3113 Differential Geometry Notes

Based on the 2013 autumn lectures by Prof R Halburd

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility whatsoever for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

MATH3113 - Differential Geometry.

Prof Rod Helburd- Roam 703. r. helburd @ud.ac.uk

Office Hours - Mon 112m, Thu 102m.

chapter 1 LOCAL THEORY OF CURVES.

[Definition] A (phameterized) differentiable causes is a differentiable map $3: I \rightarrow \mathbb{R}^3$. The set $3(I) \subset \mathbb{R}^3$ is called the trace of 3.

[Definition] A differentiable curve & is said to be regular if 2 (4) = 0 V t EI

Remark - Here, 2 (t) is a tangent vector.

Examples -

• The helix $3:\mathbb{R} \to \mathbb{R}^3$ given by $3(t) = (a \cos t, a \sin t, bt)$ where $a, b \neq 0$ is a regular curve $\therefore 3'(t) = (-a \sin t, a \cos t, b) \neq 0$. • $3: (-1,1) \to \mathbb{R}^3$ given by $3(t) = (t^3, t^2, 0)$ is not regular, since $3'(t) = (3t^2, 2t, 0) = 0$ if t = 0.

For any curve $\vartheta: \mathbf{I} \to \mathbb{R}^3$ and any. to $\in \mathbf{I}_1$ the archength of ϑ from ϑ (to) is $s = s(t) = \int_{t_0}^t |\vartheta'(u)| du$. Here, if $\vartheta(t) = (x(t), y(t), z(t))$, then $|\vartheta'| = (\overline{x^2 + \dot{y}^2 + \dot{z}^2}$.

Example - Let $\vartheta(t) = (a \cos t, a \sin t, bt)$, then $s = \int t |\vartheta'(u)| du = \sqrt{a^2 + b^2} t$ (plus constant of integration). We can re-parameterise to get $\overline{\vartheta}(s) = \vartheta(t) = (a \cos \sqrt{a^2 + b^2})$, $a \sin \frac{s}{\sqrt{a^2 + b^2}}$, in terms of arc length.

Frenet frame

consider $s = \int [s^2(t)] dt \Rightarrow s = \int [s^2(s)] ds \Rightarrow 1 = [s^2(s)]$. Then let the unit tangent vector be $\xi = s^2(s)$ [notation-also denoted $\xi +]$. Then $\xi \cdot \xi = 1 \Rightarrow \xi \cdot \xi' = 0 \Rightarrow \xi'$ is orthonormal to ξ .

Let h(s) = |t'(s)| be the <u>curvature</u>. If $h(s) \neq 0$, we define the principal horizont $\underline{n}(s) = \frac{\underline{t}'(s)}{h(s)}$.

With these two vectors, we can also define the unit binomial vector, $b = \pm \times \underline{n}$.

This gives us the basis $\{\pm, \underline{n}, \underline{b}\}$ that defines a Frence frame, which is a right-handed orthonormal frame

Moreover, $b = \pm \times \underline{n} \Rightarrow b' = \pm \times \underline{n} + \pm \times \underline{n}' = k\underline{n} \times \underline{n} + \pm \times \underline{n}' = \pm \times \underline{n}'$. Dotting both sides with \pm , we get $b' \pm = 0$ Also, $b' \cdot \underline{b} = 0$, so $b' = \underline{\pi}\underline{n}$ for some scalar $\underline{\pi}(0)$, which is called the topsicon. Then, $\underline{n} = \underline{b} \times \pm \Rightarrow \underline{n}' = \underline{b}' \times \pm + \underline{b} \times \pm' = \overline{\underline{a}}\underline{n} \times \pm + \underline{b} \times \underline{k}\underline{n} = -\underline{k}\underline{\pm} - \underline{\underline{z}}\underline{b}$

Together, these combine to give the Trenet-servet-formube:

t' = kn	
<u>n'=-ktb</u>	$\Leftrightarrow E(s) = \begin{pmatrix} -\frac{t}{2} - \\ -\frac{b}{2} - \end{pmatrix} = \begin{pmatrix} \pm \frac{t}{2} & \frac{b}{2} \end{pmatrix}^{T}, \text{then if } A(s) = \begin{pmatrix} 0 & k(s) & 0 \\ -k(s) & 0 & -E(s) \\ 0 & E(s) & 0 \end{pmatrix}, E'(s) = A(s) F(s).$
<u><u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	

 $\frac{1}{16k} \quad \text{Recall the earlier bolic parametrized by } \frac{3}{3} (3) = \left(a \cos \frac{5}{\sqrt{a^2+b^2}}, a \sin \frac{5}{\sqrt{a^2+b^2}}, \frac{bs}{\sqrt{a^2+b^2}}\right), \text{ with } a > 0, b \neq 0.$

Find ±, 1, b and the curvative and torsion of the system.

Note. Unit tangent \pm is found by normalisation. $\pm (G) = 3'(G) = \frac{1}{1a^2 + b^2} (-a \sin \frac{s}{1a^2 + b^2}, a \cos \frac{s}{1a^2 + b^2}, b)_{(1)}$ $\pm (G) = -\frac{1}{a^2 + b^2} (a \cos \frac{s}{1a^2 + b^2}, a \sin \frac{s}{1a^2 + b^2}, c) = -\frac{a}{a^2 + b^2} (\cos \frac{s}{1a^2 + b^2}, \sin \frac{s}{1a^2 + b^2}, c)$. Thus, since $\pm = kM$.

 $\frac{1}{3} \frac{(3)^{2}}{(3)^{2} + b^{2}}, \quad \text{and} \quad \frac{1}{12^{2} + b^{2}}, \quad \frac{1}{12^{2$

 $b(s) = \pm l(a) \times \underline{n}(b) = \frac{1}{\sqrt{a^2 + b^2}} (b \operatorname{Sin} \frac{5}{(a^2 + b^2)}, -b \cos \frac{5}{(a^2 + b^2)}, a)_{||} \quad \text{then} \quad \underline{b}(s) = \frac{b}{a^2 + b^2} (\cos \frac{5}{(a^2 + b^2)}, \sin \frac{5}{(a^2 + b^2)}, a) = -\frac{b}{a^2 + b^2} (\cos \frac{5}{(a^2 + b^2)}, a)_{||} = -\frac{b}{a^2 + b^2} (\cos \frac{5}{(a^2 + b^2)},$

3 October 2013 Rof Rod HALBURD Govelon Sq (16-18) GO1 · IF d: I > R3 is a curre (regular curve, i.e. 3'(1)=0), we have defined andergth $\frac{ds}{dt} = |3'(t)|$. We have also defined the Frenet frame, which is a right-bonded coordinate system with unit wordinate vectors ±, 12, 5.

Theorem (Fundomental Theorem of Local Theory of Curres).

Given differential functions k: I→ R>0 and T: I→ R, there exists a regular curve 3: I→ R3 st. k(5) and t(3) are the curvature and torsion respectively of 2 as

functions of orchength. Furthermore, $\frac{3}{5}$ is unique up to a rigid motion in \mathbb{R}^3 . (i.e. $x \mapsto p \times + c$)

30 september 2013 Prof Rod HALBURD Cruciform B401.

		A STATE AND A STAT
	Proof we surt our with the Frenct equisitions to construct su orthonormal frame.	$\underline{f}^{I} = \underline{A} \underline{F}, i.e. \underline{b}^{I} = \underline{r} \underline{b} \underline{F} = \underline{r} \underline{b}.$
	\mathbb{D} has a unique solution with specified initial values. Let $(t_0, \underline{P}_0, \underline{b}_0)$ be an	
	The initial value problem @ with $\pm(s_0) = \pm_0$, $\underline{n}(s_0) = \underline{n}_0$ and $\underline{b}(s_0) = \underline{b}_0$.	
	This is from the theory of differential equations. We need to show that these so	which rectors remain orthonormal:
	$\begin{array}{c} \underbrace{t}_{t} \underbrace{t} \underbrace{t}_{t} \underbrace{t}_{t} \underbrace{t}_{t} \underbrace{t}_{t} \underbrace{t}_{t} \underbrace{t}_{t} $	ince $F = \begin{pmatrix} -\frac{b}{2} \\ -\frac{b}{2} \\ -\frac{b}{2} \end{pmatrix}$, $F^{T} = \begin{pmatrix} 1 \\ \pm \frac{a}{2} \\ \pm \frac{a}{2} \\ -\frac{b}{2} \end{pmatrix} \Rightarrow M = FE^{T}$.
	Then $M' = (FF^T)' = F(F^T)' \stackrel{(D)}{=} AFF^T + F(F')^T = AFF^T + F(F')$	$AF)^{T} = AFF^{T} + FF^{T}A^{T} = AM + MA^{T} = AM - MA$
	Hence, M' = AM-MA, which is a livear differential equation. Then M(So	$= I \qquad (\begin{tabular}{c} k & 0 \\ k $
	Thus ③, @ is a regular IVP. Note that I is a solution of ③, ④, so by	
	We she only left with proving right-handedness, i.e. NTP: det (E) = +1.	
	Also, det $(F(s_0))=1$. since det (F) is continuous, then det $E=1 \Rightarrow$ rig	
	Now, $-3(5)=\int_{5}^{5} \pm (\hat{s}) d\hat{s}$, and Frenet equations are satisfied. This $-3(5)$ is a	
	Now, 30^{-3} J_{s} (57.45, and there equations are solved as this of 15 as For uniqueness, suppose we have two curves $3, \tilde{3}: I \rightarrow \mathbb{R}^3$ that satisfy	
	How unqueres, suppose we have two curves $[\mathfrak{F}, \mathfrak{F}, \mathfrak{F}]$ be Frenet-frames. Choose so $\in I$. \exists votation	
	let (1, 1, 1, 1) and (2, 1) 1 be trenet frames. Grosse So E1. I voisition Define (f(s), B(s), b(s)) = (p ⁻¹ b t(s), p ⁻¹ b B(s)). Note that $\widehat{f}(s)$	1
	consider $\frac{d}{ds} \left\{ \frac{ \pm(s) - \hat{\pm}(s) ^2 + \underline{b}(s) - \hat{\underline{b}}(s) ^2 + \underline{b}(s) - \hat{\underline{b}}(s) ^2 \right\} = \frac{d}{ds} \left\{ (\underline{t} - \hat{\underline{t}}) \cdot (\underline{t} - \hat{\underline{b}}) + (\underline{t} - \hat{\underline{b}}) \cdot (\underline{t} - \hat{\underline{b}}) + (\underline{t} - \underline{b}) + (\underline{t} - \underline$	
		$\frac{2}{(1-\hat{t})\cdot k(n-\hat{h})+(n-\hat{h})\cdot (1-k(1-\hat{t})-\tau(b-\hat{b}))+(b-\hat{b})\cdot\tau(b-\hat{h})} = 0.$
	Then $f(s) = \underline{t} - \underline{\hat{t}} ^2 + \underline{u} - \underline{\hat{b}} ^2 + \underline{s} - \underline{\hat{s}} ^2 \frac{is contributed t}{saturation to the set of t$	
	$\Rightarrow \tilde{t}(s) = \rho \circ \hat{t}(s) = \underset{(s)}{\not p} \circ t(s), \tilde{t}(s) = \rho \circ \underline{h}(s), \tilde{t}(s) = \rho \circ \underline{h}(s). \text{Then } \hat{f}(s) = \rho \circ \underline{h}(s) + \rho \circ \underline{h}($	8(5)= port(0 + ⊆. Lenon & "E, 8(2) = 0.3)] q.ed.
	The tonion of a regular curre vanishes if and only if the trace of the curre lies in a plane	
	Roof - Suppose 3(I) is contained in a plane. Then I and I are parallel to that plane,	
	Hence, b= 2 or b= -2 for some unit normal (consistent) 2. However,	b(G) is continuous but takes only discrete values, so b is constant. A b= ≥
	Thus, $\underline{b}' = \underline{o} \Rightarrow T\underline{h} = \mathbf{o} \Rightarrow T = \mathbf{o}_{ } q.e.d.$	
	Now suppose $T \equiv 0$. Using Frenet equation, $b' = T \underline{n} \equiv 0$, then $b(s) = b$	
	$\frac{d}{ds} \left(\overline{\partial}(s) \cdot \underline{b} \right) = \frac{d}{ds} \left(\overline{\partial}(s) \cdot \underline{b}_0 \right) = \overline{\partial}^1(s) \cdot \underline{b}_0 = \underline{t} \cdot \underline{b}_0 = 0 \text{ by orthogonality}$	$\Rightarrow \ \delta(s) \cdot b = const \Rightarrow (x, y, z) \cdot b = const.$
	This is an equation for a plane => trace of 3(5) lies in plane perpendicular	to boy gread.
	Unopter 2.	
	SURFACES.	
	Differentiable functions $f: \mathbb{R}^m \to \mathbb{R}^n$.	
	Definition let U be on open subset of R ^M and let f: U -> R be a rest-valued function on U.	$f(\underline{x}+\underline{h}\underline{y})-f(\underline{x})$
	For any unit vector $X \in \mathbb{R}^m$, the directional derivatives of f at $X \in U$ in the directional derivatives of f at $X \in U$ in the directional derivatives.	$\frac{1}{2} \frac{1}{2} \frac{1}$
	If I is one of the coordinate vectors, then the directional derivative is called a	· partial derivative. [e.g. ¥=(1,0,0), d.d. is 3€].
_	The partial derivatives for $f(x,y) = 1$ o $(x,y) = (0,0)$. exist $\forall (x,y) \in I$	\mathbb{R}^{2} . In particular, fx(0,0)=0 and fy(0,0)=0.
	towerer, f is not continuous st (0,0); spproach slong line y=kx: for x=0	$f(x, kx) = \frac{kx}{x^2 + kx^2} = \frac{k}{1 + k^2}.$
	and the second s	livorishion of
	Defaultion lat U be an open subset of R ^m and let fill -> R be a real-valued function on	U. $f(x) - f(a) - \sum_{i=1}^{m} b_i(x_i - a_i)$
	we say that of is <u>(once</u>) differentiable at a point $a = (a_1, \dots, a_m) \in U$ if \exists	$b_1, \dots, b_m \in \mathbb{R}$ st. $x \to a$ $ x-a = 0.$
	In fact, $b_j = \frac{\partial f}{\partial x_j}, x = \underline{\alpha}$.	a The Change of the
	Thereased suppose UCRM, and that f: U > R" and its first order partial derivatives are con	utinuous throughout U.
	Then f is once differentiable throughout 4.	
	Proof - omitted, to be covered in other causes.	1. ag
	a standard and the standard standard and the	
	From this point onmands, we take "differentiable" to mean infinitely differentiable (i.e. Coo).	e seal a se a

3113-02 -

	consider function F: UC $\mathbb{R}^m \to \mathbb{R}^n$. If all partial derivatives exist, we define the differential of F so follows: if $\underline{X} = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix} \in U$, $F(\underline{X})$	$=\begin{pmatrix}f_1(\underline{x})\\\vdots\\\vdots\end{pmatrix}$
	consider function F: UC K ⁿ -> R ⁿ . If all partial derivatives exist, we define the differentiated of F so follows: IF x_{m} then $F(x + \Delta x) = F(x) + (DFx) \Delta x + R(x, \Delta x)$ where $\Delta x \in \mathbb{R}^{m}$ and $\underline{\Delta x} \rightarrow \underline{o}$ [Δx] = \circ [i.e. $R(x, \Delta x)$ goes to 0 faste	$f_n(\underline{x})^{\prime\prime}$
	defermential	110m -: 7
	() () () () () () () () () () () () () (
	Hence, the differential $DF_x: \mathbb{R}^m \to \mathbb{R}^n$ is a linear map. It can be represented by the matrix $\begin{pmatrix} \vdots & \ddots & 2^n \\ \Im f_n / \Im x_n \end{pmatrix}$.	
	This is colled the Isadium motions. $\Im(f_1,,f_n)$	
	In the special cose where m=n, then the determinant of DF is denoted by $\overline{\partial(x_1,,x_n)}$. This is called the Jacobian determinant.	
	Theorem (Inverse Function Theorem)	\mathbb{R}^{n}
1 ·	Let $F: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a smooth map, and suppose that at $p \in U$, the differential DFp is an isomorphism. $U(\hat{P}, \hat{F})$	(C)
	(i.e. the corresponding matrix has non-zero determinand). Then there is a neighbourhood V of p in U,	2Fp is an isomorphism
	and a neighbourhood W of $F(p)$ in \mathbb{R}^n s.t. the restriction of F to $V \rightarrow W$ has an inverse $F^{-1}: W \rightarrow V$.	
	Roof-Onvited, covered in other courses.	
	(光) (月(火)) (梁 … 梁)	7 Outober 2013 Prof Rod HALBURD
	consider the function $F: \mathbb{R}^n \to \mathbb{R}^n$, $\binom{x_1}{\vdots} \to \binom{f_1(x)}{f_n(x)}$. Recall we defined Jacobian determinant $\frac{\partial f_1 \dots f_N}{\partial (x_1 - i n)} = \det \begin{pmatrix} \frac{\partial f_1 \dots \partial f_N}{\partial (x_1 - i n)} \\ \frac{\partial f_1 \dots \partial f_N}{\partial (x_1 - i n)} \end{pmatrix}$.	Chieform B401.
	1	fw=9 fw
	This is outlined in the Inverse Function Theorem.	TWF .
		: X= A
	Regular surfaces	
	Definition A non-empty set ZI CR ² is called a regular surface if for each pe Z, there is an open set UCR ² and an open neighbourbu	and V of p in R ³ , and
	(surjective) on the map $\sigma: U \rightarrow V \cap \Sigma$ such that	(x,y,z)
	(i) or is a smooth function (C [∞]). i.e. or(u, V)= (x(u, v), y(u, V), z(u, V)) ⇒ x, y, z are smooth functions.	()
	(ii) σ is a homeomorphism (σ : $V \cap \Sigma \rightarrow U$ exists and is continuous), and	Con Co2
	(iii) The differential $D\sigma: \mathbb{R}^2 \to \mathbb{R}^3$ is one-to-one (injective). [Recall that $D\sigma: \begin{pmatrix} \chi_u & \chi_v \\ \Xi_u & \Xi_v \end{pmatrix}$.]	[OU] IK
	Remark - condition (iii) can also be stated as $\overline{U_4 \times U_4} \neq 0$, or at lease one of $\frac{\Im(x,y)}{\Im(u,v)}$, $\frac{\Im(x,y)}{\Im(u,v)}$ is non-zero.	(4,7)
	tramples of regular surfaces -	
	. The paraboloid == x ² +y ² is the image of o(u, V) = (u, V, u ² +V ²), o-: R ² -> R ³ [Nok: parametrisations are not unique!]	
	clearly (i) is true as coordinates are polynomials, so they are CD functions. (ii) o -1 (x,y, z) = (x,y) exists and is smooth.	
	For (iii), $\frac{2(x,y)}{2(u,v)} = \frac{2(u,v)}{2(u,v)} = \det(0,1) = 1 \neq 0$. Thus, this is a regular surface.	
	We can generalize this to a theorem:	
	Theorem If f: U-> R is a smooth function on an open subset UCR2, then the graph of f [i.e. (0x, y, Z): == f(x, y), (x, y) E U] is	s regular surface.
V	3000 - As above. (i) is true as f is smooth, it is locally invertible by f-1(x,y, =) = (x,y) and ∂(x,y) = 1. All conditions are m	
	(Biomples, envis) . Sphere: S2 = {(x, y, z): x2+y2+ z2=1}. We need to explit the sphere to simplify topology. but at equator to produce two herisphere	2.
	let $U = f(x,g) \in \mathbb{R}^2$: $x^2 + y^2 < 1$. Then $\sigma_1(u,v) = (u, v, \sqrt{1 - u^2 - v^2})$, $\sigma_2(u,v) = (u,v, -\sqrt{1 - u^2 - v^2})$. However, this is	
	out the equator. We thus need to split it again, to take in all but 2 points, which we split again to obtain.	Y
		[storeographic projection] p
. I		projection
~	$ \begin{array}{ccc} \sigma_{\overline{3}}(u_{1}v) & \sigma_{\overline{4}}(u_{1}v) \\ = (u_{1}\sqrt{1-u^{2}-v^{2}},v) & = (u_{1}-\sqrt{1-u^{2}-v^{2}},v) \\ \end{array} $	
	At each point $p \in S^2$, the surface can be parametrized as a graph (smooth), so we see that : graph is smooth since $x^2 + y^2 < 1$.	
	For $\sigma_1, \sigma_2, \frac{\partial(x,y)}{\partial(u,v)} \neq 0$. For $\sigma_3, \sigma_4, \frac{\partial(z,x)}{\partial(u,v)} \neq 0$ and for $\sigma_5, \sigma_6, \frac{\partial(y,z)}{\partial(u,v)} \neq 0 \Rightarrow$ regular surface.	
		10 October 2013
	Real the interve function theorem - For F: $U \longrightarrow \mathbb{R}^m$, if $DF _a \neq 0$, then locally shound a, an inverse function $\mathbb{R}^m \longrightarrow U$ exists.	Rof Rod HALBURD Govern Sq (16-18) GO1.
	Theorem 1 let ZCR3 be a regular surface. For each pEZ, 3 a neighbourhood V of p in Z set. V is the graph of a smooth function in one	
	z = f(x,y), y = f(z,x) or x = f(y,z).	
	Real-late $\tau: U \rightarrow \mathbb{R}^3$ to a super objection of Σ in a notabeliable of ρ , whither $\sigma(u,v) = (x(u,v), u(u,v), z(u,v))$, then WLOG, then	smine axes if necessary.

(

....

 $\frac{2(k+y)}{3(u,v)}\Big|_q \pm 0$ where $q=\sigma^{-1}(p)$. Let $pr: \mathbb{R}^3 \to \mathbb{R}^2$ be the projection onto xy-plane: pr(x,y,z)=(x,y). (F) R³ Hence, proo: U > R2 and since $\frac{\partial(k,y)}{\partial(y,y)}|_q \neq 0$, proo has a (local) differentiable invoice. (4,1) = (proo) (x,y) = (ũ(x,y), ũ(xy). However, from our parametrisation, (2·) 4/ R2. $(u_1v) \rightarrow \sigma(u_1v) = (x(u_1v), y(u_1v), z(u_1v)) \quad so \quad z = z(u_1v) = z(\tilde{u}(x_1y), \tilde{v}(x_1y)) \Rightarrow z = f(x_1y).$ Thus, Z is a function of X and y > Z is a graph. EX. show that the cone == 1x2+ y2, (x,y) E R2 is not a regular surface. Sola. If cone were a negular surface, it would be the graph of a regular function in the neighbourhood of any point, W.Y.T. one of the coordinate axes. Z= fix,y) = Jx2+y2', but this is not smooth at (0,0). For other options, y=g(Zix) or x=h(y,Z), g and h are multi-valued and noned not be functions. > come is not regular surface, g.e.d. Theorem let f: U > R be a smooth function on open set U ≤ R³, and let a ∈ f(U). If for all p ∈ f⁻¹(a) = {1(x, y, 2) ∈ U : f(x, y, 2) = a}. of fx(p), fy(p), fz(p) are not all zero, then is a regular surface. Example - Let f: R²→ R, f(x,y,z)= x2+y2+z2. sphere, S2= f-1(1)= {(x,y,z): x2+y2+z2=1}. Verify: fx=2x, fy=2y, fz=22. Now $f_x = f_y = f_0 = 0 \iff (x, y, z) = (0, 0, 0) \ \ S^2$. f is differentiable $\Rightarrow S^2$ is a regular surface. Roof - WLOG, kr fz(p) ≠0 for some p ∈ U, p ≠0. say fz(p)=0, and define F:U → IR3 by F(2) = (fix,y, z) DF = det 1 1 2 det (DF) = fz(p) = 0. By the inverse function theorem, F everts locally and is different inde. ()= F⁻¹() ⇒ gives x=u, y=v, z= g(u, v, t), where g is some smooth Russians. At t=a i.e. f(x,y,z) = a, we have z = g(x,y,a) i.e. a smooth graph > regular surface. theoremal let p the s paint on a regular surface ∑ and let o7: 41→ ∑ and o2: 42→ ∑ [i.e. 2 parametrisations st. peV=07(41)∩ 02(42). 02 02 (V) 01 (V) 01 Then the "change of coordinates" $f:=\sigma_1^{-1}\circ\sigma_2: \sigma_2^{-1}(V) \to \sigma_1^{-1}(V)$ is a diffeomorphism. R2 Co I.e. differentiable function with a differentiable inverse]. Roof - To be covered later. Functions on Surfaces. Definition let f: V→ R be a function defined on an open subset V of a regular surface Z. Then f is said to be differentiable/smooth if, for some parametrisation $\sigma: U \to \Sigma \text{ with } p \in \sigma(U) \subset V, \text{ the composition } f \circ \sigma: U \to \mathbb{R} \text{ is differentiable at } \sigma^{-1}(p).$ We say that f is differentiable if it is differentiable at all peV. Definition let Σ_1, Σ_2 both be regular surfaces, and let V be a subset of Σ_1 . A continuous map $f: V \rightarrow \mathbb{Z}_2$ is said to be differentiable at $p \in V$ if 3 parametrisations $\sigma_1 \colon U_1 \to \Sigma$ and $\sigma_2 \colon U_2 \to \Sigma_2$ with $p \in \sigma_1(u_1)$ and $f(\sigma_1(u_1)) \subset \sigma_2(u_2)$ such that $\sigma_2^{-1} \circ f \circ \sigma_1 : u_1 \to u_2$ is differentiable of $\sigma_1^{-1}(p)$. $\boxed{\text{Definition}}\quad \text{let } \Sigma \subset \mathbb{R}^3 \text{ be a regular surface. } \forall p \in \Sigma, a vector } Y \in \mathbb{R}^3 \text{ is called targent to } \Sigma \text{ and } p \text{ if } \exists a curve is a surface of the second p if } \exists a curve is a curve is a surface of the second p if } \exists a curve is a curve is a surface of the second p if } \exists a curve is a curve$ Un (parametrissia) 7: (-E,E)→Z for some E>O sit: 2(0)=p, 2'(0)=V. 02 0 fo 01. The set of all vectors tangent to Σ at p is called the tangent plane at p, which is denoted by Tp Σ . -2/P Remark - It lot of differential geometry relates to the behaviour of the tangent plane. Definition let $f: \Xi_1 \rightarrow \Xi_2$ be a differentiable function between regular surfaces Ξ_1 and Ξ_2 . For any point $p \in \Xi$ and vector we Tp Σ , let $\vartheta: (-\epsilon, \epsilon) \longrightarrow \Sigma$ be a curve st. $\vartheta(o) = p$ and $\vartheta'(0) = w$. Then the map $(DF)_p$: $T_p \Sigma_1 \longrightarrow T_{f(p)} \Sigma_2$ given by $(DF)_p w = (For)'(o) = (\frac{d}{dt} (For))|_{t=0}$ is called the differential of fat p. for: (-2, 2) $\rightarrow \Sigma_2$ maps out a curve in Σ_2

3113-04.

)	$w \in Tp\Sigma \Rightarrow \exists \vartheta : (-\epsilon, \epsilon) \to \Sigma \text{ st. } \exists (0) = p, \vartheta'(0) = w. \text{ so } (Df)_p : Tp\Sigma_1 \to T_{f(p)}\Sigma_2, (Df)_p(w) = (f_0\vartheta)'(0).$	10-94 C	14-0ctober2013. Rof Rod HALBURD. cructform B401.
1 13	$w \in 1p2 \Rightarrow \exists \forall : (-z, z) \Rightarrow 2 \forall : \forall o (0) = p, o (0) = w \Rightarrow (u + p) \cdot (p = 1 + (p) + 2z, v + p(v) + (v + v) + 2z)$	15A	f [e. for 7
	The differencial (Df)p defined above is independent of the choice of 7.	& Asi	
	Proof - choose p∈ Z1, let $\sigma: U \to Z_1$ be a parametrisation s.t. $p = \sigma(q)$ for some $q \in U$. we have $(D_1^2)_p w = (f_0 \partial_1)'(0) = \frac{d}{d_1} [(f_0 \partial_1)'(0) = \frac{d}{d_2}](f_0) = \frac{d}{d_1} [(f_0 \partial_1)'(0) = \frac{d}{d_1}](f_0) = \frac{d}{d_1} [(f_0 \partial_1)'(0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_1} [(f_0 \partial_1)'(0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2} [(f_0 \partial_1)'(0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2} [(f_0)'(0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2} [(f_0)'(0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2} [(f_0)'(0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2} [(f_0)'(f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2} [(f_0)'(f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2} [(f_0)'(f_0) = \frac{d}{d_2}](f_0) = \frac{d}{d_2} [(f_0) = \frac{d}{d_2}](f_0) =$	for3) = (0-10 2	(for))/r=0 22
	⇒ (Df.)p(w) = (D[foo))q (0 ⁻¹ 08)'(0) - @, which its the differential of a function from a subset of R ² to R ³ .		
	$h_{0,4} = \sigma_0(\sigma^{-1} \circ 3) = 3^2 (rearranging to use chain rule) \Rightarrow (D\sigma)_q \circ (\sigma^{-1} \circ 3)'(0) = 3'(0) = w, which is an invertible mapping$	ne as it is a	regular surface.
			d
	Thus from \textcircled{B} , $(Df)_{p} w = (D(f_{0} \otimes))_{q} \circ (D_{0})_{q} w$, which is independent of $D_{-1} q$.e.d.		
	He now return to the omitted proof from last lecture: to show that f: of 002.		
	Proof - f is a homeomorphism (continuous with continuous inverse) because it is a composition of homeomorphisms. Let of (4,1,1), = (×(4,1/2),	y(u,v), Z(u	(v) , $(u,v) \in \sigma_1^{-1}(v)$.
	WLDG, $\overline{\mathcal{I}(u,v)} \neq 0$. Define F: $\overline{\mathcal{O}_1}(V) \times \mathbb{R} \rightarrow \mathbb{R}^3$. $F(u,v_1,t) = (\chi(u,v), \chi(u,v), \chi(u,v) + t)$. Then $DF _q = \begin{pmatrix} 2y 2v \\ 2t / 2$	g)⇒der	$(DF) = \frac{\partial(x,y)}{\partial(u,v)} \neq 0.$
	Apply the inverse function theorem, so F ⁻¹ exists (locally) and is differentiable. So $\sigma_2: \sigma_2^{-1}(V) \rightarrow V$ and $F^1: W \rightarrow \sigma_1^{-1}(W) \times \mathbb{R}$.	where w= F	-(uxR).
	So f is the composition of these maps restricted to t=0 > differentiable. So locally there is a differentiable inverse everywhere => a		
)	the second s	1	
	Theorem (Chrin Rule) [Roof- 10 notes]		4
	let $f: \Sigma_1 \rightarrow \Sigma_2$ and $g: \Sigma_2 \rightarrow \Sigma_3$ be two differentiable maps where σ_1, σ_2 and σ_3 are regular surfaces in \mathbb{R}^3 . For any pe	Z1, (D(go)	$(D_{p}) = (D_{q})_{f(p)} \circ (D_{p})_{p}$
	Uniquer 3		
	FIRST FUNDAMENTAL FORM.	1	12
			22
	$ (u, w) = \langle w, w \rangle = w ^2, \text{ip}: \text{Tp} \Sigma \rightarrow \mathbb{R}, \delta(t) = b^*(u(t), v(t)), w = b^*(0) = b^*_u(u(0), v(0)) \dot{u}(0) + b^*_v(u(0), v(0)) \dot{v}(0) $	H	T
	$q = \sigma^{-1}(p)$. $l\sigma_{L}(q), \sigma_{V}(q)$ standard basis for $Tp \mathbb{Z}$.		(utt), v(t)).
	$\Rightarrow \langle w, w \rangle = \langle \sigma_u(q) \dot{u} + \sigma_v(q) \dot{v}, \sigma_u(q) \dot{u} + \sigma_v(q) \dot{v} \rangle$		UCR ²
	the set state and state and the state of the	+ _	17 Outober 2013.
	Indivision The first fundamental forms (FFF) is the function Ip: TpZ -> IR defined by Ip(w) = <w, w)=" w <sup">2 for all wETpZ.</w,>		Rof Rod HALBURD. Gonlan St (16-18) G01.
	We p ∈ Z, o: U → Z, p ∈ o(W). If we Tp Z, ∃ 3: (-E,E) → Z st. 3(0)=p, 3(0)=W.	5	otwing Z
	Let $q = \sigma^{-1}(p)$ and $(u(t), v(t)) = \sigma^{-1} \circ \delta(t)$. Then $\delta(t) = \sigma(u(t), v(t))$. $\delta'(t) = \sigma_{u}u' + \sigma_{v}v' \Rightarrow w = \delta'(0) = \sigma_{u}(q)u'(0) + \sigma_{v}(q)v'(0)$.	```````````````````````````````````````	LAT & E.
	$I_{p(w)} = \langle \omega_{1}w \rangle = \langle \sigma_{u}u^{1} + \sigma_{v}v^{1} \rangle, \sigma_{u}u^{1} + \sigma_{v}v^{1} \rangle = (u^{1}(\sigma))^{2} \langle \sigma_{u}(q), \sigma_{u}(q) \rangle + 2u^{1}(\sigma)v^{1}(\sigma) \langle \sigma_{u}(q), \sigma_{v}(q) \rangle + (v^{1}(\sigma))^{2} \langle \sigma_{v}(q), \sigma_{v}(q) \rangle.$		0
	$= E(u'(0))^2 + 2Fu'(0)v'(0) + G(v'(0))^2 \text{ where } E = \langle \sigma_u, \sigma_u \rangle, F = \langle \sigma_u, \sigma_v \rangle, G = \langle \sigma_v, \sigma_v \rangle \text{ are called the components of}$	FFF.	uag R2.
	often, this is written as Edu2 + 2F dudv + G dv2, the metric.		(u(t), v(t)).
			= 5 0 2 (t) -
	(E_{A}) Consider part of the unit sphere covered by the parametrisation $\sigma(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$. Find the FFF.		
	Adn. $\sigma_{\theta} = (\omega_0 \theta \cos \theta, \cos \theta \sin \theta, -\sin \theta), \sigma_{\psi} = (-\sin \theta \sin \theta, \sin \theta \cos \theta, 0).$ Then $E = \langle \sigma_{\theta}, \sigma_{\theta} \rangle = \sigma_{\theta} ^2 = (\omega_0 \theta)^2 (\omega_0 \theta)$	(03° (7 + sin2 (9)	$+\sin^2\theta = 1$.
	$F = \langle \sigma_{\theta_1} \sigma_{\theta_1} \rangle = 0 \text{and} G = \langle \sigma_{\theta_1} \sigma_{\theta_1} \rangle = \sin^2 \theta \ (\sin^2 \theta + \cos^2 \theta) = \sin^2 \theta \ \text{, we could write this as} 1 \ d\theta^2 + \sin^2 \theta \ d\phi$, ² /ı ·	
	Any populy or quantity that can be calcuated from the FFF is called intrinsic.		
	Francelos of intrivity properties-		
	1. Lengths of curres: let $3(t) = \sigma(u(t), v(t)) = (x(t), y(t), z(t))$. Then $s = \int_{t_0}^{t_1} \sqrt{x'(t)^2 + z'(t)^2} dt = \int_{t_0}^{t_1} \left(E(u(t), v(t)) u'(t)^2 + 2F(u(t), v(t)) u'(t)^2 + 2F(u(t),$.(t), v(t)) (1 ¹ (t) v	$(t) + G(u(t), v(t))v'(t)^2 dt.$
	2. Angles between surves: Suppose we have two surves $3_1: (a_1, b_1) \rightarrow \Sigma$ and $3_2: (a_2, b_2) \rightarrow \Sigma$, and $\exists t_1 \in (a_1, b_1), t_2 \in (a_2, b_2)$ s.t.		PS + 81
	$\vartheta_1(t_1) = \vartheta_2(t_2) = p$ (i.e. inversection of curves at point p). Then, the angle between ϑ_1 and ϑ_2 at p is given by $\theta = cos^{-1} \left(\frac{\langle \vartheta_1'(t_1), \vartheta_2'(t_2) \rangle}{ \vartheta_1'(t_1) \vartheta_2'(t_2)} \right)$. Note that $\langle \vartheta_1'(t_1), \vartheta_2'(t_2) \rangle = Eu_1'(t_1) U_2'(t_2) + F \cdot \frac{1}{2} u_1'(t_1) V_2'(t_2) + U_2'(t_2) V_1'(t_1) + G V_1'(t_1) V_2'(t_2) + V_1'(t_1) + V_1'(t_2) + V_1'(t_2) + V_1'(t_2) + V_1'(t_1) + V_1'(t_2) + V_1''(t_2) + V_1''(t_2) + V_1''(t_2) + V_1''(t_2) + V_1''(t_2) + $	ta) 4/ (ta).	
			5
/	3. Areas of regions: $A(R) = \iint_{C} (\sigma_u \times \sigma_v) du dv$. To show that $\sigma_u \times \sigma_v$ follows from FFF, note that we have the identity:		R
	$ \sigma_{\rm u} \times \sigma_{\rm v} ^2 + \langle \sigma_{\rm u}, \sigma_{\rm v} \rangle^2 = \sigma_{\rm u} ^2 \sigma_{\rm v} ^2 \text{since} \sigma_{\rm u} ^2 \sigma_{\rm v} ^2 \text{sin}^2\theta + \sigma_{\rm u} ^2 \sigma_{\rm v} ^2 \text{cos}^2\theta = \sigma_{\rm u} ^2 \sigma_{\rm v} ^2. \text{Then we obtain } \cdot \sigma_{\rm u} ^2 = \sigma_{\rm u} ^2 \sigma_{\rm v} ^2.$		a
4	$ \sigma_{u} \vee \sigma_{v} = \sqrt{ \sigma_{u} ^{3} \sigma_{v} ^{2} - \langle \sigma_{u} \sigma_{v} \rangle^{2}} = \sqrt{ EG - F^{2} }.$		<u> </u>

6

(

	(E) The helicoid is the image of R ² under the mapping ot (1,1) = (1 as u, v sin u, au) where a is a positive constant. Construct the FFF3 and columbre its length and at	es of image.
	(alternate method for fft). Notin. $(dx)^2 + (dy)^2 + (d$)
	$= ((-y \sin u)^{2} + (v \cos u)^{2} + a^{2}) du^{2} + o du dv + (\cos^{2}u + \sin^{2}u) dv^{2} = (v^{2} + a^{2}) du^{2} + dv^{2} h \cdot [\Leftrightarrow E = v^{2} + a^{2}, F = 0, G = 1].$)2
1 × 2	The image of the surve $\delta(t) = (so t, sin t, at), 0 < t < 2T$ lies on this helicoid. Use FFF to columble its length-	
	$s = \int_{0}^{2\pi} \sqrt{E u'(t)^{2} + F u'(t) v'(t) + G v'(t)^{2}} dt \text{where} u(t) = t, v(t) = 1 = \int_{0}^{2\pi} \sqrt{I(t+a^{2}) + 0 + 0} = 2\pi \sqrt{I(t+a^{2})}.$	
	Also, we can admiste area of image of region. $U = \{(u, v): 0 < u < 2\pi, 0 < v < 1\}$. this is $A(u) = \iint_{U} \sqrt{EG - F^2} du dv = \int_{0}^{2\pi} \int_{0}^{1} \sqrt{v^2 + a^2 + 1 - 0} dv dv$	ka
	$\Rightarrow A(u) = 2\pi \int_0^1 \sqrt{1/2 + a^2} dv.$	
	kongries.	
	Juliantities A diffeomorphism f: Z1→Z2 is colled on isometry if Yp ∈ Z1 and all W1, W2 € TpZ1, we have (W1, W2>p = <(Df)p(W2), (Df)p(W2)>p(p). Z	-
	The surfaces Z1 and Z2 are then said to be isometric.	-2 -
	Note - This is equivalent to $Ip(w) = I_{f(p)}((Df)p(w)) \forall w \in Tp \Sigma_p.$ $(Df)p(w) = I_{f(p)}(Df)p(w) \forall w \in Tp \Sigma_p.$	w.
	$te(-\epsilon,\epsilon)$ Also, we observe that (w_1+w_2, w_1+w_2) can be explicited at $t=2 < w_1, w_2 > = < w_1, w_1+w_2, w_1+w_2 > - < w_1, w_1 > - < w_2, w_2 > (w_2, w_3)$	
	$i.e. 2\langle w_1, w_2 \rangle = \text{Ip}(w_1 + w_2) - \text{Ip}(w_2) - \text{Ip}(w_2) \cdot 2\langle w_1, w_2 \rangle + 2\langle w_2, w_2 \rangle + 2\langle w_1, w_2 \rangle + 2\langle w_1, w_2 \rangle + 2\langle w_1, w_2 \rangle + 2\langle w_2, w_2 \rangle + 2\langle w_1, w_$	
	So if Ip(w) = Ip(p) ((DF)pw) ∀w ≤ Tp Z1, then <w1, w2="">p = < (DF)pw3, (DF)pw2> ⇒ isometries are diffeomorphisms that preserve PFF.</w1,>	
	so if them step) (or you, are ip 21, then (w), who - (or fry man of proze) isometries are diffeomorphisms that preserve trt.)
	There is a set of the	
	Definition A function f: V→22 of a neighbourhood V of a point p ∈ Z1 is called a local isometry if 3 a neighbourhood V of f(p) in Z2 s.t. f: V → V is an isometry	.y
	If $\forall p \in \Sigma_1, \exists \ge local isometry to \Xi_2, then \Xi_1 is locally isometric to \Xi_2.$	
	If $f: \Xi_1 \rightarrow \Xi_2$ is a diffeomorphism and a local isometry $\forall p \in \Xi$, then f is an isometry (globally). $\Xi / \Xi / \Xi$,
1		
=	Interend let σ: U→ Z and $\tilde{\sigma}$: U→ Ž be parametrisations of the regular surfaces Z and Ž s.t. E= E, F= F, G=G.	
	Then the map $f := \tilde{\sigma} \circ \sigma^{-1} : \sigma(u) \to \tilde{\Sigma}$ is a local isometry.	
÷ .	hoof - choose p∈ σ(u) and w∈ TpZ. ∃ $3: (-ε, ε) \rightarrow Z$ st. $3(0) = p, 3'(0) = w$. We write $3(t) = σ$ (u(t), v(t)). ⇒	
n de la company Normal de la company	$w = \overline{\delta}'(0) = \overline{\sigma_u}(q) u'(0) + \overline{\sigma_v}(q) v'(0) \text{where } q = \overline{\sigma^{-1}(p)} = (u(0), v(0)). \text{Therefore, } (pf)_p(w) = \overline{f}(\sigma\delta)'(0) = \frac{d}{dt} (f_{\sigma\sigma}(u(t), v(t)))\Big _{t=0}.$	
	$(Df)_{p}(\omega) = \frac{d}{dt} \left(\widetilde{\sigma} \circ \sigma^{-1} \circ \sigma \left(u(t), v(t) \right) \right) \Big _{t=0} = \frac{d}{dt} \left(\widetilde{\sigma} \left(u(t), v(t) \right) \right) \Big _{t=0} = \widetilde{\sigma}_{u}(q) u'(0) + \widetilde{\sigma}_{v}(q) v'(0).$	
	To check that it is a local isometry, we note that $I_{fip}(pp) = \langle \tilde{\sigma}_{u} u' + \tilde{\sigma}_{v} v', \tilde{\sigma}_{u} u' + \tilde{\sigma}_{v} v' \rangle = \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{u} \rangle \langle u' v' \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v' \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v' \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v' \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v' \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v' \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v' \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle + \langle \tilde{\sigma}_{u}, \tilde{\sigma}_{v} \rangle \langle u' v \rangle \rangle $	\tilde{T}_{V}) (V ¹) ² .
-12	Then, $I_{f(p)}(Df_{p}w), Df_{p}w) = \tilde{E}(u')^{2} + 2\tilde{F}u'v' + \tilde{G}(v')^{2} = E(u')^{2} + 2Fu'v' + G(v')^{2} = \langle \sigma_{u}u' + \sigma_{v}v', \sigma_{u}u' + \sigma_{v}v' \rangle = \langle w, w \rangle = I_{p}(w)$	
	⇒ f is 2 local isometry j, q-e.d.)
	[Bx] Consider the cone (mithout its vertex) given by Z=ap in polar coordinates (p20) where a is a constant. (Note: (f a=0, this is a plane).	
	Using the parametrisation $\sigma(p, \theta) = (p \cos \theta, p \sin \theta, a p)$, find the FFF. Show that all cones are locally isometric to plane \mathbb{R}^2 .	
	$b_{0}(n, \sigma_{p} = (\omega_{0}, \theta, \sin \theta, \alpha), \sigma_{\theta} = (-p_{0}(n, \theta, \rho), \sigma_{\theta}, \theta, \sigma), \text{ the PFF is } (\alpha^{2}+1) dp^{2} + p^{2} d\theta^{2}.$	
	In terms of recessed which los $\hat{p} = \sqrt{a^2 + 1} p$, $\hat{\Theta} = \frac{a^2}{(a^2 + 1)^2}$, we get FFF becoming $d\hat{p}^2 + \hat{p}^2 d\hat{\theta}^2$. i.e. $\hat{E} = 1$, $\hat{F} = 0$, $\hat{G} = \hat{p}^2$.	
	⇒ by previous theorem, all comes are locally isometric to a plane.	
	21.0.626er.203 Chapter 4 Rof Rod Hilbur	R.P.
	CURVATURE AND THE SECOND FUNDAMENTALFORM. CHIEFOND BLOT	
		7
$\frac{2M}{A} = \frac{1}{2} \frac$	Definition An orientation on a surface Z is a continuous map N: Z→ R3 s.t. YPEZ, N(p) is a unit-normal to TpZ.	1
	If a surface Z admits an orientation, then it is called <u>orientable</u> . Non-orientables	uffice.
	tion here on, all surfaces that we consider one orientable.	
	Any coordinate neighbourhood $\sigma(u)$ is always orientable. [recall - let 3_1 (t)=(uo+t, vo), 3_2 (t)=(uo, $\sqrt{b+t}) \Rightarrow 3_1'(0)=\sigma_u(uo, vo), 3_2'(0)=\sigma_v(uo, vo)].$)
	Define $N = \pm \frac{\sigma_{ii} \times \sigma_{ij}}{\sigma_{ii} \times \sigma_{ij} \tau_{i}}$ where the tree sign denotes the "standard" orientation.	
Ut	Since we defined N: Z -> R3, and N is the set of unit vectors, we can think of N ds a map N: Z -> S2 (the 2-phase), with points in s2 identified with their pos	ition reators).
1.1		
3113-06.		

ionsider the differential	(DN)p: TpZ→ TN(p)S ² .	Note that TN(p) S2 =	\equiv Tp Σ_1 as they are	parallel planes, which are	e the same as vector space	25.
onsidered as a map from	Σ to s_1^2 N is called the	Gouss map. The differ	ewid (DN)p is an end	lomonphism on TpZ, i.	$e. (DN)_p: T_p \Sigma \to T_p \Sigma.$	-1

(Noz) (0)

self-soljoint maps.

let V be a red 20 vector space with an inner product <,> (e.g. R2).

Definition A linear map A: V->V is self-adjoint if <AV, W>= <V, AW> VV, W G V. To each self-adjoint map A: V->V, there is a symmetric bilinear map B: VXV -> R,

defined by B(v,w) = (Av,w). If 1e, e2t is an orthonormal basis for V, then the matrix (bij) 22 given by bij = <Aei, ej> is symmetric.

Furthermore, to each symmetric bilinear form B on V, there is a qualitatic form $Q: V \rightarrow \mathbb{R}$ given by Q(v) = B(v, v).

Q determines B uniquely by B(U,V) = \$ (Q(U+V) - Q(U) - Q(V)), so 3 a 1-1 correspondence between symmetric bilinear maps and quadratic forms.

Theorem Let A: V-> V be a self-adjoint linear map on V. Than the unit eigenvectors of A, C, and C2, form an orthonormal basis for V.

The corresponding eigenvalues high to are real and are the maximum and minimum values of Q(V)= (AV, V> lie on the unit circle of V.

Proof - Let $q = \sigma^{-1}(p) = (u_0, v_0)$. Since $1 \sigma_{11}(q)$, $\sigma_{12}(q)$ is a basis for $T_p \Sigma_1$, it is sufficient to show that $(DN)p \sigma_{12}(q)$, $\sigma_{12}(q) > < \sigma_{11}(q)$, $(DN)p \sigma_{12}(q)$. Let $s(t) = \sigma(u_0 + t, v_0)$, $s(\sigma) = p$. Then $s'(\sigma) = \sigma_{11}(u_0, v_0) = \sigma_{11}(t_0)$, $(PN)p \sigma_{12}(q) = (N \circ s)'(\sigma) = \frac{1}{4t}(N \circ \sigma (u_0 + t, v_0))|_{t=0} = (N \circ \sigma)u(q)$. $= \tilde{N}u(q)$, where $\tilde{N} = N \circ \sigma_2$, $\tilde{N} : \tilde{U} \to S^2$. Since $\tilde{N} \perp T_p \Sigma$, $\sigma_{12} \in T_p \Sigma$, then $< \tilde{N}$, $\sigma_{12} > \sigma_2$. Effectivities w.r.t. v_1 .

 $\langle \tilde{N}_{u}, \sigma_{u} \rangle + \langle \tilde{N}, \sigma_{u} \rangle = 0. \text{ likewise}, \quad \langle \tilde{N}, \sigma_{v} \rangle = 0 \Rightarrow \langle \tilde{N}_{u}, \sigma_{v} \rangle + \langle \tilde{N}, \sigma_{vu} \rangle = 0. \Rightarrow \text{ together, this gives that} \\ \frac{\partial \tilde{V}_{u}}{\partial v} \langle \tilde{V}_{u}, \sigma_{v} \rangle = \langle \sigma_{u}, \tilde{N}_{v} \rangle \Leftrightarrow \langle (DN)_{p} \sigma_{u}, \sigma_{v} \rangle = \langle \sigma_{u}, (DN)_{p} \sigma_{v} \rangle_{p} q.e.d. \\ \frac{\partial \tilde{V}_{u}}{\partial v} \langle \tilde{V}_{u}, \sigma_{v} \rangle = \langle \sigma_{u}, \tilde{N}_{v} \rangle \Leftrightarrow \langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle = \langle \sigma_{u}, (DN)_{p} \sigma_{v} \rangle_{p} q.e.d.$

Tothing The quadratic form Is: Tp Z → R given by Ip(W) = - ((DN)p W, W> V we Tp Z is called the 2nd fundamental form.

The eigenvalues k_1, k_2 of -(DN)p are called the principal constructs of Z at p. 1400, $K = k_1, k_2 = det((DN)p)$ is called the Gauss convoture. , and the granning H= \$ (k1+k2) = - \$ Tr [(DN)p] is the mean aunoture. For any we To Z, 3(0)=p, 3'(0)=W, 3(H)= O(u(H), V(H)), w= 3'(0)= u'(0) Ou(q) + v'(0) Ov(q). Then IIp(W)= - <(DN)pW, W>, and expanding it gives no $= -\left[(u')^{2} < \tilde{N}_{u}, \sigma_{u}\right) + 2u'v' < \tilde{N}_{u}, \sigma_{v}\right) + (v')^{2} < \tilde{N}_{v}, \sigma_{v}\right) = e(u')^{2} + 2f(u')(v') + g(v')^{2} where e = - < (DN)p\sigma_{u}, \sigma_{u}\right), f = - <(DN)p\sigma_{u}, \sigma_{v}\right) = - <\tilde{N}_{u}, \sigma_{v}\right) = - <\tilde{N}_{v}, \sigma_{v}\right) = - <\tilde{N}_{v}, \sigma_{v}$ Then e, f, g are called the components of the second fundamental form; which can also be expressed as edu2 + 2f du du + g du2. $\operatorname{Recall}\operatorname{Hat}\nolimits < \widetilde{\mathsf{N}}, \sigma_{\mathsf{U}} \rangle = 0 \Rightarrow < \widetilde{\mathsf{N}}_{\mathsf{U}} \sigma_{\mathsf{U}} + \widetilde{\mathsf{N}}, \sigma_{\mathsf{U}} \rangle = 0 \Rightarrow e = - < \widetilde{\mathsf{N}}_{\mathsf{U}}, \sigma_{\mathsf{U}} \rangle = < \widetilde{\mathsf{N}}, \sigma_{\mathsf{U}} \rangle. \text{ is kensile, } f = - < \widetilde{\mathsf{N}}_{\mathsf{U}}, \sigma_{\mathsf{U}} \rangle, \quad g = - < \widetilde{\mathsf{N}}_{\mathsf{U}}, \sigma_{\mathsf{U}} \rangle = < \widetilde{\mathsf{N}}, \sigma_{\mathsf{U}} \rangle.$ $MSO, remember that \tilde{N} = \pm \frac{\sigma_{u} \times \sigma_{v}}{[\sigma_{u} \times \sigma_{v}]}. \tilde{N} is a unit vector \Rightarrow \langle \tilde{N}, \tilde{N} \rangle = 1 \Rightarrow \langle \tilde{N}u, \tilde{N} \rangle = \langle \tilde{N}u, \tilde{N} \rangle = 0, \quad \langle \sigma_{u}, \sigma_{v}, \tilde{N} \rangle is a basis for <math>\mathbb{R}^{3}$. So, 3 functions quiv) st. Nu = an Ju + a2 JV, Nv = a12 Ju + a2 JV. Note for any w= dJu + BJV ETPZ, (DN)pW= 2 (DN)pJu + B (DN)pJV $\Rightarrow (DN)_{p} w = \sqrt{N}_{u} + \beta \widetilde{N}_{v} = (\sqrt{a_{11}} + \beta a_{12}) \overline{\sigma}_{u} + (\sqrt{a_{21}} + \beta a_{22}) \overline{\sigma}_{v} \Rightarrow (DN)_{p} maps (\alpha, \beta) \mapsto (\sqrt{a_{11}} + \beta a_{12}, \sqrt{a_{21}} + \beta a_{22}), i.e. \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mapsto \begin{pmatrix} \alpha_{u} & \alpha_{21} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{21} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{22} \\ \alpha_{u} & \alpha_{22} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{u} & \alpha_{u} \\ \alpha_{u} & \alpha_{u} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{u} & \alpha_{u} \\ \alpha_{u} & \alpha_{u} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{u} & \alpha_{u} \\ \alpha_{u} & \alpha_{u} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{u} & \alpha_{u} \\ \alpha_{u} & \alpha_{u} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{u} & \alpha_{u} \\ \alpha_{u} & \alpha_{u} \end{pmatrix} \begin{pmatrix} \alpha_{u} & \alpha_{u} & \alpha_{u} \end{pmatrix} \begin{pmatrix}$ The Gours and mean currences are: $K = det(a_{ij})$ and $H = -\frac{1}{2}(a_{11} + a_{22})$. Then $\langle 0 \rangle$, $\sigma_u \rangle : \langle N_u, \sigma_u \rangle = a_{11} \langle \sigma_u, \sigma_u \rangle + a_{21} \langle \sigma_v, \sigma_u \rangle \Rightarrow -e = a_{11} E + a_{21} E$. We end up with four equations: $\langle \mathbb{O}, \sigma_V \rangle$: $-f = a_{11}F + a_{21}G_1$; $\langle \mathbb{O}, \sigma_V \rangle$: $-f = a_{12}E + a_{22}F$ and $\langle \mathbb{O}, \sigma_V \rangle$: $-g = a_{12}F + a_{22}G_1$. Tour equations in four unknowns can be expressed in matrices: $(\stackrel{E}{F} \stackrel{F}{G})(\stackrel{a_{11}}{a_{12}} \stackrel{a_{12}}{a_{21}} = -(\stackrel{e}{f} \stackrel{G}{g}) \Rightarrow (\stackrel{a_{11}}{a_{21}} \stackrel{a_{12}}{a_{22}}) = -(\stackrel{e}{f} \stackrel{G}{g}) \Rightarrow (\stackrel{a_{12}}{a_{21}} \stackrel{a_{22}}{a_{22}}) = -\stackrel{f}{E} \stackrel{F}{G} \stackrel{F}{f} \stackrel{F}{g} \stackrel{F}{f} \stackrel{G}{g} \stackrel{F}{g} = -(\stackrel{e}{f} \stackrel{G}{g})$ Then $K = \frac{eg - f^2}{EG - F^2}$, and $H = \frac{1}{2} \frac{eg - 2f F + gE}{EG - F^2}$. Also, $\widetilde{N}_{V} \times \widetilde{N}_{V} = (a_{11}\sigma_{11} + a_{21}\sigma_{12}) \times (a_{12}\sigma_{11} + a_{22}\sigma_{12}) = a_{11}a_{22}\sigma_{12}\sigma_{$ = K D. XOU.

(Ju)v, (Jr) u are in R3, which is spanned by I Ju, Jv, NS. Thus, 3 scolar functions of (4,1), Tix, A, 4, V st. $\cdot \sigma_{uu} = \Gamma_{11}^{1} \sigma_{u} + \Gamma_{12}^{2} \sigma_{v} + \lambda \widetilde{N} - \textcircled{3} \quad \cdot \sigma_{vu} = \sigma_{uv} = \Gamma_{12}^{1} \sigma_{u} + \Gamma_{12}^{2} \sigma_{v} + \mu \widetilde{N} - \textcircled{2} \quad \cdot \sigma_{vv} = \Gamma_{22}^{1} \sigma_{u} + \Gamma_{22}^{2} \sigma_{v} + \gamma \widetilde{N} \cdot - \textcircled{3}.$ $\Gamma_{ij}^{k} \text{ ore called <u>Christoffel symbols.</u> then <(3), <math>\widetilde{N} > i < \overline{\sigma_{uu}}, \widetilde{N} > i < 0 + 0 + \lambda < \widetilde{N}, \widetilde{N} > i \lambda \Rightarrow \lambda = e \quad : \quad e = -\langle \widetilde{N}_{u}, \overline{\sigma_{u}} \rangle = \langle \widetilde{N}, \overline{\sigma_{uu}} \rangle.$ Similarly, we can get that $\mu = f$, $\nu = q$. For the christoffel generals, note for instance that $\langle @, \sigma_u \rangle : \langle \sigma_u, \sigma_u \rangle = \prod_{1}^{1} \langle \sigma_u, \sigma_u \rangle + \prod_{1}^{2} \langle \sigma_v, \sigma_u \rangle = \prod_{1}^{1} \langle \sigma_v, \sigma_u \rangle = \prod_{1}^{2} \langle \sigma_v, \sigma_$ $\Rightarrow \frac{1}{2} E_{u} = \prod_{1}^{1} E + \prod_{1}^{2} F. \qquad \langle \mathfrak{D}, \sigma_{v} \rangle : \langle \sigma_{uu}, \sigma_{v} \rangle = \prod_{1}^{1} F + \prod_{1}^{2} G. \text{ Note } \mathbb{F}_{u} = \langle \sigma_{u}, \sigma_{v} \rangle_{u} = \langle \sigma_{uu}, \sigma_{v} \rangle + \langle \sigma_{uu}, \sigma_{v} \rangle + \frac{1}{2} E_{v}.$ $\Rightarrow F_{u} - \frac{1}{2} E_{v} = \prod_{1}^{1} F + \prod_{1}^{2} G. \text{ The other four equations are encurvally derived; together these give: } (\mathbb{F} G) (\prod_{1}^{1} \prod_{1}^{2} \prod_{2}^{2} \prod_{2}^{2}) = (\mathbb{F}_{u} - \frac{1}{2} E_{u} + \frac{1}{2} E_{v}, \mathbb{F}_{v} - \frac{1}{2} G_{u}).$ Thus we get $(\prod_{1}^{2} \prod_{2}^{2} \prod_{2}^{2} \prod_{2}) = \frac{1}{EG - F^{2}} (G - F) (\mathbb{F}_{u} - \frac{1}{2} E_{u} + \frac{1}{2} E_{v}, \mathbb{F}_{v} - \frac{1}{2} G_{u}).$

Remarks - . EG-F2 = 0, so this is well-defined

. All Christoffel symbols depend solely on the 1st fundamental form.

. We do not shadys need to colculate these for lower dimensions, but there are applicable in general.

	We obtain three compatibility conditions on parameters: $(\sigma_{uu})_v = (\sigma_{uv})_u$, $(\sigma_{uv})_v$, $(\sigma_{uv})_u$, $(\tilde{N}_u)_v = (\tilde{N}_v)_u$.	31 October 2013 Prof Rod HALBWRD.
	$Now_{1} (\sigma_{04})_{V} = (\prod_{1}^{\prime})_{V} \sigma_{0} + \prod_{1}^{\prime} (\prod_{2}^{\prime} \sigma_{0} + \prod_{2}^{\prime} \sigma_{V} + f\widetilde{N}) + (\prod_{1}^{2})_{V} \sigma_{V} + \prod_{1}^{2} (\prod_{2}^{\prime} \sigma_{0} + \prod_{3}^{2} \sigma_{V} + g\widetilde{N}) + e_{V} \widetilde{N} + e(a_{12} \sigma_{0} + a_{22} \sigma_{V}).$	Gardan St (1618)
	So from $(\overline{\sigma}_{uu})_{v} = (\overline{\sigma}_{uv})_{u}$ condition, the sofficient of $\overline{\sigma}_{v}: (\Gamma_{12}^{-1})_{v} - (\Gamma_{12}^{-1})_{u} + \Gamma_{u}'\Gamma_{12}^{-2} - \Gamma_{12}'\Gamma_{12}^{-2} + \Gamma_{12}'\Gamma_{12}^{-2} = EK$ (the k= Gaus curvature	
	A similar thing can be done to the other two compatibility conditions to create two other relationships between the 1st and and Fundamental forms:	(ev-fu, fv-gu).
	These relations are called the Mainardi- Codazzi equations	
	Its Analyse the surve == 4(x, u), calculating its fundamental forms and Gauss currence.	
	$ \begin{aligned} \hline Ex & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	With ASTE In all Far
	$FFF = (1+V_{W})^{2} du^{2} + 24uV_{V} dud_{V} + (1+V_{V})^{2} dv_{J}^{2} = \sigma_{u} \times \sigma_{v} = (-V_{u}, -V_{v}, 1). \qquad \tilde{N} = \frac{(-V_{u}, -V_{v}, 1)}{\sqrt{1+V_{u}^{2}+V_{v}^{2}}} = -\langle \tilde{N} u_{u}, \sigma_{u} \rangle = -\langle \tilde{N} u_{v}, \sigma_{u} \rangle$	(in must the [rundemental imm
	$FFT^{-}(1+Tu) du' + 24u'tv du dv + (1+4v) dv / $	$= \langle N_1 \sigma_{uu} \rangle L \langle N_{\mu_1} \sigma_{u_1} \rangle + \langle N_1 \sigma_{u_1} \rangle = 0$
	$ \frac{q_{uv}}{\sigma_{uv}} = (\sigma_1 \sigma_1, q_{uv}), \sigma_{uv} = (\sigma_1 \sigma_1, q_{uv}), e_1 = \langle \tilde{N}, \sigma_{uv} \rangle = \frac{q_{uv}}{\sqrt{1 + q_2^2 + q_2^2}}, f_1 = \frac{q_{uv}}{\sqrt{1 + q_2^2 + q_2^2}}, g_2 = \frac{q_{vv}}{\sqrt{1 + q_2^2 + q_2^2}}, g_3 = \frac{q_{vv}}{\sqrt{1 + q_2^2 + q_2^2}} $	
	$SFF = \frac{4 \kappa_{uv} du^2 + 24 \kappa_{uv} du dv + 4 \kappa_{vv} dv}{\sqrt{1 + 4 \kappa_{u}^2 + 4 \kappa_{v}^2}} \int stud by Gauss, \ K = \frac{4 \kappa_{uv} - 4 \kappa_{vv}}{4 \kappa_{vv} - 4 \kappa_{vv}} \int \frac{4 \kappa_{uv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{v}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{uv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv} - 4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^2)} \int \frac{4 \kappa_{vv}}{(1 + 4 \kappa_{vv}^2 + 4 \kappa_{vv}^$	
	Chapter 5	
	GEOPESIUS.	
	corrient derivative.	
	Definition Let V be an open set in a regular surface. A rector hold on V is a smooth function w: V→ R3 st. Vp EV, w(p) ETpZ. w(t) = a(t) ou (u(t), v(t))	+ b(+) 0 (u(t), v(t))
	$\tau_{hen} \frac{dw}{dt} = a\sigma_{ut} + a(\sigma_{uu} \dot{u} + \sigma_{uv} \dot{v}) + b\sigma_{v} + b(\sigma_{vv} \dot{u} + \sigma_{vv} \dot{v}) = 4\dot{a} + a\Gamma_{1} \dot{u} + a\Gamma_{12} \dot{v} + b\Gamma_{2} \dot{u} + b\Gamma_{2} \dot{v} + b\Gamma_{2} \dot{v} + b\Gamma_{1}^{2} \dot{u} + \Gamma_{12}^{2} \dot{a} \dot{u} + \Gamma_{22}^{2} \dot{b} \dot{u} + \Gamma_{22}$	bi}ov+leau+flav+bu)+gbij
~	The projection of $\frac{dw}{dt}$ in the tangent plane is called the covariant derivative of w in the direction 3! R_3 : $w = (a + + G_2 b \dot{v}) \sigma_u + (b + + G_2 b \dot{v})$	
	Definition A smooth rector field is said to be parallel along & if Vg1 W=0 YteI (3: I -> Z).	
	Theorem lot w, and us be parallel vector fields along 3: I > Z. Then < w1, w2 is constant. In parliabler, Wal, W2) and the angle between them is consta	vet.
	Roof- W1,W2 & TpZ but W1, W2 I to TpZ. So <w1,w2>=0. Now \$\frac{1}{24} \lambda W1,W2>=01, q.e.d.</w1,w2>	
		44.11-2-12
		11 November 2013 Roof Rod HALBURD .
	Theorem let 3: I > Z be a personalised curve, and choose Wo 6 Tollow Z. for some to EI. Then there is a unique parallel redor field with along 8(H).	Chieform B401.
	(1) > with w(to)=Wo.	
	tequition A non-constitut parametrized curve &: I -> I is said to be geodesic if 3' is parallel along 3, i.e. $\nabla_{\gamma} (3^{l} = 0.$	
	Note $\gamma' = \sigma_u u' + \sigma_v v'$ (i.e. $a = u'$, $b = v'$) from \bigoplus : $\ddot{u} + \Gamma'_{11} \dot{u} + 2\Gamma'_{21} \dot{u} \dot{v} + \Gamma'_{22} \dot{v}^2 = 0$, $\ddot{v} + \Gamma'_{12} \dot{u} \dot{v} + \Gamma'_{22} \dot{v}^2 = 0$.	
	Theorem Another form of the geodesic equation is $\frac{d}{dt}(Ei+Fi) = \frac{1}{2}(E_u\dot{u}^2 + 2F_u\dot{u}\dot{v} + G_u\dot{v}^2), \frac{d}{dt}(F\dot{u} + G\dot{v}) = \frac{1}{2}(E_v\dot{u}^2 + 2F_v\dot{u}\dot{v} + G_v\dot{v}^2).$	
-16	Note - $\nabla_{3'} \delta' = 0 \iff \delta''$ has no component in tangent plane $\iff \delta'' = ()\tilde{N}$.	
	Proof - $0 = 3 \cdot \sigma_u$ (no component of 3 in the σ_u direction) = $1\frac{d}{dt}$ ($u\sigma_u + v\sigma_v$) $\cdot \sigma_u = \frac{d}{dt} \left((u\sigma_u + v\sigma_v) \cdot \sigma_u \right) - (u\sigma_u + v\sigma_v) \cdot \frac{du}{dt}$	۳ <u>.</u>
	$= \frac{d}{dt} \left\{ \dot{u} E + \dot{v} F \right\} - (\dot{u} \sigma_{u} + \dot{v} \sigma_{v}) \cdot (\sigma_{uu} \dot{u} + \sigma_{uv} \dot{v}) = \frac{d}{dt} \left\{ E_{u} + F_{v} \right\} - \left\{ \overline{\sigma_{u}} \cdot \overline{\sigma_{uv}} + \overline{\sigma_{v}} \cdot \overline{\sigma_{uv}} \right) \dot{u} \dot{v} + \overline{\sigma_{v}} \cdot \overline{\sigma_{uv}} \dot{v}^{2} \right\} \Rightarrow \frac{d}{dt} \left\{ E_{u} + F_{v} \right\} - \left\{ \overline{\sigma_{u}} \cdot \overline{\sigma_{uv}} + \overline{\sigma_{v}} \cdot \overline{\sigma_{uv}} \right) \dot{u} \dot{v} + \overline{\sigma_{v}} \cdot \overline{\sigma_{uv}} \dot{v}^{2} \right\} \Rightarrow \frac{d}{dt} \left\{ E_{u} + F_{v} \right\} - \left\{ \overline{\sigma_{u}} \cdot \overline{\sigma_{uv}} + \overline{\sigma_{v}} \cdot \overline{\sigma_{uv}} \right\} \dot{v} + \left\{ \overline{\sigma_{v}} \cdot \overline{\sigma_{uv}} \right\} \dot{v}^{2} \right\} \Rightarrow \frac{d}{dt} \left\{ E_{u} + F_{v} \right\} + \left\{ \overline{\sigma_{u}} \cdot \overline{\sigma_{uv}} + \overline{\sigma_{v}} \cdot \overline{\sigma_{uv}} \right\} \dot{v}^{2} \right\} \Rightarrow \frac{d}{dt} \left\{ E_{u} + F_{v} \right\} \dot{v}^{2} = \left\{ \overline{\sigma_{u}} \cdot \overline{\sigma_{uv}} + \overline{\sigma_{v}} \cdot \overline{\sigma_{uv}} \right\} \dot{v}^{2} $	$ +Fv\rangle = \frac{1}{2} (E_{H} \dot{u}^{2} + 2F_{H} \dot{u}\dot{v} + G_{H} \dot{v}^{2}$
	the second s	14 November 2013
1.5	Receip: parallel \Leftrightarrow $\nabla_{S^1} w = 0$, geodes is and where $\nabla_{S^1} v^2 = 0$. We know that $\nabla_S w = 0 \Leftrightarrow$ $ w $ constand. $\nabla_{S^1} w_{2} = 0$ $(w_1, w_2 = 0)$	Roof Rod HALBURD . Govelon 97 (16-18) Gol.
· · · · ·	pEZ, [Control 1, g pEZ, [Control 1, g pEZ, [Control 1, g pEZ, [Control 1, g pEZ, [Control 1, g percent of the second of th	$a^{\frac{1}{2}} = q(v).$
	Geodoxics on votationally symmetric surfaces.	p = f(w)
	Muy surface that is rotationally symmetric about the Z-duis has a parametrisation of the form $\sigma(u,v) = (f(v) \cos u, f(v) \sin u, g(v)).$	
	Curve in the p-z plane is unit speed by parametrisation, so $(p!)^2 + (q!)^2 = 1$. This simplifies our calculations.	25
		$p_{1} = \frac{1}{2} e^{2} dv^{2} + dv^{2}$
	$ \overline{u} = (-f\sin u, f\cos u, 0), \overline{v} = (f'\cos u, f'\sin u, g'). E = \langle \overline{v}_u, \overline{v}_v \rangle = f^2, F = \langle \overline{v}_u, \overline{v}_v \rangle = 0, G = \langle \overline{v}_v, \overline{v}_v \rangle = (f')^2 + (g')^2 = 1. \text{ Then first Rundomentations} $ $ Apply "shemate" geodesic equations: \frac{d}{dt} (E\dot{u} + F\dot{v}) = \frac{1}{2} (E_u \dot{u}^2 + 2F_u \dot{u}\dot{v} + G_u \dot{v}^2) \iff \frac{d}{dt} (f^2 \dot{u}) = 0 \text{[as f is a function of v_1, no u tern]}. \text{Also, c} $	
	di (Fù+Gi)= ± (Eyü²+2Fyův+Gyů²) ⇔ ‡(i)=i= f(v) f'(v)ů² - ③. start by considering geodenics of the form u=uo [i.e. 2 slice of	f the plane I. This satisfies (D. 1
	3 becomes $\ddot{v}=0 \Rightarrow v=\alpha t+\beta$. The intersection of Z with any plane containing the z-axis is the image of a geodesic. $f(v_0)=0$ hypon-side	
	Next, we look for geodesics of form v=vo. O becomes f(vo) ii=0, O: 0= f(vo) f(vo) ii² ⇒ ii≢0, else we have no curve, f(vo)=0	gentesies () genderi
	\Rightarrow $\ddot{u}=0$ and $u=dt+\beta$. \Rightarrow hence geodesics occur where $f'(v_0)=0 \Rightarrow v_0$ is a local extremum of $f'(maxand mindulationces from z-axis)$.	
	hale a data an in the second	usloante to to the P
	In the general case, note $\langle \sigma_n, \hat{v} \rangle_{=} \langle \sigma_n, \hat{u} \sigma_n + \hat{v} \sigma_v \rangle_{=} \hat{u} \langle \sigma_u, \sigma_v \rangle + \hat{v} \langle \sigma_u, \sigma_v \rangle_{=} E\hat{u} + F\hat{v} = f^{\hat{v}} \hat{u}$ [Note: this is conserved by (D), which is a single between (bargent rector to \hat{v} and the parallel (v=const) came through the point. $\Theta: \langle \sigma_u, \hat{v} \rangle = const \Rightarrow \sigma_u \hat{v} cos \theta = const.$ $ \hat{v} $ is also complete. Also, $ \sigma_u = \sqrt{E} = f(v) = distanct r from p to z-dxis.$	AD ?
	W: <ou, 10ul="JE" 10ull81="" 181="" 87="const" =="" also="" also,="" constant.="" cos0="const." f(v)="divance" from="" is="" p="" r="" td="" to="" z-axis.<="" ⇒=""><td>8 fixed point</td></ou,>	8 fixed point

3113-08

i.e. $0 \iff r \cos \theta = const$ this is called <u>claimants</u> relation.	For the second relation, const = $ \vec{s} ^2 = E\vec{u}^2 + 2F\vec{u}\vec{v} + G$	$y^2 = f^2 \dot{u}^2 + \dot{v}^2$. $\dot{v}^2 = const - f^2 \dot{u}^2$. Now $f^2 \dot{u} = c const from (D.$
\Rightarrow $v_{=const}^{2} = \frac{c^{2}}{F^{2}(v)}$. Differentiating, $2i\dot{v} = 2\frac{c^{2}}{F^{2}(v)}f'(v)\dot{v} \Rightarrow$	$\ddot{v} = \frac{c^2}{f^3(v)}f'(v) = f(v)f'(v)\dot{u}^2 \iff @, so no further inf$	motion (restriction is produced by @ to add to clairant's relation .

-	2000 KLA	_
	Chiptor 6 THE GAUSS-BONNET THEOREM	
	In first space $a_3^{\alpha_1+\alpha_2+\alpha_3=\pi}$	
	Consider a curve & in Z porometrised by sorderapth. A bosis for RZ is fit, N, JXNT. This is an orthonormal frame.	
	Now, $\ddot{a} = k_n N + k_g (N \times \ddot{a})$. Note: \vec{a} is a geodesic $\iff k_g = 0$. k_g is called the <u>geodesic curvature</u> , k_n is called the <u>normal curvature</u> . In curved space, \vec{a}_{a}	
	The unvolute k of 8 (so a curve in R3) is $k = t = 3 $. Then $k^2 = t ^2 = 3 ^2 = k_n^2 + k_g^2$ differentiate, $= \pi + \iint kdA$.	_
-	3'(5) E T3(5) Z, No3(5) L T3(5) Z. Thus, < 3'(5), No3(6)>=0 => <3'(0), N(0)> + <3'(0), (No3)'(0)>=0 => <3"(0), N(0)>= - <(N03)'(0), W> N	
	:, <* (o), N(P)> = - <(DN) p W, W> = IIp(W) => kn = IIp(W). This gives us another interpretation of the second fundamental form.	
	K1, K2. Recoil that -(DN)p: TpZ→ TpZ is self-adjoint, i.e. it has real eigenvalues. (principal curvatures) and eigenvectors C1, C2. which are orthonormal (principal directions).	
	(w= 3 ^t (0)) Any unit vector we Tp∑ (1w1=1) can be written as w= e, cos e+ e2 sin e, kn(p) = Ip (w)=<-(DN)p w, w> = <(cos e)(-DN)e1 + (sin e)(-DN)e2, (cos e)e1+(cin e)e2>.	
	= $\langle k_1 e_1 \cos \varphi + k_2 e_3 \sin \varphi$, $e_1 \cos \varphi + e_2 \sin \varphi \rangle = k_1 \cos^2 \varphi + k_2 \sin^2 \varphi$. This gives us <u>Euler's formula</u> : $k_n = k_1 \cos^2 \varphi + k_2 \sin^2 \varphi$.	
	Two q.	
	This enddes us to columble current these in components. In particular, $\varphi=2$, $k_n=k_2$.	-
	Note that we have thus for abready defined several currenteres, which are all different. Do not mix them up!	-
	18 November 2013 Rof Pod HALBURD.	
	Definition toring PEZ, we TPZ, let Pw be the plane in R ² containing p, and parallel to N and w. The interaction Z N Pw is called the normal section. Conception B401.	
-	of Z at p in the direction W. We can parametrise this curve by and ength. Since & lies in the plane, then so does its principal normal	
_	vector at p, \underline{n} ; and $\underline{n} = \pm N$. Then $k_n = k < \underline{n}, N >= 1 - k$ if $\underline{n} = -N$.	
_		
	recul that $k_n = k_1(cos^2 q) + k_2(sir^2 q)$, and Gauss construce, $K = k_1 k_2$. If $K > 0$, k_1, k_2 have some sign. In particular, k_n has some sign for any normal section.	
	Tackwited A point para transfere Z is colled (1) elliptic if K(p)>0, (2) hyperbolic if K(p)<0, (3) personalit if K(p)=0, (DN)p =0.	
	Suppose we have case (1): elliptic at p. Then at p, $K \ge 0 \Rightarrow K_{1,1}K_{2} \le 0$ or $Suppose k_{1>0}$ NA NA NA NA NA NA NA NA NA NA	
	(AMI/)D	
	Then for use (2), $K(p) < 0 \Rightarrow k_{1+}k_2$ have opposite signs. Ble $k_{1}>0$, $k_2<0$. $k_{1-} = k < n_1, N > (n_1, N > +1)$. If $k_2 = k < n_1, N > (n_2, N > +1)$.	
	(not vecessissily eigensterss)	-
-	Until Now, we have usually used the basis $404,04$; for TpZ. Now, we nill instead use an orthonormal basis $4e_1, 2, 5$, e.g. $e_1 = \frac{E(7 - For}{E})$, by orthogonal diagonalisation	n.
-	These are smath, and we can relify that left=lest=1, e1. e2=0, e1.x e2= 104 x org.	_
-	let I be an orientable surface with orientation N. let e, es be smooth functions st. at each pEZ, 1e, est is an orthonormal basis of Tp Z and N= e, xez.	
-	let O be a smooth function st $\bar{\nabla}^{\mu}$ e, cos O + e2 sin O. Then kg= $\bar{\Theta}$ - e1, \bar{e}_2 - O.	
-	noof - 2 = e1 cos 0 + e2 sin 0 - e1 sin 0 0 + e2 cos 0 0 and Nx3 = - e1 sin 0 + e2 cos 0. Then we note that e1 e2=0, e1, e1=1 ac, then e1, e1=0 from e1 e1=1.	
	and e, e2+ e, e2=0 from e, e2=0, 3= KNN+ KNN+3 ⇒ Kg=3. (N×3)=0-e, e2, ged.	
	$\frac{(1+1)}{(1+1)} = \frac{(1+1)}{(1+1)} = \frac{(1+1)}{($	
1	hoof - 1e1, e2, NY is an contransmul basis for R ³ . Then e1. (e1) = 0 etc so I scalars a, b, c, d set. (e1) = ae2 tex, (e1) = be2 tdN. Similarly, noting that e1. (e2) = = (e),	e2
1	$(e_2)_{u} = -a + \hat{c}\tilde{N} \text{since} e_1 \cdot (e_2)_{u} = -(e_1)_{u} \cdot e_2 = a \cdot e_2 \cdot e_2, (e_1)_{v} = -be_1 + \hat{d}\tilde{N}. \text{ then} (e_1)_{u} \cdot (e_2)_{v} - (e_1)_{v} (e_2)_{u} = (a \cdot e_2 + c\tilde{N}) \cdot (-be_1 + \hat{d}\tilde{N}) - (b \cdot e_2 + d\tilde{N}) \cdot (-ae_1 + \hat{c}\tilde{N})$	
1	$= (c\hat{d} - d\hat{c}) = [(e_i)_u \cdot \tilde{N}]((e_i)_v \cdot \tilde{N}) - ((e_i)_v \cdot \tilde{N})((e_i)_u \cdot \tilde{N}] = X. using e_i \cdot \tilde{N} = 0, (e_i)_u \cdot \tilde{N} = -e_i \cdot \tilde{N}_u e_i, (c\hat{d} - d\hat{c}) = (e_i \cdot \tilde{N}_u)(e_i \cdot \tilde{N}_v) - (e_i \cdot \tilde{N}_v)(e_i \cdot \tilde{N}_v)(e_i \cdot \tilde{N}_v) - (e_i \cdot \tilde{N}_v)(e_i \cdot \tilde{N}_v)(e_i \cdot \tilde{N}_v)(e_i \cdot \tilde{N}_v) - (e_i \cdot \tilde{N}_v)(e_i \cdot $	و
+	identity $(A \times B) \cdot (c \times D) = (A \cdot C) (B \cdot D) - (A \cdot D) (B \cdot C)$, $\chi = (\widetilde{N}_{u} \times \widetilde{N}_{v}) \cdot (e_{1} \times e_{2}) = (\widetilde{N}_{u} \times \widetilde{N}_{v}) \cdot \widetilde{N} = \frac{e_{3} - \ell^{2}}{\ell e_{3} - \ell^{2}}$ from quotien in chapter 4.	
+	All these motivate our eventual statement of the Gauss-Bonnet theorem: $\sum_{j=0}^{\infty} \int_{S_{i}}^{S_{j+1}} k_{g}(s) ds + \iint k dA + \sum a_{j} = 2\pi$.	
+	Befinision A map 3: [0,1] -> 2 is a parametrised picturise regular curve if 3 is continuous where to, ty, that E[0,1] with 0= to < ty < < th +y = f st. j = [0,1,-,n].	
	The respiration of it to Ity, ty-1] is a regular surve (colled a regular arc of it). Furthermore, it is colled simple if it (a) + itb) it distinct a, b (to, 2].	
	His called closed if $\vartheta(0)=\vartheta(l)$. At each vertex $\vartheta(t_{ij})$, the limits $\vartheta(t_{ij}^+)=\lim_{t\to\infty}t \ \vartheta(t)$ and $\vartheta(t_{ij}^-)$ exist.	
I	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
t		
t	α_j is chosen to be $\pi \Leftrightarrow$ the rector $\dot{x}(t_j-\epsilon) \times \dot{x}(t_j+\epsilon)$ points in the same direction as N for sufficiently small size.	
1		

Theorem (Turning tangends). With above notation, $\sum_{j=0}^{n} \left[\Theta(S_{j+1}) - \Theta(S_{j+1}^{+}) \right] + \sum_{j=0}^{n} u_i = \pm 2\pi .$ (3) where enjes abe only orthogond Roof-Topology; omitted. Infinition A region & of an oriented surface ∑ is said to be simple if it is homeomorphic to the whit circle, and its boundary aR is the trace of a simple closed preservice regular rune. (orthogonal to 3) B: I → Z. At each point of aR, apart from the vertice, there is a unique unit rector v st. the point 8+EV is in R for all sufficiently small e.zo. The curve 3 is said to be positively oriented if $-\delta \times V$ points in the same direction as the orientation N. Theorem (Gows-Barnet Theorem - local version). let UCR2 be homeomorphic to an open disc and let Z be a regular surface with an orientation compatible with a parametrisation $\sigma: U \rightarrow \Sigma$. let R C O(U) be a simple region of Z and suppose that there is a closed simple piccowice regular curve 2:1-> Z parametrised by ardength, s.t. 2(I) is the boundary 3R of R. let &(so), ..., &(sn) and do, ..., dn be the vertices and exterior angles of & respectively. Then Zo is 1/ Kg(s) ds + II K dA + Zd; = 2T - @ where kg is the geodesic curvature of 8 and K is the Gauss curvature. Prof- From D, _ = [Sit kg (s) ds = 2 ([Sit 0 ds - [Si $\frac{z}{z^{2}} \int_{S_{1}^{1}}^{S_{1}^{1}} e_{1} \cdot \dot{e}_{2} \, ds = \iint k \, dt \cdot N_{DN} \sum_{j=0}^{2} \int_{S_{1}^{1}}^{S_{1}^{1}} e_{1} \cdot \dot{e}_{2} \, ds = \sum \int (e_{1} \cdot (e_{2})_{v} \dot{v} \int ds = \sum \int (e_{1} \cdot (e_{2})_{v}) \dot{u} + (e_{1} \cdot (e_{2})_{v}) \dot{v} \, ds \quad u_{sing Green's Theorem, Single Constants Theorem, Singl$ *D faces thioryle bedges. Belinhood Atnongulation of a regular region RCZ is a finite finity of transles Ty ..., The site (1) UT; = R and (2) Vi≠j, Ti∩Tj is empty, or a single common vertex, or a single common edge (Definition) The Euler dusradoistic X(R) is given by X(R)=F-E+V, where F=#faceo, E=#edges, V=#vertices. Example - Consider a (topological) sphere, 52 <-> tetrahedron. Then by this choice of triangulation, 7(5)=4-6+4=2. This shows us to generalize the Gauss-Bonnet theorem in more complicated to pologies, then me have ΣSC; kgds + II kdA + Zdi = 2π χ(R). This will be further elaborated upon. Me attempt to find a triangulation; and first, a representation consider a rectangle. Then we identify edges (as denoted by arrows). this does not work, is more than two vertices are shared then, we tridingulate the rectangle: likewise, neither is this: However, for an odd numb er in the complexity, this norths. Then (note, one long honizontal & vertical edge of rectangle is repeated and should not be connected!) Henon Cours-Bower Theorem - Global Version). Let RCE be a regular region of an oriented surface, and let C1, ..., Cp be closed regular corres which form the boundaries of R. support that each ci is positively oriented, and let N1, ..., dn be external angles of the curves c1, ..., cp. Then 1=1 c; kg(s) + I KdA + Z de = 217 X(R). Remark - n, p have no correlation! Depends on smoothness of Ci Troof - consider a tridagulation. We assume the following facts of the Eulercharacteristic: (1) every regular region admits a triangulation. (2) X is independent of choice of triangulation. [3] let Z be an oriented surface, and 1 of the a parametrisation compatible with its orientation. Then I a triangulation Top R st. for each triangle TET, TE Ja (Ua) for some d. Furthermore, for the boundary of every thingle is positively aricular, then adjacent triangles determine oppendie diversions on the common edge. Assume that R has a triangulation T as described in (1), (2), (3). Then let Idja, dja, dja, djat be the exterior angles of triangle Tj. Now apply local Sours-Bonnet Theorem to each triangle, Un or djagg . and add up the results. The integrale of Kg along any common edge cancel because of the opposite directions of integration in the sum = E City ds + IS K dA + E Z K= dik = 20. F. Thus, we need to understand the term Z k=1 dik. Then, in terms of The words internal adges of T, Ve=# external vortices of T, $V_i=#$ internal vortices of T. clearly, Ee = Ie; Moreover, Roof Red HALL suppose that we count number of edges (3) for each triangle, giving 3F. Each internal edge has been counted trice, external edge only once. i.e. 3F = 2E; + Ee -3 2: $\sum_{j=1}^{2} \sum_{k=1}^{2} \alpha_{jk} = 2T = i + T = e - \sum_{j=1}^{2} \sum_{k=1}^{2} \alpha_{jk}$ by 3. We then subjuse vertices into three types - internal, and two types of external vertices. Then we let

		Ver= # vertices from triangulation that are not revolves of cjs, and also Ver = # external vertices that are notices of cj = n = # vertices of c external	is . of verte
		The sum of interval angles at each interior vortex is 2TT, sum of interval angles at each vertex of T (that is not a vortex of C) is T, sum at vo	entices of Cis is interior angle.
		$\sum_{k=1}^{F} \sum_{k=1}^{3} \varphi_{ik} = 2\pi V_{i} + \pi V_{et} + \sum_{k=1}^{n} (n-d_{\ell}) = 2\pi V_{i} + \pi V_{et} + \pi V_{et} - \sum_{k=1}^{n} d_{\ell} = 2\pi V_{i} + \pi V_{e} - \sum_{k=1}^{n} d_{\ell} + \pi V_{e} + \frac{1}{2\pi} V_{e} + \frac{1}{2\pi}$	= 2 TE; + TE - 2 2 9; K,
		$\sum_{i=1}^{2} \sum_{k=1}^{2} d_{i}k = 2\pi E_{i} + \pi E_{e} - 2\pi V_{i} - \pi V_{e} + \sum_{k=1}^{2} d_{k} = 2\pi E_{i} + 2\pi E_{e} - 2\pi V_{i} - 2\pi V_{e} + \sum_{k=1}^{2} d_{k} = 2\pi (E-V) + \sum_{k=1}^{2} d_{k} = 2\pi (E-V) + \sum_{k=1}^{2} d_{k} = 2\pi E_{i} + 2\pi E_{e} - 2\pi V_{i} - 2\pi V_{e} + \sum_{k=1}^{2} d_{k} = 2\pi (E-V) + \sum_{k=1}^{2} d_{k} = 2\pi E_{i} + 2\pi E_{e} - 2\pi V_{i} - 2\pi V_{e} + \sum_{k=1}^{2} d_{k} = 2\pi E_{i} + 2\pi E_{e} - 2\pi V_{i} - 2\pi V_{e} + \sum_{k=1}^{2} d_{k} = 2\pi E_{i} + 2\pi E_{e} - 2\pi V_{i} - 2\pi V_{e} + \sum_{k=1}^{2} d_{k} = 2\pi E_{i} + 2\pi E_{i$	nto (1), then we get:
		$\sum_{i=1}^{\infty} \int_{C_i} k_g ds + \iint_{R} K dA + \sum_{k=1}^{\infty} d_k = 2\pi \chi(R) = 2(F - E + V)_{ij} qe.d.$	
			nfinite bounded,
	A compact s	surface is a surface that is bounded in R3 and los no edges. e.g. a sphere, torus but not a parabobid.	smedage.
	Theorem	For any compact surface, $2\pi \chi(\Sigma) = \iint_{\Sigma} K dk$.	
		Boof - Fran Gunner Theorem.	
	Application	s: For any compact connected (i.e. one piece) surface Σ_1 the quantity $g = \frac{2 - \chi(\Sigma)}{2}$ is called the <u>genus</u> . Roughly speaking, this is the number of hele Topologically, we have the fillowing $g = 0$ $g = 0$ $g = 0$ (sphere with heirdle) $g = 2$ (double torus)	6
	Theorem	Let $\Sigma \subset \mathbb{R}^3$ be a compact connected surface, then $\chi(\Sigma)$ tokes on one of the values $2,0,-2,, (g=0,1,2,, :: g=\frac{2-\chi(\Sigma)}{2})$.	
		Furthermore, if $\tilde{\Sigma} \subset \mathbb{R}^3$ is a second compact connected surface s.t. $\gamma(\tilde{\Sigma}) = \chi(\Sigma)$, then Σ is homeomorphic to $\tilde{\Sigma}$.	
		Roof - Omitted. (This theorem concerns deformation of structures).	-> (*) from s topolog perspective.
Å	[sein mo)	(Jordon whe lowma)	
		Any simple closed curve in R ² is the boundary of two disjoint regions, one bounded (interior) and one unbounded (exterior).	
		proof - Also sourced, swithed.	
	(ovollow) (of Lows (GPT)		
	lef Loud GIT	Proof-anitted.	
	Corollism	' Any compact connected surface with positive Gauss currichure is homeomorphic to the sphere.	
		Proof - GB Theorem ⇒ 2π×12) = { K dA > 0 since K>0. 2π×(Σ)>0 ⇒ since ×(Σ) con only toke discrete volves, only positive one is 2	⇒ X/S)=2. hone anothic to S/
	(and long)	tet I be an orientable suffice with KEO. The geodesics while their in such a way that they form the bandonies of a simple region.	82 K
		By contradiction. Broof-Trace the geodesics with a positive orientation. $k_g \equiv 0$, and $\chi(R) = 1 \implies \int [K dA + d_1 + d_2 = 2T. since K \leq 0,] [K dA \leq 0 \Rightarrow d_1 + d_2 = 2T. since K \leq 0,] [K dA \leq 0 \Rightarrow d_1 + d_2 = 2T. since K \leq 0,] [K dA = 0,] [K $	2 2 2T D. X. GAMMONT
		Since each extension single is between 0 and π by definition, $\alpha_1 = \alpha_2 = \pi \Rightarrow$ since geodesics are unique in direction at each point, the	- roppen
		vector (up to sign) at the varius => scient geodesic is some as first, traced in opposite direction. Then R= \$.	
	[conditiony]	(Jacohi's Theorem) doconot self-into	AULT S2
		let $3: I \rightarrow R^3$ be a closed regular curre with non-zero currature. Assume that the curre $n: I \rightarrow 5^2$ there by the principal normal is simple.	n tysies out
		then MI divides S ² just the equal area.	A sphere.
		Roof-since this is the unit sphere S ² , K=1. Groups-Bonnet theorem is I kg dS + [[K dA + Free = 277 X (K) = [kgdS + A + 0.	
		her is be the antenigth of the curve is(is)= 11 (ophene nume). We apply Frenetformulae: ts=k1, ns=-kt-tk, hs=th	2 December 2013
		the gestimic current of $U=\hat{B}$ is given by $k_g = (N \times \hat{F}) - (\hat{F}) = (B \times \frac{dB}{dS}) \cdot \frac{d^2B}{dS^2}$ since $N=N$, the position vector, dot wit \hat{S} .	Rof Rod HALBURD Gruciform B401.
		Now $\frac{d\theta}{d\xi} = \frac{ds}{d\xi} \cdot \frac{d\theta}{d\xi} = -(k\pm +\tau b)\frac{ds}{d\xi}$, since $ \dot{\mu} =1$, $\frac{ ds }{d\xi} =\frac{1}{(k^2+\tau^2)}$ since \hat{s} is and eagth of θ . Then $\frac{d^2\theta}{d3^2}=-(k\pm +\tau b)\frac{d^2s}{d\xi^2}-(k_s\pm +\tau s)\frac{d^2s}{d\xi}$.	1
		$= -(k\pm\tau\pm)\frac{d\xi}{d\xi^{2}} - (k_{5}\pm+\tau_{5}\pm+(k^{2}+\tau^{2})\underline{u})(\frac{d\xi}{d\xi})^{2}, \text{ them } k_{g} = (\underline{u}\times\frac{d\underline{u}}{d\xi}) \cdot \frac{d^{2}\underline{u}}{d\xi^{2}} = (\underline{k}\underline{b}-\tau\underline{b})\frac{d\xi}{d\xi^{2}} - (\underline{k}\underline{b}+\tau\underline{b})\frac{d^{2}\underline{s}}{d\xi^{2}} - (\underline$	
		$\Rightarrow k_{g} = \frac{\tau k_{s} - k\tau_{s}}{k^{2} + \tau^{2}} \frac{ds}{ds} - \tau hen \int k_{g} d\hat{s} + A(R) = 2\pi \Rightarrow \int k_{g} d\hat{s} = \int \frac{\tau k_{s} - k\tau_{s}}{k^{2} + \tau^{2}} ds = \int \frac{d}{ds} (snetan(\vec{k})) ds = 0 (\because integral of sn exact deviation)$	votire around closed curve)
		$\Rightarrow \text{ area of } R = \iint dA = 2\pi - \int kg d\hat{s} = 2\pi = \frac{1}{2} (4\pi)_{1/2} + \epsilon_2 d.$	
	d. New 7		
	UNAPTER 7. GENERAL TOPOLOGY		
	[Definition]	A spectraged on a set X is a contention Y of subsets of X satisfying the following conditions:	
		1. \$ ∈ T, X ∈ T 2. Y is closed under orbitrony unions. 3. T is closed under finite interactions	
		which lie in $[\bigcap_{j=1}^{N} U_j \text{ is open}, \bigcup_{j\in \Lambda} U_j \text{ is open} \text{ if each } U_j \text{ is open}]$. The subsets of X , T are called the open sets of X .	
		Example - Two-topologies on any open set X are (1) trivia to pology T=1\$, X} and (2) discrete topology T= 2X = all subsets of X.	
-		let X= 11,2,3}, then 7= 1\$\$, 11,2,3} is trivial topology, T2= 1\$\$, 117, 11,2,3} is also a topology; as is T3= 1\$\$, 117, 11,27, 1	5 December 2013
		Note - A collection of subsets consisting of 1\$1.417, 123, 11,2327 is not a topology as 112 U 123 & T	Rof Rod HALBURD. Gondon sq (16-18) G01.
		(X, T) is colled a topological space.	
	1		3113-

	trefinition let (X,T) be a topological space and let YCX be any subset (not necessarily open). Then Ty = {YAU=UETT is a topology on Y called the subspace topology.
	Example - consider X= [0,1] = R with the subspace topology from R(with standard topology). Then [0, 2] is open in X but not R, since [0, 2] = X (-2, 5)
	(1) (2) (3) F is united allocations of land (3) F is united allocations of land (3) F
	(Lemma) let Y be a subset of the topological space X. Then ACY is closed in Y with respect to subspace topology \iff A=YAC, where C is closed in X. X.
	Proof-Assume A=Ync, c. dosed. X/c is open => Y/A = (X/c)nY = (openset in X)nY = this is open in subspace topology dosed (C) Y
1 K =	Convendy, assume that A is closed in Y. So YA is open in Y. Then YA=YAU where U is some open set in X.⇒ X/U is closed in X. A
	⇒ A = Y ∩ (X/U) = Y∩C for closed cf q.e.d.
	Tophilian let Y be a subset of a topological space X. The donute of Y is the set cel(Y)= y= A fail closed subsets containing YS. The interview of Y is Int(Y)= y= U { all open subset}.
	XE Y (premy open set U containing X intersects Y.
	tectivition Earony x in a topological space X, a neighbourboard of x is any open set containing x.
	(Definition) A topological space X is called thousdorff (or a thansdorff space) if for each pair of distinct prime X1, X2 EX, 3 neighbourhoods U1, U2 of X1, X2
	respectively s.t. Us a U2= \$.
e d'ang e de la s	Theorem Every finite point set in a thresdorff space X is closed.
	Roof-We may need to show that (Xo) is closed for each XOEX. Take X # XO. I heighbourhood of X not containing XO X/XXX = union of all such sets, 2.
	which is open = 1% or is closed.
	Topution A sequence X1, X2, E X is said to converge to XEX if given any neighbourhood U of X, JN st XX EU Yh>N.
	thereased if X is a Housdorff space, then the sequence MATCX converges to at most one point of X.
	Proof- Suppose that there are two limit points X, y & X. X is Handorff, so 3 open sets U1, U2 st. X & U1, y & U2, U1, U2= \$\$. IN ST. YN>N, Xn & U, VA>N
	⇒ ×n & U2 YN>N ⇒ contradiction/ q. e.d.
	Theorem if X, Y are metric spaces, $f: X \rightarrow Y$ is continuous $\iff f^{-1}(u)$ is open in X for all open subcets $u \circ f Y$.
	Proof-let U be a neighbourhood of f(x0). B= BE (f(x0)) CU, p ⁻¹ (B) is open and x0 E f ⁻¹ (B) BS st. BS(x0) C f ⁻¹ (B).
19.2	$\frac{ f_{0} ^{-1}}{ f_{0} ^{-1}} \xrightarrow{K_{0}} f_{0} = \frac{1}{2} \left[f_{0} + \frac{1}{2} $
4	Terminant let X,Y be topological spaces then f: X-> Y is said to be continuous if f ¹ (u) is open in X when over U is open in Y. B1 B2
	TREPARTING Act/U,T) be a topological space and let B be a collection of open subjects of X s.t. (1) $\forall x \in X, \exists B \in B \text{ with } x \in B, (2) if x \in B_1 \cap B_2, B_1, B_2 \in B, then (1)$
	3 B, E B. s.t. X E B3 C B1 (1B2. Then T is the topology generated by B, and B is called a leasis for T.
1 . A	Bige W. s. 1. no us of the manifold of dimension n (n-manifold) is a topological space M st. (i) Befinitional A topological manifold of dimension n (n-manifold) is a topological space M st. (i) Mis Hausdorff, Mis locally Euclidean of dimension n (i.e. for XEM, 3
	Regulation A topological montpless of an incommunity in a community in the interview of a construction from U to an open set in R ^M with construction inverse) and (iii) M has a
	15
	countable twis of open sets.
	Prof Part Housener Courton B401
	CONNECTARIEN SING CONDUCTION
	Tequintion let X be a topological space. If X=UUV where U,V are open, disjoint (UNV= \$) and non-empty (U\$\$\$\$, V\$\$\$\$\$\$\$\$\$\$\$\$, then X is disconnected.
	othernice, X is convected. X disconvected
	Theorem X is connected (=> \$\phi_X\$ are the only sets that are both open and closed.
	Theorem suppose X=UUV where U,V are open and disjoint. Then U,V are also dosed.
	poop - V=X\U is dosed, u=X\U is dosed, qe.d.
	proof - (E) suppose X was not connected, then we can find U, V as non-empty open and class as contradiction.
	(⇒) let U be open and closed, U≠ \$ and U≠X. Then X=UU(XU), but XUU is open since U is doved ⇒ X is disconnected ⇒ contradictionly q.e.d.
	Theorem let X be a connected topological space, and f: X > Y be contributed. Then f(X) is connected.
	not- suppose othernice. Then 3 nonempty disjoint open 605 U, V at. flN=U UV. Then X= (f-(U)). U(f-(V)). Since fis continuous,
	f-1(10, f-1(V) are continuous in X and digina since U and V me digina). So X is not convected since f-1(U), p-1(V) are non-empty / ge. d.
·	
	(htermesiste blue Theorem)
	where X is a converted topological space. let f:X->R be a continuous feminion, and let a, b & Xithen for all v st. flaxer < flb), ICEX st. flaxer.
	Proof- suppose ormanise, then f(x)=r VXEX. Then f(x)=rUB. A= f(x) (-100, r) open, 3= f(x) (r, 00) open. Henry A(b=\$\$, Moreover, f(a) r f(b)

3113-12

	fa) etc., f(b) ets = A, B = p. = by definition, f(X) is not connected. However by previous theorem, the image of connected set X is connected = contradiction / q.e.d.
<u> </u>	Definition A collection of sets that were is said to be a concer of a set A if A C der Ad. If the Ad are all open, then that is called an open cover.
	Definition A subset A of a topological space X is said to be compact if every open cover contains a finite subcover (i.e. if we have so open cover we I had, then we only head flutty many . Was.
	Example - R (with the usual topology) is not comput. over R with An E (1,4+2) NET. then R= UAN is an open cover. Then n+1 EAn but n+1 & A; for j + n. So
	if we remove my An for the cover, we no longer have a cover a not compact.
	Theorem The image of a compact set under a continuous-fluction is compact. X compact, Roof - Let fix - Y be continuous, and suppose that f(0) < U Ud is on open cover. Then X= U f=1(Ud) is on open cover. The a fine subcover, f=1(Udi),, f=1(Udi),, f=1(Udi),, f=1(Udi).
	so $U_{d_1}U_{d_2},,U_{d_N}$ is a finite subcover for $f(X) \Rightarrow f(X)$ comparty $q.e.d$.
	ENDOFSYLLABUS.
	12 December 2013 Review of 2012-2013 Exam Paper Gordon Sq. (16-18) Gord - Gordon Sq. (16-18) Gord -
	(A) d d
	Q1(a) Given d(t), find \pm , $\underline{\mu}$, \underline{k} . (b) For what values of constant c is $\Sigma = f(x_1y_1, z): x^2 + y^2 - z^2 = cf$ a regular curface? (b) For what values of constant c is $\Sigma = f(x_1y_1, z): x^2 + y^2 - z^2 = cf$ a regular curface? (c) $\nabla f(X(y_1, z)) = x^2 + y^2 - z^2$, $\Sigma = f^{-1}(c)$. $\nabla f = (2x_1, 2y_1, -2z) = 0$ \Leftrightarrow $(x_1, y_1, z) = (c_1, c_1, c_2)$
0	If c=0, (0,0,0) \$ Z. So Z is the regular preimage of a smooth function => regular surface. If c=0, Z=1(x ² +y ² , which is a some S, not regular
	If c+u, u, u, u, u, v, v, c z is me regular preimage of a smooth function - regular surface. If c=U, z-u, x+y-, which is a some , nor regular (smooth)
	If it were, then it could be written as $z=g(x,y)$, $y=g(x,z)$ or $x=g(y,z)$ for some gregular locally. $z=\pm \sqrt{x^2-y^2}$ is not differentiable (and 2 valued). $y=\cdots$ not functions for the source of t
	(a) show that if the 2 nd FF of a regular surface Σ vanishes identically, then Σ is part of a plane. $\textcircled{P} = -\langle \widetilde{N}_{u}, \sigma_{u} \rangle$, $f = -\langle \widetilde{N}_{v}, \overline{\sigma_{v}} \rangle = -\langle \widetilde{N}_{v}, \sigma_{v} \rangle$.
	$e=f=g=0, \text{ then } \tilde{N}u, \tilde{N}v \in \text{Tp}\Sigma \text{ since } \tilde{N}\perp \text{Tp}\Sigma. \text{ Then } \tilde{N}u = d\sigma_{u} + \beta\sigma_{v}, \text{ but } \langle \tilde{N}u, \sigma_{u} \rangle = \langle \tilde{N}u, \sigma_{v} \rangle = 0, \tilde{N}u = 0, \tilde{N}v = 0 \Rightarrow \tilde{N} = const = N_{0}. \text{ Take substrang points}$
	on surface, σ , then $\frac{2}{3}u < \sigma, \widetilde{N} > = \langle \sigma_{u}, \widetilde{N} \rangle + \langle \sigma, \widetilde{N} u \rangle = 0$. Likewise $\frac{2}{3}v < \sigma, \widetilde{N} \rangle = 0 \Rightarrow \langle \sigma, \widetilde{N} \rangle = const \Rightarrow equation of plane is treaded (u,v) = (x(u,v), y(u,v), z(u,v))$.
	Q2(b) For each tEICR, let 19(1), 21(1), 21(1), 21(1), be a right-handed without of the orthonormal vertors in R ³ (i.e. e; e; = Sij, 53=9, x8). If each ej(1) is a smooth function of t,
	show that I smooth functions alt), b(t), u(t) s.t. $\frac{1}{4t} = A(t) \cdot w$ where $w(t) = \begin{pmatrix} z_2(t) \\ z_2(t) \end{pmatrix}$ and $A(t) = \begin{pmatrix} -c \\ -b \\ -a \end{pmatrix} \begin{pmatrix} -a \\ -b \end{pmatrix} \begin{pmatrix} -a \\ -a \end{pmatrix} \begin{pmatrix} -c \\ -b \end{pmatrix}$
	Brince e_1 , e_2 , $e_3 \in \mathbb{R}^3$, they can be expanded in basis $e_{11}e_{21}e_{3}$. Then \forall satisfies an quasical of form (1) for some $A(t)$. $\begin{pmatrix} e_1 \\ e_2 \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} & \cdots \\ e_3 \end{pmatrix} \begin{pmatrix} e_1 \\ e_3 \end{pmatrix}$. $A_{11}e_1 + A_{12}e_3 + A_{13}e_3$
	$A_{ij} = \dot{e}_i \cdot e_j \text{Since } e_i \cdot e_j = \delta_{ij}, \text{take time derivative } \dot{e}_i \cdot e_j + e_i \cdot \dot{e}_j = 0 \Rightarrow \dot{e}_i \cdot e_j = -e_i \cdot \dot{e}_j \Rightarrow A_{ij} + A_{ji} = 0 \Rightarrow A \text{ stew-symmetric}_j$
	(b) let M(t) be the 3x3 mothin with components Mij = <eith, (*="" a(t).="" a(t).<="" ej(t)),="" ej(t),="" ej(th),="" m="W" m'(t)="A(t)" m(t)-m(t)="" show="" td="" that="" w'="(ej(t),"></eith,>
	Continue of 14 as a 333 matrix, it now of which are components of E: Then M = inwt + wint = (AWW + w(AW) = AWW + WWTAT = AM+MAT = AM-MA/1.
	(c) suppose now that they say is any solution of the ODES (1, (2) Ite I st. (5, (to), 52(to), 52(to)) is a right-handed system of there orthonormal vector for some to eI. show that
0	12,(1), e2(1), e2(1) is a right-handed system of 3 orthogonal vectors. (M(to) = Iz since 1e1, e2, e3t is an orthogonal frame at t= to. M(so, 2t M(t) = A(t) M(t) - M(t) A(t) - (D.
	There is a unique solutions of IVP (1) with (3). By uniquences, M= I3 is the only solution, then $e_1'e_2 = s_1'_2 + s_1'_2 + s_1'_2$ orthonormal. For right-handedness, MTP:
	$t \neq t_0$ det $w = \pm 1$. det $w(t_0) = 1$, det $w(t_1) = \pm 1$ (orthonormal). But dat is continuous, so det $w(t_1) = 1$.
	(36) Find the 1 st and 2 nd FFs of the surface parametrised by $\sigma(u,v) = (a + b \cos u) \cos v$, $(a + b \cos u) \sin v$, $b \sin u$, $b \sin u$, u where $a > b > 0$ using shouldond orientation. Hence colourate mean construct 1
	$\frac{as u}{\sigma_u} = (-b \sin u \cos v, -b \sin u \sin v, b \cos u).$ $\sigma_v = (-(a + b \cos u) \sin v, (a + b \cos u) \cos v, o) = (a + b \cos u)(-\sin v, \cos v, -b \sin u \sin v, b \cos u).$
	(standard orientation)
	$E = \langle \sigma_u, \sigma_u \rangle = b^2, F = \langle \sigma_u, \sigma_v \rangle = 0, G = \langle \sigma_v, \sigma_v \rangle = a + b \cos u^2 y] [we can have answer like this]. \qquad \sigma_u \times \sigma_v = (a + b \cos u)(-b \cos u \cos v, -b \cos u \sin y, -b \sin u) \Rightarrow \sigma_u \times \sigma_v$
	$= -b(a+b\cos u)(\cos u\cos v, \cos u\sin v, \sin u).$
	$\tilde{N}_{\mu} = -(-\sin u \cos v_{1} - \sin u \sin v_{1} \cos u), \tilde{N}_{\nu} = -(-\cos u \sin v_{1} \cos u \cos v_{1} \partial), \pi_{\mu} = e_{-} - \langle \tilde{N}_{\mu}, \sigma_{\mu} \rangle = b (\sin^{2} u \cos^{2} v + \sin^{2} u \sin^{2} v + \cos^{2} u) = b. f_{-} - \langle \tilde{N}_{\mu}, \sigma_{\nu} \rangle = 0.$
	$g=-\langle \widetilde{N}_{v}, \sigma_{v} \rangle = (a+b\cos u) \cos u / H = \frac{1}{2} \frac{e_{G}-2F+qE}{E_{G}-F^{2}}, K=\frac{e_{G}-f^{2}}{E_{G}-F^{2}}.$ [formulae will be provided]. $H=\frac{a+2b(as)u}{2b(q+bcos)u}.$
	(b) 15 this surface isometric to a sphere? No. For a phene of radius r, K = F2 which is a positive caustant # K for above surface. Honce by Gauss's Theorema Egregium, they canno
	be bometric - copy the theorem 11.
	Atta Recoil for a regular surface, Jun = Ti, Ju + Ti Ju + en ex for Juy, Jun, Nu, Nu. Revive the equation ex-fu = e Ti2 + f(Ti2 - Fi1) - g Ti1. Buse the fact that equations extended
	compatibility: (Ouv) = (Ouv) u, (Ouv) u = (Ovv) u, (Nu) u = (Nv) u. We can just use first underlined equation, and pay attention to N term's coefficients only.
	(συμ) = (Γη), σu + Γη' συν + Γη' συν + εν N + εN = () συ + (Γη' f + Γη' g + ευ) N. (συν) = () συ + (Γ'2 + Γα2 + + Γω) N. Equating coefficients, me get

I		1
		- 1
	(b) given some E=, F=, G=, columbre the gours canonic etc.	
	W givensome com, 1 m, given, columpticities and an even on	
)
	END OF COURSE	
		- 1
· · · · · · · · · · · · · · · · · · ·		
	4 ý	
		/
-		
2)
13-14-		