3113 Differential Geometry Notes

Based on the 2017 autumn lectures by Dr B Lambert

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

1ATH 3113 03-10-17 Differential Geometry Dr Ben Lambert , Room 600 , b. lambert aud ac. uk Office hour: Mon 704 3-4 pm Ma0% exam, 10% coursework Hand in Ww on Tuesdays Lecture notes available at the end of each chapter Book: Do Carmo - Differential Geometry Theory of Curves Det (Parameterised Curve) -A parameterised curve is a continuously differentiable mapping from an interval ICR to Rn, i.e. J: I - R". The trace of y b-(x):= x(I) < IR" - y is regular if y'(t) = dd(t) + 0 Ht EI The tangent vector of y is z'(t) Examples i). y(t) = (acost, asint, bt), teR tangent vector: p'(t) = (-asint, acost, b) +0 iff a2+b2 #0 \Rightarrow a \neq 0 or $b \neq$ 0 ii) +(t) = (t3, t2) not a regular curve g'(t) = (3t2, 2t) = 0 if t=0

Remarks:

- We could also define a C^k -curve, that is one

that is k times continuously differentiable, $k \ge 1$. Def (Homeo- and Diffeomorphisms) Let I, J < R and suppose Ø: I >> J is bijective. Then \$ is called inverse for.

i). a homeomorphism if both \$ and \$ o' are continuous i). a diffeomorphism if both \$ and \$- are continuously differentiable. Remark: By the Inverse Function Theorem, we can see that a bijection p: I - I is a differ (diffeomorphism) iff \$ is continuously differentiable and \$ (t) # 0 YEEI Det (Reparameterisation) Let J :: I -> R" and J2: J -> R" be parameterised curves. I there is a diffeomorphism &: I -> I satisfying ye = y, o & then you is a reparameterisation of yo - A curve in R" is an equivalence day of parameterized curves, where two curves are equivalent & one is a upraneterisation of the other. Example $\gamma(t) = (cost, sint, t)$ $\tilde{\chi}(t) = (\cos 2t, \sin 2t, 2t)$ $\phi(t) = 2t$ then $\tilde{\gamma}(t) = \gamma(\phi(t))$ diffeo

- Regularity does not depend on the parameterisation:

ø: I -> J differ Ø: I → J diffeo J: I → R" J2: J -> R" a reparameterisation of J. then J = \$20\$ $\frac{d}{dt}(y_1) = \frac{d}{dt}(y_2 \circ \phi) = y_2 \cdot \phi'(t)$ > 1/2/ +0 0 /x/ +0 Arc Length The are length of a parameterized curve $y: I \mapsto \mathbb{R}^n$ is $l(y) := \int |y'(t)| dt$. If we have that $l(x) = \int_{[t_1, t_2]} |y'(t)| dt = t_2 - t$,

for all $t_1 > t$, t, t, t, t $\in I$, then y is parameterized by are length. Notation Denote a curve of parameterised by are length by y(s), derivatives w.r.t. s will be denoted y(s) = d (y(s)). i). Are length does not depend on parameterisation.
ii) y is parameterised by are length \if |f'(t)|=1 \forall t \if I
iii). Any regular curve can be parameterised by are length.

Suppose I = [a, b] and \$: I >> J be some diffeomorphism s.t. $\phi(a) < \phi(b)$. $y_2 = y_1 \circ \phi, \text{ then } \int_a^b \chi_1(\phi) \cdot \phi' dt$ $\lambda(y_2) = \int_a^b |\chi_2'(t)| dt = \int_a^b |\chi_1'| \cdot \phi'(t) |dt$ $=\int_{-\infty}^{\infty} \frac{\partial^{-1}(b)}{\partial x^{-1}(c)} dr = \ell(x).$ If \$(a) > \$(b) then \$(t) is negative then the change of sign is cancelled out by change of ii). Suppose 1/2 (t) 1=1 then $\ell(x) = \int_{t_1}^{t_2} |y'(t)| dt = t_2 - t,$ Suppose (g/) = t-t, then d l(d) = d (t / y'(r) | dr = |y'(t)| = 1iii) j: I H R" is regular. x'(t) +0 Y t & I = [a, b] Y(t) := L(d), $Y : I \mapsto [0, L(a)]$ => 4 is a diffeomorphism. \(\frac{7}{s} \) = \(\frac{7}{s} \). Choose \(\tau_1, \tau_2 \in \tau_1, \) set $s_1 = \Upsilon(t_1)$, $s_2 = \Upsilon(t_2)$ assume for now that 5, < 52, 50: $s_1 - s_2 = \gamma(t_1) - \gamma(t_2) = \ell(\gamma) - \ell(\gamma) - \ell(\gamma)$ $= \ell(z) = \ell(\overline{z})$ therefore I is a reparameterisation of y by arc length.

Case of Sz < S. similar.

MATH 3113

03-10-17

if f(t) = (acost, asint, bt), teR

tangent vector: j'(t) = (-asint, acost, b)

$$|\gamma'(t)|^2 = a^2(\sin^2 t + \cos^2 t) + b^2 = a^2 + b^2$$

$$|\gamma'(t)|^2 = a^2(\sin^2 t + \cos^2 t) + b^2 = a^2 + b^2$$

$$+(t) = \int_0^t |\gamma'(t)| dt = \sqrt{a^2 + b^2} t \Rightarrow \gamma''(s) = \frac{s}{\sqrt{a^2 + b^2}}$$

$$\mathcal{F}(s) = \mathcal{F}\left(\frac{s}{\sqrt{a^2 + b^2}}\right)$$

$$\left| \frac{1}{\sqrt{a^2 + b^2}} \right| = \frac{1}{\sqrt{a^2 + b^2}} = 1$$

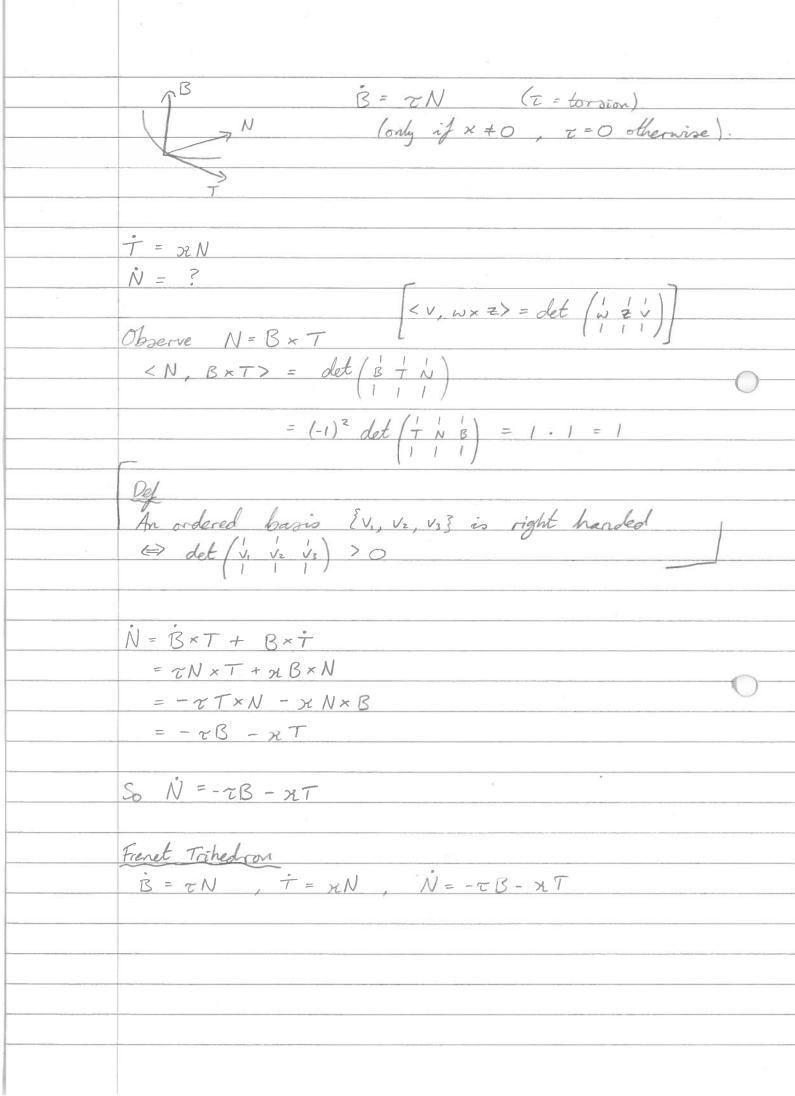
ii).
$$\gamma(t) = (\cos^2 t, \sin^2 t, 1 + \sin^2 t) = (r, 1 - r, 2 - r)$$

It is only regular if
$$t \in \mathbb{R}/\sqrt{2}$$
. $t < 7/2$

$$Y(t) = \int_{0}^{t} \sqrt{3} \sin 2r \, dr = \sqrt{3} \left(\cos 2t - 1\right)$$

$$4^{-1}(s) = \frac{1}{2}co^{-1}\left(1 - \frac{2}{\sqrt{3!}}s\right)$$

$$y^{-1}(s) = \frac{1}{2}cos^{-1}\left(1 - \frac{2}{13!}s\right)$$


$$\int_{-1}^{1} (s) = \int_{-1}^{1} (y^{-1}(s)) \int_{-1}^{1} \left[\sin arccos(s) = \sqrt{1-s^{2}}\right]$$

$$= \sqrt{3' |\sin(\arccos(1-\frac{2}{13}s))|} = 1$$

$$\sqrt{3}\sqrt{1-(1-\frac{2}{\sqrt{3}}s)^2}$$

The Local theory of Curves ·Specialise: Regular curves in R3 Everything is parameterised by are length. At least twice differentiable. Frenct - Servin Apparatus We know that 1 x(s) 1 = 1 Def The unit targent vector: T(s) = j (s) → T is perpendicular to T Def (Frenet - Serrin Frame) J: I -> R3 regular, parameterised by are length. Define the scalar function $x: I \mapsto \mathbb{R}$, x(s) := |T| which is called the curvature of y at sIf $\Re(s) \neq 0$ then define $N(s) := \frac{1}{\Re(s)} \stackrel{\cdot}{\top} (s) = \frac{\top}{1 + 1}$ (this is a unit vector on y) N(s) is the normal vector to j at s B(s) := T(s) × N(s) (cross product) called the binormal of y at s.

```
MATH 3113
03-10-17
         We have:
          T = XN and B = T × N
         SO B = TXN + TXN
           = 3AXV + T × N
           => B = TxN
         Since N is a vector crossed with T, B is h to T.
         Differentiating of 18(s)12 (as with T), B is to B.
         > B = 2(s) N(s)
              some real number
         y: I +> R3 parameterised by are length at
         points s.t. \pi(s) \neq 0 then define \tau(s) by \dot{B} = \tau(s) N(s).
         At points where x(s)=0 define x(s) =0.
04-10-17
         hast time:
         - Parameterised cure
         - homeo - and diffeomorphisms
         - Reparameterisations
         - Parameterising by are length
         From here on f: I -> R3 regular, parameterised by are length.
         Frenet - Servis Frame
         R = IT (curvature)
         y x +0 N = T/1+1 (normal)
         B = T × N (binormal)
         T, N, B form a right-harded set.
```


MATH 3113

04-10-17

We could write in Matrix form
$$F := |-T-|$$

$$-N-|$$

$$F(s) = A(s) F(s)$$
, $A(s) := \begin{bmatrix} 0 & \chi & 0 \\ -\chi & 0 & -\gamma \end{bmatrix}$

F E SO(3)
A is skew symmetric

Example
$$y(s) = \left(a\cos\left(\frac{s}{4a^2+b^2}\right), \quad a\sin\left(\frac{s}{4a^2+b^2}\right), \quad \frac{b}{4a^2+b^2}s\right) \quad a, b \ge 0$$

$$T(s) = \frac{1}{\sqrt{a^2+b^2}} \left(-asin\left(\frac{s}{\sqrt{a^2+b^2}}\right), acos\left(\frac{s}{\sqrt{a^2+b^2}}\right), \frac{b}{\sqrt{a^2+b^2}} \right)$$

$$\dot{\tau} = \frac{1}{a^2 + b^2} \left(-a \cos \left(\frac{s}{\sqrt{a^2 + b^2}} \right), -a \sin \left(\frac{s}{\sqrt{a^2 + b^2}} \right), 0 \right)$$

$$\mathcal{K} = |\dot{\tau}| = \underline{a} \qquad \dot{f} = a \neq 0$$

$$N = \frac{1}{2} = \frac{1}{a} \left(-a\cos\left(\frac{s}{4a^2+b^2}\right), -a\sin\left(\frac{s}{4a^2+b^2}\right), 0 \right)$$

$$=-\left(\cos\left(\frac{s}{Ja^2+b^2}\right), \sin\left(\frac{s}{Ja^2+b^2}\right), 0\right)$$

$$B = T \times N = \begin{cases} b & \sin(s) & -b & \cos(s) & a \\ \sqrt{a^2 + b^2} & (\sqrt{a^2 + b^2}) & \sqrt{a^2 + b^2} & (\sqrt{a^2 + b^2}) & \sqrt{a^2 + b^2} \end{cases}$$

$$B = \frac{1}{a^2 + b^2} \left(b \cos \left(\frac{s}{Ja^2 + b^2} \right), b \sin \left(\frac{s}{Ja^2 + b^2} \right), 0 \right)$$

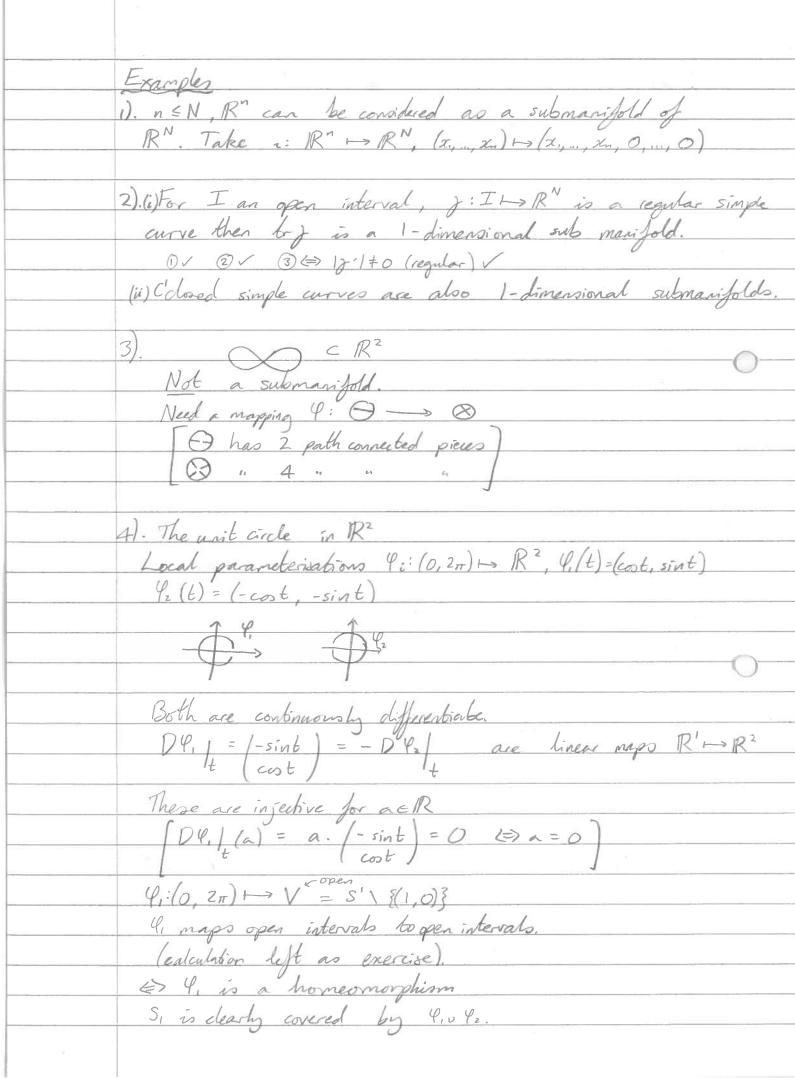
$$= -\frac{b}{a^2+b^2} \qquad \Rightarrow \tau = -\frac{b}{a^2+b^2}$$

Proposition Let J: I -> R3, regular, parameterised by are length. Then the torsion & of y vanishes identically iff tr(y) is contained in a plane. Suppose of is contained in a plane P with unit normal v. Then I and N are parallel to P. $\langle j, \nu \rangle = c \Rightarrow \langle j, \nu \rangle = 0$, $\langle j, \nu \rangle = 0$ $\langle \tau, \nu \rangle = 0$ $\langle RN, \nu \rangle = 0$ => when it exists B(s) = +v => B(s) = 0 on any open interval where B is defined. => T=0. Now suppose T(s) = O. Then $B(s) = \tau(s) N = 0$ and $B(s) = B_0 \leftarrow constant!$ Pick s. EI and consider d (< f(s) - f(so), Bo>) = <T(s), Bo> = 0 => < \(\gamma(s) - \gamma(s_0) , B_0 > = C Sub in $S=S_0 \implies C=0$ < y(s), Bo> = < y(s.), B.> => x is contained in a plane (normal to the plane is Bo, goes through f(so)) A Euclidean rigid motion on R" is a mapping $T: \mathbb{R}^n \mapsto \mathbb{R}^n$ given by T(x) = px + vwhere v is some constant vector and p & SO(n)

10-10-17 (NAST / HS) j=T, += 2N, B=2N Freset-Serin Trihedron T=XN, N=-RT-TB, B=EN Alternatively F(s) = A(s) o F(s) (*) $F = \begin{pmatrix} T \\ N \\ B \end{pmatrix} \qquad A = \begin{pmatrix} O \times O \\ -X & O - \overline{c} \\ O & \overline{c} & O \end{pmatrix}$ Special orthogonal anti symmetric. Existence of ODE's Preard-Lindlof Grevise Proof of Fundamental Thm of Curves We have (To, No, B.) = Fo is a R-H orthonormal frame and (*) is a linear system of 9 ODE's Picard-Lindlof Thm there exists a solution to (*) st. T(s.) = To, N(s.) = No, B(s.) = B. Q: Is our solution a right handed orthonormal frame? (⇒) is F(x) ∈ SQ(3) (\Rightarrow) $M(s) = F(s) \circ F^{T}(s) = I$ symmetric Mis= Fo FT+ Fo FT Lanti symmetric = A.F.FT+F.FT.AT = AOM. - MOA (t) $M(s_0) = I$ However M(s) = I is a solution to the above => by uniqueness of solution to (+), M(s) = I is the only sol $\Rightarrow F(s) \circ F'(s) \equiv I \ \forall s \in I$

MATH 3113

Next: Is there a curve compatible with these frames? A: Integrate Define y: I +> R3 by y(5) = 5 T(r) dr + jo Fundamental Thom of calculus => T is the tangent vector to y. - Since T is a solution to (#) then N is y's unit normal - One to right-handedness we have that B is the binormal top - Due to (#) T is the torsion of y Uniquenen: Let J: I -> R3 be a second curve with torsion and curvature given by I and it respectively. Write the Frenct - Servin Frame w.r.t. & by F. Since any two right-handed frames may be related by a rotation, we may write: there is a p & SO(3) st. F(s) = (p o F)(s) Define F(s) = (0-10 F)(s) WTS: F(s) = F(s) YSEI. $Q(s) = |\hat{F}(s) - F(s)|^2 = : |\hat{T} - T|^2 + |\hat{N} - N|^2 + |\hat{B} - B|^2$ matrix norm. Euclidean norm m vectors $\frac{dQ(s)}{ds} = \frac{d(\hat{T} - T)^2 + |\hat{N} - N|^2 + |\hat{B} - B|^2}{ds}$ = $2(\hat{\tau} - \tau, \hat{\tau} - \dot{\tau}) + (\hat{N} - N, \hat{N} - \dot{N}) + (\hat{B} - B, \hat{B} - \hat{B})$ = 2(x<f-T, N-N>+ ~< B-B, N-N> $+ < \hat{\mathcal{N}} - \mathcal{N}, - \mathcal{X}(\hat{\mathcal{T}} - \mathcal{T}) - \mathcal{T}(\hat{\mathcal{B}} - \mathcal{B}) >$ => Q(s) = c independent of s. However F(so) = F(so) => C=0 => F(s) = P(s) \ ∀ S ∈ I Therefore T(s) = pT(s) and so $\overline{f}(s) = p\overline{f}(s) \forall s \in I$ Integrabing w.r.t. s (as before)


MAIH SIIS	
10-10-17	
	we see that \(\frac{1}{2}(s) = \rho_{\gamma}(s) + \nu \left(\frac{1}{2}\sigma \sigma_{\sigma} \sigma_{\sigma} \sigma_{\sigma} \sigma_{\sigma} \sigma_{\sigma} \text{tor } \nu \in \mathbb{R}^3 \right)
	=) uriqueres up to Euclidean motion.
	D
	The Global Theory of Plane Curves
	Def (simple closed curve)
	Let y: [a, b] HR be a parameterised curve
	(Ck-curve). We say that y is single if
0	It is a Ck-closed curve if additionally
	y'(a) = y'(b) and y (1)(a) = y (1)(b), 1 ≤ l ≤ k.
	NOT simple NOT C'
	NOT simple NOT C'
	53
	Three classical Theorems
	Theorem Jordan Curve Theorem (JCT)
	Let & be a simple closed plane curve.
	Then the set R2 br(4) is the disjoint union of two open
path-	connected sets, exactly one of which is bounded.
	Def
	The bounded set from the JCT will be called the
	interior of y and will be denoted int()
	If is regular, closed, C', parameterised by are length
	in such a way that 3 a point so E I s.t. int() lies
	on the side of { (so) + 2 g'(s) 2 EIR 3 that also contains
	the 70° rotation of s; then the arre is said to be
	postively parameterised.

Q: what closed curve of a given length contains the maximum area? Theorem The Imperimetric Inequality. Let y be a C', closed, simple, plane curve of length l(). Then 4Threa(inty) & l(y)2 and equality holds iff y is a parameterized circle of radius & 1. An orthonormal frame on R2 is an ordered pair {V, W} of vector valued continuously differentiable Junctions so that \x \in R? (oriented ⇒ det (-V-) > 0. orthonormal prame. let J: I >> R2 be a regular, C' parameterised curve, EV, W3 an orthonormal frame on R2. A function a: I -> R is called an argular purction of y w.r.t. EV, W3 if it is continuously differentiable and $\delta'(t) = cos(\alpha(t))V(f(t)) + sin(\alpha(t))W(f(t))$ of course we have, $a, b \in \mathbb{Z}$, \mathbb{Z} \mathbb Theorem (Hopf's Umlaufratz) (turning largent) Let y: [a, b] +> R2 be a regular, closed, C2 plane curve and let a be an angular function of y w.r.t. an orthonormal basis EV, W3 on R2.

MATH 3/13	
10-10-17	
	Then $\exists r_y \in \mathbb{Z}$ so that $\int_{-\infty}^{b} x'(t) dt = 2\pi r_y. \text{if } y \text{ is simple then } r_y = \pm 1.$
	[x'(t) dt = 2 Tr ng. If y is simple then ng = ±1.
	Ja
	In fact: if {V, W} are {e, er} then $\dot{\alpha} = \mathcal{R}_{\sigma} = \pm \mathcal{R}$
	$\left \int_{3}^{3} \mathcal{R}_{\sigma} = 2\pi n_{g}\right $
	[3]
	Remark:
-0	Remark: The turning number of a Jordan curve is +1 iff it is positively parameterized.
	is positively parameterized.
	Def
	A Jordan curve is a simple closed curve.
The same	
	Example
(3000000000000000000000000000000000000	The circle: $\gamma(t) = (\cos t, \sin t)$, $t \in [-\pi, \pi]$
	$int(y) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$
	$f'(t) = (-\sin t, \cos t) = (\cos(t+\frac{\pi}{2}), \sin(t+\frac{\pi}{2}))$
	P-900 0611
0	$R = \begin{pmatrix} 0 - 1 \end{pmatrix}$ $= \begin{pmatrix} 0 - 1 \end{pmatrix}$ $= \begin{pmatrix} 1 - 1 \end{pmatrix}$
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	[Intly]
	1/2(0)+27'(0)
	so f is positively parameterised.
	a - angular function w.r.t. {e, ez}
	$\Rightarrow j' = co(\alpha)e, + sin(\alpha)ez$ $so \alpha = t + \pi$
	$\int_{-\pi}^{\pi} \alpha' = \int_{-\pi}^{\pi} 1 = 2\pi$ so the circle is a simple curve.
	$-\pi$ $-\pi$

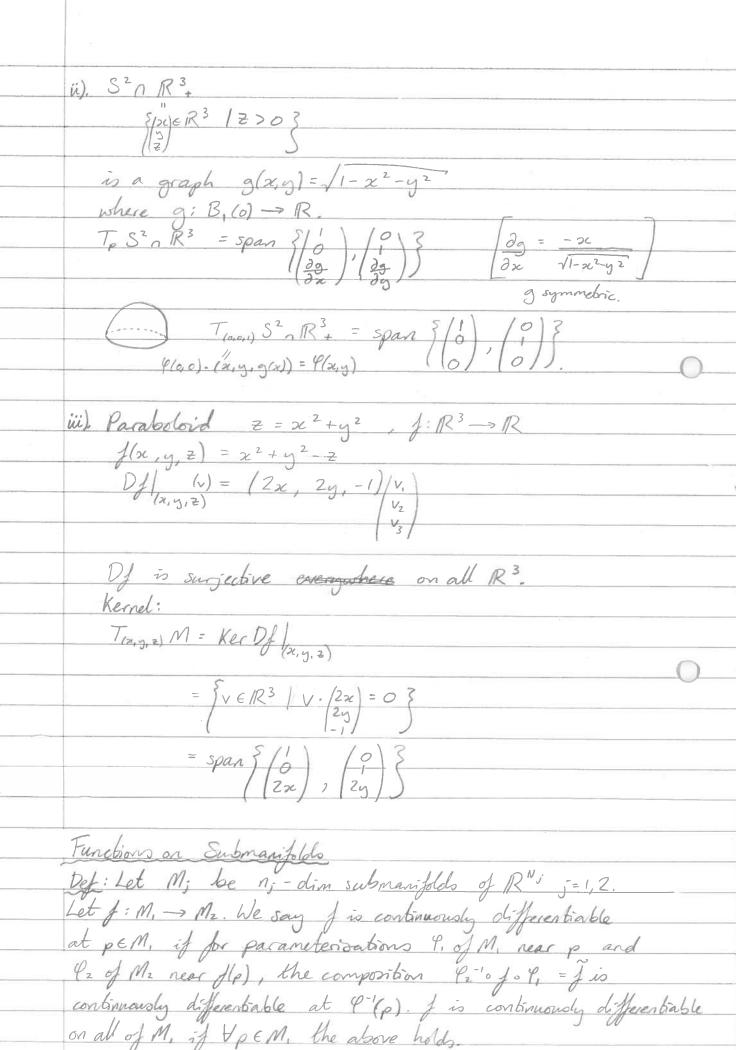
	Chains and Turning Tangents
	
	Def (Chains & polygons)
	i). A piecewise Ch closed plane curve or a plane chain
	(of class ck) is a continuous plane curve
	J: [a, 6] +> R for which there are numbers
	$a = t_1 < t_2 < \dots < t_n < t_{n+1} = b$
	so that I [ti, tin] is a Ck-regular curve.
	Lti, tix, J
	ii). The points of (ti) are called vertices and the ares
	H((ti, ti+,1)) are edges for 1 si sn.
	ii). If y is a simple plane chain we call
	iii). If y is a simple plane chain we call By = int(y) a generalized polygon.
	Def Exterior Angles.
	Let y: I -> R2 be a C2 regular plane chain and
	[V, W] an orthonormal frame on R2. An angular
	purction wr.t. EV, W3 is a function x: I -> R2
	i). x/, is an angular punction for
	i). $\propto _{(t_i, t_{i+1})}$ is an angular function for $ _{(t_i, t_{i+1})}$
	$\lim_{\varepsilon \to 0} \theta_i := \lim_{\varepsilon \to 0} \left(\kappa (t_i + \varepsilon) - \alpha (t_i - \varepsilon) \right) \in [-\pi, \pi] \text{ for } 2 \le i \le n$
	€ → 0
	iii). If Oil = Ti then Oi is positive iff { y'(bi+E), y'(bi-E)}
	iii). If $ Oi = \pi$ then Oi is positive iff $E_f(b_i + E)$, $f'(b_i - E)$? is eight harded $V = 0 < E < E$, for some $E_0 > 0$.
any	The angles Oi are called exterior angles of the chain at y(ti)
	the angle at y(a) = y(b) is the (unique) representative O, E[-17, 17]
	The angles Θ : are called exterior angles of the chain at $g(ti)$ The angle at $g(a) = g(b)$ is the (unique) representative Θ , $\varepsilon [-\pi, \pi]$ of $\lim_{\epsilon \to 0} (\alpha(a+\epsilon) - \alpha(b-\epsilon)) = \Theta$, and 2π with sign
	convention as above.

MATH 3113 11-10-17 Arr Area (into) < L(2)2 $\int \alpha' dt = 2\pi n,$ θ_2 $\lim_{t \to t_2} \frac{\dot{\sigma}(t)}{1\dot{\sigma}(t)}$ $n_{\phi} = \pm 1$ if y is simple & closed. edges & Rvertices Theorem (Return of the Unlaufsatz) Let y: [a, b] +> R2 be a closed plane chain of class C2 with angular function & and exterior angles Or, Isisa, then there is an nye # st. $\int_{0}^{b} \alpha'(t)dt + \sum_{i=1}^{n} \theta_{i} = 2\pi n_{f}.$ Proof (simple case only) (sketch) y: [a, b] +> R2 is the chain from the theorem. We approximate & by Jo: [a, 6] +> R2 (3 is C2, simple. closed) so that 1). JE - & uniformly on [a, b] as E -> 0 2). y = (t) = j(t) if |t-t:/>E, | \(\in \) 3). br (fE) c int (g) Let U: = {t = [a, 6] | |t-ti| < 2 = } $V^{\varepsilon} = [a,b] \quad \tilde{U}U_{\varepsilon}$ Then $2\pi \int \alpha'_{\varepsilon} = \sum_{i=1}^{n+1} \int \alpha'_{\varepsilon} + \int \alpha'_{\varepsilon} dt$ $\int_{[a,b]} \int_{i=1}^{n+1} u_{\varepsilon} \int_{Y^{\varepsilon}} dt$

17-10-17	
	Remarks
	1). Locally diffeomorphic to be properly defined later.
	2). We may define Ck manifolds (the above is C').
	M" is a Ck manifold if in addition to O, O, O,
	I reeds to be k times continuously differentiable.
	3). The following are agrivalent:
	(i) Del is injective
	(ii) $J \varphi l$ has cask n $J \varphi l = (\partial \varphi^{I})$
	(i) $D\theta_{ln}$ is injective. (ii) $J\theta_{ln}$ has rank n $J\theta_{ln} = \left(\frac{\partial \varphi^{I}}{\partial u_{i}}\right)_{1 \le I \le N}$, $1 \le i \le n$.
0	99' 39'
	$\partial u_1 \qquad \partial u_n = \mathcal{J} \varphi _n$
	29n 29n
	du, dun
	(iii) 24,, 24 are linearly independent.
	∂u , ∂u
	Remark on homeomorphisms:
	If we want to show 4 is a homeomorphism, options
0	include:
	1). Showing & is open, that is, a set O is open iff
	q(0) c V is open (q:U→V).
	2). For any sequence &p:3 < V converges in V, say to a
	point p, then the preimages 7: = ('(p:) also
	converge to 2=4"(p).
	(prove bijective, continuous, then the above shows 4 " is cont.)
	3). Atlases are not unique
	e.g. 4:Ub V and we have a diffeomorphism
	4: U > U then You : U > V is another parameterisation.

Change of Coordinates Suppose we have P:U -> V, P': U' -> V' local parameterioations Suppose V'aV + Ø. Let W=V'aV. Since I and I' are homeomorphisms, define $h = \varphi'^{-1} \circ \varphi : \varphi^{-1}(W) \mapsto \varphi'^{-1}(W)$ also a homeomorphism. Write in local coordinates u= (u, ,, un) coordinates an 9-(W), u'= (u', un') coords on 9'-1(W). hou(p) = (φ'-1 ο φ ο φ-1)(p). $= (\varphi'^{-1})(\rho)$ ω φ' - (W) [coordinates: Junctions determining points] Prop: Changes of coordinates are diffeomorphisms. A graph of a function $g: \mathbb{R}^n \mapsto \mathbb{R}^m$ is the set $\frac{\{(x,y) \in \mathbb{R}^{n+m} \mid g(x) = y\}}{\mathbb{R}^n}$ Prop (Submanifolds as graphs) A set MCR" is a n-dim submanifold of R" iff M is locally the graph of a continuously differentiable function, that is, iff: \p \in M \ \end open reighbourhood V of p in M and an open set UCR" and a permutation To of [1, ..., N] and a continuously differentiable function g: Ut> IRN-1 st. V= 3(2cmc), , 2cm(N) (21, , 21) EU, (2n+1, , xN)=g(2n, x2)

MATH 3113	
17-10-17	
	ie.
	ie.
	Prop (Submanifolds as level sets)
	A set MCR" is an n-dim submansfold of R" iff
	M is locally given as the solution set of N-n
	independent equations (at a regular point).
0	
	That is; & pe M there is an open set V of M and
	an open set W of R'st. VCW and a continuously
	differentiable function $f: W \mapsto \mathbb{R}^{N-n}, f = (f_{i,m}, f_{N-n})$ so that:
	(1) V= 1-1/502) - 8- (1) 1 (1) -03
	(i) $V = f^{-1}(\{0\}) = \{x \in W \mid f(x) = 0\}$ (ii) $D \neq I_p : \mathbb{R}^N \mapsto \mathbb{R}^{N-n}$ is surjective $\forall p \in V$.
	a) of p in is a surjective v p & v.
	F. 1 82
	Example S2
	The sphere is given by {(x,y, z) x2+y2+22=1}
	$y(x) = x^2 + y^2 + z^2 - 1$, $S^2 = f'(0)$
0	Here W=1R31803, V = 52
	of is continuously differentiable, S = f (0)
	Here $W = IR^3 \setminus \{0\}, V = S^2$ f is continuously differentiable, $S^2 = f^{-1}(0)$ $Df = 2x $ (as a linear mapping $IR^3 \mapsto IR$).
	(Mg, E) 25
	1 2 2 1
	Of is surjective if $(x,y,\bar{z}) \neq 0$, $0 \neq S^2$
	=> 52 is a 2-dimensional manifold.


	Inverse for Thom I.10 Implicit for Thom I.12
	Proof (Graphs as submanifolds)
[4	Suppose MCRN is given locally as a graph.
	(=) pell, there is an open - Il, pel and an
20	open set U C IR" and a continuously differentiable
	mapping g: U -> IR" so that for x = (x', x"),
	$\chi' = (\chi_1, \dots, \chi_n), \chi'' = (\chi_{n+1}, \dots, \chi_n)$
	We have $V = \{x \in \mathbb{R}^N x' \in \mathcal{U}, x'' = g(x')\}$. We define the map $\varphi: \mathcal{U} \mapsto \mathbb{R}^N$, $\varphi(u) = (u, g(u))$. We now show φ is a Since φ is continuously differentiable so is φ .
	Since the map 4.47 11, full = (u,g(u)). were pour exercised
	open then $\mathcal{C}(Q) = (Q \times \mathbb{R}^{N-n})_{\Omega} \vee \text{ is also open.}$
	Also since I is continuous, if Wopen in V then
	Q-(W) is also open.
	Finally, DPlu = fid \ \tau \in U
	Dg lu
	which has rank n.
	Suppose M is an n-dimensional submanifold of R.
	Pick pEM, then there exists open VinM s.t. pEV,
	and open UCR' and a parameterisation 4:U >V.
	Let q EU s.t. P(q) p.
	By assumption (3) of def.)
	We may assume that the first n-rows are linearly
	[D4] = 1(15)() inverbible.]
	D9/2 = [(4)()
	Write 9= (4', 9") where 9' is the first n components of
	Pand " is the last N-n components of P.
	DY' : R" HO R" is invertible, and so by inverse
,	Junction theorem 3 open sets U', U" = R" st.
	P': U' → U" is a diffeomorphism.

MATH 3113	
17-10-17	
	Let g= 9"09'-1: U" -> RN-n
	Then define V'= q(u').
	Then define $V' = \varphi(u')$. So $V' = \varphi''(u) = \frac{3}{2} \varphi'(u) u \in U'$
	((9"(a)))
	$= \left\{ \left(\frac{v''(\varphi'^{-1}(v))}{v''(\varphi'^{-1}(v))} \right) \right\}$
	(=) V' is locally a graph
18-10-17	
0	Implicit Furction Theorem
	Let U = R" be open and f: U +> R" a continuously
	differentiable function. Suppose xo eRN-n, yo eRn s.t.
	(xo, yo) ∈ U. Let c = f(xo, yo).
April 1	If the matrix () is invertible the I open set
	ldy, li,
	xo ∈ U' ∈ R ^{N-n} , yo ∈ U" ∈ R" and a continuously differentiable
	map g: U -> U" st. V x eU', y eU",
	$f(x,y) = c \Leftrightarrow y = g(x).$
. 0	
	Proof (of Level set proposition).
	Suppose M is given locally as a level set in an open set VCM as the level set of $f:W \mapsto \mathbb{R}^{N-n}$
	Dfl: RN +> RN-n is surjective.
	So reordering coordinates and writing $p = (u, v)$, $u \in \mathbb{R}^n$, $v \in \mathbb{R}^{N-n}$,
	then (21:) is invertible for all pEV
	dv; lij [7/EN-M) = D/1]
	then $\left(\frac{\partial f_i}{\partial v_i}\right)$ is invertible for all $p \in V$. $\left(\frac{\partial f_i}{\partial v_i}\right)$ is $\left(\frac{\partial f_i}$
	Implicit purchas theorem = 3 open reighbourhood U' of u(p) in R"
	and open neighbourhood U" of v(p) in RN-n and a continuously
	differentiable Junction g: " > " s.t. f(u,v)= 0 > v = g(u) Vuell' and

A neighbourhood U of a point p is a set such that $V \subset U$ s.t. $p \in V \subset U$.	Fan open set
No. M. is leadly weether a good	
Now M is locally written as a graph even	en here
⇒ M is a submanifold.	J~~~ C
[=] Suppose M a submanifold, then write it locally.	as a graph.
IV a reighbourhood of pin M, an open set UCR",	and a
continuously differentiable q: U -> RN-n s.E.	
$V = \{(u,v) \in \mathbb{R}^N \mid v = g(u)\}\}. c \in \mathbb{R}^N \text{ open.}$ Let $f(u,v) = v - g(u)$, $f: U \times \mathbb{R}^{N-n} \mapsto \mathbb{R}^{N-n}$.	
Let $f(u,v)=v-g(u)$, $f: U\times \mathbb{R}^{N-n} \mapsto \mathbb{R}^{N-n}$.	
Clearly f'(0) = V and Df/ = 1/- Dg/ id) w	hich is surjective.
⇒ f is a suitable level set function.	
Proof (changes of coordinates are diffeomorphis	ims)
From proof of local graph proposition we know	
construct punctions of & g' on suitably small	neighbourhoods
Z and Z' st. ((z) = {(x,, x_N) (x,, x_n) \ \(\varepsilon_{1,, x_n} \varepsilon_{2} \)	Z, (xn+1, xn)=g(x1, 11, xn)}
$\varphi(z') = \frac{2(x'_{n(1)}, x'_{n(N)})(x'_{1}, \dots, x'_{n}) \in Z'}{(x'_{n+1}, \dots, x'_{N}) = g(x, x'_{n+1}, \dots, x'_{N}) = g$	(x_n, x_n)
where T is a permutation.	
W.l.o.g., P(z) = P(z').	
But now, change of coordinates is given by	0/-1
But now, change of coordinates is given by $(x_1,,x_n) \stackrel{\varphi}{\longmapsto} (x_1,,x_n,g(x_1,,x_n)) = (y_1,,y_n) \stackrel{\varphi}{\mapsto}$	> (y 17/1),, y 17-1(n))
4 is continuously differentiable, 4" is a linea	мар
so has continuously differentiable.	
However, we could do the same with his.	
=> h' is also continuously differentiable.	
i. h is a diffeomorphism.	
La Company Com	

MATH 3113	
16 10 17	
18-10-17	Def.
	Let MCRN be a submarifold, $\rho \in M$.
	the set To M = {veRN 3 E>0, 2: (-E, E) -> M, C',
	st. y(0)=p, y'(0)=v }
	E 1
	In fact To M is a vector space spaned by
-0-	8 24/, 24/3 where 4: U→M is a local parameterisation
	near p where $\ell(u) = \rho$.
	$\partial \Psi$ is contained in $T_{\rho}M$:
	du:
	J:= 4(u, ,, ui+t, ui+i,, un)
	7'(0)= 24.
	∂u_i
	Conversely suppose y is a curve s.t. y(0)=p.
	Then $f'(0) = \frac{\partial}{\partial t} \left(\varphi \circ \varphi^{-1} \circ f \right)(t)$
	$= D \varphi / \frac{d}{dt} / (\varphi^{-1} \circ \chi)(t)$
	$= \partial \varphi \circ (u_i \circ \chi)'(0)$
	∂u .
	=> J'(0) is a linear combination of 24's with coefficients
	$(u_i \circ j')(o)$.

24-10-17	
	Tangent space is TpM = {VERN 3 E>0, C' function
	$\gamma:(-\varepsilon,\varepsilon)\to M: \gamma(0)=p, \gamma'(0)=v$
	For t st. by CM,
	$y'(0) = \frac{2}{3} \frac{\partial \varphi}{\partial u_{i}} \left[u \circ (u_{i} \circ y')(0) \right]$
	=> 24 span TpM
	du;
	in fact they form a basis.
	Prop (Bases of Tangent Spaces)
	Prop (Bases of Tangent Spaces) Let M be an n-dim manifold of R". Then TpM is an n-dim linear subspace of R".
	is an n-dim linear subspace of R.
	Moreover.
	i). If I is a local chart of M near p satisfying
	((u) = p, then we have pill = range UPlu and
	$\frac{\partial \varphi}{\partial u_1}, \dots, \frac{\partial \varphi}{\partial u_n} $ is a basis of $T_p M$.
	ii). If M is the graph of a function of near p,
	0 = (x a(x)) then a basis of TaM is given by
	S/e, \ (0) 7 where e; is the ; th
	$\left\{ \begin{array}{c} \left\{ e_{i} \right\} \\ \left\{ \frac{\partial g}{\partial x_{i}} \right\}, \dots, \left\{ \frac{\partial g}{\partial x_{n}} \right\} \end{array} \right\}$ standard coordinate in \mathbb{R}^{n} .
	iii). If M is the level set of a function of near p,
	iii). If M is the level set of a function of near p, then we have TpM = Ker Dff.
7	
	$\frac{\partial g_{N-n}}{\partial z_{i}}$

24-10-17

Well-defined?

Need to show def is independent of choice of $\P_{i,5}$.

Suppose we have overlapping coordinates \P'_{i} .

Then we have coordinate changes $h_{i} = \P_{i}^{\prime - i} \circ \P_{i}$, $h_{2} = \P_{2}^{\prime - i} \circ \P_{2}$. $\tilde{f}'_{i} := \Psi_{2}^{\prime - i} \circ f \circ \Psi_{i}' = \Psi_{2}^{\prime - i} \circ \Psi_{2} \circ \Psi_{2}^{\prime - i} \circ f \circ \Psi_{i} \circ \Psi_{i}^{\prime - i} \circ \Psi_{i}'$ $= h_{2} \circ \tilde{f} \circ h_{i}^{- i}$ But since h_{i} and h_{2} are diffeomorphisms then \tilde{f}'_{i} continuously differentiable $\rightleftharpoons \tilde{f}_{i}$ is.

Well-defined? If y represents $v \in T_P M$, i.e. $d \mid y = v$, $\chi(0) = P$, $dt \mid_{t=0}$ then f(g(t)) is a curve in M_2 and so $\frac{d}{dt}\int_{t=0}^{t} f(g(t))$ is a vector in $T_{f(p)}M_2$. Also: need to check Of is independent of choice of y. 4: U → V is a local parameterization near p D4/:R"-TpM is a linear isomorphism. Differentiate $j = \varphi \cdot \varphi^{-1} \cdot j$ at t = 0 $v = j'(0) = D\varphi | d | (\varphi^{-1} \cdot j)$ $dt |_{t=0}$ Then Df/ (v) = d1 (f. 4.4-1.0) = D(f. 4) (9-10)(0) = (D(f. 4) / 0 D4/p-1)(v) => well-defined, Lot f: M, -> M2 be a continuously differentiable mapping and pEM. Off is a linear map and if P, and I've are local parameterioations for M. near p and for M2 near f(p), then for all Is is dim M, where p= P, (u), n2 = dim M2 and

Differentiating and using that DY(e;) = 24

$$D\varphi^{-1}\left(\frac{\partial\varphi}{\partial u_{i}}\right)=D(\varphi^{-1}\circ\varphi)(e_{i})=e_{i}$$

$$\mathcal{D}_{f|p}\left(\frac{\partial \varphi_{1}}{\partial u_{5}}\right) = \mathcal{D}\left(\varphi_{2} \circ \widetilde{f} \circ \varphi_{1}^{-1}\right) \left| \frac{\partial \varphi_{1}}{\partial u_{5}}\right)$$

$$= \left(D\varphi_z \Big|_{\mathcal{J}(u)} \circ D\widetilde{\mathcal{J}} \Big|_{u} \circ D\varphi_{\cdot}^{-1} \Big|_{p} \right) \left(\frac{\partial \varphi_{\cdot}}{\partial u_{\cdot}} \right)$$

$$= \left(D \varphi_2 \Big|_{\widetilde{\mathcal{J}}(u)} \circ D \mathcal{J} \Big|_{u} \right) (e_{\mathfrak{z}})$$

$$= D \ell_2 \Big|_{\widetilde{\mathcal{J}}(u)} \Big|_{\partial u_i} \Big|_{\partial u_i}$$

$$= \sum_{i=1}^{n_2} \frac{\partial f_i}{\partial u_i} \frac{\partial \varphi_2}{\partial v_i}$$

Since Off may be written as matrices in this form it is indeed a linear mapping.

Rope (Chain rule):

Let M; j=1,2,3, be submanifolds of \mathbb{R}^{N_j} , and $f: M, \rightarrow M_2$, $g: M_2 \rightarrow M_3$ differentiable, then $g \circ f$ is differentiable at $\rho \in M$, and its derivative is given by

D(g. fl = Dg / 0 Df/

: TpM, -> Tg(f(p)) M3.

Proof local Using parameterisations we see that $\widetilde{g} \circ \widetilde{f} = \widetilde{g} \circ \widetilde{f}$ $\Longrightarrow g \circ \widetilde{f}$ is continuously differentiable.

Dff: TpM, -> Tf(p) M2 Dolf(p): Tf(p) M2 -> Tg(f(p)) M3 =) mappings are well-defined. Let $\gamma: (-\epsilon, \epsilon) \to M$, be a curve with $\gamma(0) = p$, $\gamma'(0) = v$. $j \circ \gamma: (-\epsilon, \epsilon) \to M_2$ is a curve in M_2 st. $j \circ \gamma(0) = f(p)$, $(j \circ j)' = Df(p)$ D(g.f) (v) = d(g.f.) (0) = Dg/ (fox)'(0) $= D_{\mathcal{G}} \int_{\mathcal{F}(p)} o D \int_{\mathcal{F}} \int_{\mathcal{D}} (v).$ Examples i). Let j: I > R3 be a regular curve, injective. Parameterised Then T, N, B: trj -> R3. Parameterization: 4 = } $\frac{\partial \varphi_1}{\partial s} = f(s_0)$ $p = f(s_0)$ Parameterisation for R3: (2 (x,y2) = 217(so) + yN(so) + 2 B(so) Tp R3 = span { T/so), N(so), B(so) } $\widetilde{T}: \overline{I} \to \mathbb{R}^3, \quad \widetilde{T}(s) = \left(\langle T(s), T(s_0) \rangle, \langle T(s), N(s_0) \rangle, \langle T(s), B(s_0) \rangle\right)$ $\widetilde{T} = \varphi_2^{-1} \circ T \circ \varphi_1$ $\mathcal{D}\widetilde{T}|_{s} = \frac{\partial\widetilde{T}(s_{o})}{\partial s} = \left\langle \langle \widetilde{T}(s_{o}), T(s_{o}) \rangle, \langle \widetilde{T}(s_{o}), N(s_{o}) \rangle, \langle \widetilde{T}(s_{o}), B(s_{o}) \rangle \right\rangle$ $= (0, \chi(s_{o}), 0)$

25-10-17

Example Take 52 with atlas of 6 graphs as in hw 3. \$: 52 -> 52, 2c +> ->c (well-defined: |x/=1 (=> 1-x/=1) Continuously differentiable? Pick $p = (x, y, z) \in S^2$.

wlog, anume z > 0. We have local parameterisations $(B_1(0))$ $(B_1(0))$ $(B_1(0))$ $(B_1(0))$ $(B_1(0))$ V+ = S2 (x,y, z) = 1R3 / 2>03 V = S2n { (x,y, Z) EIR3 | ZCO} V± is open. Observe $p \in V_+$ and $f(p) = (-x, -y, -z) \in V_-$ In this case, 1:3, (0) -> B, (0) $\widetilde{f}(u,v) = (2\varphi^{-1} \circ f \circ '\varphi_{+})(u,v)$ $= (2\varphi^{-1} \circ f)(u,v,\sqrt{1-u^{2}-v^{2}})$ $= 2\varphi^{-1}(-u,-v,-\sqrt{1-u^{2}-v^{2}})$ Clearly this is continuously differentiable. J] = -I $\frac{\partial f}{\partial u_{i}} \left(\frac{\partial Q_{+}}{\partial u_{i}} \right) = \frac{2}{i=1} \frac{\partial f_{i}}{\partial u_{i}} \frac{\partial^{2} Q_{-}}{\partial u_{i}} = -\frac{\partial^{2} Q_{-}}{\partial u_{i}}$ e.g. p=(0,0,1) => f(p)=(0,0,-1) $T_{\rho}S^{2} = span \left\{ \begin{pmatrix} i \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} = span \left\{ \frac{\partial \varphi_{+}}{\partial u}, \frac{\partial \varphi_{-}}{\partial v} \right\}$ $T_{HO}S^2 = span \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\} = span \left\{ \begin{array}{c} \partial \Psi_+ \\ \partial u \end{array}, \begin{array}{c} \partial \Psi_- \\ \partial v \end{array} \right\}$ Dfl ((i)) = - (i), Dfl ((i)) = - (i) D11: Tp 52 -> THO 32

M < R" submanifold po ∈ RN M then the squared distance to po, d:M->R, p->1p-pol2, is c'. Let 4 be a local parameterisation near pEM, ((u) = p. Since |p-pol2= < p-po, p-po> $=2<\frac{\partial \varphi}{\partial u}, \quad \varphi(u)-\rho_0>$ 1/ X = \(\sum \chi \times \ti $Dd/p(X) = \sum_{i=1}^{n} \chi^{i} Dd/p(\frac{\partial \varphi}{\partial x^{i}})$ = \(\times \(\times \) \(\ti = 2 < X, 9(u)-po>. Def Mi is an 1:-dim submanifold of RNi, then f: M, -> M2 is said to be i) an immersion if Dfl : TpM, -> THOM2 is injective ii) an embedding if $f: M_1 \rightarrow f(M_1) \subset M_2$ is both an immersion and a homeomorphism.

iii) a submersion if $Df|_p: T_pM_1 \rightarrow T_{f|_p}M_2$ is surjective YPEM. iv), a diffeomorphism if it satisfies all of the above

MAYH 3113	
25-10-17	
	The definition of a differ is equivalent to fand for exist and are continuously differentiable.
	If dim M, > dim M2 then there are no immersions. If dim M, < dim M2 then there are no submersions. => the dimensions of two diffeomorphic manifolds are the same.
	$ \hat{\sigma}: (a,b) \to \mathbb{R}^2 $, $ \hat{\sigma}: (a,b) \to \mathbb$
	\(\simmersion \) but not embedding \(\simmersion \) embedding
47.11	Now consider regular surfaces. 2-dim submanifold of R3 usually denoted [
	· we will have local parameterisations about $p = (x, y, z) \in \Sigma$ $U \subset \mathbb{R}$ open, $V \subset \Sigma$ open $\varphi: U \to V$
0	coordinates on U are (u,v) , I will use $\partial_u = \partial_i = \mathcal{D}\Psi _p(e_i) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial v}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial v}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial v}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial v}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \partial_z = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = \frac{\partial \Psi}{\partial u}$, $\partial_v = \mathcal{D}\Psi _p(e_z) = $
	First Fundamental Form For $X \in T_p \Sigma \subset \mathbb{R}^3$ we can define $ X _p^2 = X _{\mathbb{R}^3}^2$. Suppose X is the tangent to a curve $f: (-\varepsilon, \varepsilon) \to \mathbb{R}^3$, $f(o) = p$. $X = f'(o) = d \mid \varphi(\varphi^{-1} \circ f(t)) \text{write } \varphi^{-1} \circ f(t) = (u(t), v(t))$ $dt \mid_{t=0}$
	$= \frac{DY_{p} \circ d}{dt} = \frac{d}{dt} \left(u(t), v(t) \right)$
	\Rightarrow $\times = u'(0)\partial_{\mu} + v'(0)\partial_{\nu}$ using definition above.

$$|X|_{\rho}^{2} = \langle X, X \rangle_{R^{3}} = u'(0)^{2} \langle \partial_{u}, \partial_{u} \rangle + 2u(0)v'(0) \langle \partial_{u}, \partial_{v} \rangle + v'(0)^{2} \langle \partial_{v}, \partial_{v} \rangle + v'(0)^{2} \langle \partial_{v}, \partial_{v} \rangle$$

$$= u'(0)^{2} E + 2u'(0)v'(0) F + v'(0)^{2} G$$
Where $E = \langle \partial_{u}, \partial_{u} \rangle$, $F = \langle \partial_{u}, \partial_{v} \rangle$, $G = \langle \partial_{v}, \partial_{v} \rangle$.

$$|Def| \text{ (Ist Fundamental Form)}$$

$$|\Sigma| \quad \text{a surface, } \rho \in \Sigma.$$

$$|Define \text{ the quadratic form}|$$

$$|T_{\rho}: T_{\rho} \Sigma \rightarrow R, \quad T_{\rho}(X) = \langle X, X \rangle$$

$$|T_{\rho}: T_{\rho} \Sigma \rightarrow R, \quad T_{\rho}(X) = \langle X, X \rangle$$

$$|T_{\rho}: T_{\rho} \Sigma \rightarrow R, \quad T_{\rho}(X) = \langle X, X \rangle$$

$$|T_{\rho}: T_{\rho} \Sigma \rightarrow R, \quad T_{\rho}(X) = \langle X, X \rangle$$

$$|T_{\rho}: T_{\rho} \Sigma \rightarrow R, \quad T_{\rho}(X) = \langle X, X \rangle$$

$$|T_{\rho}: T_{\rho} \Sigma \rightarrow R, \quad T_{\rho}: T_$$

MATH 31/3 31-10-17 XETOZ $X = \chi' \partial_1 + \chi^2 \partial_2$ = X'du + X2dv $I_p(x) = \langle X, X \rangle$ $= (X')^{2}E + 2X'X^{2}F + (X^{2})^{2}G$ $g = \left(\frac{E}{F}\right) \qquad \text{Tp(x)} = \frac{2}{\sum_{i,j=1}^{2} X^{i}} g_{ij} X^{j}$ $\langle X, Y \rangle = \frac{1}{2} \left(I_{\rho}(X) + I_{\rho}(Y) - I_{\rho}(X - Y) \right)$ $= \sum_{i=1}^{\infty} \times^{i} g_{ij} \times^{j}$ Can define angle:

\(\lambda(\text{X}, \text{Y}) = \arccos \left(\text{X}, \text{Y} > \left(\text{p})\)

\(\sum_{p}(\text{X}) \sum_{p}(\text{Y})' \) Also: For a curve y: I -> E l(y) = f(Int) (y'(t)) dt Remark Forget R3, just define C'inner product puretions gij(u) on I then we could define all previous quartities.

	Orientability and the Gauss map.
	Note: from now on Z is C2.
	$\mathcal{D}_{\alpha}/$.
	Let Σ be a surface, $\rho \in \Sigma$.
	i). A unit normal at p is a vector N(p) ER3 st.
	N(p) = 1 and (span & N(p)3) = Tp =
	ii). A Gauss map for Σ is a Continuously differentiable map $N: \Sigma \to S^2$ s.t. $\forall \rho \in \Sigma$, $N(\rho)$ is a unit normal to Σ .
	Continuously differentiable mas
	N: E -> S2 St.
	YOF E N(a) is a unit somel to E
	iii). If there exists a Gauss map, then we
	call & orientable, and if we choose a Gauss map
	for Z, this is called an orientation.
	Remark
	Locally a Gauss map always exists. Given a
	parameterisation & then
10	$N(p) = \left(\frac{\partial \varphi}{\partial n} \times \frac{\partial \varphi}{\partial v}\right)$
	1 29 x 29 1 1 du 2x 1
	Idu de l
	Example
	The sphere: S2 = f-1(0), f(2, y, 2) = 262+y2+22-1
	$N(p) = \nabla f_p$, $\nabla f = D f^T$, $f: \mathbb{R}^3 \to \mathbb{R}$.
	17/1-1
	Sugger 3 XET, E st. X is not to of,
	$\chi(0) = \rho$, $\chi'(0) = X$. $\chi: I \to \Sigma$

MATH 3/13 31-10-17 $0 = \frac{d}{dt} = \frac{f(f(t))}{t} = \langle \nabla f, f'(0) \rangle$ $= \langle \nabla f, \chi'(0) \rangle$ N(p) = p. We now consider DNI : Tp & -> TN(p) S2. If fact TN(p) S2 = Tp & since on the sphere N(p) = p. Def (Weingarten map)
Let Σ be an oriented surface. Define the map $W_p := -DN_p : T_p \Sigma \longrightarrow T_p \Sigma$ Hop (1)

The Weingarten map is self adjoint.

(2) $\forall X, Y \in T_P \Sigma < W_P(X), Y > = < X, W_P(Y) >$ Proof
Consider in basis ∂_u , ∂_v We have $\langle N, \partial_v \rangle = 0 = \langle N, \partial_v \rangle$. < dn, Wp(dx)> = < 24, -dN > $= + \langle \frac{\partial^2 \Psi}{\partial u \partial v}, N \rangle = - \langle \frac{\partial \Psi}{\partial v}, \frac{\partial N}{\partial u} \rangle$ $= (\partial_{V}, W|_{p}(\partial_{n}))$ The Second Fundamental Form We now know that W/p is self adjoint w.t. <.,.> $\Rightarrow \times \mapsto \langle \times, \omega_{\rho}(\times) \rangle$ is a guadratic form.

That I be an oriented surface. The quadratic form Ip: Tp E -> R $I_p(x) = \langle x, \omega|_p(x) \rangle = -\langle x, DN_p(x) \rangle$ is called the second fundamental form of Eat p. Identically as we saw earlier, if $X = X'\partial_1 + X^2\partial_2$ is any element of $T \in \Sigma$ $(p = \theta(q), \alpha)$ then $T_p(X) = (X')^2 e(q) + 2X'X^2 f(q) + (X^2)^2 g(q)$ where e(g) = (du, W/p (du)) $f(q) = \langle \partial_v, W|_{\rho}(\partial_u) \rangle$ g(g) = < dv, W/p(dv)> $A = \{e \}$, $I_p(x) = \sum_{i=1}^{2} x^i A_{ij} x^j$ By abuse of notation, Y= Y'2, + Y22 $A(X,Y) = \sum_{i} Y^{i} X^{j} A_{ij}$ Thilinear form s=1 Corollary of (5) $e(q) = \langle \partial^{2} \varphi, N_{\parallel} \rangle$ $\partial u^{2} \qquad \left[\rho = \ell(q) \right]$ f(q) = (2°P, N/p) g(2) = < 029, N/ >. Theorem Let V be a 2-dim Euclidean vector space and T: V -> V a self adjoint mapping w.r.t. salar product i). I an orthogonal basis {e, e23 considered of eigenvectors of T and the corresponding eigenvalues \lambda, \lambda 2 are real.

```
MATH 3113
 31-10-17
            ii). Define Q(v) = <Tv, v> then the eigenvalues of
                 Tare given by 2=min {Q(v) | v ∈ V, |v|=1},

2=max {Q(v) | v ∈ V, |v|=1}.
            Principle curvatures
            Let E be an oriented surface, pE &
            i). The eigenvalues x(p), x2(p) of W/ are called
            the principle curvatures of E at p.
             If x, + x: then the corresponding eigenvectors
               are called the principle directions.
            ii). The Gauss curvature of Eat p is
               K := det W/ = R.(p) X.2(p)
            iii). The mean curvature of I at p is
                H:=\chi_1(p)+\chi_2(p)=\frac{1}{2}trW|_p.
            Wlog. K, SK2
              XI = min { Ip(X) | XETP E, Ip(X) = 1}
              2= max { Ip(x) | XETP 5, Ip(x)=13.
            a: R2 -> R
            defre the herrian as
                 Hers (g) := \left( \frac{\partial g}{\partial u^2} - \frac{\partial g}{\partial u \partial v} \right)
           Let \Sigma be an oriented surface, \rho \in \Sigma. Then \exists a neighbourhood U \neq 0 in T_{\rho} \Sigma, V \neq \rho in \Sigma and a
           twice differentiable function g: U > IR st.
             V={p+X+g(x)N(p) | X ∈ U} where g satisfies
```

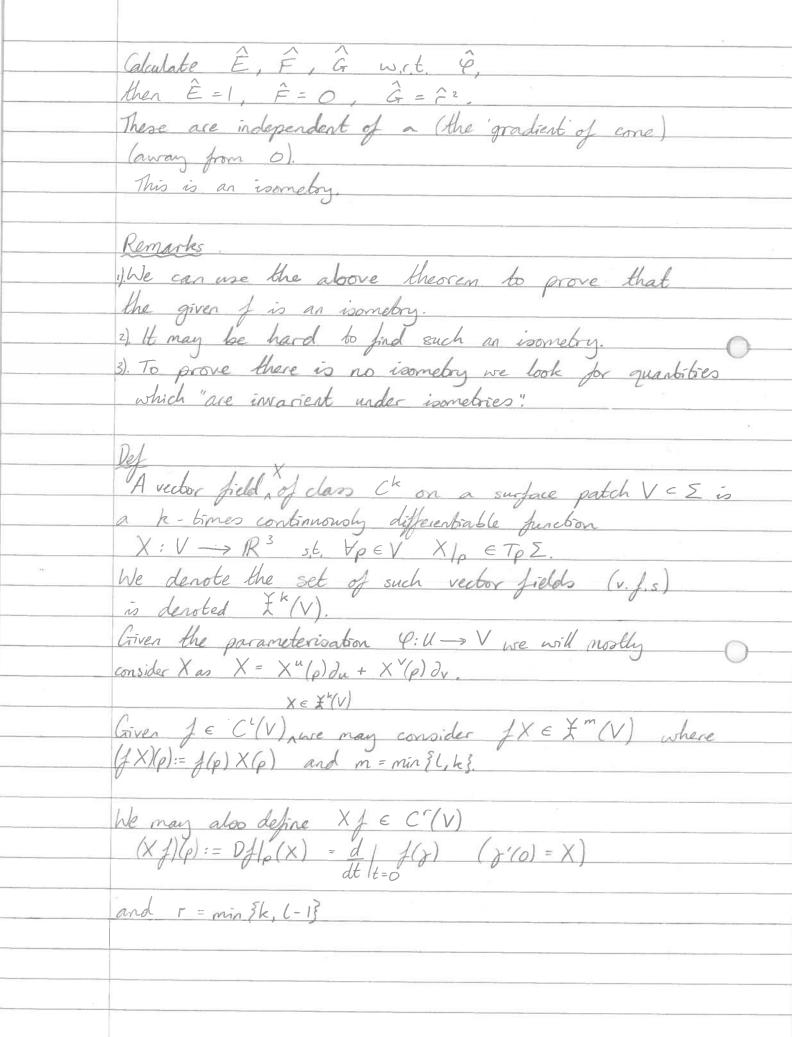
g(0)=0 and Dg/=0. X^{T} - Hero(g) $\left(-X = I p(X) \right)$ for XETP Z. (Locally I is a graph and A = Hers(g)) Proof (part of) whog p=0.

Suppose we have a graph function, then locally we have a parameterisation $Y(X) = (X'e_1 + X^2e_2 + g(X)e_3)$ $\partial_1 = e_1 + \partial g_1 e_3$ ∂x_1 $\partial_2 = e_2 + \partial_9 e_3$ ∂_{x_2} $N = -(D_g - e_3)$ where $D_g = \partial_g e_1 + \partial_g e_2$ $\sqrt{1 + |D_g|^2}$ $\partial_{x_1} = \partial_{x_2}$ < N, D;> = 0 =1, 2. A is the matrix with entires $A_{ij} = \langle \partial^2 \varphi, N \rangle$ $= \langle \frac{\partial^2 g}{\partial x^i} \frac{e_3}{e_3}, \frac{-(D_g - e_3)}{\sqrt{1 + |D_g|^2}} \rangle$ VI+10g12 But at $p = \varphi(0)$, Dg = 0 $\Rightarrow Aij = \partial^2 g = Hess(g) \leftarrow graph, not metric$ $\partial x^i \partial x^j$

31-10-17 Remades / Def i). If xilp = x2 | then p is called an umbitte point. ("curvature like on 52") ii). If x = x = 0 then this is called a flat point. iii). If K= x, x > 0 and I is entirely on one side of Tp & then p is an elliptical point. iv). If K = x, x2 < 0 p is called a hyperbolic point. v). If K = O but one x: +0 then this is a parabolic point. vi). If H= O tp e E then E is called a minimal surface. Examples Consider local graphs g st. g(0)=0, Dg(0)=0, then
i) 0 is a flat point of the graph, g= 2c + y4 ii). O is untille for graph of $g = x^2 + y^2$ (also elliptic) \forall iii). O is hyperbolic for $g = x^2 - y^2$ \Rightarrow Remark Change of orientation. Suppose we take - N instead of N.

I - I change of normal, N - N, $I \longrightarrow -I$, $K \longrightarrow K$, $H \longrightarrow -H$ Calculations in Local Coordinates Suppose at p = P(q), P a local parameterisation, we have Y, X & Tp & where Y = Y'd1 + Y2 dz and X = X'2, + X²2. Define w as W in these coordinates.

Then writing X as |X'| we have $X^TAY = \langle X, W|_{P}(Y) \rangle = X^Tg \cdot WY$ > W=9'A Recall : for $X, Y \in T_p \Sigma$, $\langle X, Y \rangle = \sum_{i,j=1}^{2} X^i g_{ij} Y^j = X^T g Y = g(X,Y)$ $g = inner product on <math>\mathbb{R}^3$ restricted to $T_p \Sigma$ and written wrt basis on ∂v 01-11-17 Last time: $N: \Sigma \to S^2$, $\rho \in \Sigma$ W: TPE - TPE Wi= - DN/ Ip: Tp I -> R (quadrate form) $I_p(X) = \langle X, W_p(X) \rangle$ $X = X'\partial_1 + X^2\partial_2$, $\tilde{X} = \begin{pmatrix} X' \\ X^2 \end{pmatrix}$, $A = \begin{pmatrix} e \\ f \end{pmatrix}$ $I_{p}(x) = \hat{X}^{T}A \tilde{X} = \sum_{i:i} X^{i}A_{ij} X^{j}$ We also have a bilinear form $\begin{bmatrix}
Y = Y'\partial_1 + Y^2\partial_2 & \widetilde{Y} = \begin{pmatrix} Y' \end{pmatrix} \\
Y^2 \end{pmatrix}$ $A(X,Y) = \sum_{i=1}^{2} Y^{i} A_{ij} X^{j} = \widetilde{Y}^{T} A \widetilde{X}$ principle curvatures x.(p), x.(p) eigenvalues of Wp He = 1/2 (X1(p)+ X1(p)) mean curvature = 1/2 tr DW (metric trace) Kp = K, (p) K2(p) = det Wp Gauss curvature. Now calculate in local coordinates. Write everything in basis du=di, dv=dz. Write W: Tp E -> To E for W in these coordinates (this is a matrix mapping) $g = \langle E F \rangle$, $A = \langle e f \rangle$ W = g-1. A WARNING: These g's are different!!! sometimes write $\tilde{g} = /EF$ $\tilde{g}^{-1} = \frac{1}{EG - F^2} \left(\frac{G}{-F} - \frac{F}{E} \right)$


01-11-17 In local coordinates: P:U -> V a local parameterioation 9(9) = p E V i). tangent vectors $\partial_u = \frac{\partial \mathcal{L}}{\partial u} |_{\mathcal{L}}$, $\partial_v = \frac{\partial \mathcal{L}}{\partial v} |_{\mathcal{L}}$ ii). E = < du, du>, F = < du, dv>, G = < dv, dv> entries of g. Entries of A: e = < 224, N), f, g etc. iii) Gauss map Np = du x dy iv). The entries of W=g-1. A V). Kp = det W = det A = eg - f2 (Gauss curvature, det g EG-F2 vi). Mean curvature: $H = \frac{1}{2} t_{r} \widetilde{\omega} \qquad \qquad t_{r} A^{T} B = \sum_{i,j=1}^{2} A_{ij} B_{ij}$ = 1.Ge - 2Ff + Eg $= EG - F^{2}$ vii). Principle curvatures are eigenvalues of \tilde{W} (⇒) solutions of $x^2 - t_r \tilde{W} x + det \tilde{W} = det (\tilde{W} - \pi I)$ $\chi_1 = H - \sqrt{H^2 - K}$, $\chi_2 = H + \sqrt{H^2 - K}$ viii). Principle directions are given by E, Ez where $\widetilde{W}\widetilde{e_i} = \chi_i \widetilde{e_i}$, i=1,2. Example Cylinder. C = {(2,y, 2) \in 1 x2 + y2 = 1} $\varphi: (-\pi,\pi) \times \mathbb{R} \longrightarrow \mathbb{R}^3$ (u,v) -> (cosu, sinu,v). iii), $N_{\rho} = \frac{\partial_{u} \times \partial_{v}}{\left[\partial_{u} \times \partial_{v}\right]} = -\begin{pmatrix} \cos u \\ \sin u \end{pmatrix}$

iv).
$$e = \langle J^{2}P, N \rangle = \langle (i,i,w) \rangle, (i,i,w) \rangle = 1$$
 $J_{i} = \langle 0, N \rangle = 0$
 $J_{i} = \langle 0, N \rangle = 0$

MATH 3113	
01-11-17	
01-11-17	
	In homework we parameterised the upper half
	Sphere ~ // C
	$\varphi: (0,\pi) \times (0,\pi)$ $g = (10)$ calculate area of sphere
77 6 6 8 =	
	area (S2) = 2 (T (T \sin20 dodx
	Jo Jo
	$=2\pi\int^{\pi}\sin\theta\ d\theta = 2\pi\cos\theta / \pi = 4\pi$
11 17	Jo 'o
14-11-17	
	Toomebry
	Def
	Thet E, , Ez be surfaces with first fundamental
	forms I., Iz.
	(i) a diffeomorphism Ø: E, -> 52 is called an
	isometry if $I_{1,p}(X) = I_{2,p(p)}(Dp _{p}(X))$.
	If such an isometry exists, I, Iz are isometric.
	(i) Let V, C Z, be open, p E V, then a map
	$\phi_1:V_1\to\Sigma_2$ is called a local isometry if \exists
	an open set $V_2 \subset \Sigma_2$ it, $\varnothing: V_1 \to V_2$ is an isomeby.
	Similarly Σ_1 , Σ_2 are locally isometric if $\forall p \in \Sigma_1$, \exists a local isometry $\phi': V_1^{\ni p} \longrightarrow \Sigma_2$ and $\forall q \in \Sigma_2$
	I a local isometry \$2: V232 -> \(\Sigma_1\).
	(iii) A surface is called flat if $\forall \rho \in \Sigma \exists a local$ isometry $\phi: V, {}^{3}P \to \mathbb{R}^{2}$.
	isometry \$\phi: V, 3P \rightarrow \mathbb{R}^2.
	Pop
helpful	
helpful for hwb	Let Σ , Σ_2 be surfaces and $f: \Sigma_1 \to \Sigma_2$ a continuously differentiable bijective local isometry $\forall p \in \Sigma_1$. Then f is an
216)	isometry.

Let 4; U→V; < ∑; be local parameterisations of surfaces Σ_1 , Σ_2 , and $f:=\varphi_2\circ \varphi_1^{-1}:V_1\to V_2$. Then the map f is an isometry iff $E_1 = E_2$, $F_1 = F_2$, $G_1 = G_2$. (Ei, Fi, Gi from first fundamental form). $p \in V_1$, $X \in T_p \Sigma_1$ Let y be a curve representing X $y(t) = P_1(u(t), v(t))$ X = u'(0) dun + v'(0) duy $\frac{Df|_{p}(x) = d}{dt|_{t=0}} \int_{0}^{\infty} \int_{0}^{\infty} \frac{dt}{dt|_{t=0}} \int_{0}^{\infty} \frac{\varphi_{s}(u(t), v(t))}{dt|_{t=0}}$ $= \frac{d}{dt} \left(\frac{\varphi_2(u(t), v(t))}{\varphi_2(u(t), v(t))} \right) = u'(0) \partial_{2,u} + v'(0) \partial_{2,v}$ I, p(X) = < u'(0) din+ v'(0) din, u'(0) din + v'(0) din > = $(u'(0))^2 E_1 + 2v'(0)u'(0)F_1 + (v'(0))^2 G_1$ = $(u'(0))^2 E_2 + 2v'(0)u'(0)F_2 + (v'(0))^2 G_2$ = < u'(0) dz, u + v'(0) dz, v, u'(0) dz, u + v'(0) dz, v > = I2, He) (Df(X)) [=>] Suppose f is an isometry. $E_1 = I_{1,p}(\partial_1 u) = I_{2,f(p)}(O_f(\partial_1 u)) = I_{2,f(p)}(\partial_2 u) = E_2$

14-11-17 $G_1 = G_2$ follows identically $(X = \partial_{1,v})$ $F_1 = F_2$ follows from polarization identity $F_1 = \langle \partial_{1,u}, \partial_{1,v} \rangle = \frac{1}{2} (I_1(\partial_{1,u} + \partial_{1,v}) - I_1(\partial_{1,u}) - I_1(\partial_{1,v})).$ Given V, C E, and V2 C E2 and a diffeo f: V, → V2, then if φ: U→ V, is a parameterisation, then fo φ: U→ V2 is a parameterisation of V2. So f is an isometry ⇔ E,=E2, F,=F2, G,=G2 in these coordinates Examples (i) In hw we calculated E, F, G for half sphere for $\varphi = (brig. functions)$, $(0, \alpha) \in (-\pi/2, \pi/2)^2$ $E = 1, F = 0, G = sin^2 0$ This is not an isometry. (ii) Previously we calculated the lot purdamental form for a cylinder; E=1, F=0, G=1. This is a local isometry 4: R2 → C, (x,y) → (cox, sinx,y) (iii) Consider Ko = {(r,w, z) ER3 | z=ar2} (r,w) are polar coordinates on R2. Local parameterisation: P(r,w) = (rcow, rsinw, ar) on R, × (-π, π) In these coordinates, 1st jundamental form is given by $\tilde{g} = \begin{pmatrix} 1+a^2 & 0 \\ 0 & r^2 \end{pmatrix}$ Let f = TI+az r , w= w/TI+az Consider new parameterisation: $\widehat{\varphi}(\widehat{r},\widehat{\omega}) = \widehat{f} \quad co\left(\overline{I + a^2} \ \widehat{\omega}\right), \quad \widehat{r} \quad sin(\overline{I + a^2} \ \widehat{\omega}), \quad a\widehat{r} \quad \sqrt{I + a^2}$ $\sqrt{I + a^2} \quad \sqrt{I + a^2}$

Proof The map (X, Y) -> Tx Y is linear in the first variable and "a derivative in the second". \Rightarrow (i) for $\nabla^{\mathbb{R}^3}$ and $D(Y_1 + Y_2)(X) = DY_1(X) + DY_2(X)$, D(fY)(X) = Df(X) Y + fDY(X). ⇒ (i) follows since projection is a linear mapping.

(ii) follows " " " " " " " " $X(\langle Y, Z \rangle) = D(\langle Y, Z \rangle)(X)$ $= \langle DY(x), Z \rangle + \langle Y, DZ(x) \rangle$ $= \langle \nabla_{x}^{\mathbb{R}^{3}} Y, Z \rangle + \langle Y, \nabla_{x}^{\mathbb{R}^{3}} Z \rangle$ Recall now $X, Y, Z \in X^{k}(\Sigma)$ $\langle \nabla_{x}^{R^{3}} Y + \lambda N, Z \rangle = \langle \nabla_{x}^{R^{3}} Y, Z \rangle$ Choose 7=-< N(p), 7x x >> $X(\langle Y, Z \rangle) = \langle \nabla_{X} Y, Z \rangle + \langle Y, \nabla_{X} Z \rangle$ Technically: $\nabla: \ X^{k}(\Sigma) \times X^{k}(\Sigma) \rightarrow X^{k-1}(\Sigma)$ Example: The Torus We consider the param. P: U=(0, n)2 -> V (u,v) -> ((2+con) cov, (2+con) sinv, sinu) $\frac{\partial v}{\partial v} = \frac{\partial \varphi}{\partial v} = \frac{(2 + \cos u) \left(-\sin v}{\cos v} \right)$ Want to calculate Von du etc. $\nabla_{\partial u}^{R^3} \partial u = (D \partial u)(\partial u) = (D \partial u)(D \theta(e_1))$ $= D(\partial_u \circ \Psi)(e_i) = \frac{\partial^2 \Psi}{\partial u^2}$ = 1-con cor

MATH 3113 14-11-17 The de = - sinu (-sinv) $\nabla_{JV}^{R^3} dV = (2 + \cos u) \left(-\cos v \right)$ N = dux dv = - |concor $\begin{array}{c|c}
|\partial_{u} \times \partial_{v}| & |s| \\
So \langle \nabla_{\partial_{u}}^{R^{3}} \partial_{v}, N \rangle &= 1 \\
\langle \nabla_{\partial_{u}}^{R^{3}} \partial_{v}, N \rangle &= 0
\end{array}$ $\langle \nabla_{\partial v}^{R^3} \partial v, N \rangle = (2 + \cos u) \cos u$ Va du = 0 $\sqrt{2} \partial u = \sqrt{2} \partial v = -\sin u \partial v$ $2 + \cos u$ Var dv = -(2 + cosu) cosv - cosencosv = (2 + con) (- cos v sin2u) = (2+con) sinu du Def
Let $P: U \rightarrow V \subset \Sigma$ be a local param. Then
the Christoffel symbolo of Σ w.r.t. Y are
the functions $\Gamma_{ij}^{k}: U \rightarrow \mathbb{R}$ defined via $\nabla_{\partial_{i}} \partial_{j} = \Sigma \Gamma_{ij}^{k} \partial_{n}$ where $i, j, k \in \Sigma u, v$ The Christoffel symbols of the first kind are defined by [ij,k = \(\nabla_2, \partial_1, \partial_k \rangle = \(\mathbb{T}_i \); \(\partial_2, \partial_k \rangle = \(\nabla_1, \partial_k \rangle \).

15-11-17 $f: \Sigma_1 \rightarrow \Sigma_2$ diffeo then f is an isometry if $\forall \rho \in \Sigma$, $\forall x \in T_\rho \Sigma$, $I_{\nu\rho}(X) = I_{2\mu\rho}(Df(X))$. Kecap: Suppose we have a differ of: E, -> Ez, 4:U-V is a local parameterisation of I, then for is a parameterisation, and f is an isometry \ E_1 = E2, F_1 = F2, G. = G2 where Ei, Fi, Gi are calculated w.r.t. Pi, Y = P, Pz = fo Y. X is a vector field on Σ if $\forall \rho \in \Sigma$, $X(\rho) \in T_{\rho} \Sigma$. $X^{k}(\Sigma) = \text{set of all } C^{k} \text{ vector fields.}$ Given $f \in C^{\infty}(\Sigma)$, $X \in X^{\infty}(\Sigma)$, f a curve representing X, i.e. y(0)=P, y(p)=X(p), then Xf = X(f), $X(f)|_{\rho} = \frac{d}{dt}|_{t=\rho}$ $f(x) = \mathcal{D}f(x)$. 1X - multiplication $\nabla_{x}^{R^{3}} Y = DY(X)$ v. fs X, Y defined on R^{3} $= \frac{d}{dt} Y(y(t)) \leftarrow \text{useful definition!!}$ $dt \downarrow_{= n}$ Covarient Derivative:

\[
\sum_{\times Y} = \sum_{\times Y}^{R^3} \times - \leftrightarrow \sum_{\times Y}^{R^3} \times , N > N
\] $\nabla_{\partial u}^{R^3} \partial_u = \frac{d}{\rho = \mathcal{Y}(u,v)} = \frac{d}{dt} \int_{t=0}^{\infty} \left(\mathcal{Y}(u+t,v) \right) , \quad \partial u = \frac{\partial \mathcal{Y}}{\partial u}$ $= \frac{d}{dt} \left| \frac{\partial \varphi (u+t,v)}{\partial u} \right| = \frac{\partial^2 \varphi}{\partial u^2}$ $= \frac{d}{dt} \left| \frac{\partial \varphi (u+t,v)}{\partial u} \right| = \frac{\partial^2 \varphi}{\partial u^2}$ $= \frac{\partial^2 \varphi}{\partial u} \left| \frac{\partial \varphi}{\partial u} \right| = \frac{\partial^2 \varphi}{\partial u} \left| \frac{\partial \varphi}{\partial u} \right| = \frac{\partial^2 \varphi}{\partial u}$ ⇒ ∀i,j,k [ij = [ji (using next definition].

```
15-11-17
                Def: Christoffel symbols.
                Let 4: U- V be a local parameterisation.
                Then the Christoffel symbols (of the second kind) are
                defined by Si 2; = IT. & du
                where from now on, i, j, k, l ∈ {u, v}.
                The Christoffel symbols (of the first kind) are defined
                by Fij, k = < Po di, dk > = \( \subseteq \in \lambda_i, \dk \) = \( \subseteq \in \lambda_i, \dk \rangle \)
                                                             = E [ij gck
                Suppose Y= Y 2, + Y2 22.
                Calculate X = X'd, + X2d2, Vx Y.
                  Vx Y = X' V2 Y + X2 V2 Y, Vx (Y'+Y2) = Vx Y' + Vx Y2,
                  \nabla_{x} f Y = X(f) Y + f \nabla_{x} Y
                 Calculate Vy Y = V2 (Y'd, + Y2dz)
                                          = \frac{\partial_{1}(Y')\partial_{1} + Y'\nabla_{2}\partial_{1} + \partial_{1}(Y^{2})\partial_{2} + Y^{2}\nabla_{3}\partial_{2}}{= \left[\frac{\partial Y'}{\partial u'} + Y'\Gamma_{1}' + Y^{2}\Gamma_{12}'\right]\partial_{1}}
                                               + \left| \frac{\partial y^2}{\partial u'} + y' \right|_{1}^{2} + y^{2} \left|_{12}^{2} \right| \partial_{2}
                                (Torus example)
                               = 0, \nabla_{\partial u} \partial v = -\sin u \partial v, \nabla_{\partial u} \partial v = (2+\cos u)\sin u \partial u

2+\cos u ② 3
                                       \int uv = -\sin u
              3 => \( \su_{vv} = (2 + coon) \sinu \)
```

Let i, j, k denote either u or v, [i, n denote Christoffel Symbols of the first kind. Then if gi; is the matoix associated too 1st fundamental form w.c.t. some loral param. Then

[ij, n = \frac{1}{2} \left(\param. \frac{1}{2} \text{in} + \param. \frac{1}{2} \text{in} + \param. \frac{1}{2} \text{in} \ $X(\langle Y, Z \rangle) = \langle \nabla_{\!\!\!\!/} Y, Z \rangle + \langle Y, \nabla_{\!\!\!/} Z \rangle (k)$ Proof

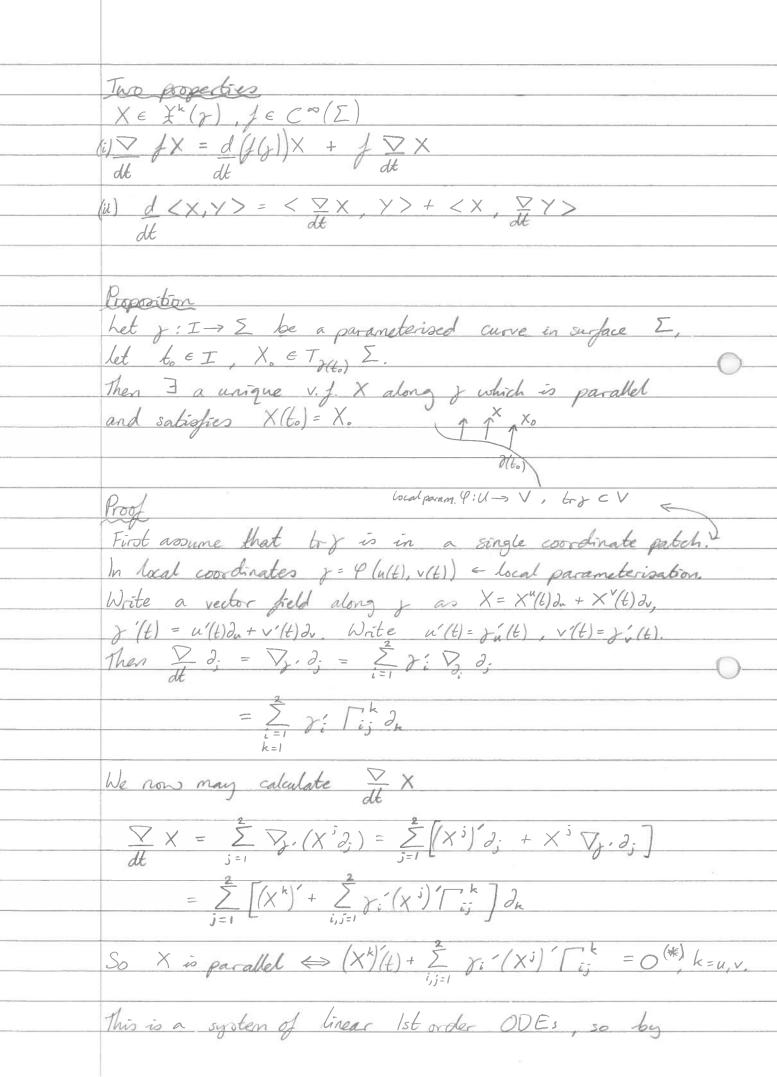
Let $X = \partial i$, $Y = \partial j$, $Z = \partial k$ $(k) = \partial \tilde{g}_{jk} = \partial i (\langle \partial j, \partial k \rangle) = \langle \nabla_{\partial i} \partial j, \partial k \rangle + \langle \partial j, \nabla_{\partial i} \partial k \rangle$ $= \Gamma_{ij,k} + \Gamma_{ik,j}$ - [kini + [k,j) = 2 [ij,k

```
MATH 3113
21-11-17
                       Vx3/= d/ Y(z(t)) y a curve, z(0)=p, z'(0)=X
                      X, Y \in X^{k}(\Sigma)
                        Vx Y/ & To E
                        \triangle^{\times} \lambda = \triangle^{\times} \lambda - \langle \triangle^{\times} \lambda, V \rangle V
                     Christoffel Symbols:

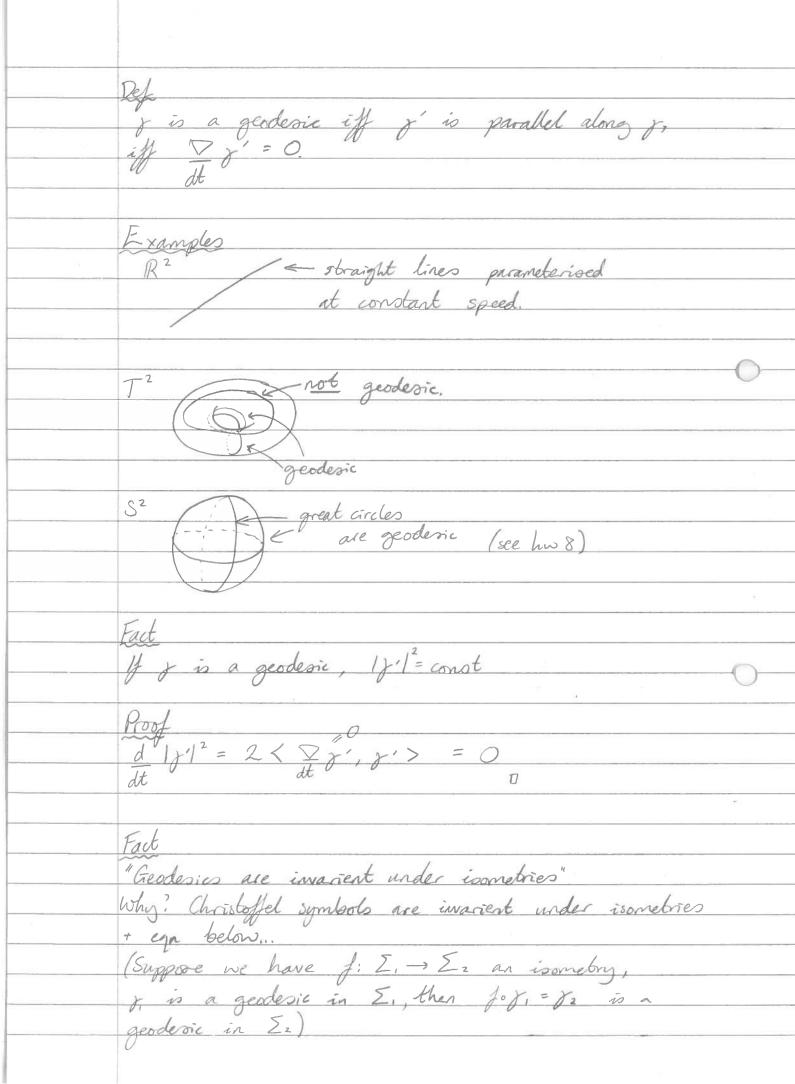
Va. 2; = E [ij 2]
                                                                         (2nd kind)
                     < 3. d. du) = [ij. k (1st kind)
                        =\sum_{i=1}^{n}\langle \Gamma_{ij}^{i} \partial_{i}, \partial_{k} \rangle = \sum_{l=1}^{n} \Gamma_{ij}^{l} \widetilde{g}_{lk} \quad \text{since } \widetilde{g}_{lk} = \langle \partial_{i} \partial_{k} \rangle
                     We may write any VXY in terms of these symbols.
                     e.g. X = du , Y = Y du + Y d.
                       Va (Y" du + Y du) = du (Y") du + Y" Va du + du (Y') du + Y Va du
                                           = \frac{\partial Y''}{\partial u} \frac{\partial u}{\partial u} + \frac{\partial Y'}{\partial u} \frac{\partial v}{\partial v} + \sum_{k} \left[ Y'' \int_{uv}^{k} + Y' \int_{uv}^{k} \right] \frac{\partial k}{\partial u}
                    Lemma
                        \Gamma_{ij,h} = \frac{1}{2} \left( \frac{\partial}{\partial j} \widetilde{g}_{ik} + \frac{\partial}{\partial i} \widetilde{g}_{jk} - \frac{\partial}{\partial k} \widetilde{g}_{ih} \right)
                     "C.S. of 1st kind depend only on 1st Jundamental form."
                     Lemma
"C.S. of 2nd beind depend only on 1st fundamental form"

\Gamma_{ij}^{k} = \sum_{l=1}^{2} (\tilde{g}^{-l})^{kl} \Gamma_{ij,l} = \frac{1}{\det \tilde{g}} \left( \Gamma_{ij,k} \, \tilde{g}_{k\bar{k}} - \Gamma_{ij,k} \, \tilde{g}_{k\bar{k}} \right)
                    where k + k ie k=u > k=v
                                                        k=v =) k = u
```

Proof

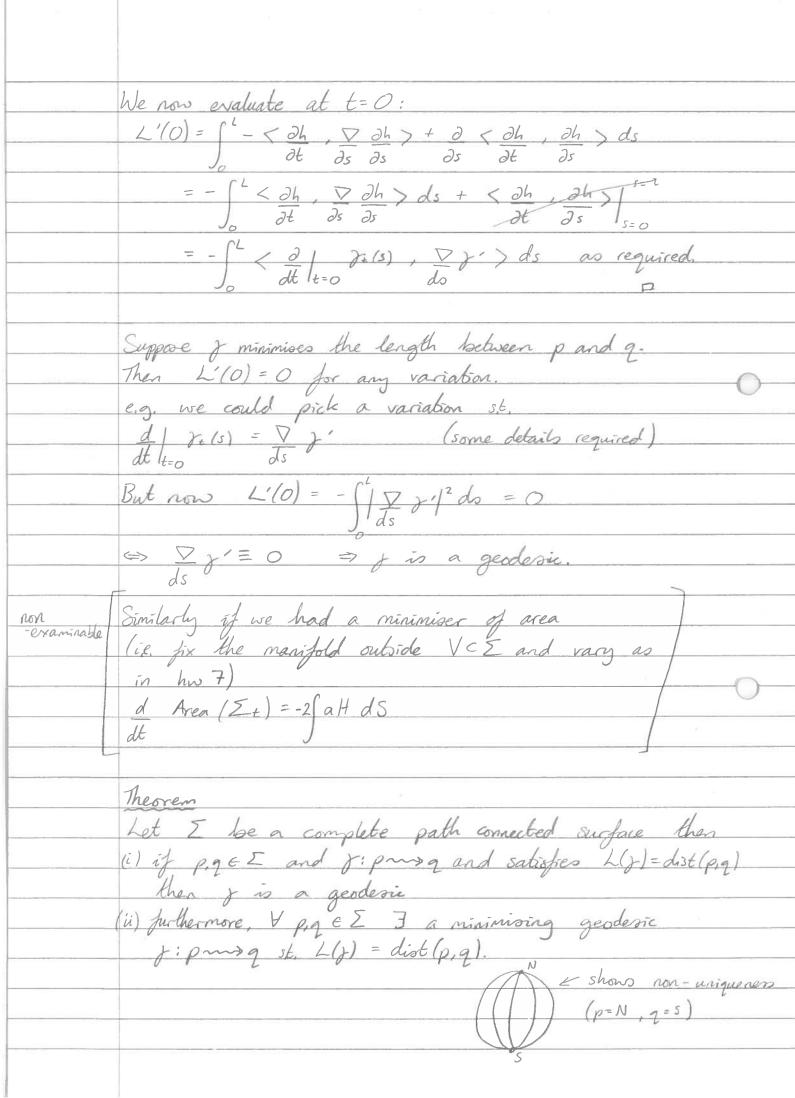

Consider $\sum_{i,j,l}^{2} \left(\widetilde{g}^{-l} \right)^{lk} = \sum_{k=1}^{2} \left(\widetilde{g}^{-k} \right)^{lk}$ $\sum_{k=1}^{l} \left(\widetilde{g}^{-k} \right)^{lk} = \sum_{k=1}^{2} \left(\widetilde{g}^{-k} \right)^{lk}$ = $\sum_{m=1}^{2} \int_{ijim} \sum_{l=1}^{2} \widetilde{g}_{m,l} \left(\widetilde{g}^{-1}\right)^{lk}$ $= (\widetilde{g} \cdot \widetilde{g}^{-1})_{m}^{k} = (Td)_{m}^{k} = S_{m}^{k}$ $= \sum_{m=1}^{2} \Gamma_{ij}^{m} S_{m}^{k} = \Gamma_{ij}^{k}$ (See notes for second part). The covacient derivative is invarient under isometries. That is, if $f: \Sigma \to \hat{\Sigma}$ is an isometry and Γ^{k} , $\hat{\Gamma}^{k}$; are Christoffel Symbols of Σ , $\hat{\Sigma}$ cesp. with parameterisations 4, j.4, then Γί; (p) = Γί; (f(p)). Remark Given such an isometry $f: \Sigma \to \hat{\Sigma}$ we transform $X \in T_p \Sigma$ to a vector in $T_{f(p)} \hat{\Sigma}$ by $f_* X|_{f(p)} := Df(X)|_p \in T_{f(p)} \hat{\Sigma}$. f_* is called the "push forward". Corollary above (>) fx(Vx Y) = Vx fx Y We can also define the "pull back": Suppose we have a junction Ω: Ê → R then we define f* \(\Omega:\)\ \(\Delta\) f*\(\Omega\)(\(\rho\)):= \(\Omega\)(\(\frac{f(\rho)}{\rho}\)). We will say a function, e.g. Gauss curvature, is preserved under an isometry, f, if $f^*(\hat{K}) = K$

14143113	
21-11-17	
51 11 11	Theorems Foresing - coming soul
	Theorema Egregium - coming soon! "From now on, everything is at least 3 times differentiable"
	Lemma
	Let 4 be a local parameterisation of an oriented
	surface with Gauss map N. Then if $X \in X^{n}(\Sigma)$ then
	(i) $\frac{\partial^2 \Psi}{\partial u^i \partial u^j} = \nabla_{\partial_i} \partial_j + A_{ij} N \leftarrow Weingarten formula$ $= \begin{pmatrix} e & t \\ t & 2 \end{pmatrix}$
	$(ii) \nabla_{\partial_i}^{\mathbb{R}^3} X = \nabla_{\partial_i} X + \langle W(\partial_i), X \rangle N$
0	0.1
	(ii) By def: $\nabla_{\partial_i}^{R^3} X = \nabla_{\partial_i} X + \langle \nabla_{\partial_i}^{R^3} X, N \rangle N$
	$R_{ij}t \langle X, N \rangle = 0$
	$\Rightarrow 0 = \partial_i \langle X, N \rangle = \langle \mathcal{B}_i^{R^2} X, N \rangle + \langle X, \mathcal{F}_{a_i}^{R^2} N \rangle$
	DN (2.)
Mryfelli.	$= \langle \nabla_{\partial_i}^{R^3} X, N \rangle - \langle \omega(\partial_i), X \rangle$
	\Rightarrow (ii)
	(i) unite X = d;
-0-	R^3 R^2
	$\frac{\partial}{\partial u^{i}} \left(\frac{\partial^{2} \varphi}{\partial u^{i}} \right) = \nabla_{\partial u}^{R^{3}} \frac{\partial^{2} \varphi}{\partial u^{i} \partial u^{i}}$ $\frac{\partial}{\partial u^{i}} \left(\frac{\partial^{2} \varphi}{\partial u^{i} \partial u^{i}} \right) = \nabla_{\partial u}^{R^{3}} \frac{\partial^{2} \varphi}{\partial u^{i} \partial u^{i}}$
	$= \nabla_{\partial_{x}}^{R^{3}} (\nabla_{\partial_{x}} \partial_{x} + A_{j} N)$
	- Yd; (Vd; 0, + 113111)
	= Vo. Vo. de + < W(di), Vo. de > N - Aje W(di) + ? N
	$O = \frac{\partial^3 \varphi}{\partial u^i \partial u^i \partial u^i} - \frac{\partial^3 \varphi}{\partial u^i \partial u^i}$
	= Vai Vai de - Vai Vai de - Ajew(di) + Aiew(di) + ?N
	=> Va; Va. di - Va; Va; di = A; W(di) - AilW(di)
	(tangential part)
	part)

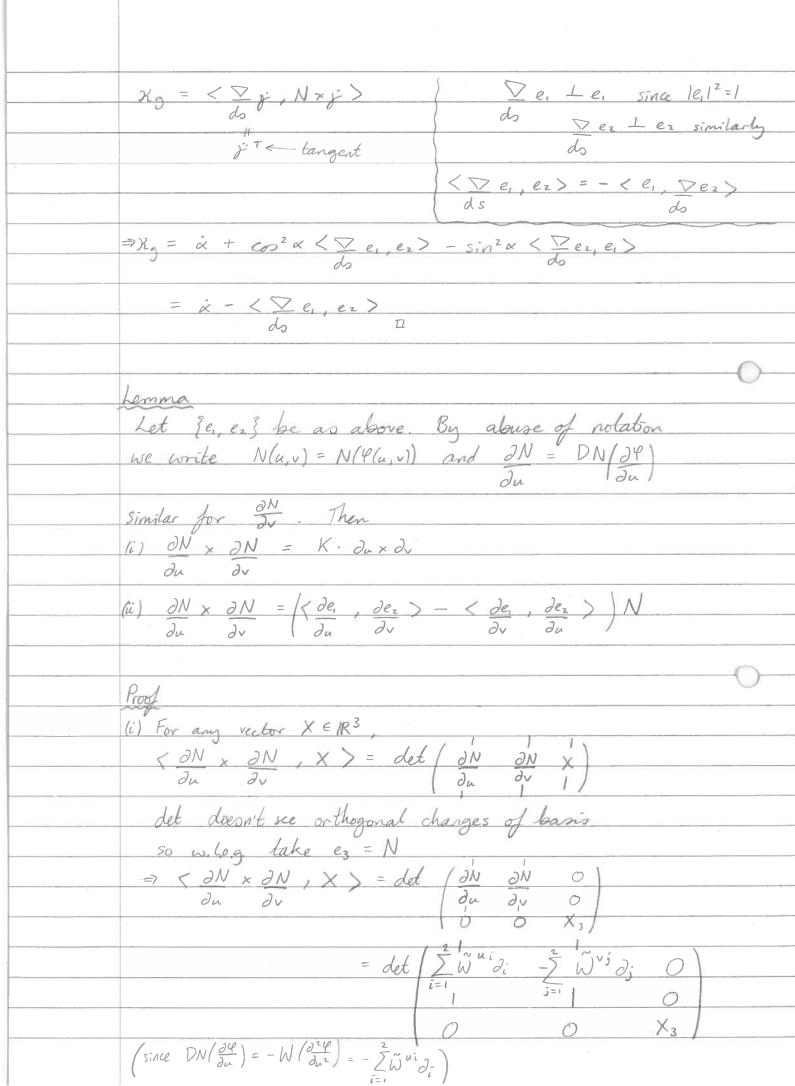

	Del
	Riemann curvature tensor
	het i, j, k, L & ?u, v } as before, then define
	Rulij := < Va. Va. d Va. Va. d. >
	Gaun Equation
	Rkij = Aji Ain - Ail Ajk.
	Ruvar = Avy Ana - Aux Ava.
	$R_{uvuv} = A_{vv} A_{uu} - A_{uv} A_{vu}$ $= ge - f^2 = K \det \tilde{g} (= \det A)$
	Theorema Egregium
	Gours curvative (K) is invarient under isometries,
	i.e. it is an intrinsic quantity.
	er, we are was near producting
7.53	Proof
	K = Ruyuv
	det 3
	If the Riemann curvature tensor is intrinsic, then so is
	the Gauss curvature, but Riemans curvature tensor
	is defined only in terms of 1st fundamental form
	and covarient derivative, which are intrinsic.
	Example
	You cannot (isomebrically) Halben a sphere.
	P:= r(cooconf, sind conf, sinf)
	$\tilde{g} = \begin{pmatrix} r^2 & 0 \\ 0 & r^2 \cos^2 \theta \end{pmatrix} \qquad A = r \begin{pmatrix} 1 & 0 \\ 0 & \cos^2 \theta \end{pmatrix}$
	$K = \det A = \frac{1}{r^2} \neq 0$ $\det \tilde{g}$
	Since the Gauss curvature on an open subset is not equal

22-11-17 Curves on Surfaces - Chapter 6? Def Let \(\Se \) be a surface, \(\gamma : \I -> \Secondsquare \) a regular parameterised curve. A vector field along y (of class C^k) is a (k-times differentiable) map $X: I \to \mathbb{R}^3$ st. $X(t) \in T_{H}$ Σ $\forall t \in I$. We may write $X \in X(Y)$. We may define $\frac{dx}{dt} = \frac{\nabla_{y(t)}}{\nabla_{y(t)}} \times \left| \frac{d}{\partial t} \right| \times \left| \frac{d}{\partial$ Wast: derivative also in X k-1(x). So we define $\sum_{i} X = \nabla_{j}^{R^{3}} X - \langle \nabla_{j}^{R^{3}} X, N \rangle N$ (= Vz, X) < if X existed outside of z. If there is an extension of y' to a of Y near y and extension of X to X in a neighboorhood of y then $\frac{\nabla X}{dt} = \frac{\nabla_{\tilde{y}} \tilde{X}}{r(t)}$ Def (Parallel vector felds) Let y be a curve on a surface Σ , (i) the map $\frac{\nabla}{\partial t}: \mathcal{X}^{k}(y) \rightarrow \mathcal{X}^{k-1}(y)$ is called the covarient derivative along y. (ii) if $\frac{X}{dt}X = 0 \ \forall t \in I$, then X is said to be parallel along J.

22-11-17	
	Examples
	(i) R2: For any curve & in R2 we have
	that $\Sigma X(t) = \partial X' e_1 + \partial X^2 e_2$ where $X = X' e_1 + X^2 e_2$
	X parallel $\Leftrightarrow \partial X' = 0 = \partial X^2$, X is a constant vector field.
	6
0	
	(ii) $\forall : (0, 2\pi)^2 \rightarrow V$
	$((b)) (u,v) \mapsto ((2+\cos u)\cos v, (2+\cos u)\sin v, \sin u)$
Wine the	$\partial_u = -\sin u \cos v$, $\partial_v = -(2+\cos u)\sin v$
	Cosu (2+cosu) cosv
	$V_{\partial u} \partial_u = 0$ $V_{\partial u} \partial_v = -\sin u \partial_v$ $2 + \cos u$
	Leave trul as (a a)
	Consider curves $g(t) = \varphi(t, \pi)$, $g'(t) = \varphi(r, t)$
	Q: 18 y' parallel along y?
	Is j' parallel along j?
	Dy'= Vy y' = Von du = 0 = y' is parallel along y.
	$\frac{\sum_{y'} = \sum_{y'} y' = \sum_{y'} \partial_{y} \int_{y'} = 0 \Rightarrow y' \text{ is parallel along } y.}{\int_{y'} \int_{y'} \int_{y'$
	$\frac{\sum \tilde{g}' = \sqrt{g}, \tilde{g}' = \sqrt{g}, \partial_v = (2 + \cos u) \sin u \partial u}{dt}$
	at 1/2(t)
	$=0 \iff u=\pi $ (5) To parallel


MATH 3113	
22-11-17	
	Picard - Lindlef theorem, given X, X2 at to I!
	Picard-Lindlet theorem, given X, X2 at to I! solution to (*) \forall t \in I.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Q: i Ui → Vi
	$\times(\hat{t})$
	By uniqueness, and patching our vector field X, we
	have existence of a unique vector field along all
-0-	of y even if it crosses to other coordinate patches.
	Def
	Let y: I -> E be a regular parameterised curve,
	I is a geodesic if y' is parallel along y,
	ie Dy' = O YteI.
	dt
	Geodesies on T2 (D) geodesic!
-0-	
28-11-17	Last time:
	√ X X is a v.f. along y
	$\nabla X = (\nabla_{x}^{R^{3}}(X))^{T} \in tangent$
	dt /t
	$= \left d \right \times \left(f(t+r) \right)^{T}$
	$= \left(\frac{d}{dr}\right) \times \left(\frac{1}{r} \times \left(\frac{1}{r} \times \left(\frac{1}{r}\right)\right) + \frac{1}{r} \times \left$
	$= \nabla_{i} \times - \langle \nabla_{i} \times, N \rangle N$
	X = assellat along : A DV = D
	X is parallel along y if $\nabla X = 0$ dt

MATH 3113 28-11-17 Prop (Local existence and uniqueners of geodesics). Let Σ be a surface, $\rho \in \Sigma$, $\chi \in T_{\rho}\Sigma$, then $\exists \, \epsilon > 0$ and a geodesic $\gamma : (-\epsilon, \, \epsilon) \to \Sigma$ 5t, x(0)=p, x'(0)=X. Take 9: U -> V = 5 s.t. pEV. Suppose 7(t) = 4(j-(t)) = 4(j,(t)e,+j,(t)ez) Recall if $X = X'\partial_1 + X^2\partial_2$ then $\frac{\nabla}{\partial x} = \frac{\sum_{i=1}^{n} \left(\frac{\partial}{\partial t} \times^i + \frac{\sum_{i=1}^{n} \frac{\partial F_{i}}{\partial t} \times^j \Gamma_{ik}^i\right) \partial_i}{k_{ij=1}}$ Applying to $y' = \frac{\partial \tilde{y}_1}{\partial t} \frac{\partial_1}{\partial t} \frac{\partial_2}{\partial t} \frac{\partial_2}{\partial t}$ $\frac{\nabla \gamma' = 0}{dt} , \gamma'(0) = \chi, \gamma(0) = \rho$ $\frac{\partial \gamma'}{\partial t} + \frac{\partial \gamma'}{\partial t} \frac{\partial \gamma'}{\partial t} = 0 \quad \text{for } i = 1, 2,$ $\frac{\partial^2 \gamma'}{\partial t^2} + \frac{\partial \gamma'}{\partial t} \frac{\partial \gamma'}{\partial t} = 0 \quad \text{for } i = 1, 2,$ This is a 2nd order system of ODEs, so we may apply Picard-Lindlof (Thm I. 19) to obtain the existence of a unique solution on the above 2nd order ODE for some E>O. Geodesics on cylinders. C-cylinder VCC parameterized by lo. 2) = (coso, sino, 2 4: (-1, 1)×R → R3 (4 is an isometry) p = (1,0,0) = 4(0,0) $T_p \Sigma = span \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right\}$


Pick
$$V = V^{\circ}\partial_{0} + V^{2}\partial_{2}$$
 $y(t) = Q(V^{\circ}t, V^{2}t) < C$
 $y'(t) = V^{\circ}\partial_{0} + V^{2}\partial_{2} = (V^{\circ}sin(V^{\circ}t)), V^{\circ}col(V^{\circ}t), V^{2}$
 $V^{\circ}(y') = y''(t) = -(V^{\circ})^{2}(cos(V^{\circ}t), sin(V^{\circ}t), O)$
 $V^{\circ}(y') = y''(t) = -(V^{\circ})^{2}(cos(V^{\circ}t), sin(V^{\circ}t), O)$
 $V^{\circ}(y') = V^{\circ}(y') = -(V^{\circ})^{2}(v') = -(V^{\circ})^{$

MATH 3113	
28-11-17	
	Suppose y is parameterised by are length, y:pming a length L
	then define a variation of f to be a mapping (C2) $h: [0,L] \times (-\varepsilon,\varepsilon) \longrightarrow \Sigma$ s.t. $h(s,o) = f(s)$
	h(0,t)=p, $h(l,t)=q$. We define the length of
	We define the length of the variation $L(t): (-\varepsilon, \varepsilon) \to \mathbb{R}$ $L(t)=\left\{\begin{array}{c c} \partial L(s,t) ds \\ \hline \\ \partial s \end{array}\right\}$
	$= \int_{c}^{L} \mathcal{F}'(s) ds$
	where j=(s) = h(s,t).
	Prop (First Variation of arc length) The function $L:(-\varepsilon,\varepsilon) \to \mathbb{R}$ is continuously differentiable enough and at $t=0$ its derivative is given by
	$\frac{L'(0)}{1} = \int_{0}^{L} \left\langle \nabla f'(s) \right\rangle \frac{d}{dt} \Big _{t=0} f_{\pm}(s) \right\rangle ds$
	"variation of are length"
0	Since $ f'(s) =1$ then for ε small enough ε is a regular curve. We observe that since $\frac{\partial^2 h}{\partial s \partial t} = \frac{\partial^2 h}{\partial t \partial s}$ we have that
	$\frac{\partial h}{\partial s} \frac{\partial h}{\partial t} = \frac{\partial h}{\partial t} \frac{\partial h}{\partial s} \text{where we consider } \frac{\partial h}{\partial s}, \frac{\partial h}{\partial t} = \frac{\partial h}{\partial s}$
	vector fields along γt . So now $L'(t) = \frac{1}{2} \left(\frac{1}{2} \frac{\partial h}{\partial s} (s, t) \right)^{-1} \frac{d}{dt} \left(\frac{\partial h}{\partial s}, \frac{\partial h}{\partial s} \right) ds$
	$=\frac{1}{2}\int_{0}^{L}\left \frac{\partial h}{\partial s}\right ^{-1}(s,t)\left\langle \frac{\nabla}{\partial t}\frac{\partial h}{\partial s},\frac{\partial h}{\partial s}\right\rangle ds$
	$=\frac{1}{2}\int_{0}^{L}\left \frac{\partial h}{\partial s}\right ^{-1}(s,t)\left\langle \frac{\nabla}{\partial s}\frac{\partial h}{\partial t},\frac{\partial h}{\partial s}\right\rangle ds$

MATH 3113	
28-11-17	
	Geodesic and Normal Curvature
	Suppose J: I -> I is a curve parameterised by
	asc length.
	From now on, I will be orientable.
	Def (Normal curvature)
	Let 2 be an orientable surface, y regular,
	parameterised by unit speed. Then
-0-	$\mathcal{X}_n(s) = \langle \gamma''(s), N(\gamma(s)) \rangle.$
	Pox
140 000	We have that the normal curvature satisfies
and the same	$\mathcal{H}_{\alpha}(s) = \langle \mathcal{J}(s), \mathcal{N}(\mathcal{J}(s)) \rangle = \mathbb{T}_{\mathcal{J}(s)}(\mathcal{J})$
	Part
	$N(f(s)) + f(s) \forall s$
sylvale	$0 = \frac{d}{ds} < N(y(s)), y(s) >$
	$=\langle N(\chi(s)), \dot{\chi}(s) \rangle + \langle \dot{\chi}(s), DN(\dot{\chi}(s)) \rangle$
0	
	$= \langle N(\gamma(s)), \dot{\gamma}(s) \rangle - \langle \dot{\gamma}(s), W(\dot{\gamma}(s)) \rangle$
	(A)((a) ::(1) - T (2:(1)
	$(>)$ $(N(y(s)), y(s)) = I_{y(s)}(y(s))$
	Det (Geodesic auvature)
***	Def (Geodesic curvature) The function $X_3(s):=\langle \sum_j j(s), N(y(s)) \times j(s) \rangle$ $\frac{1}{ds}$
	and of course $\chi^{2}(s) = \chi_{g}^{2}(s) + \chi_{n}^{2}(s).$

29-11-17	
	Let's work on V (3 param 4: U -> V).
	Suppose [e, ez] is an orthonormal frame on V.
	(e, ez \(\xi\)\ vetor fields, e, =1, e_z =1, \(\xete_1, e_z\) = 0, e, \(\xete_2 = N\)
	For a local curve &: I > V define an angular
	function α: I → R st.
	$j = j'(t) = cos(\alpha(t))e_1 + sin(\alpha(t))e_2$
	1/2(4)/
VII.3	Theorem (Turning tangents)
0	Suppore & a closed curve parameterised by arc-length as
	Suppose y a closed curve parameterised by arc-length as above. Then I angular function $\alpha: I \to V$ for y and
	$\hat{\alpha} = \pm 2\pi$
2 1872	$\int_{\mathcal{I}}$
6763	with + if y is positively parameterized.
	Theorem (Local Gaus Bonnet - smooth curves)
	Let y: [0,1] → E be a regular simple positively
	oriented doved curve, parameterised by are length.
	Then I xo ds + I K dS = 2TT IN
0	Jint (y)
	Lemma
	Let Σ , f be as in $MI.3$.
	Let e, ez & X (E) an oriented frame on V (coord. nbhd)
	and let a be an angular function for y w.r.t. {e, e. ?.
	Then $\kappa_g = \dot{\alpha} - \langle e_1, \nabla e_2 \rangle$.
	Roof.
	We have j = cooke + sinkez.
	$\sum j = \cos \alpha \sum e_1 + \sin \alpha \sum e_2 - \alpha \sin \alpha e_1 + \alpha \cos \alpha e_2$
	$N \times j = cos \times e_2 - sin \times e_1$ $(N = e_1 \times e_2)$

MATH 3113	
29-11-17	
	$= \det \left(\begin{pmatrix} \widetilde{U} & O \\ O & O \end{pmatrix} \left(\frac{\partial \varphi}{\partial u} \frac{\partial \varphi}{\partial v} O \right) \right)$
	O Du du O
	100 1100 0 X3
	= $K < \partial_u \times \partial_v$, $X > as required.$
05-12-17	
	Theorem (Crauss-Bonnet)
	Let y: [0,1] -> 5 be a regular, simple, closed,
	smooth curve, parameterized by are length
0	and positively oriented. Then
	$\int_{\partial S} x_{S} dS + \int_{int_{T}} K dS = 2\pi$
	of Sinty
anthonis	Lemma !
	Let E be an orientable surface, 4: U → V a
	parameterisation of 2, suppose by CV and we have
	an onested frame {e, ez} on V (e, xez = N),
	then $x_g = \dot{\alpha} - \langle e_1, \frac{\nabla}{ds} e_2 \rangle$
	where I is parameterised by are length and a is an
-0	angular function of & w.ct. Ee., er3.
	As we are in one coordinate patch we abuse notation and
	write N: U -> R3 N=N(P(u,v)).
	So we may write $\frac{\partial N}{\partial u} = \frac{\partial N}{\partial u} = \frac{\partial N}{\partial u}$
	Similarly we write e: U -> 1R3, e2: U -> 1R3
	Lemma 2
	Let {e, ez} be an oriented orthonormal frame on V. Then
	$\frac{\partial \mathcal{N}}{\partial u} \times \frac{\partial \mathcal{N}}{\partial v} = \mathcal{K} \frac{\partial u}{\partial v} \times \frac{\partial v}{\partial v}$
	$\frac{(ii)}{\partial u} \frac{\partial N}{\partial v} \times \frac{\partial N}{\partial v} = \left(\left\langle \frac{\partial e_1}{\partial u}, \frac{\partial e_2}{\partial v} \right\rangle - \left\langle \frac{\partial e_1}{\partial v}, \frac{\partial e_2}{\partial v} \right\rangle \right) N$
	du de la de de de

 $\frac{1}{\partial u} = \langle e_1, \partial e_1 \rangle e_2 + \langle N, \partial e_1 \rangle N$ and we see similar for de, der, der $\frac{\partial N}{\partial u} \times \frac{\partial N}{\partial v} = \left(\frac{\partial e_1}{\partial u} \times e_2 + e_1 \times \frac{\partial e_2}{\partial v}\right) \times \left(\frac{\partial e_1}{\partial v} \times e_2 + e_1 \times \frac{\partial e_2}{\partial v}\right)$ = KN, de, > Nxe2 + e, xN < N, dez >) $\times \left(\langle N, \partial e_1 \rangle N \times e_2 + e_1 \times N \langle N, \partial e_2 \rangle \right)$ $= \langle N, \partial e_1 \rangle e_1 + \langle N, \partial e_2 \rangle e_2$ $\frac{\partial u}{\partial u} = \frac{\partial u}{\partial u} = \frac{\partial u}{\partial u} = \frac{\partial u}{\partial u}$ $\times \langle N, \partial e_1 \rangle e_1 + \langle N, \partial e_2 \rangle e_2 = \frac{\partial u}{\partial u}$ $\frac{\partial u}{\partial v} = \frac{\partial u}{\partial v} = \frac{\partial u}{\partial v} = \frac{\partial u}{\partial v}$ = (N, de,) (N, de,) - (N, de,) N $\langle e_1, e_2 \rangle = 0 \Rightarrow \langle \underline{\partial} e_1, e_2 \rangle = -\langle e_1, \underline{\partial} e_2 \rangle$ (de, , dez) = (@ez + (N, de,) N, @e, + (N, dez) N) = (N, de,)(N, dez) (de, dez) follows, du similarly $\frac{\partial N}{\partial u} \times \frac{\partial N}{\partial v} = \left(\left(\frac{\partial e_1}{\partial u}, \frac{\partial e_2}{\partial v} \right) - \left(\frac{\partial e_1}{\partial v}, \frac{\partial e_2}{\partial v} \right) \right) N$

05-12-17 Proof (of Gauss - Bornet (local smooth curves)) We require Green's Thm: Suppose y: [0,1] → R² is a smooth, simple, regular, dozed curve st. V=int g and P, Q: V, → R, and if (s) = (u(s), v(s)). Then $\int_{0}^{1} (iP + iQ) ds = \int_{V} \left(\frac{\partial Q}{\partial v} - \frac{\partial P}{\partial u} \right) du dv$ We consider I = \(\left(\eq (y(s)), \nabla e_2(y(s)) \right) do Let y be our are length parameterised curve on Σ . Choose \tilde{g} such that $P(\tilde{\gamma}(s)) = \gamma(s)$ 9(u(s), v(s)) Since e, b. N, then $\langle e_{i}(y(s)), \frac{\nabla}{ds} e_{2}(y(s)) \rangle = \langle e_{i}(y(s)), \frac{d}{ds} (e_{2}(y(s))) \rangle$ $\frac{d\left(e_2(\gamma(s))\right) = De_2\left(i\partial_u + i\partial_v\right) = i \frac{\partial e_2}{\partial u} + i \frac{\partial e_2}{\partial v}}{\partial u}$ $\mathcal{I} = \int_{0}^{\infty} \left\{ \langle e_{1}, \frac{\partial e_{2}}{\partial u} \rangle \dot{u} + \langle e_{1}, \frac{\partial e_{2}}{\partial v} \rangle \dot{v} \right\} ds$ $= \int_{V=int\tilde{x}} \frac{\partial}{\partial u} \left(\langle e_1, \frac{\partial e_2}{\partial v} \rangle \right) - \frac{\partial}{\partial v} \left(\langle e_1, \frac{\partial e_2}{\partial u} \rangle \right) du dv$ $= \int_{V} \left\langle \frac{\partial e_{i}}{\partial u}, \frac{\partial e_{z}}{\partial v} \right\rangle - \left\langle \frac{\partial e_{i}}{\partial v}, \frac{\partial e_{z}}{\partial u} \right\rangle \frac{\partial u}{\partial u} \frac{\partial^{2} e_{z}}{\partial u} = \frac{\partial^{2} e_{z}}{\partial u \partial v} = \frac{\partial^{2} e_{z}}{\partial u \partial v} = \frac{\partial^{2} e_{z}}{\partial u \partial v}$ = $\int_{V} \left(\frac{\partial N}{\partial u} \times \frac{\partial N}{\partial v}, N \right) \log \lim_{n \to \infty} 2(n)$ = [K|du x du du du by Lemma 2(i) $= \int_{\varphi(v)}^{\infty} K dS$

How
$$\mathcal{I} = \int_{0}^{\infty} (\dot{x}(s) - x_{2}(s)) ds$$

$$= 2\pi - \int_{0}^{\infty} \dot{x}_{2}(s) ds$$

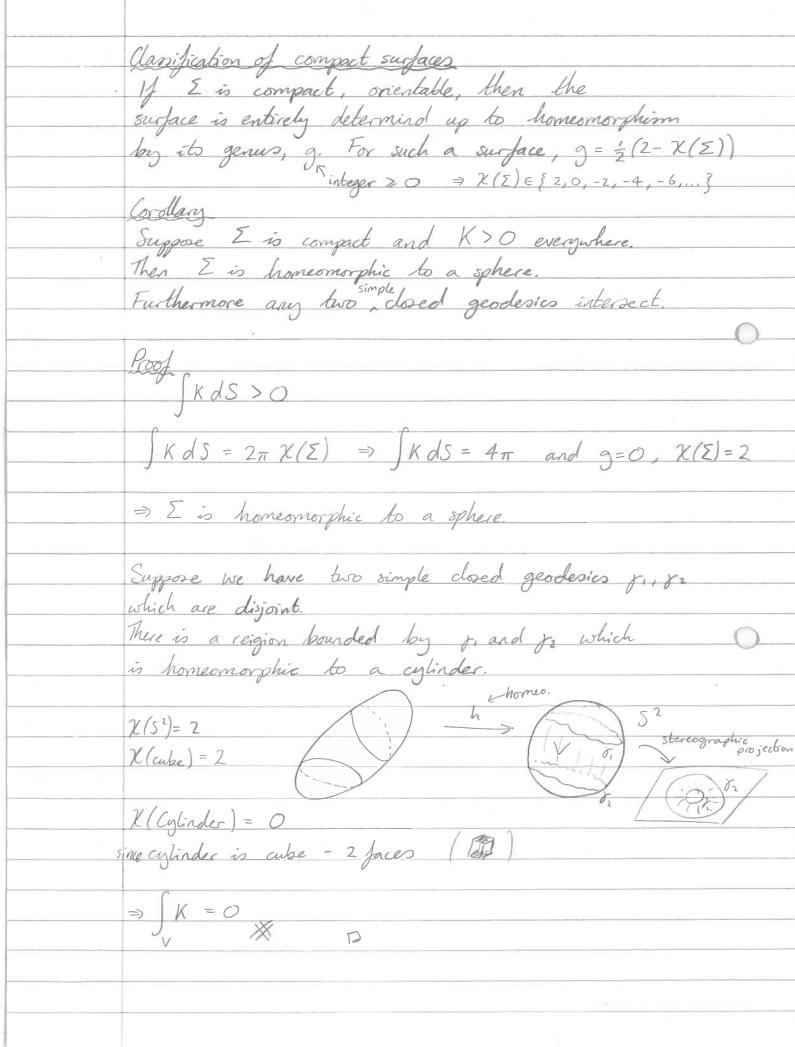
$$= \int_{0}^{\infty} K dS + \int_{0}^{\infty} \dot{x}_{2}(s) ds = 2\pi$$
Suppose f as above, $f(s) = f(s)$

$$\dot{x}_{2}(s) = -\dot{x}_{2}(s) = -\int_{0}^{\infty} \dot{x}_{2}(s) ds$$

$$= \int_{0}^{\infty} \dot{x}_{2}(s) - \dot{x}_{2}(s) ds = -\int_{0}^{\infty} \dot{x}_{2}(s) ds$$

$$= \int_{0}^{\infty} \dot{x}_{2}(s) - \int_{0}^{\infty} \dot{x}_{2}(s) ds$$

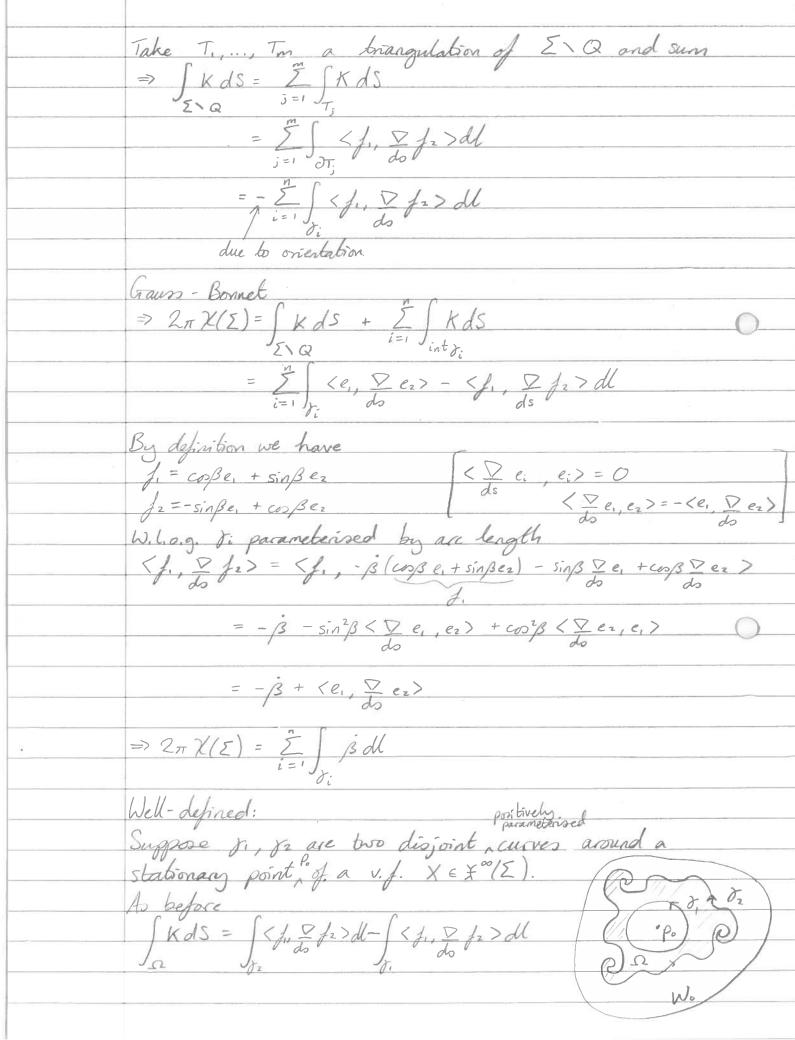
$$= \int_{0}^{\infty} \dot{x}_{2}(s) + \int_{0}^{\infty} \dot{x}_{2}(s) ds$$


5-12-17	
	From now on the g(si) & E will be called vertices
	and the image of the intervals of [5:, 5:+1]
	will be called edges
	If y is a chain which is closed and simple then it is called a generalised polygon and inty exists.
	then it is called a generalised polygon and
	int y exists.
	Theorem (Local Comm- Bonnet to decien)
0	Theorem (Local Gauss-Bonnet for chains) Let PCE be a generalised polygon with
	exterior angles 0,, On.
	Then c
	Then $\int_{\partial P} R_g dl + \int_{P} K dS + \sum_{i=1}^{n} \Theta_i = 2\pi$
	ορ ορ i=1
	Proof
W	Exercise.
	Examples
0	1) In R2 we could consider polygons
	$K = 0 \qquad \Rightarrow \qquad \xi = 2\pi$
	i=1
	2). Let P be a geodesic triangle in S2
	2). Let P be a geodesic triangle in S^2 $K = 1, \chi_g = 0 \implies \sum_{i=1}^{2} O_i = 2\pi - \int_{\Omega} K dS$
	i=1 Jp
*	$=2\pi-area(P)$
	Oi are exterior angles.

	Def (Polygonal Covers, Euler Characteristic)
	Let I be a surface, V = I be compact.
	A polygonal cover is a set P = EP, , Pm 3 where
	(i) each P; is a generalised polygon
	(i) each P: is a generalised polygon is. I an injective chain J: in E s.t. P: = int J:
	$(ii) V = U P_{i}$
	(iii) The intersections PinP; for i+; are either
	empty or intersect along one entire edge or
	(iii) The intersections $P_i \cap P_j$ for $i \neq j$ are either empty or intersect along one entire edge or intersect at one vertex.
	P. P
	Denote . f(P) = number of faces Pay:
	Denote of (P) = number of faces (polygons) = m
	· e(P) = number of edges
	· v(P) = number of vertices
6	The Euler Characteristic of P is defined to be
	The Euler Characteristic of P is defined to be $\chi(P) = f(P) - e(P) + v(P)$
	Remark
	We may always cut our polygonal cover into smaller subdivisors - a refinement of the polygonal cover.
7	0 1 00
	Page
	Let V. be a compact subset of a surface E, and
	suppose de is piecevise smooth.
	(i) 3 a finite triangulation of V (polygonal cover
	such that all polygons are briangles)
	such that all polygons are briangles) (ii) The Euler characteristic of two covers of V are
	the same.
	(iii) If there is a homeomorphism $h: V \rightarrow V'$ then $\chi(V) = \chi(V')$.

MATH 3113 05-12-17 Examples 1) $S = \alpha$ square P = just the square v(P) = 4, e(P) = 4, f(P) = 1=> X(p) = 1-4+4= \tilde{P} is \mathbb{N} $v(\tilde{P})=5$, $e(\tilde{P})=8$, $f(\tilde{P})=4$ ⇒ X(p) = 4-8+5=1 $2) S^{2}$ e(P) = 6 $\Rightarrow \chi(s^2) = \chi(P) = 4 - 6 + 4 = 2$ f(P) = 4 v(P) = 9, e(P) = 27, f(P) = 18 $\chi(\rho) = 18 - 27 + 9 = 0$ 4). Consider a triangulation of some compact VCR2. Remove a face to obtain V. Then $\chi(\tilde{V}) = \chi(V) - 1$

$$\left[\begin{array}{ccc} R & & & \\ \hline & & \\ \hline \end{array} \right] \left[\begin{array}{cccc} R & & \\ \hline \end{array} \right] = -2 \left[\begin{array}{cccc} R & & \\ \hline \end{array} \right]$$


06-12-17 Plan: Cut a reigion into sufficiently small triangles, apply local G-B to obtain a global G-B. Theorem (global Gaun-Bonnet) Let E be an orientable surface, $V \subset E$ be compact and have a piecewise smooth boundary with exterior angles O, ..., On. Then $\int K dS + \int R_S dl + \sum_{i=1}^n \theta_i = 2\pi \chi(V)$ Take a polygonal cover P={P, ..., Pm3 s.t. each Pi is contained in one coordinate reighbourhood On a polygonal cover, each interior edge is positively parameterised in opposite directions for each of the two faces adjoining it. [5] Apply local Gauss-Bonnet for each P_i . $\sum_{j=1}^{m} 2\pi i = \sum_{j=1}^{m} \int_{\partial P_i} x_j^j dl + \sum_{j=1}^{m} \int_{P_i} K dS + \sum_{j=1}^{m} \sum_{i=1}^{n} O_i^j$ where O: 15 j = v(P;) are the external angles of P; $\frac{\sum_{j=1}^{2} \int_{P_{i}} K dS}{\int_{P_{i}} E^{i}_{e}(\rho_{i})}$ $\frac{\sum_{j=1}^{m} \chi_{j} dl}{\beta \rho_{j}} = \sum_{j=1}^{m} \frac{e(\rho_{j})}{i=1} \int_{E_{j}^{+}} \chi_{j} dl$ But due to our remark, any interior edge ky is integrated 06-12-17 in both directions. $\Rightarrow \sum_{j=1}^{m} \int_{\partial P_{j}} x_{j}^{j} dl = \int_{\partial V} x_{j} dl$ Define interior angles as $\phi_i^{\ \ \ } = \pi - \Theta_i^{\ \ \ \ \ }$ $\frac{v(P_i)}{\sum_{i=1}^{N} \Theta_i^{j}} = \frac{v(P_i)}{\sum_{i=1}^{N} (\pi - \phi_i^{j})}$ $= \pi \vee (P_i) - \sum_{i=1}^{\nu(P_i)} \emptyset_i^{(i)}$ number of edges = number of vertices = $\pi e(P_i) - \sum_{i=1}^{V(P_i)} \varphi_i^{i}$ n = number of boundary edges $\sum_{i=1}^{m} \pi e(P_i) = 2\pi e(P) - n\pi$ interior angles at boundary vertices $\sum_{j=1}^{m} \frac{v(P_j)}{\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{vertices}{\sum_{j=1}^{n} \frac{vertices}{\sum_{j=1}^{n} \sum_{i=1}^{n} \frac{vertices}{\sum_{j=1}^{n} \frac{vertices}{\sum_{j=1$ $=2\pi \vee (\mathcal{P})-\pi n-\sum_{k=1}^{n}\theta_{k}$ $\Rightarrow \sum_{j=1}^{m} \frac{v(P_j)}{i=1}$ $\Rightarrow \sum_{j=1}^{m} \frac{\sum_{i=1}^{m} O_i S_i}{\sum_{i=1}^{m} O_i S_i} = 2\pi e(P) - n\pi - 2\pi v(P) + \pi n + \sum_{k=1}^{m} O_k$ $m = f(\mathcal{P})$ $\Rightarrow 2\pi f(\mathcal{P}) = 2\pi e(\mathcal{P}) - 2\pi v(\mathcal{P}) + \sum_{k=1}^{n} \mathcal{Q}_k + \int_{V} K dS + \int_{\partial V} \mathcal{H}_g dl$ $\Rightarrow \int_{V} K dS + \int_{\mathcal{X}_{Q}} \chi_{Q} dl + \sum_{i=1}^{n} \mathcal{Q}_{i} = 2\pi \chi(\mathcal{P}) = 2\pi \chi(V)$ Corollary G-B for compact surfaces.
Suppose E is compact and orientable, then f KdS = 2 TX(E) Corollary Suppose V is homeomorphic to a disc., ∂V precentise smooth with boundary angles $\Theta_1, ..., \Theta_n$, then $\int_V K dS + \int_V K_S dU + \sum_{i=1}^n \Theta_i = 2\pi \qquad \left[\chi(disc) = 1\right]$

MATH 3113	
06-12-17	
	Suppose K <o a="" and="" cylinder.<="" e="" homeomorphic="" is="" td="" to=""></o>
	Suppose K <o 3="" a="" and="" at="" closed="" cylinder.="" e="" geodesic.<="" homeomorphic="" is="" mot="" one="" td="" then="" to=""></o>
	May assume any dosed simple curve or surface homeomorphic to a cylinder either bounds a dise or goes once
	to a cylinder either bounds a disc or goes once
	asound the cylinder
12-12-17	
	Last time:
0	Theorem G.B (general)
	Suppose & is orientable, VCE is compact with piecewise smooth boundary 2V and external
	piecerise smooth boundary of and external
	angles 0,, on then
	angles O_1 ,, O_n , then $\int_{V} K dS + \int_{\partial V} \chi_g dL + \sum_{i=1}^{r} O_i = 2\pi \chi(V)$
	boundary angle = non-zero boundary angle. Oboundary angle
	Je Oboundary angle
	Corollary G-B with smooth boundary
	Suppose V, 2 as above but IV is smooth, then
	Suppose V , Σ as above but ∂V is smooth, then $\int_{V} K dS + \int_{\partial V} x_{3} dl = 2\pi \chi(V)$
	Corollary G-B without boundary
	Suppose I is compact (as metric space), then
	$\int_{\Sigma} K dS = 2\pi \chi(\Sigma)$
	2
	Suppose V is homeomorphic to a disc, 2V is mostly,
	then [K dS + [xg dl = 27
	J _V J _{dV}

Application: Hairy Ball Thon You cannot comb a hairy ball: Y X ∈ X ° (S²) then 3p ∈ S² s, €. X(p) = O. $ρ_0$ is an isolated stationary point of a vector field X ∈ X(Σ) (Σ orientable surface) if $X(ρ_0) = 0$ and I an open set WCE s.t. po EW and X(q) + 0 Y g & W, q + p... We define the index of an isolated stationary point as Johons: Suppose 4: U-V is a garaneterisation of I and who WCV (W from isolated stationary pt.) Then let y is any simple closed positively parameterised curve st. po e int; and let se, ez 3 be an oriented frame on V. Define B: W. po -> R to be a function st. $\tilde{X}: X = \cos \beta e_1 + \sin \beta \cdot e_2$. Then the index of po is defined by $\frac{1}{2} \frac{1}{2} \frac{1}$ (() = 1

MATH 3113	
12-12-17	
	Poincaré Hopf Theorem
	Suppose & is compact oriented and $X \in X^{\infty}(\Sigma)$
	has a isolated stationary points p.,, pr.
	Then (the index is well-defined and)
	$\sum_{i=1}^{n} \mu_{n}(p_{i}) = \chi(\Sigma)$
	Proof of Hairy Ball Thin
	Suppose E = 52 then Eux(pi) = 2
0	Proof of Hairy Ball Thm Suppose $\Sigma = S^2$ then $\sum_{i=1}^n \mu_{\mathbf{x}}(p_i) = 2$ $\Rightarrow \exists$ at least one stationary point.
L	
	Proof discourt
	Proof Take local neighbourhoods W: of p: and curves J: as above.
	(FES) On W: define se ez?
	On W_i define $\{e_i, e_2\}$ an oriented frame and $Q = \hat{U}W_i$
	(5) W2 and Q = 12 W:
	$and x = 0 \text{ W}_i$
0	On $\Sigma \setminus Q$ we define oriented frame $f = \tilde{X} = X \leftarrow \text{well-defined}$ $1 = N \times 1$ $1 = N \times 1$
	fr Nxf.
	Recall: for any positively oriented local curve
	$\int K dS = \int \langle e_1, X e_2 \rangle dl.$ into
	From this we have that
	$\sum_{i=1}^{n} \int_{int_{i}} K dS = \sum_{i=1}^{n} \int_{i} \langle e_{i}, \nabla e_{2} \rangle dl 0$
	[KdS = - 3 [<1 \ \ 1 \ > dl \ 6
	$\int_{\Sigma \setminus Q} K dS = - \int_{i=1}^{\infty} \int_{\gamma_i} \langle f, \frac{\nabla}{ds} f^2 \rangle dl = 0$
	3: Observe that on any briangle T;
	$\int_{T_{i}} K dS = \int_{\partial T_{i}} \langle f_{i}, \frac{\nabla}{\partial \sigma} f_{2} \rangle dl$
	T_{i} ∂T_{i} do

MATH 3113 12-12-17 $\Rightarrow \int K dS = \int -\beta_2 + \langle e_1, \nabla e_2 \rangle dl - \int -\beta_1 + \langle e_1, \nabla e_2 \rangle dl$ Recall from "lemma for G-B", $\chi_g = \dot{\alpha} - \langle e_i, \nabla e_i \rangle$ $\Rightarrow \int K dS = \int -\dot{\beta}_2 + \dot{\alpha}_2 - \chi_0 dl - \int -\dot{\beta}_1 + \dot{\alpha}_1 - \chi_0 dl$ angular function $\left[\beta_i = \beta(\gamma_i)\right]$ Xi cancel and so $\Rightarrow \int K dS + \int \chi_{g_1} dl - \int \chi_{g_1} dl = \int \beta_2 dl - \int \beta_1 dl$ = \ Rodl I is an amulus ⇒ X(II)=0 To this also holds for these ji's. Hyperbolic Plane Claim: 3 4: B, (0) → R3 st. gi; = f Si; , f = 1 (1-u2-v2)2 Calculate Ti; Tij = 1 (24 Sik + 24 Sik - 24 Sij) Claim: 4(y-axis) is a geodesic. $\widetilde{f}(t) = \varphi(0, t)$ $l(\widetilde{f}|_{(0,t)}) = \int_{0}^{t} |\widetilde{f}(y)dy| = \int_{0}^{t} \frac{1}{1-y^{2}} dy = \tanh^{-1}(t)$

Prove that
$$f(s) = 9(0, \tanh s)$$
 is a geodesic.

If $f = 9(u(s), v(s))$
 $f' = 9(u(s), v(s))$
 $f'' = 9(u(s), v(s))$

MATH 3113 13-12-17 In \mathbb{R}^3 we may take derivatives of v, j is not $v \neq i$. $\nabla_x \mathbb{R}^R Y| = d \mid Y(y(t)) \mid y(0) = p \mid y'(0) = X$. $= \sum_{i=1}^{n} \frac{x^{i}}{\partial x^{i}} e_{i}, \quad x = \sum_{i=1}^{n} x^{i} e_{i}$ $= \nabla_{x}^{R^{3}} - \langle \nabla_{x}^{R^{3}} \rangle, N > N$ Let Y= Y'2, + Y22 $\nabla_{\partial_{i}} Y = \partial_{i} (Y') \partial_{i} + Y' \nabla_{\partial_{i}} \partial_{i} + \partial_{i} (Y^{2}) \partial_{2} + Y^{2} \nabla_{\partial_{i}} \partial_{2}$ $= \partial Y' \partial_{i} + Y' \sum_{k=1}^{2} \Gamma_{ij}^{k} \partial_{k} + \partial Y^{2} \partial_{2} + Y^{2} \sum_{j=1}^{2} \Gamma_{2j}^{k} \partial_{k}$ $\overline{\partial_{u}^{i}} \qquad \overline{\partial_{u}^{i}} \qquad \overline{\partial_{u}^{i}} \qquad \overline{\partial_{u}^{i}} \qquad \overline{\partial_{u}^{i}}$ $= \sum_{i=1}^{2} \left[\frac{\partial Y^{i}}{\partial i} + \sum_{k=1}^{2} Y^{k} \right]^{3}$ 4:B,(0) -> "R" st. g;= f Si; $f = \frac{1}{(1-u^2-v^2)^2}$ We showed () is a geodesic Calculate K at 10,01 Roblem: we can't calculate I (2nd pund form) K = Runur = (Dan (Vax dv) - Vax (Van dv), du > < du, dv> = 0 Tij = 1 / 2f Six + 2f Six - 2f Sij Va du = Tun du + Tun du Vay du = Tu du + Tiv du

Van dy = [va du + [vu dy = Var du

MATH 3 113

We will always get to each time we needs proh one curve over the other giving reigions topological stuff! which are not allowed. $\varphi:(-\pi,\pi)\times\mathbb{R}\longrightarrow\mathbb{R}^3$ P(u,v) = (f(v)cosu, f(v)sinu, g(v)) where (f(v), g(v)) parameterise parallel the profile curve. What are the geodesics? Suppose we have a geodesic param. by are length 9(u(t), v(t)). $3 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ u" + 2/(v)//v" = 0 $v'' - f(v)f'(v) = (u')^2 + f'(v)f'(v) + g'(v)g''(v) = 0$ $(f'(v))^2 + (g'(v))^2$ $(f'(v))^2 + (g'(v))^2$ integrating u = const integrating lst equ " v=const / (u'f2)' = 0 > => v"+ f'f"+g'g" v12 = 0 => " f2 = cont on geodesic => (cost = const on geodesic when f' = 0 -