y,z) dy + h(x,y,z) dz. Then we expend terms in exterior derivative to get dw = \$ dxAdx + \$ dyAdx + \$ deAdx + \$ dxAdy + \$ dxAdy + \$ dyAdy + \$ deAdy + \$ dxAdz + \$ dyAdyAdz + \$ deAdz = (\$ - \$) deAdy + (\$ - \$) dyAdx + \$ - \$) dyAdx + \$ - \$] dyAdx + \$] dyAdx + \$ - \$] dyAdx + \$] dyAdx + \$] dyAdx + \$ - \$] dyAdx + \$ - \$] dyAdx + \$ This corresponds to curl $[f,g,h] = \begin{bmatrix} i & k \\ \partial x & \partial y & \partial z \\ P & g & h \end{bmatrix} = (\frac{\partial h}{\partial y} - \frac{\partial g}{\partial z})i - (\frac{\partial h}{\partial x} - \frac{\partial g}{\partial z})j + (-\frac{\partial f}{\partial z} + \frac{\partial g}{\partial x})k$ Then for k=2, $w = f_1 dy_1 dz + f_2 dz_1 dx + f_3 dx_1 dy_2$. Then we have dw = $\frac{\partial f_1}{\partial x}$ dxAdyAdz + $\frac{\partial f_2}{\partial y}$ dyAdzAdx + $\frac{\partial f_3}{\partial z}$ dzAdxAdy = $(\frac{\partial f_1}{\partial x} + \frac{\partial f_3}{\partial y} + \frac{\partial f_3}{\partial z})$ dxAdyAdz = (div F) dxAdyAdz with F=(f_1,f_2,f_3). Let ω be a differential k-form on \mathbb{R}^n , $\omega = \sum_{ij \in \cdots, ijk} W_{ij} \cdots i_k dx^{ij} \wedge \cdots \wedge dx^{ik}$, $\gamma = \sum_{ij \in \cdots, ijk} \gamma_{ij} \cdots j_k dx^{ij} \wedge \cdots \wedge dx^{ik} \Rightarrow w \wedge \gamma = \sum_{ij \in \cdots, ik} W_{ij} \cdots j_k W_{ij} \cdots W_{ij} W_{ij}$ Theorem exterior derivative has the following properties: exterior derivative hos the following properties: (Product Rule) (1) d(w+z)=dw + dz for usz k-forms (2) d(dw)=0 for any w k-form (3) d(wnz) = dw nz + (-1)^k w ndz (-1)^k w ndz (2) d(dw)=0 for any w k-form (3) d(wnz) = dw nz + (-1)^k w ndz (1) d(wnz) = dw nz + (-1)^k w n If d= \$, dx A dx d A ...= 0. Thus, suppose d \$ B. For each (d, B), each contributing term is DB(Dd, Wig-ix) dx BAdx A.... since (d, B) is off-diagonal, we also have (B, d) so well, giving Da (Dp Wy...ik) did A dx BA ... since w is infinitely differentiable, nixed partial derivatives are the same, then by anticommutativity, (d, p) term concels ont (p,o) terms g.e.d. (3) Nove first that d(WAY) is a (k+1)-form. then WAY = in Encircle Winnik 7) in dx in mark in the second discussion of the second discussi = in the me can apply commutativity of red numbers to terms, it and in a state of the me can apply commutativity of red numbers to terms, tokonst p = i c i c i k dx n dx i k n Z Bin i k) dx i n dx i k n Z Bin i k i n n dx i k n Z Bin i k dx n dx i k n Z Bin i k i k i n n dx i k n dx i n n dx i k n z Bin i k i k i n n dx i k n dx i n n dx i n n dx i k n dx i n n dx i n n dx i k n dx i n n n dx i n n n dx i n n dx i n n dx i n n n desed and exact forms . Individual A k-form w is called elosed if dw=D. A k-form w is called exact if I a (k-1) form y st. dy=w. Elecandered An exact form is closed. [constrapositive: A form that is not closed is not exact]. Thoof-If is is exact then w= dy, so dw = d(dy) = 0/ q.e.d. let us consider R². N=2. k-form for k=1 is w= PUNY) dx + QUNY) dy. w is closed, so dw=0 = dw= 1x dx/dx + Py dy/dx + Qx dx/dy + Qy dy/dy. = - 22 du/dy + 29 du/dy $= (-\frac{3L}{2} + \frac{3Q}{2}) d_k \wedge d_y = 0 \Rightarrow -\frac{3L}{2} + \frac{3Q}{2X} = 0 \Rightarrow \frac{3L}{2Y} = \frac{3Q}{2X}$ This gives an <u>irrotational vector field</u> (or <u>conservative</u>), which has a potential. $F = D_k f = \frac{3f}{2X}$ If the form is exact, $W = df = D_k f d_k + D_k f d_y \Rightarrow Q = D_k f = \frac{3f}{2} \cdot \frac{3f}{2}$. Then f is called a potential. No know that an exact form is closed, but does the convorse apply? Examples -1. let xy² dx + y dy = w. Then dw= dtxy² dx + y dy) = 2xy dy ~ dx + O dx ~ dy + 0 > not dosed > not exact. 2. Let w=xy2 dx+ x2y dy, dw= 2xy dy dx + 2xy dx A dy = (-2xy+2xy) dx A dy=0 > closed. Is it exact? we search for potential of with $\frac{2}{2k} = xy^2$, $\frac{2}{3y} = x^2y$. Then $f = \int xy^2 dx = \frac{y^2}{2}y^2 + c(y) \Rightarrow f_y = x^2y + c'(y) = x^2y \Rightarrow c'(y) = 0 \Rightarrow c(y) = c. So \quad f(x,y) = \frac{x^2y^2}{2} + c, \text{ and form is exact.}$ $P = \frac{Q}{2} = \frac{Q}{2} + c, \text{ and form is exact.}$ $P = \frac{Q}{2} + c, \text{ and form is exact.}$ $P = \frac{Q}{2} + c, \text{ and form is exact.}$ $P = \frac{Q}{2} + c, \text{ and form is exact.}$ $P = \frac{Q}{2} + c, \text{ and form is exact.}$ $P = \frac{Q}{2} + c, \text{ and form is exact.}$ $P = \frac{Q}{2} + c, \text{ and form is exact.}$ $P = \frac{Q}{2} + c, \text{ and form is exact.}$ $f(x,y) = \int_{0}^{x} t \cdot o^{2} dt + \int_{0}^{y} x^{2} t dt = \frac{x^{2}t^{2}}{2} \Big|_{t=0}^{t=y} = \frac{x^{2}y^{2}}{2}$, so per before. Now we explore higher dimensions: $h \ge 2$, k=1. $w = w_1 dx^1 + w_2 dx^2 + \cdots + w_n dx^n = \sum_{j=1}^n w_j dx^j$ where w_j are functions on n variables. Then $dw = \sum_{j=1}^n \sum_{k=1}^n p_k w_k^j dx^2 + \cdots + w_n dx^n = \sum_{j=1}^n w_j dx^j$. If w_j is doed, $dw=0 \Rightarrow D_{d}w_{j} dx^{d} \wedge dx^{j} + D_{j}w_{d} dx^{j} \wedge dx^{d}=0 \Rightarrow D_{d}w_{j} = D_{j}w_{d}$. w is exact means $w=df=\sum_{j=1}^{2} D_{j}f dx^{j} \Leftrightarrow w_{j}=D_{j}f$ j=1,2,...,n. Fix f(0)=0. Then $f(x)=f(x)-f(0)=f(1,x)-f(0,x)=\int_{0}^{1} \frac{2}{4}(f(tx)) dt = \int_{0}^{1} \sum_{i=1}^{2} D_{i}f(tx) \times i dt$ (by chain nulle) = $\sum_{i=1}^{2} \int_{0}^{1} w_{i}(tx) \times i dt$ by exactness. cover where we can use the formula are restricted to region containing the ray from 0 to x. Induition) A region A S IRM is called star-shaped with 0 if MXEA, the segment [0,x] belongs to A i.e. Yte [0,1], tXEA. Thearand (Poincaré Lemma) . If A is a star-shaped region and w is a closed form on A, then w is exact. Proof-Refer to Hondout 5. 4 December 2013-Dr. Yishinis PETRIDIS Geometric Preliminaries. $\frac{\text{(comment training outes.})}{\text{(comment training outes.)}} \text{ The standard cube. It in RK is <math>T^{k} = [0,1]^{k} = \overline{[0,1]^{k} \cdots x [0,1]}$. A singular cube, it is continuous nop in A c: $T^{k} \to A \subseteq \mathbb{R}^{n}$ Examples = 1-cube $c: To, 13 \rightarrow A$ curve in A_1 , 2-cube $c: To, 13^2 \rightarrow A$ surface in A_1 , 3-cube $c: To, 13^3 \rightarrow A$ solid in A. If K=0, [0,1]°= tor is zero abe, c= to) -> A is just a point in A. k=1 _ + we then examine the boundary of a k-unbe. If k=1, boundary is given by Fundamental Theorem of collulus - 10 E'= E(1)-E(0), 21 = +1-0 If K=2, we have the following onloe: travened anti-locknise. $[0,1]^2 = 1^2$. $1 = f(x,0), 0 \le x \le 1^3$, $3 = f(x,1), 0 \le x \le 1^3$. -844 - 182 - 844 Literize, $3_2 = 1(1, y)$, $a \in y \leq 11$, $3_2 = 3(0, y)$, $0 \leq y \leq 11$. Then $\partial x^2 = \partial_1 + \partial_2 - \partial_3 - \partial_4$. This notation is during , and breaks down in higher dimensions.

Scored arts 0 V = 1 V =Note that we can predict the sign of $-\frac{1}{2} = I^2(x, \beta)$, which is given by $(-1)^{k+\beta}$. We investigate further for k=3. For 3-cube, boundary is the 6 faces (each found by fixing one variable and varying the other two. We get: (bottom) (top) (front) (bade) $I_{(3,0)}^{2} \xrightarrow{f(x_1,y_10)}, 0 \le x, y \le 1$; $I_{(3,1)}^{3} = 1$ $(x_1, y_1, 1), 0 \le x, y \le 1$; $I_{(1,1)}^{3} = 1$ $(1, y, z), 0 \le y, z \le 1$; $I_{(0,1)}^{3} = 1$ $(0, y, z), 0 \le y, z \le 1$; (left) -2, 3, -3, -3, -3, -32 1 $\begin{array}{c} (abt) & (abt) \\ (bb) \\ I^{2}_{(2,0)} = ((x_{1},0,2), \ o \leq x_{1} \geq 1) \\ I^{2}_{(2,0)} = ((x_{1},0,2), \ o \leq x_{1} \geq 1) \\ \end{array}$ Earlier, we showed that $\Im I^2 = I^2_{(2,0)} + I^2_{(1,1)} - I^2_{(2,1)} - I^2_{(1,0)}$. Thus, $\Im(\Im I^2) = (+(I_10) - (0_10)) + (+(I_11) - (I_10)) - (+(I_11) - (0_11)) - (+(I_11) - (0_10)) = 0$. We form formal sums of singular n-cubes with integer coefficients (this constructs an abelian group or II-module). Such formal sums are called n-chains. Given the standard n-cube I'' = [0,1]", we define I''(1,0)= (k1,...,0',xi+1,...,x"), 0≤xi≤1]. I''(1,1) = 1(k1,...,1', xi+1,...,x"), 0≤xi≤1]. (1+(2)) 6217 -Then define $\partial I^n = \sum_{j=1}^{n} \sum_{\alpha = o_1}^{n} (-1)^{j+\alpha} I^n_{(j,\alpha)}$ let c be a singular n-cube, c. $[o_1 f]^n = I^n \rightarrow A \subseteq \mathbb{R}^m$, $\partial c = \sum_{j=1}^{n} \sum_{\alpha = o_1}^{n} (-1)^{\alpha + j} c(I^n_{(j,\alpha)})$ let c be a singular shall c= m=1 am cm, am E I and cm singular cubes, then $\partial c = \frac{1}{m=1} am \partial(cm)$. In the 3-cube: The signs along common edges cancel out For today's leature, take RK st. w. is a K-form, n_ is a [k-1]-form. Then to will be integrated over Ik, y will be integrated over 31k. Since [k]=1, let w=f(k),...,xh, dxh, ndxh Then we have the following definition : Depundinal Ju = JJ....J. f(x1,...,xk) dx dx2.... dxk. Remark - since f is continuous, it is Riemann integrable. Note also that we could exchange the order of integration, as a consequence of Fubini's theorem since of is a k-L form on RK, (k-1)=k, then y= E fi(x,...,xk) dx' A dx2 A... Adx' A... Adx' A mare dx' denotes that the term is missing. Then we define integral of y on its individual pieces. i.e. the faces of I^k , which are $I^k_{(j,\alpha)}$. Then we have: $I^k_{(j,\alpha)} = \begin{cases} c_{0}e^{k_1} f_1^{(k_1,\cdots,k_n)} g_{(j,\alpha)}^{(k_1,\cdots,k_n)} & dx^1 dx^2 \cdots dx^{k_1} & i=j \\ 0 & i\neq j; \end{cases}$ Note - Recall that in MATH 1402, Sz A dy = D if A is a horizontal line. so if i = j, integral is 0. Sc W1+W2 = Sc W1 + Sc W2, Sc hu = NSc W by linearity. If c= == 1 ancm, ame I. Sc w= = an Scm. A o- cube is a point A, Scw = w(A). For $w \ge (k-1)$ -form in \mathbb{R}^{k} , by linearity it suffices to prove when $w = f(k), \dots, k^{k}$ dit $A \dots \wedge dit \wedge \dots \wedge dit$, $\frac{1}{2^{k}} dw = \int_{\mathbb{R}^{k}} w \dots \int_{\mathbb{R}^{k}} \frac{de^{k}}{dt} = \int_{\mathbb{R}^{k}} \frac{1}{dt} \int_{\mathbb{R}^{k}} \frac{de^{k}}{dt} = \int_{\mathbb{R}^{k}} \frac{1}{dt} \int_{\mathbb{R}^{k}} \frac{de^{k}}{dt} \int_{$ Since $w = f(x_1^{i}, x_k^{k}) dx^{i} \dots dx^{k}$, $dw = D_i f(x_1^{i}, ..., x_k^{k}) dx^{i} \wedge dx^{i} \dots dx^{k}$ (only remaining term) = $D_i f(x_1^{i}, ..., x_k^{k}) (-1)^{i-1} dx^{i} \dots dx^{k}$ when here $f_k dw^{i} = (-1)^{i-1} \int_{C_0 f_0 k} D_i f(x_1^{i}, ..., x_k^{k}) dx^{i} dx^{2} \dots dx^{k} = (-1)^{i-1} \int_{C_0 f_0 k} D_i f(x_1^{i}, ..., x_k^{k}) dx^{i} dx^{2} \dots dx^{k}$ $= (-1)^{i_1} [f_1(x_1^{i_1}, ..., x_1, x^{i_1}, ..., x^k) dx_1^{i_1} dx_1^{i_1} dx_1^{i_1} dx_1^{i_1} - (-1)^{i_1} [f_1(x_1^{i_1}, x_1^{i_1}, ..., 0, ..., x^k) dx_1^{i_1} dx_$ Return to complex Analysis. We powererise 7 by 210, a < t < b, then Jz fiz) dz = Ja f(z11)) z'(t) dt. He have thus for defined, for w a K-form in RK I' w. Then for c a singular cube, c: IK -> RN, we have $\int \omega^{\pm} \int_{\mathbb{T}^{k}} c^{*}(\omega)$ where c^{*} is the pullback canadagons to parametrication of differential form ω to IK. If $f: N \rightarrow V$ is a linear transformation, W,V vector pases and T is a linear functional on V, then $f^{*}(T) = Tof$ is a linear functional on W. (pushformard) If S is a k-sensor on V, then $f^{*}(S)$ is a k-tensor on N defined by $f^{*}(S)(W_{1}, W_{2}, ..., W_{N}) = S(f(W_{1}), ..., f(W_{N}))$. $f(W) = f_{*}(W) = V$. f: V -> W Tof > IT $\begin{array}{l} & & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\$ where give for f. if T is linear functional on Rgips, To give is linear functional on Rg. give : Rp -> Rgips Then gt (T) = To give is the pullback of T from Rgips, to Rp. Rp RV2 Dg(p) Rg(p). Dg(p) Dg(p)(W) Darpith Thus, we are pushing forward the rectors to the R ofp. plane, and then we put it but to define another differential form. 6 Pecember 2013. Dr. Yiannis PETRIDIS . Maths 706 He stated that fix dut = The state of the state that the state dut = The state of the state of the state dut = The state of the state of the state dut = The state of the state of the state dut = The state of the state of the state of the state dut = The state of the state of the state of the state of the state dut = The state of the stat Rullbuck at linear functionals on R-gip: IRp - Rgip $\mathfrak{g}^{\ast}(t)(p)(p,n) = T(\mathfrak{g}_{\ast}(p),(p,n)) = T(\mathfrak{g}_{\ast}(p)(np)) = T(\mathfrak{D}_{\mathfrak{g}}(p)(n)), \quad t \in \mathcal{J}^{1}(\mathfrak{R}^{\mathfrak{m}}_{\mathfrak{g}}(p)), \quad \mathfrak{g}^{\ast}(t) \in \mathcal{J}^{1}(\mathfrak{R}^{\mathfrak{m}}_{\mathfrak{g}}).$ g*(1)(p)= Tog*(p) 1 IR Pullback of tensors: if SE J^k (R^m_gip)), then g* (S) E J^k (R^m_p). Given (p, 4), ..., (p, 4) E Rⁿ_p, then we have

3109-14 .

	$g^{*}(S)(v_{1})_{p_{1}}, (v_{2})_{p_{1}},, (v_{K})_{p} = S(P_{g}\phi)(v_{1}), D_{g}(p)(v_{2}),, D_{g}(p)(v_{K})).$	
	No can also find pulleaces of differential forms in particular - q: "> R", and wis a K-form on IR". If q E R", w(q) & Ak (R. T). No define g*(w).	es a K-form on IR ⁿ .
	$Fix p \in \mathbb{R}^{n}, g^{*}(\omega)(p) \in A^{k}(\mathbb{R}^{n}_{p}), g^{*}(\omega)(p)((v_{1})_{p}, \dots, (v_{k})_{p}) = \omega(g(p))(g_{*}(p)(v_{1}), \dots, g_{*}(p)(v_{k})) = \omega(g(p))(Dg(p)(v_{1}), \dots, Dg(p)(v_{k})).$	
	$\overline{\text{Interview}} \text{vet } f: \mathbb{R}^{M} \to \mathbb{R}^{M}, (\underline{u}^{1}, \dots, \underline{u}^{n}) \in \mathbb{R}^{n}, (\underline{x}^{1}, \dots, \underline{x}^{n}) \in \mathbb{R}^{M}, \underline{f} \circ (\underline{f}^{1}, \dots, \underline{f}^{m}).$	
	(a) $f^*(dx^i) = \sum_{i=1}^{n} b_i f^i dy^i$ (b) $f^*(cw_1 + w_2) = cf^*(w_1) + f^*(w_2)$ (c) $f^*(w_1 \wedge w_2) = f^*(w_1) \wedge f^*(w_2)$	
	(d) $f'(q_{W}) = (q_{e}f) f''_{w}(w)$, for $q : \mathbb{R}^{m} \to \mathbb{R}$ (E) $f''(d_{W}) = df''_{w}(w)$. (d) $f''(q_{W}) = (q_{e}f) f''_{w}(w) = f'' \to \mathbb{R}$ (e) in the nearly $q \in \mathbb{R}$. Then for $(a) = -recent + b = pf(p)(u) = (2f''_{e})(u) = (2f'''_{e})(u) = (2f''''_{e})(u) = (2f''''_{e})(u) = (2f''''_{e})(u) = (2f$	
	they will a present of the present of the prior prices they be applied to the prior of the prior	will form on the , so we have
	$\left(\frac{2}{2} p P_{1} \right) \left(\frac{1}{2} p P_{1} \right) \left(\frac{1}{$	n when shirts - Muis yields
	$\frac{\left(\sum_{j=1}^{n} D_{j} f^{j} d_{y} \dot{u}\right)(p) \in \Lambda^{1}(\mathbb{R}^{p}), \text{ then } \left(\sum_{j=1}^{n} D_{j} f^{j} d_{y} \dot{u}\right)(vp) = \sum_{j=1}^{n} D_{j} f^{j} (p) d_{y} \dot{u}_{j}(p)(vp) = \sum_{j=1}^{n} D_{j} f^{j} (p) v_{j} = LHS_{j} q.e.d. \text{ for (d), fix } p \in \mathbb{R}^{n}$	" then where wis a k-form on R,
	$f^{*}(gw)(p)((v_{1})p,(v_{2})p,,cv_{K})p) = (g.w)(f(p))(Df(p)(v_{1}),,Df(p)(v_{K}))_{=} -g(f(p)).w(f(p))(Df(p)(v_{1}),,Df(p)(v_{K})) = (g.e_{1})(p)(f^{*})(p)(p)(p)(p)(p)(p)(p)(p)(p)(p)(p)(p)(p)$	
	let us be a 1-form on R ³ , with w= P(x,y,z) dx+ Q(x,y,z) dy + P(x,y,z) dz. f=(f ¹ , f ² , f ³): [0,1]→ R ³ . f(t)=(f ⁴ (t), f ³ (t))=(x(t), y(t), z(t)).	f(0) f(1) f(1)
	Then f*(w) will be a 1-form on [0,1] (not R3!), of the form f*(w)= htt) dt. f*(w)= f*(Pdx+Qdy+Rdz)= f*(Pdx)+ f*(Qdy)+ f*(Rdz), we are a first of the form f*(w) and for the form f*(w) and f	empute these pullbacks:
	$f^{*}(P(x,y,z)dx) \stackrel{(d)}{=} (Pof)(t) f^{*}(dx) \stackrel{(a)}{=} (Pof)(t) \frac{d}{dt} f^{*}(dt = P(x(t),y(t),z(t)) \frac{dx(t)}{dt} \frac{dx(t)}{dt} \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} \cdot so scenese, f^{*}(Pdx+Qdy+Rdz) = (P(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t),z(t)) \frac{dx}{dt} + Q(x(t),y(t)) \frac$	(1,2(H))df + R(X(H), y(H), z(H))df dt.
	Belinetion of cisa singular k-cube i.e. c: IK → A ⊆ R ⁿ , then $\int_{cis} def \int_{IK} c^{*}(w)$. If c is a singular k-chain, c= $\sum_{m=1}^{d} Q_{m}c_{m}$, $G_{m} \in \mathbb{Z}_{+}$, c_{m} are k-singular ubed,	then fw = Z am forw
	(onvider 1 c x dy, where c is an ellipse - we parametrive c: [0,1] -> (a cos (art), b sin (2rt)). c'(t) = a cos (art), c2(t) = b sin (2rt). By definition,	
	(d) $c^*(x dy) = (x \circ dt)c^*(dy) = a \cos(2\pi t) c^*(dy) = a \cos(2\pi t) \frac{dc^2}{dt} = a \cos(2\pi t) \cdot b \cos(2\pi t) \cdot 2\pi dt = 2\pi a b \cos^2(2\pi t) dt; so \int_c x dy = \int_{1}^{1} 2\pi a dt$	I' I'
	$= \int_{0}^{1} 2\pi ab \ \epsilon a^{2} (2\pi t) dt = \int_{0}^{1} 2\pi ab \frac{1+ca(4\pi t)}{2} dt = 2\pi ab (\frac{1}{2}) \cdot (1-0) = \pi ab.$ This is actually the area of the ellipse - this is the principle used to call	
	This is in the stand of the company the one of the company the company the one of the company t	mate areas using a plammeter.
	This is justified by stokes Theorem:	
	Breaking (Stoken Theorem for singular chains).	
	let a be a singular K-doon, wa K-1 form. then Sediu = Sew.	
	Proof-we have proved it when c is the standard k-cube, and to is k-1 form on RK. (1) If c is singular k-cube, c: IK-> A S R", w is k-1 form	
	(c) $\int_{\mathbb{R}} d(c^*\omega)$. $c^*(\omega)$ is a k-1 form on \mathbb{I}^k . Then by Fundamental Theorem of Columbia on \mathbb{R}^k , $\int_{\mathbb{R}} d(c^*\omega) = \int_{\mathbb{R}} c^*(\omega) = c(\partial \mathbb{I}^k)^\omega$.	
	By definition of boundary of C, $\mathcal{X} = C(\partial \mathbb{I}^{k})$, so $\int_{C} dw = \int_{C} w$. If C is a singular k-chain, $c = \sum_{m=1}^{2} a_{m}Cn$, $a_{m} \in \mathbb{Z}$, g_{m} singular $\int_{C} dw = \int_{C} dw = \int_{m=1}^{2} a_{m} \int_{C} dw = \int_{m=1}^{2} a_{m} \int_{C} w = \int_{m=1}^{2} a_{m} \partial_{C} w = \int_$	k -cubes, $\partial c = \sum_{m=1}^{k} a_m \partial(c_m)$
	Theorem (Green's Formula)	
	Given a region D with boundary 3 transmode anticlocknice, J, Pdx + Qdy = II (-2P/7) dx dy.	
	Remark- Our example of the ellipse area has [xdy, st. P(xy)=0 and Q(xy)=x. Then by Green's formula, [xdy =]] (0+ 3x) dxdy	SC
		and the
	$\frac{1}{1000} = \frac{1}{1000} = 1$	12 (11)
	the corners in I' are mapped to points in D (not necessarily corners). Then for instance, c(I ² (1,1)= (c ¹ (1,5 ²), c ² (1,5 ²)).	$(S^1, S^2) \in [0, 1]^2$
	Assume 3D is parametrized by $\lambda(t) = (\lambda^2(t), \lambda^2(t))$. Then $\int_{\mathcal{D}} P dx + Q dy = \int_{\mathcal{D}} (P dx) \lambda^2(dy) + \int_{\mathcal{D}} P (\lambda^2(t), \lambda^2(t)) \frac{dx}{dt}$	$= dt + Q(3(t), 3(t)) \frac{n}{dt} dt$
	Then $\frac{1}{2} = \frac{1}{2} P dx + Q dy = \int d(P dx + Q dy) = \int \frac{2P}{2k} dy dx + \frac{2P}{2y} dy dx + \frac{2Q}{2x} dx dy + \frac{2Q}{2y} dy dy dy = \int_{C} (-\frac{2P}{2y} + \frac{2Q}{2x}) dx dx$	$dy = \int_{T^2} c^* \left(\left(-\frac{2Y}{2y} + \frac{2Q}{2x} \right) dx \wedge dy \right)$
	$= \int_{\mathbb{T}^2} \left[-\frac{2}{2} \int_{\mathbb{T}^2} (c^1(s^1, s^2), c^2(s^1, s^2)) + \frac{29}{78} (c^1(s^1, s^2), c^2(s^1, s^2)) \right] c^*(dx) \wedge c^*(dy) = \int_{\mathbb{T}^2} (-\frac{2}{3y} + \frac{29}{78}) \left(\frac{2c^1}{3s^1} ds^1 + \frac{2c^2}{3s^2} ds^2 + 2c$	2)
	$= \int_{2}^{2} \left(-\frac{3^{2}}{3^{2}} + \frac{3^{2}}{3^{2}}\right) \left(c^{1}(c^{1}, s^{2}), c^{2}(c^{1}, s^{2})\right) \left[\left(\frac{3^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}\right) ds^{4} \wedge ds^{2} + \left(\frac{3^{2}}{3^{2}}, \frac{2^{2}}{3^{2}}\right) ds^{2} \wedge ds^{4}\right] = \int_{2}^{2} \left(-\frac{3^{2}}{3^{2}} + \frac{3^{2}}{3^{2}}\right) \left(c(c^{1}, s^{2})\right) \left(\frac{3^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}\right) ds^{4} \wedge ds^{2} + \left(\frac{3^{2}}{3^{2}}, \frac{2^{2}}{3^{2}}\right) ds^{2} \wedge ds^{4}\right) \left(-\frac{3^{2}}{3^{2}} + \frac{3^{2}}{3^{2}}\right) \left(c(c^{1}, s^{2})\right) \left(\frac{3^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}\right) ds^{4} \wedge ds^{2} + \left(\frac{3^{2}}{3^{2}}, \frac{2^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}\right) ds^{4} \wedge ds^{4}\right) = \int_{2}^{2} \left(-\frac{3^{2}}{3^{2}} + \frac{3^{2}}{3^{2}}\right) \left(c(c^{1}, s^{2})\right) \left(\frac{3^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}\right) ds^{4} \wedge ds^{2} + \left(\frac{3^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}, \frac{3^{2}}{3^{2}}\right) ds^{4} \wedge ds^{4}\right) ds^{4} \wedge ds^{4}$	$1_{AdS^{2}} = \int_{T_{2}} \left(-\frac{2P}{2Y} + \frac{2Q}{2Y} \right) (c(S^{1},S^{2})) det c(S^{1},S^{2})$
	Recall the change of veriables formula for double integrals: If g = If gof ldet f 1. Then our expression above gives us:	$(P) \xrightarrow{f} (f(D))^{a_{3} \land a_{3}}$
	Recall the change of variables formula for double integrals: $\int_{0}^{1} (p) = \int_{0}^{1} gof [det f^{1}].$ Then our expression above gives us: = $\int_{0}^{1} \int_{0}^{1} (-\frac{2P}{2y} + \frac{2Q}{2x})(c(s^{1}, s^{2})) det c^{2}(s^{1}, s^{2}) ds^{1} ds^{2} = \int_{0}^{1} (-\frac{2P}{2y} + \frac{2Q}{2x})(x, y) dx dy, which is acceptable as absolute above doesn't$	t matter: det c >0 by preservation
		of interdistion/1 qe. 11 December 2013
	Due to a lare of time, we have not been able to cotabilish several restarts rigorouses is d	Dr. Yionnis PETRIDIS Mather 706 ·
	· change of boxis formula $\cdot \int_{C} f = \int_{C} f \cdot 1_{C}$	
	to the total of total of the total of the total of	
	There will be several other appent from here on where we will have to sacrifice rigour for-	tangent h(x)
	2 741	now xonsurface, toke outer
	consider an orientable smooth surface M, which is a manifold. For any V, WE RX (both regards start from X). Then define $w(Y,W) = \det\left(\frac{W}{m(X)}\right)$.	R
	Then $w(w_1y) = -w(y_1w)$ and $w(cy_1+y_2,w) = cw(y_1,w) + w(y_2,w)$. Then this is an attempting 2-tensor at x on \mathbb{R}^3_X : To ensure that will non-zero,	me repuire R-interior solid.
	1/1, W, n(W) to form a LI set : pick v, won the tagent plane to be non-collinear, then der () = 0, as 1/1, W, n(x) ; is 1].	nishing M.
	we call $w(y,w) = dA$ the volume element at x.	X W
1		3109-15

Noreoner, if we take $v = \begin{pmatrix} v_1^{(1)} \\ v_2^{(2)} \end{pmatrix}$, $w = \begin{pmatrix} w_1^{(2)} \\ w_2^{(2)} \end{pmatrix}$ and $u(v) = \begin{pmatrix} u_1^{(2)} \\ u_1^{(2)} \\ u_2^{(2)} \\ u_1^{(2)} \\ u_1^{(2)} \\ u_2^{(2)} \\ u_1^{(2)} \\ u$ expand each term to see that both equal $n^2(v^2w^2 - v^3w^2) - h^2(v^1w^3 - v^3w^1) + n^3(v^1w^2 - v^2w^1)$. Recall that this gives the sees of a parallelepiped. subtended by edges v, w and N(x), with the spropriate change of sign Inegen w(v, w) = dA(v, w) = n dysdz + n2 dzsdx + n3 dxsdy. Proof - (n¹ dy ^ dz) (v, w) = n¹ (dy @ dz - dz @ dy) (v, w) = n¹ (dy (v) dz(w) - dz(v) dy (w)) = n¹ (v²w³ - v³w²), which is the metaling first term in expansion of w(vw). Litenie, nº 1221, dr). (v). w) = nº (dz & dz (v).w) - dx, dz (v, N)) = nº (dz (v) dx (w) - dx (v) dz (w)) = n² (v² w² - v² w³). Repez for third term y q.e.d. There and let v, w be on the tangent plane at x for M: then n'dh = dyndz, n'dh (v, w) = (dyndz)(v, w). R'dh = dzndx and n'dh = dxndy with similar implications. Proof - We just prove (2), then (2), 3) are analogous. Previous calculations showed that $(dyrdz)(v,w) = v^2w^3 - v^3w^2$, since v,w perpendicular to vxw, VXW is povalled to n(x) = (n1, 12, 12). So VXW = a n(x) for a ER, <VXW, n(x)>=<VXW, n11+ 121+121+12k>. Then also, we have that $\frac{(v_1^{1} v_2^{2} v_3^{2})}{(v_1^{2} v_2^{3})} = \sqrt{(v_1^{1} v_2^{1})} = \frac{(v_1^{1} v_2^{2} v_3^{2})}{(v_1^{2} v_2^{2})} = \sqrt{(v_1^{2} v_2^{2})} = \frac{(v_1^{1} v_2^{2} v_3^{2})}{(v_1^{2} v_2^{2})}$ < vxw, i> = < an(x), i> = a.n = n dA(v,w), q.e.d. Theorem (Gouss/Diregence Theorem). orientable, compact let N. be an 3-dimensional manifold in R³ (solid), which is bounded with boundary 3N, the 2-dimensional surface M= 3N. Let F be a differentiable rector field an an open let N. be an 3-dimensional manifold in R³ (solid), which is bounded with boundary 3N, the 2-dimensional surface M= 3N. Let F be a differentiable rector field an an open ATA F set containing N and an then M (div \vec{F}) dx dy dz = $\oint_{N} \langle \vec{F}, \vec{n} \rangle dA$. Note - This equates a triple integral with a surface integral. Proof - Define F=(F1, F2, F3), w= F1 dysdz + F2 dzsdx + F3 dxsdy > 2-form: dw= 3F1 dxsdysdz + 3F2 dysdzsdx + 3F3 dzsdx dy ⇒ dw = (3E1 + 3F2 + 3F2) dx/dy/dz = (div F) dx/dy/dz. Then N dw = III (div F) dx dy dz. Thoulded N is treated to a standard k-cube: more to follow] For RHS, $\int_{N} dw = \frac{1}{2N} = \frac{1}{2N} \int_{N} F^{1} dy dx + F^{2} dz dx + F^{3} dx dy = \frac{1}{2N} F^{1} n^{1} dA + F^{2} n^{2} dA + F^{3} n^{3} dA = \frac{1}{2N} \langle \vec{F}, \vec{n} N \rangle dA + q.e.d.$ Remoth - As seen, there are still a few gops we need to fix to justify our arguments. No return now to discussing manifolds. Use condition (C): using a chart/parametrisation. Recall this stated that M is a k-dimensional manifold in Rⁿ if tx EM, (C) holds, where (C) implies that I Uppenin R", W open in R", XEU, then If: W -> U differentiable st. (2) f(W)=MMU, (b) f'(y) has rank k for all yew, and U UMM (c) f⁻¹: f(W) → W is continuous. towever, this chart/map f is not unique. We could also have another chart g st. f⁻¹og: V > W, g⁻¹of: W > V are differentiable with nonzero Jacobian. g €V⊆ RK in this sense, f and g should be chosen to be "compatible". He also examine the concept of manifolds with boundary. For instance, consider the 2-sphere, which is a 2-dimensional manifold in R². If we take a cut, we get a 2-D manifold with boundary. Or consider the hollow doughnut - like a torus. If we make a cut, then the cut becomes a boundary for the manifold. Or, if we consider the solid (nother than boundary hold) and the solid (nother than boundary). hollow) tones, it slready has a boundary surface to start with. Tormally, we have . Influction) A set MSR" is a K-dimensional manifold with boundary if, given XEM either condition (M) holds for X, or (exclusive) condition (M) below holds. (M) 3 U/V open in Rⁿ, XEU, 3 differmorphism h=U->V st. h(MOU)= get y, yk+1 = yk+2 = ... = yh=0, yk>0+, and hk(x)=0. Example- consider the hollow torus, with an open ball USR3 near rim. Then for UMM, we get a curred surface containing the rim on distenes region densits x³ a side. The diffeomorphism h flattens out the nutface to a region in x1x2-plane. Here, the rim corresponds to the line x2=0, with h(x) lying along it. Then the part where x > 0 corresponds to the original surface, whereas x < 0 is not included - if VER tonus were whole, this would reflect the (now empty) space away from the nim that has been cut away. We also define $\partial M = \{ X \in M \mid \text{ condition (M') holds for } x \}^{2}$. Itheorem (general version of stokes theorem) in Rⁿ, converpending in Rⁿ, for a k-dimensional manifold with k-1 dimensional manifold and if w is a k-1 form on M, M dw = M N. [i.e. for M, yk+1=...=yⁿ=0 and and hopering condition y^k=0] consider a manifed M with a songerst plane. To map rectas from W SRK onto tangent plane, we use fx [i.e. Df(a)]. How wom Department the transport spore at x of M is fx (IR a) where fr)=x, and f satisfies condition (C). f maps points to tangent space. Notation - let Mx = fx (R a) be the tangent space of M at x. then (a,v) - fx (x, Pf(a)(v)) & V \in R^k. If M is a k-dimensional manifold in \mathbb{R}^n , we expect that Mx is a k-dimensional vector space. Fix: $\mathbb{R}^k \longrightarrow Mx$ is a linear map because we used the dimensional function of $\mathbb{R}^k \longrightarrow \mathbb{R}^n$. Mx = $f_{\mathcal{H}}(\mathbb{R}^k)$. dim $f_{\mathcal{H}}(\mathbb{R}^k)$ = rank Df(a) = k, so $M_X \subseteq \mathbb{R}^k$.

109-16

		PKS-
	Imagine the earth, with a tangent plane at London (point L). L is on the surface of the sphere (with a set dividence from center of earth c). Now in	nagine
	Dr Petridic news to go home, to the North Rie (print N). Then there is shother tangent plane there. Suppose me want to measure nind at the	
	to an arrow on each of these tangent planes. Taken together, wind at each point of the earth gives a set of rectors defined on tangent planes, give	
	Definition A vector field F on a manifed M is a function F on M st. YXEM, FWEMX.	
	what like in mosther reports, we get a 2D plan of the world to approximate a 3D sphere, me need a chart/map of to interpret data on the	and the state
	estth unsuifolditelf	e en
	Let f: W → Rn be a dott around XEM s.t. f(W)= Un W. Suppose we have a point REW. Now, we more to another point b ∈ W.	WSRK P Ward Mx
	ler Fle & rector field on f(W), and let G(b) = (f-1) x F (f(b)). since fx has trivial kernel, by rank-nullity theorem, Ra (-> Mx is a bjcos	fa)=x M P 10k
	Rt bication Rt >> My etc. This way we determine a rector field G on N ST. fx(G) = F on MOU. If G is a continuous (reop differentiate) vector	$f(a) = x$ $M_y = f_*(\mathbb{R}_b)$. f(b) = y
	F is a continuous (resp differentiable) vector field on MOU.	- peter over the period and the
a	M UC	
	let M be & k-dimensional manifold, UGR" open set - f(W)=U.O.M. f(y) has rank k. VyeW, Df(y). RK ->R") 13 December 2013 Dr. Yishnis PETRIDIS. Marks 706 -
	k By rouk-mulling theorem, dim R ^k = k = dim Ker D fly) + rouk D fly) → dim Ker D fly)=0, Ker D fly)=10/51R ^k → D fly) injective.	LW
	$pf(y) \cdot R^{k} \xrightarrow{\text{hjeddan}} Df(y)(R^{k}). \text{ let } f_{k} \text{ be the push forward, then if } (v_{1}a) = V_{a} \in R^{k}a, f_{*}(v_{a}) = W_{x} = (x, Df(a)(v)). f_{*} : R^{k}a \to R^{k}a$	R (RK)
	M at x. If we doorde ∀x EM a rector F(x) ∈ Mx, then we have a rector field on M.	fix (Ra)=Mx, tongent space of
	(ye W)	(070)
	Since $f_*: \mathbb{R}^r_y \to M f(y)$ is an isomorphism, then $F(f(y)) \in M f(y)$ gives vector $G(y) \in \mathbb{R}^r_y$, $f_*(G(y)) = F(f(y))$, $G(y) = (f^{-1})_*(F(y))$	(flag))
	If G is continuous, then we say F is continuous. If G is differentiable, then we say F is differentiable.	
	togration A function w on M such that $\forall x \in M$, $w(x) \in \Lambda^{m}(M_{X})$ is called a m-form on M.	
	To understand continuous (respectively differentiable) in-forms on M, me pullback them to us. If f* (10) is a continuous (resp. differentiable) in-form	
	a continuous (resp. differentiable) m-form on M. w(x) = i1<< im (i) dx ¹¹ Adx ¹ⁿ , we can no longer apply extensor derivatives here	they make no service.
	Theorem Given us differential in form on M, there exists a unique differential mill form on M called due st. f*(dw) = d(f*w).	2 TXA UOM
	dw(x) & D ^{mt1} (Mx), dw(x). (4, 12,, Vm, Vm+1), 4,, Vm+ EMx. I unique reason wy,, Wm+1 st. fr(wj)=V;	f f
	Then $dw(x)(x_1,,x_{meq}) = d(p^*w)(a)(w_1,w_2,,w_{me1})$.	WSW.
	Remore - Need to prove uniqueness -	7 n(x)
	Address Theorem for manifolds becomes $\int_{M} dw = \int_{M} w$ where is is a k-1 form on M (which is a k-dimensional manifold.	The series of th
	Remember for instance, if M is a 2-dimensional surface on \mathbb{R}^3 . For any $x \in M$, dim $M_X = 2$, dim $\Lambda^2(M_X) = \binom{2}{2} = 1$. $dA(v, w) = det \left(\begin{pmatrix} v \\ v \\ v \end{pmatrix} \right) \in \Lambda^2$	(Mx), which is non-zero.
	dh is colled a suffice element.	
-		M
	$\Omega_{N,S}$ curve, let M be a t-dimensional manifold on \mathbb{R}^3 . Than dim $\Lambda^1(M_X) = \{1\} = 1$. This is the antropyth element $d_S(x) \in \Lambda^1(M_X) = J^1(M_X)$.	Myx.
	Theorem (Stokes's Theorem, classical ression) cont'd.	N(x)
	let N be a 2-dimensional manifold In R ³ with boundary M= 3N (1-dimensional manifold) with an induced orientation Lie. compatible	** ** > n(z)
	nith surfaces. Find a rector TEMx nith ds(T)=1 i.e. ds(X)(T)=1. Let F be a rector field on an open set containing N. Then we	get W= 8N
	$\iint_{N} (aur F) \cdot \vec{n} dA = \int_{N} \vec{F} \cdot T ds$ $\int_{N} c_{surface integed} = N = M = c_{invertiged} = 0$	
	Proof - Since RHS, is a line integral, me need a 1-form from $\vec{F} = (F^1, F^2, F^3)$. Then let $w = F^1 dx + F^2 dy + F^2 dy$. Then taking exterior derivative, dw	
	with $(G_1^1, G_1^2, G_1^2) = curr \vec{F}$. Moreover, $dw = G_1^1 dy_1 dz + G_2^2 dz_1 dx + G_2^3 dx_1 dy_1 = G_1^1 n_1^1 dx + G_1^2 r_1^2 dx + G_1^3 r_1^3 dx = (G_1^1 r_1^2 + G_1^2 r_1^2 + G_1^3 r_1^3)$	$dA = (\vec{q} \cdot \vec{n}) dA. \ n(x) = (u_1^1 u_1^2 u_2^3)$
	is external normal. Then are have archeright elemants ds_s.t. ds(T)=1. $\vec{F} \cdot \vec{T}$ ds = ($\vec{F}_1, \vec{F}_2, \vec{F}_3)$ (T), T) ds = ($\vec{F}_1^T + \vec{F}_2^T + \vec{F}_3^T + $	t ~ /
	= $F^{1}T^{1}ds + F^{2}T^{2}ds + F^{2}T^{3}ds$, $w = F^{1}dx + F^{2}dy + F^{2}dz$. We gives that $dx = T^{1}ds$, $dy = T^{2}ds$, $dz = T^{3}ds$. We check, and this	is the levenise) / q-e.d.
	Findly, we examine the concept of oneutrability. To do this, we return to some basics from linear algebra.	
	vet D be an ordered bonis of a reator space V, e.g. E standard boois of RM, E= <e., e.g.,="" en="">. set F be an ordered bonis of V. V dr</e.,>	M= [M] =
	If dat M > 0, we say 3, 7 define the same orientation. We denote F~J to mean they have the same orientation.	V2 R 24
	Here, \sim is an equivalence relation.	(translation classes right hand nulle)
		hight hand nule)

Note that I'= (12, 14) has opposite oviewation.

WSRK=R2 For a manifold M, vectors in tangent space Mx are in 1-to-1 conceptondence with vectors in W. Let $W \leq \mathbb{R}^2$ with transland basis $\langle \mathcal{C}_1, \mathcal{C}_2 \rangle$, then We congenerative this to higher dimensions. estaz) < for (ei), for (e)> is an ordered basis for Mr. This works for a point a EW, but there is no reason to shike to a - we can consider also bEW. We then puch forward again accordingly. Then <fx ((e))b), fx ((e)b)> is an ordered bon's at f(b), i.e. ordered ban's for Mf(b)=y-If we can do this is a continuous and consistent way around the manifold, it is considered to be orientable P*(0) + f*(ei) For a 2-dim monifold with boundary, we plot the drant accordingly: fla)=X e SM Mn(x) once we have an ordered tan's on W, this induces a natural orientation for traversing the boundary of M by columbring for len) as the targent. ton can me integrate on a manifold? Let us be a m-form on M, C be a singular m-cabe on M, c: I -> M, w whiches = O on M\c(I^M). I"T Then by definition, Ew= Im c*(w). If the form connot be contained, we can slice up the manifold into smaller units and num results. We could also use a more advanced institution - by the partitions of unity. Take a collection of functions $\overline{\Phi}=1\Psi:0\leq\Psi(x)\leq 1, \quad \overline{\chi}\in\Phi(y)=1 \quad \forall x\in M\}.$ Then IN = I Z (4x) w(x) = Z (4w. This is a bit more advanced and his not be examined, but leads us to a better, nore information of st END OF SYLLABUS. consider singular k-choins, c= == arce, area, ch is a singular k-cube. $\partial(c_k) = c(\partial I^k)$, then $\partial c = \frac{m}{2}$ as $\partial(c_k)$ is a singular k-1 chain. Let c_{k-1} be the IZ-module of k-chains: $C_k \xrightarrow{\partial k} C_{k-1} \xrightarrow{\partial k} C_{k-2} \xrightarrow{\partial 1} C_{0-1}$ then $\partial_k \circ \partial_k - 1 \circ \cdots \circ \partial_1 = 0$, then we can define the k-homology $H_R(e, \mathbb{Z}) = \frac{Ker \partial_k}{Im} - \partial_k r \partial_k$ let Ω^k be the rector space of differential k-forms on M. Then $\Omega^k - d_{K} \Omega^{k+1} - d_{K+1} \Omega^{k+2} - \Omega^{k+3} \cdots$ by exterior derivatives. Then $d_{K+1} d_{K} = 0$. Then the END OF COURSE. 3109-10