# 3113/M113 Differential Geometry Notes

Based on the 2012 autumn lectures by Prof R Halburd

The Author has made every effort to copy down all the content on the board during lectures. The Author accepts no responsibility what so ever for mistakes on the notes nor changes to the syllabus for the current year. The Author highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

## Chapter 1: Differential Geometry - The local theory of curves

is parametrised by arclength than 3 (s) is a unit vertice he normanized

A (parametrised) differentiable curve is a differentiable map Y: I - DR3 The set  $y(I) \subset \mathbb{R}^3$  is called the trace of Y

For any teI, d'(t) is called the velocity of y If it is non-zero then &'(t) is the tangent to 8 at 8(t)

#### Deputition:

I /o

A differentiable curve X: I -> R<sup>3</sup> is said to be regular if X'(t) ≠ O VEET

#### Example :

The helix X: R-DR3 given by X(t)= (acost, asunt, bt) a>0, b>0 is a regular curve

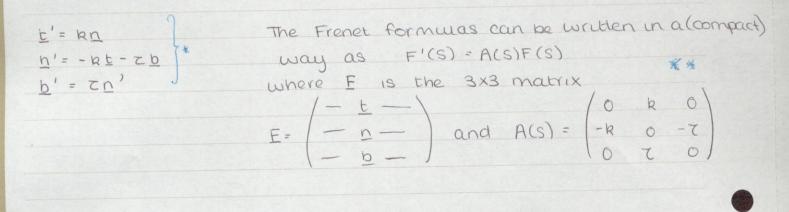
#### Example :

The curve  $\delta: (-1,1) \longrightarrow \mathbb{R}^3$  given by  $\delta(t) = (t^3, t^2, 0)$  is not regular at t=0 (and on (-1,1))  $(8'(t) = (3t^2, 2t, 0))$ 

Definition: For any curve 8: I-> R3 and any teI the arclength of 8 Prom to is  $S \equiv S(t) = \int [\hat{S}(u)] du \left(= \int \int \frac{du}{du}^2 + \frac{du}{du}^2 + \frac{dz}{du}^2 du\right)^2 du$ 

(for most purposes the choice of to is not important).

Example: S(t) = (acost, asunt, bt)  $\delta(t) = (-asynt, acost, bt) |\delta(t)|^2 = a^2 + b^2$ So  $S(t) = \int \sqrt{a^2 + b^2} dt = \sqrt{a^2 + b^2} t$  (to = 0) We can reparametrise the curve  $\delta(s) = \delta(t) = \left( a \cos \frac{s}{\sqrt{a^2 + b^2}}, a \sin \frac{s}{\sqrt{a^2 + b^2}}, \frac{b s}{\sqrt{a^2 + b^2}} \right)$ 


If & is parametrised by arclength then &'(s) is a unit vector. (unit speed curve)

The Frenet Frame

E(s) = &'(s) unit tangent vector  $(\underline{t} \cdot \underline{t} = 1 = 2\underline{t} \cdot \underline{t}' = 0 = 2\underline{t}'$  is orthogonal to  $\underline{t}$ ) R(s) = |t'(s)| is called the curvature If  $k \neq 0$ , we define the principal normal vector  $\underline{n} := \underline{l} \underline{t}'(s)$ The unit binormal is  $b = t \cdot n$ it, n, bi is called the Frenet Frame of Y b=t×n  $= b \ b' = t' \times n + t \times n' = t \times n'$ sunce  $t' = R\Omega$ . => b' is orthogonal to t Also b' is orthogonal to b So MAN I scalar & (torsion) such that b' = that I n Now <u>n=bxt</u> =D n'= b'xt + bxt' = Znxt + Rbxn

= - Rt - Zb

Frenet Formulas



Example : X(S)= acos s as bs VQ2+62  $a^2+b^2$ =D & '(S) = \_1 S asi 0605 V02+62 a2+ b2  $a^2+b^2$ t(s) E' (s) = acos asc 02+  $02 + 6^{2}$ 1a2+ b2 k(s) = |t'| = qCOSS Va2+b  $a^2+b^2$ Ja2+62 bsun\_ b=txn= 1 bcos. 9 (12+b2 Vaz+b2  $a^2+b^2$ b = b COS-.0 a2+b2 a2+b2 Ja2+62  $a^2+b^2$ a2+b2

M® MIQUELRIUS

If K=O (=> & traces out a straught line. ( &'(s) = to constant)

#### Theorem: As be

The torsion of a pupping regular curve vanishes identically If and only if g(I) is contruned in a plain.

Proof: If  $\mathcal{X}(\mathbf{I})$  is contained in a plane p then  $\underline{t}$  and  $\underline{n}$  are parallel to P. So there are two choices  $\underline{V}$  and  $\underline{V}$  for  $\underline{b}$  at each point (where  $\underline{V}$  is a unit normal to P). But  $\underline{b}$  is continuous so either  $\underline{b} \equiv \underline{V}$  or  $\underline{b} \equiv -\underline{V}$ . So  $\underline{b}' \equiv 0 = \overline{v} = 0$ .

Conversely if 
$$z = 0 = b$$
  $b = b$  constant  
So  $(x \cdot b)' = (x \cdot b)'$   
 $= t \cdot b + x \cdot b' = 0$   
 $= 0$   
Since  
or the genal.  
 $= b (x \cdot b)' = 0 = b x \cdot b = c constant.$   
 $(x(t) = (x(t), y(t), z(t)) equation of a plane.$ 

#### Fundemental Theorem of the local theory of aures.

b.5 b.n.b.b/

Given differentiable functions  $k: I \longrightarrow \mathbb{R}_{>0}$ ,  $z: I \longrightarrow \mathbb{R}$  there exists a regular curve  $\chi: I \longrightarrow \mathbb{R}^3$  such that  $\kappa(s)$  and z(s) are the curvature and torsion respectively of  $\chi(s)$  os functions of ardength. Furthermore,  $\chi$  is unique up to a rigid potentiation motion in  $\mathbb{R}^2$ 

## Proof: (S) is called the cureat

We begin by constructing an Multitle orthonormal frame. Let  $(\underline{t}_0, \underline{n}_0, \underline{b}_0)$  be a right-handled system of orthonormal vectors  $(\underline{b}_0 = \underline{t}_0 \times \underline{n}_0)$ Now consider the initial value problem \* with  $\underline{t}(s_0) = \underline{t}_0$ ,  $\underline{n}(s_0) = \underline{n}_0$ ,  $\underline{b}(s_0) = \underline{b}_0$ for some  $S_0 \in \mathbb{I}$ . (system of 9 linear scalar ODEs). The theory of ODEs =  $P \equiv Unique Solution$  ( $\underline{t}(s), \underline{b}(s), \underline{n}(s)$ ) for set Wall We need to check that ( $\underline{t}, \underline{n}, \underline{b}$ ) is an orthonormal frame. Consider  $(\underline{t} \cdot \underline{t} \quad \underline{t} \cdot \underline{n} \quad \underline{t} \cdot \underline{b})$  $M = (\underline{n} \cdot \underline{t} \quad \underline{n} \cdot \underline{n} \quad \underline{n} \cdot \underline{b}) = F \cdot \underline{F}^{\dagger}$ 

Want to show 
$$M \equiv I$$
  
Now  $M' = F'F' + F(F^{\dagger})'$   
 $= AFF^{\dagger} + FF^{\dagger}A^{\dagger}$   
 $= AFF^{\dagger} - FF^{\dagger}A$  ( $A^{\dagger} = -A$ )  
 $= AM - MA$   
 $M' = AM - MA$  (= EA, M]) \*\*\*

At  $s=s_0$ ,  $t=t_0$ ,  $n=n_0$ ,  $b=b_0 = 0$   $M(s_0) = I_{3\times 3}$ There is a unique solution of  $\star \star \star$  with this initial condition. Clearly  $M \equiv I_{3\times 3}$  is a solution of  $\star \star \star$  with this initial condition  $= M \equiv I_{3\times 3}$  is the only solution.

 $(\underline{t}, \underline{n}, \underline{b}) \quad \text{is an orthonormal frame}.$ Also  $\underline{b} = \underline{t} \times \underline{n} \quad \text{at } S = S_0 = p \quad \det(F) = \det(-\underline{t} - \underline{b} - \underline{b} = 1 \quad \text{at so}.$ 

det  $F = \pm 1$  at each sej, but det F is continous so det F = 1=  $D(\pm, \underline{n}, \underline{b})$  is a righthanded orthonormal frame.

Define  $\gamma(s) := \int_{1}^{s} \underline{t}(\hat{s}) d\hat{s} = \vartheta \underline{t}(s) = \vartheta'(s)$ 

So & is a curve with curvature & and torsion Z.

Uniqueess: (rigid motion = rotation + translation). Assume we have 2 curves  $\gamma: I \to \mathbb{R}^3$  and  $\tilde{\gamma}: I \to \mathbb{R}^3$  with the same k and T. Some SoeI (t(so), n(so), b(so)) and (t(so), n(so), b(so)) are 2 right handed orthonormal frames, so there is a rotation p (e SO3) such that  $\underline{E}(s_0) = \underline{p} \cdot \underline{E}(s_0)$ ,  $\underline{n}(s_0) = \underline{p} \cdot \underline{n}(s_0)$   $\underline{b} = (s_0) = \underline{p} \cdot \underline{b}(s_0)$ Denne a new frame  $(\hat{E}(s), \hat{n}(s), \hat{B}(s)) := (p^{-1} \cdot \hat{E}(s), p^{-1}\hat{n}(s), p^{-1}b(s))$ ( so and he denote the but office) and A Want to show that  $\hat{t} = t$  etc. different Now  $d \left( \frac{1}{2}(s) - \hat{E}(s) \right)^2 + \left[ (\underline{n}(s) - \hat{n}(s))^2 + (\underline{p}(s) - \hat{D}(s))^2 \right]$ ds  $2\left((\underline{t}-\hat{t})\cdot(\underline{t}'-\hat{t}')+(\underline{n}-\hat{n})\cdot(\underline{n}'-\hat{n}')-(\underline{b}-\hat{b})\cdot(\underline{b}'-\hat{b}')\right)$  $2\left(k(\underline{t}-\underline{\hat{t}})\cdot(\underline{n}-\underline{\hat{n}})+\left[-k(\underline{n}-\underline{\hat{n}})\cdot(\underline{t}-\underline{\hat{t}})-z(\underline{n}-\underline{\hat{n}}\cdot(\underline{b}-\underline{\hat{p}})\right]$  $+ \tau \left( \underline{b} - \widehat{b} \right) \cdot \left( \underline{n} - \underline{n'} \right) = 0.$  $G(s) := |\underline{t}(s) - \underline{\hat{t}}(s)|^2 + |\underline{n}(s) - \underline{\hat{n}}(s)|^2 + |\underline{b}(s) - \underline{\hat{b}}(s)|^2 = a$  constant M® MIQUELRIUS Now at S=So  $(\underline{t}'(s_0) = t(s_0), \underline{n}(s_0) = n(s_0), \underline{b}(s_0) = b(s_0)$  $= \lambda G(s_0) = 0 = 0 = \lambda G(s) = 0$ => ÉEt nan bEb. t = t = p - ot = t=  $b t = p \cdot t = b \delta'(s) = p \cdot \delta'(s)$ = & & (s) = p. & (s) + c . constant

#### Chapter 2: Surfaces

Differenticible functions f: R<sup>m</sup>->R<sup>n</sup>

### Dennihon:

Let U be an open stat subset of  $\mathbb{R}^m$  and let  $f: U \rightarrow \mathbb{R}$  be a real valued function.

For any unit vector  $\underline{v} \in \mathbb{R}^m$  the directional derivative of f at  $\underline{\infty} \in U$  in the direction  $\underline{V}$  is given by  $\lim_{H \to 0^+} \frac{f(\underline{\infty} + h_H \underline{v}) - f(\underline{\infty})}{h}$  if this limit exists

If it exists we denote it by Dxf(x).

Let  $e_1, e_2, \dots, e_m$  be the standard basis for  $\mathbb{R}^n$ . Then  $D_{e_1} f(\infty)$  is called the partial derivative of f wrt  $\infty_j$  $\frac{\partial f}{\partial f} = D_{e_1} f$ 

 $p_{\mu} e_{q} \cdot f(x, y, z), \quad \frac{\partial f}{\partial y} = \lim_{n \to 0^+} \frac{f(x, y+n, z) - f(x, y, z)}{h}$ 

## Example: man

dxj

The partial derivatives for and by for f(x,y)= (x,y)= (x,y X2+420 (x,y)=(0,0)

exist for all (srig) ER2. But f is not continuous at (0,0)

#### Dehnchon:

Let U be an open subset of  $\mathbb{R}^m$  and  $f: U \to \mathbb{R}$ . We say that f is once differentiable at a point  $a = (a_1, a_2, ..., a_m) \in U$ if  $\exists$  real numbers  $b_1, ..., b_m$  such that  $\lim_{x \to \infty} f(\infty) - f(\alpha) - \sum_{i=1}^{\infty} b_i^* (c - \alpha_i^*) = 0$ .

llor - all

In fact  $b_j = \frac{\partial f}{\partial x_j} \Big|_{x=a}$ 

=> (tin b) is a light handed or monormal frame

#### Dehnition:

F:UCRM-DR" (x1,...,xm) TeU

 $F(x) = (f_1(x), f_2(x), \dots, f_n(x))$  we define the differential of F to be the linear map  $(DF)_{\pm}: \mathbb{R}^m \to \mathbb{R}^n$  such that

 $F(\mathbf{x} + \Delta \mathbf{x}) = F(\mathbf{x}) + (\mathbf{0}F)_{\mathbf{x}}(\Delta \mathbf{x}) + R(\mathbf{x}, \Delta \mathbf{x})$ where  $\Delta x \in \mathbb{R}^m$  and  $\lim_{\Delta x \to 0} \mathbb{R}(x, \Delta x) = 0$ IATI In matrix form the OF can be represented by the Jacobian matrix əf. F. dr2 Joca and , atz. (DF) = dar. DE. Dri If m=n d(f, fn) := det Inverse function Theorem (mutivariable).

Let  $f: UCR^n \rightarrow R^n$ , be a smooth map and suppose that peU, the differential DFp is an isomorphism (ie the corresponding matrix is anon-singular ie the Jacobian is non-zero). Then there is a neighbourhood V of p in U and a ngbd W of F(p) in  $R^n$  such that the restriction of f to V,  $f: V \rightarrow W$  has a smooth inverse  $F^{-1}: W \rightarrow V$ .

Requiar Surfaces

R2

A® MIQUELRIUS

Definition: A non-empty subset  $\Sigma \subset \mathbb{R}^3$  is called a regular surface if, for each  $p \in \mathbb{R}^2$  there is an open subset  $U \in \mathbb{R}^2$  and an open right V of p is  $\mathbb{R}^3$  and an onto map  $\sigma: U \to V \cap \Sigma$ , such that

1. o is a smooth function

0-1

Y(U,V)

(ie if  $\sigma(u,v) = (\alpha(u,v), y(u,v), z(u,v)$  then  $\alpha, y, z$  are smooth functions) 2.  $\sigma$  is a homeomorphism (continuous and continuous inverse) (ie show  $\sigma^{-1}: V_n \overline{\Sigma} = \overline{\nu} U$  is continuous)

5.

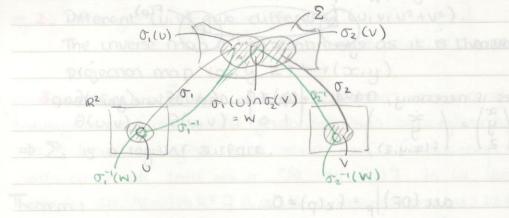
3. The differential Do: R2-DR3 is one-bo-one

0. P R3

| luc'll see later that 3 is requ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ured to define a nice trangent plane)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Do is one-to-one (=) <u>Do</u><br>Du                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x de to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| a=> at lea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ast one of the Jacobians 2(x,y), 2(y,z), 2(z,x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| For any unit vector us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | non-zero. $\partial(u,v) \partial(u,v) \partial(u,v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\sigma(u,v) = (\infty(u,v), y(u,v), z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $2(U,V)) = \frac{\partial z}{\partial u} \frac{\partial z}{\partial v}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The paraboloid $z = \infty^2$ .<br>given by $\sigma(u, v) = (u, v)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + $y^2$ is the image $\Sigma'$ of the map $\sigma: \mathbb{R}^2 - b \overline{\Sigma}'$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | components are polynomials)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2. Different (UIV) all                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ve different (U, V, U2+V2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| The inverse map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | " is continuous as it is the restriction of the (cont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $c, y, z) \mapsto (x, y).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3. $\partial(x,y) = \partial(v,y)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\frac{1}{100} \left( 1 \right) \left($ |
| 2(U,V) 2(U,V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a order la como service (service como pal de la order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| => Z', is a regular sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | face. and not correstion as managed and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A DIAL DIA TORINGIAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Theorem: an Wommer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9 BLOED SWAR MODERADA BAR & MAR- NO. B), V of 7 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| IFF: U-DR is smooth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | on an open subset UCR2 then the graph of f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (le soc, y, fior, y) is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | regular surface.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Let U be an open sur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | net of R" and h: U-* R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Example: 100 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| The sphere S2 = {(x,y)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | z): $x^2 + y^2 + z^2 = 1$ cannot be covered by a single                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| coordinate patch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | se con an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| In this example we will                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | l cover S2 using six patches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lot U= { (x,y) e R2 : x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22+ y2 <13. Northmus allowed allow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Consider the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | maps: (vio)s. (vio)y. (vio)o) = (vio)o 20 si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\sigma_i: \cup \neg \mathbb{R}^3$ , $j=1,\ldots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 given by a not man promotion of a strong                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\sigma_1(v_1v) = (v_1v_1, v_1 - v_2 - v_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) ( soon glociy) (ET 2 av it a word al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $-\sqrt{2}$ ) $\partial(U,V) = 2$ $\partial(S_{0},S_{0})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $   \pi_3(v,v) = (v, \sqrt{1-v^2-v^2}) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (V) <u>2(x,z) = 1</u> regular surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 54(U,V)= (U,-11-U2-V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\overline{(v,v)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $     \sigma_{4}(U,V) = (U, -\sqrt{1-U^{2}-V})      \sigma_{5}(U,V) = (\sqrt{1-U^{2}-V^{2}})      \sigma_{6}(U,V) = (-\sqrt{1-U^{2}-V^{2}})       \sigma_{6}(U,V) = (-\sqrt{1-U^{2}-V^{2}})                                    $ | $(v, v) = \frac{\partial}{\partial (u, z)} = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Theorem:  
Let 
$$f: U \rightarrow R$$
 be a smooth function on an open subset U of  $\mathbb{R}^3$  and  
 $a \in F(W) = \hat{f}(x): x \in U$ .  
If for all  $p \in f^{-1}(a): \{ (x_{ij}, z_i) \in U : f(x_{ij}, z_i) = a \}$   
 $f \neq tp$ ).  $f_{ij}(p)$ ,  $f_{2}(p)$  are and not all zero, then  $f^{-1}(a)$  is a regular  
surface on  $\mathbb{R}^3$ .  
Example:  $S^4: f(x_{ij}, z): x^2 + y^2 + z^2 - 1$ .  
Consider  $f(x_{ij}, z_i) = x^2 + y^2 + z^2 - 1$ .  
Consider  $f(x_{ij}, z_i) = x^2 + y^2 + z^2 - 1$ .  
Consider  $f(x_{ij}, z_i) = x^2 + y^2 + z^2 - 1$ .  
Consider  $f(x_{ij}, z_i) = x^2 + y^2 + z^2 - 1$ .  
Consider  $f(x_{ij}, z_i) = x^2 + y^2 + z^2 - 1$ .  
Consider  $f(x_{ij}, z_i) = x^2 + y^2 + z^2 - 1$ .  
Consider  $f(x_{ij}, z_i) = x^2 + y^2 + z^2 - 1$ .  
Consider  $f(x_{ij}, z_i) = x^2 + y^2 + z^2 - 1$ .  
Consider  $f(x_{ij}, z_i) = x^2 + y^2 + z^2 - 1$ .  
So  $S^2$  is a regular curve.  
Recall inverse function theorem  
 $F: U = R^{n-1} = R^n$ ,  $p \in U$   
( $0Ep_p$  is an isomorphism  
 $F: U = R^n$ ,  $p \in U$   
( $0Ep_p$  is an isomorphism  
 $F: U = R^n$  by  $= F\left(\frac{x_{ij}}{2}\right) = \left(\frac{x_{ij}}{2}\right)$ .  
 $f(x_{ij}, y_{ij}) = (x_{ij}) = (x_{ij})^2 + (x_{ij}$ 

1


CON

Now on the surface a= f(x,y,z)=t So on the surface Z=q(sciyia)=h(sciy) => locally the set is a smooth swaf graph such a local state of the set is a smooth swaf graph such a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph such as a local state of the set is a smooth swaf graph set is a local state of the set is a local state o => regular surface.

Recall: That a function Man f: A-DB is called a <u>diffeomorphism</u> if it is differentiable and has a differentiable inverse f<sup>-1</sup>: B-DA.

#### Theorem :

Let  $\sigma_1: V \to \Sigma$ , and  $\sigma_2: V \to D\Sigma$ , be two parametrisations of a regular surface  $\Sigma$ , such that  $W: = \sigma_1(U) \cap \sigma_2(V) \neq \emptyset$ . Then the "change of coordinates"  $h: = \sigma_1: \sigma_2: \sigma_2: \sigma_2: (W) \to \sigma_1: (W)$  is a diffeomorphism.



Functions on surfaces

#### Definition:

m22

6

Let  $f: V \to R$  be a function on open subset V of a regular surface  $\sum$ . Then f is an said to be smooth or differentiable at peV if, for some parametrisation  $\sigma: U \to \sum$ . with  $p \in \sigma(U) \in V$ , the composition  $f \circ \sigma: U \to R$  is differentiable at  $\sigma^{-1}(p)$ .

R

We say that fis differentiable if it is differentiable VpeV.

(Previous thm show this deknihon is independent of parametrisation).

#### Detrnihon:

Surface

JUXJY #0 ...

Let  $\Sigma_1$ , and  $\Sigma_{12}$  be regular surfaces. Let V be an open parametrisations of  $\Sigma_1$ . A map  $f: V \longrightarrow \Sigma_{12}$  is said to be differentiable at  $p \in V$  if there are parametrisations  $\sigma_1: U_1 \longrightarrow \Sigma_1$ ,  $\sigma_2: U_2 \longrightarrow \Sigma_{12}$  with  $p \in \sigma_1(U_1)$  and  $f(\sigma_1(U_1)) \subset \sigma_2(U_2)$  such that  $\sigma_2^{-1} \circ f \circ \sigma_1: U_1 \longrightarrow U_2$  is differentiable at  $\sigma_1^{-1}(p)$ .

U, The tangent plane

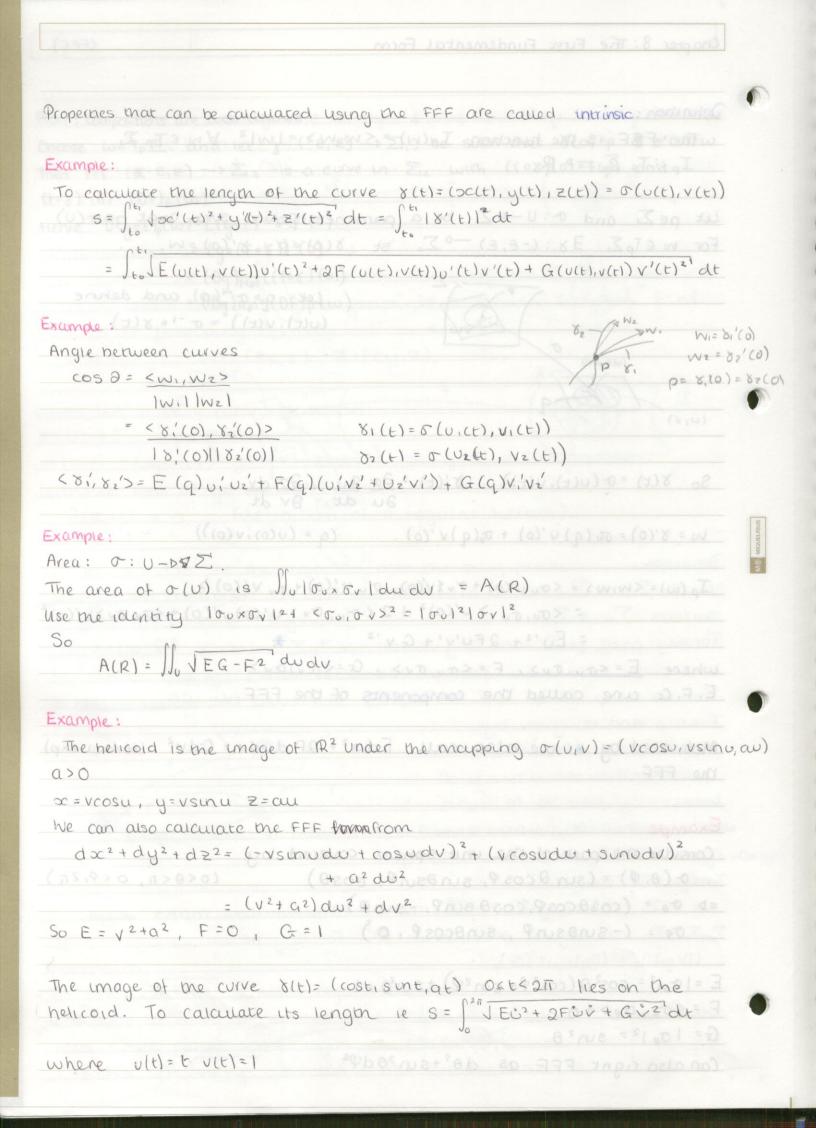
Definition: Let  $\Sigma_{i} \subset \mathbb{R}^{3}$  be a regular surface. For any  $p \in \Sigma_{i}$  a vector  $v \in \mathbb{R}^{3}$  is called a <u>tangent</u> variation  $\Sigma_{i}$  at  $p \in \Sigma_{i}$  if there is a curve  $\delta: (-\varepsilon, \varepsilon) \longrightarrow \Sigma_{i}$  for some  $\varepsilon > 0$  such that  $\delta(0) = p$  and  $\delta'(0) = v$ The set of all vectors tangent to  $\Sigma_{i}$  at p is called the <u>tangent</u> plane to  $\Sigma_{i}$  at p and is denoted by  $T_{p} \Sigma_{i}$ 

Given a parametriseinon  $D: U \rightarrow \Sigma$ ,  $p \in \sigma(U)$ , a basis for  $T_p \Sigma$  is given by  $\{ \sigma_u(q), \sigma_v(q) \}$  where  $\sigma(q) = p$ 

& OU (UIV) q= (Vo, Vo) 201 &(t)= J(t+10, vo) 8(0)=p= 0(No, Vo) (00,00) 8'(0)= Ju (Voivo) Note that ould) and ould) are locurly independent since for a regular

Let 
$$Y: (-\varepsilon, \varepsilon) \longrightarrow \Sigma$$
, be a curve through  $\delta(a) \ge p$ .  
Define  $(\psi(t), \psi(t)) = \sigma^{-1} \cdot \chi(t)$ .  
Then  $\delta(t) = \sigma(\psi(t), \psi(t))$   
so  $\delta'(a) = \sigma \circ (q) \psi'(a) + \sigma \cdot (q) \psi'(a)$ .  
Therefore:  
Let  $\Sigma \in \mathbb{R}^3$  be a regular surface. For every  $p \in \Sigma$ ,  $\exists a ngbd Vofep in \Sigma$ , such that  $V$  is the graph of a smeath function  $f \circ f$   
one of the following forms.  
 $Z = f(x, y)$ ,  $\Rightarrow y = f(x, z)$   $\mathbb{Z} : f(y, z)$ .  
Proof: Let  $\sigma$  be a parameterisation  
 $\sigma : U \rightarrow \Sigma$ ,  $(p \in \sigma(U))$   
 $\sigma(U, v) = (x(u_1 v), y(U, v), z(u, v))$   $\infty, y, z$  differentiable  
Without loss of generating (reliable axis if necessary)  
 $\vartheta(u, v)$   
Let  $p: \mathbb{R}^2 \rightarrow \mathbb{R}^2$  be the projection onto the  $\infty$ - $y$  plane.  
 $pr(x, y, z) = (x(y))$   
so  $pr \circ ro(u_1 v), z(u, v)$   
 $pr \circ \cdots \cup \rightarrow \mathbb{R}^4$   
So, since  $\vartheta(x(u), y, (u, v), y(u, v))$   
 $pr \circ \cdots \cup \rightarrow \mathbb{R}^4$   
So, since  $\vartheta(x(u), y) \neq 0$   $\exists a local inverse$   
 $\vartheta(u, v)$   
 $\varphi = \varphi^{(n+\sigma)}$   
 $\varphi^{(n+\sigma)}$   
 $\varphi^{$ 

If it were it could be written as a graph with respect to one of the coordinate planes in a right of (0,0,0)1.  $z = f(x, y) = \sqrt{x^2 + y^2}$  but this is not differentiable


2. x=f(y, 2) or y=f(x, 2) but it could not be single & valued. 22 2037abpt= Recau J. 02-10F00-TP Z. TELP) Z E12 Σ. f(p) FOX (fox)(0) ę Depunction: Let f: Zi, -> Ziz be a differentiable function between the regular Surfaces Z, & Z,2, DOV CONS + 0 For any point pezi, and any vector we TpZ, let y: (-E,E) - DZ, be a curve such that  $\delta(0) = \rho$  and  $\delta'(0) = w$ . Then the map (OF)p: Tp E, -> Trip) E, is called the differential size of fat p and is given by  $(Df)_{p}(\omega) = (f \circ \chi)'(\circ).$ Lemma: The differential (Of), defined above, is independent of choice of grave 8. Theorem: The chain Rule Let f: Z., -> Z., g: Z. -> Z., be two differentiable maps where Z. Siz, Ziz ane regular surfaces in R3. For any pe Z.  $(D(g\circ f))_{\rho} = (Dg)_{f(\rho)} \circ (\rho f)_{\rho}$ fox 22 23

Proof: compositions are well defined (noose we Tp Z, and let y: (-E, E) -> Z, be such that S(0)=p \$ s'(0)=w Then for: (Z-E,E) -> Ziz is a curve in Ziz with (for)(0)=f(p) and  $(f \circ \chi)'(o) = (Of)_{\rho}(w)$ Hence D(got)p(w)=[(got) o8]'(0) = (go(fox))'(0)  $= (D_g)_{f(p)} ((f \circ \delta)'(0))$ =  $(D_q)_{f(p)} \circ (D_f)_p(w)$ 

#### Chapter 3: The First Fundemental Form

Depunction: The FFF is the hunchon Ip(w) = < w, w> = |w|2 Vw eTp Z Ip: Tp Z -D R. Let pez and o: U-DZ, be a parametrisation such that peo(U) For we TPZ  $\exists \delta : (-\epsilon, \epsilon) = P \Sigma$ , st  $\delta(0) = P$ ,  $\delta'(0) = W$ . Let q=0-"(p) and define  $(u(t), v(t)) = \sigma^{-i} \circ \gamma(t)$ (U(B, J(E)) (U,V) So S(E) = O(U(E), V(E)) S'(E) = Do dy + Do dy 2u dt OV de (q = (u(o), v(o))) $W = \delta'(0) = \sigma_0(q) \cup'(0) + \sigma_v(q) \vee'(0)$  $I_{\rho}(\omega) = \langle w, w \rangle = \langle \sigma_{\upsilon} \upsilon'(o) + \sigma_{\upsilon} \sharp \upsilon'(o), \sigma_{\upsilon} \upsilon'(o) + \sigma_{\upsilon} \upsilon'(o) \rangle$  $= \langle \sigma_{v}, \sigma_{v} \rangle \vee \langle co \rangle^{2} + 2 \langle \sigma_{v}, \sigma_{v} \rangle \vee \langle co \rangle \vee \langle co \rangle + \langle \sigma_{v}, \sigma_{v} \rangle \vee \langle co \rangle$ = Eu'2+ 2FU'V'+ GV'2 where E=<ou, ou>, F=<ou, ou>, G=<ou,ou> E, F, G are called the components of the FFF (no Motivated by \* we also call Edu2 + 2F dudy + Gdv2 (formal exp) the FFF Example Consider the part of the unit sphere covered by  $O(0, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$  $(0 < \theta < \pi, 0 < \varphi_1 2 \pi)$ =  $D \sigma_{\theta} = (\cos\theta\cos\theta, \cos\theta\sin\theta, -\sin\theta)$  $\sigma_{\varphi} = (-\sin\theta \sin \theta, \sin\theta \cos \theta, \phi)$  $E = |\sigma_{\theta}|^2 = \cos^2 \Theta \left( \cos^2 \theta + \sin^2 \theta \right) + \sin^2 \theta = 1$  $F = \langle \sigma_{\theta}, \sigma_{\theta} \rangle = 0$ G= 10012= sun20 Can also right FFF as do2+sun?odq2

(FFF)



$$S = \int_{0}^{2\pi} \sqrt{(v^{2}+\alpha^{2})^{-1}} dt = \int_{0}^{2\pi} \sqrt{\alpha^{2}+1} dt = 2\pi \sqrt{\alpha^{2}+1}$$
Also we can find the area A of the image of the region
$$U = \int (v,v) : 0 < v < 2\pi, 0 < v < 18.$$

$$A = \int_{0}^{2\pi} \sqrt{166 + F^{-1}} dv dv = \int_{0}^{2\pi} \sqrt{164 + v^{2}} dv dv = \pi (v \sqrt{\alpha^{2}+v^{2}} + sunh^{-1}(v/\alpha)) \Big|_{v}$$

$$S = \int (\sqrt{\alpha^{2}+1} + sunh^{-1}(v/\alpha)) \Big|_{v}$$
Isometries:
$$Detinition:$$
A diffeomorphism  $f = \sum_{n \to \infty} \sum_{n \to \infty} u_{n}$  is an isometry if far all  $p \in \sum_{n \to \infty} d$ 

$$f = \int_{0}^{2\pi} \int (\sqrt{16} + F^{-1}) \int (\sqrt{16$$

C.

M® MIQUELRIUS

n

Detrution:  
A function 
$$f:V \rightarrow \Sigma_{+}$$
 of a right V of a point  $p \in \Sigma_{+}$  is called a  
local isometry if  $\exists$  a right  $\hat{V}$  of  $f(p)$  st  $f:V \rightarrow \hat{V}$  is an isometry.  
Theorem:  
Let  $\sigma: U \rightarrow \Sigma$  and  $\tilde{\sigma}: U \rightarrow \tilde{\Sigma}$  be parametrisedions of the regular  
Surfaces  $\Sigma_{+} \tilde{\Sigma}$  such that  $E:\tilde{E}, F=\tilde{E}, G=\tilde{G}$   
Then the map  $f:s \tilde{\sigma} \cdot \sigma^{-1}: \sigma(u) \rightarrow \tilde{\Sigma}$  is a local isometry.  
 $I = \frac{1}{2} I = \frac{1}{2} I$ 

Example: Consider the cone Z=az in polar coordinates (without ) Verkex), where a is a constant. If a=0 then this is the plane Z=0. Use the parametrisation o(p, 0) = (pcoso, psino, ap)  $f_p = (cos \theta, sun \theta, a)$  $\sigma_{\theta} = (-psin\theta, pcos\theta, 0)$  $E = \langle \sigma_P, \sigma_P \rangle = 1 + a^2$  $F = \langle \sigma_P, \sigma_\theta \rangle = O(\rho_0) (\rho_0) (\rho_0) (\rho_0) (\rho_0)$ nor Griss ( vor the to we call this so - 1 vor the  $FFF (1+a^2)dp^2 + p^2d\theta^2$ Let  $\tilde{p} = \sqrt{1+a^2} p$   $\tilde{\theta} = \frac{\theta}{\sqrt{1+a^2}}$  $d p^2 + \tilde{p}^2 d \tilde{\sigma}^2 = 2 cont q = Rat (m) person of lo$ So for all cones (a>0) the FFF can be written in coordinates st it is the same as that of the plane. So the cone (without vertex) is cocally isometic to the plano.

#### Curvature & the 2nd Fundemental Form

Definition: An orientation on a surface  $\Sigma$  is a continuous map  $N: \Sigma \rightarrow \mathbb{R}^3$ such that  $\forall p \in \Sigma$ , N(p) is a unit normal to  $T_p \Sigma$ . If  $\Sigma$  admits an orientation, it is called orientable.

Mobius strip is non-orientable! Small enough pieces are orientable.

In a single coordinate on app patch  $\sigma: U \rightarrow \sigma(u) \subset \Sigma$ , we have  $N(p) = \pm \sigma_0 \times \sigma_V$  (2 choices of orientation)  $|\sigma_0 \times \sigma_V|$  (with the +, we call this the standard orientation

If we identify unit vectors with the unit sphere  $S^2$  (in the obvious way) we have  $N: \Sigma \longrightarrow S^2$ 

Natural to consider (ON)p: TpZ - D TN(p) S2

The S<sup>2</sup> The S<sup>2</sup> The S<sup>2</sup> = space of vectors targent to S<sup>2</sup> at N(p) = space of vectors perp. to N(p) = Tp Z.

So (DN)p: Tp Z -> Tp Z

illness stated otherwise, all surfaces will be assumed orientable from now on.

Self-adjoint maps

Dennihon: (Official) = 6 and + 6 willow

A linear map A:V->V is self adjoint if <Av,w>=<v,Aw> V,w&V (V inner product space)

For each self-adjoint map A:V-PV J a symmetric bilinear map B(V,W) = < AV, W>

If Servers is an orthonormal basis for V, then the matrix by = < Aei, ei's is symmetric

For each symmetric bilinear form B on V there is a quadratic form Q(v) = B(v, v) < (v, v) > - = (u) = 1 much provide of va actermines B uniquely by Bluiv) = 1 (O(U+V), - Q(U) - Q(V)). Theorem is and be of - (ON) one called the panel supposed Let A: V->V be a self-adjoint linear map on the real 2-dimensional unner product space V. Then the unit evectors e, and e2 of A form an avanation or monormal basis of V. The corresponding eigenvalues 2, and 22 are the max and min of Q(v) = < Av, v> on the unit circle of V. usby as many bullos et (stra) = H . The second Fundemental Form. p-PN(p) is called the <u>Gauss map</u> (b) the the gauss map Theorem: are on the coeffer (0) v( ) vo+ (0) 'u( p) vo = (0) 'x = w The differential (ON)p: TpZ-> TpZ of the Gauss map is self. adjoint. las Beer B/ Europal Proof: Let  $q = \sigma^{-1}(p) = : (v_0, v_0)$  (many - (many - (many - ))) Since Source), orce)? is a basis for TPZ, it suffices to show that < (ON)psu(q), su(q)> = < ou(q) (ON)p ou(q>) Let o x(t) = o (vott, vo). "(univ a) pt 'v'u(vo) 9 2 + "(u(vo) 9) Then  $p = \delta(0)$  and  $\delta'(0) = \sigma_0(q)$ So  $(DN)_{POU}(q) = (N \circ 8)'(0)$ = d (Noo (vo+ t, vo)) (NO)> = (vo) 0  $a_{1}F + (FT(N \circ \sigma))_{L}(q))_{M} = \sqrt{A} + \sqrt{A} +$ = Nulq) where N=Nor So we want to show < Nu, or > = < ou, Nr > < 00. N>=0 ETPE LIPE ON FACOR GO So diff. Wit V: <ou, N>+ <ou, N->= 0 0= - Mana son and Also Kov, N>=0=0 Kouv, N>+ Kov, NU>=0

Definition:  
The quadrame form 
$$I_{p}(\omega)$$
:=-<(DN)<sub>p</sub>w, w > V w eT<sub>p</sub>  $\Sigma$   
Is called the second Fundamental Form.  
• The eigenvalues k, and k<sub>2</sub> of  $-(DN)_{p}$  are called the principle  
curvatures of  $\Sigma$ , at  $p$ .  
• K = R, k<sub>2</sub> = det((DN)\_{p}) is called the mean curvature  
=  $\frac{1}{2}$  Tr((DN)\_{p})  
• K = R, k\_2 = det((DN)\_{p}) is called the mean curvature  
=  $\frac{1}{2}$  Tr((DN)\_{p})  
For any  $\omega \in T_{p}\Sigma$ . It is is  $\chi(o)=p$ ,  $\chi'(o)=w$   
 $\chi(t)=\sigma(o(t), v(t))$ .  
 $\omega = \chi'(o) = \sigma \circ (Q) \upsilon'(o) + \sigma_{v}(Q) \upsilon'(o)$   
If  $p(\omega) := -\langle (DN)_{p} w, w \rangle$   
=  $-\langle (DN)_{p} (\sigma_{v} \upsilon' + \sigma_{v} v')), \sigma \upsilon' + \sigma_{v} v' \rangle$   
=  $-\langle \upsilon'(ON)_{p} (\sigma_{v} \upsilon + \sigma_{v} v'), \sigma \upsilon' + \sigma_{v} v' \rangle$   
=  $-\langle \upsilon'(ON)_{p} \sigma_{v}, \sigma_{v} \rangle = \upsilon' \upsilon'(\langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle + \langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle)$   
 $- (v')^{2} < (DN)_{p} \sigma_{v}, \sigma_{v} \rangle = -\langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle$   
 $\beta = e(\omega_{v}) b^{2} = -\langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle$   
 $\beta = e(\omega_{v}) b^{2} = -\langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle$   
 $\beta = e(\omega_{v}) b^{2} = -\langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle$   
 $\beta = e(\omega_{v}) b^{2} = -\langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle$   
 $\beta = e(\omega_{v}) b^{2} = -\langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle$   
 $\beta = e(\omega_{v}) b^{2} = -\langle (DN)_{p} \sigma_{v}, \sigma_{v} \rangle$   
 $\beta = -\langle N_{v}, \sigma_{v} \rangle$   
Also note that  $\langle \sigma \upsilon, N_{v} > 0$   
 $\beta = \langle N_{v}, \sigma_{v} \rangle$   
 $\beta = \langle N_{v}, \sigma_{v} \rangle$ 

The Second Fundamental Form is often expressed as  

$$edu^{2} + 2 Educat + gat^{2}$$
Reprove the barrier of the second fundamental forms (FF2).  
Recall that  $\hat{N}$  is a unit vector  
So  $\hat{N}u \in \hat{N}$  are orthogonal to  $\hat{N} \notin$  hence in  $T_{p}\Sigma$ .  
So  $\hat{N}u \in \hat{U} = \hat{U} = \hat{U} = \hat{U} = \hat{U}$   
For any  $\hat{N} = a_{11}\hat{U} + a_{21}\hat{U} = \hat{U}$   
For any  $\hat{N} = a_{11}\hat{U} + a_{21}\hat{U} = \hat{U}$   
For any  $\hat{N} = a_{11}\hat{U} + a_{21}\hat{U} = \hat{U}$   
So  $(\hat{O}N)_{p} (\hat{u} = \hat{U}) + \hat{g}(\hat{O}N)_{p}(\hat{u} = \hat{U})$   
 $= a_{11}\hat{N} + \beta_{11}\hat{N} + (a_{2}\hat{R})^{2}\hat{U} + (a_{2}\hat{R})^{2}\hat{U}) + (a_{2}\hat{R})^{2}\hat{U} + (a_{2}\hat{R})^{2}\hat{U})$   
So  $(\hat{O}N)_{p} qas on the caeffs as
 $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} - p \begin{pmatrix} \alpha_{11} & \alpha_{12} \\ \alpha_{21} \\ \beta \end{pmatrix} + \begin{pmatrix} \alpha_{12} & \alpha_{22} \\ \alpha_{21} \\ \beta \end{pmatrix}$   
So Gauss curvature  $K = det(a_{11}) + \hat{u} \cdot \hat{u} + \hat{u} = \hat{u}$   
Take uncer produce of  $\hat{K}_{11}$  with  $\hat{U}$  if  
 $\langle \hat{N}_{11}, \hat{U}_{22} \rangle = \hat{U} = \hat{U} + \hat{U} + \hat{U} = \hat{U}$   
inter produce of  $\hat{K}_{11}$  with  $\hat{U}^{2}$   
 $\hat{K}_{11}, \hat{U}_{22} \rangle = -\hat{U} = \hat{U} = \hat{U} + \hat{U} = \hat{U} = \hat{U} + \hat{U} = \hat{U} + \hat{U} = \hat{U} + \hat{U} + \hat{U} = \hat{U} + \hat{U} + \hat{U} = \hat{U} + \hat{U} + \hat{U} + \hat{U} + \hat{U} = \hat{U} + \hat{U}$$ 

 $z \left( \begin{array}{c} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) = - \left( \begin{array}{c} E & F \\ F & G \end{array} \right)^{-1} \left( \begin{array}{c} e & f_{0} \\ f & g \end{array} \right)$ = \_ l EG-F2 So  $K = a_{11}a_{22} - a_{12}a_{22} = eq - f^2$ SAT EG-F2  $H = \frac{1}{2}(a_{11} + a_{22}) = \frac{1}{2} = \frac{eG}{2} = \frac{2FF}{2} + \frac{1}{2} = \frac{eG}{2} = \frac{2FF}{2} + \frac{1}{2} = \frac{1}{2}$ FG-F2 Example: Z= Q(x,y) 12=Placy) O(UIV) = (UIVI Q(UIV)  $\sigma_{\upsilon} = (1, 0, \varphi_{u})$  $\sigma_{v} = (o, i, Pv)$  $E = \langle \rho_{\nu}, \sigma_{\nu} \rangle = 1 + \rho_{\mu}^{2}$ F = < ou, ov = Pu Pv [ Components of 1st FF no  $G = \langle \sigma_V, \sigma_V \rangle + \Psi_V^3$  $\sigma_{v}\sigma_{v}=(-\varphi_{u},-\varphi_{v},1)$ Choose N=+ OUXOV (-PU,-PV, 1)  $|\sigma v \times \sigma v| = \sqrt{1 + \rho_v^2 + \rho_v^2}$  $\sigma_{uv} = (0, 0, P_{uv})$   $\sigma_{uv} = (0, 0, P_{uv})$   $\sigma_{uv} = (0, 0, P_{uv})$ e= = < N, 00> = < N, 000> = 900  $\sqrt{1+\varphi_{\nu}^{2}+\varphi_{z}^{2}}$ F= < N, Jav > = Pur components of 2nd FF?  $\sqrt{1+\varphi_{v}^{2}+\varphi_{v}^{2}}$ g=< N, our> = Pur - constance VI+ P3+ P2  $K = eg - f^{2} = -\frac{q_{00}q_{00} - q_{00}^{2}}{EG - F^{2}} = -\frac{q_{00}q_{00} - q_{00}^{2}}{1 - q_{00}^{2} + q_{00}^{2}}$  $EG - F^2 = (1 + Pu^2)(1 + Pv^2) = Pv^2 Pu^2$  $= 1 + P_{10}^{2} + Q_{v}^{2}$  $H = (1 + 9u^2) q_{UV} - 2 q_U q_V q_{UV} - (1 + q_V^2) q_{UU}$  $2(1+q_{v}^{2}+q_{v}^{2})^{3/2}$ 

Let's look at now 200,00, N's varies by considering derivatives. [(ou)] Ou= Tion + Tion + XN I The scalar functions Tij our= Tizou + Tizov + NN 2 are called TVV = 122 JU + 122 JV + VN 3 Christoffel symbols.  $\langle 1, N \rangle : \lambda = \langle \sigma_{00}, N \rangle = e^{-\alpha \theta_{00}}$ Similarly p=f and r=g.  $<1,\sigma_0>$ :  $\mathbb{F}_{11}$   $<\sigma_0,\sigma_0>$  +  $\prod_{12}^{2}<\sigma_2,\sigma_0>$  =  $edu = b \quad f_i = f_i = f_i = f_i = f_i$ E=< OU, OU> 2<00,0007 < 1, 0, >: 1, F + 1, 2 G = < 000, 00> Fu= < 000, 00> + <00, 000 > = FU = = EV Summary we get four more equations from : <2,00> <2,00> <3,00> <3,00> in total we get 6 equations  $E F \left( \int_{11}^{11} \int_{12}^{12} \int_{22}^{12} \right) = \left( \frac{1}{2} E u + \frac{1}{2} E v + F u - \frac{1}{2} G u \right)$ Fuiter tau tau So all Christoffel symbols are determined by FFF only. Equations 1.2, 3 & \* have three compatability conditions  $(\hat{N}_{v})_{v} = (\hat{N}_{v})_{v}$ Nu= a1100 + a2100 4  $(\sigma_{uv})v = (\sigma_{vv})u = 7$ NV = a1200 + a220V  $(\sigma v v) u = (\sigma v v) v$ Consider 6. From 1  $(\sigma_{00})_{V} = (\Gamma_{n}')_{V} \sigma_{0} + \Gamma_{n}' \sigma_{0V} + (\Gamma_{n}'^{2})_{V} \sigma_{V} + \Gamma_{n}'^{2} \sigma_{VV} + e_{V} N + e N_{V} had me$ lusing equations 1-5 to eliminate our, No ever.etc)  $(\sigma_{00})_{V} = ((\Gamma_{11})_{V} + \Gamma_{11} \Gamma_{12} + \Gamma_{11}^{2} \Gamma_{22} + e \alpha_{12}) \sigma_{0}$  $+((\Gamma_{11}^{2})_{V}+\Gamma_{11}^{2}\Gamma_{12}^{2}+\Gamma_{11}^{2}\Gamma_{22}^{2}+ea_{22})\sigma_{V}+(\Gamma_{11}^{2}f+\Gamma_{11}^{2}g+e_{V})N$ Similarly  $(\sigma_{vv})_{v} = \left( \left( \Gamma_{12}^{-1} \right)_{v} + \Gamma_{12}^{-1} \Gamma_{11}^{-1} + \Gamma_{12}^{-1} \Gamma_{12}^{-1} + Fa_{11} \right) \sigma_{v}$ +  $((\Gamma_{12}^{2})_{v} + \Gamma_{12}^{1} + \Gamma_{12}^{2} + \Gamma_{12}^{2} + \Gamma_{12}^{2} + \Gamma_{12}^{2})_{v} + (...)_{v}$ 10

Equations 9 and 1 gives 3 total scalar equations (coeffs of ou, or N). The coeffs of or give:

 $(\Gamma_{11}^{-1})_{V} - (\Gamma_{12}^{-2})_{U} + \Gamma_{11}^{-1}\Gamma_{12}^{-2} + \Gamma_{12}^{-2}\Gamma_{12}^{-2} - \Gamma_{12}^{-2}\Gamma_{12}^{-2} - \Gamma_{12}^{-2}\Gamma_{12}^{-2} = \int \alpha_{21} - \epsilon \alpha_{22} \quad ||$ 

Using our previous expressions for  $a_{21}$  and  $a_{22}$  and the fact that  $K = \underline{eg} - f^2$  we find that RHS of 11 is EK. EG-F<sup>2</sup>

=> The Gauss aurvalure depends on the FFF (and its derivatives) only

Theorem: Theorema Egresium

The Gauss curvature is uniquely determined by the FFF and is therefore preserved by isomethes.

The typical notion in matches is to group together things which we consider as more or less equivalent. This is what we are doing with respect to isometries

We have three vector equations (6,7,8) each giving 3 scalar equations but only 3 of these 9 scalar equations are independent. Together with, 11 = EK - called the <u>Gauss equation</u> we also have:

 $e_{v}-f_{u}=e_{12}^{u'}+f(1_{22}^{u'}-1_{11}^{u'})-g_{11}^{u'}$  12  $f_{v}-g_{u}=e_{22}^{u'}+f(1_{22}^{u'}-1_{12}^{u'})-g_{12}^{u'}$  13 12 & 13 are called the Mainardi - Codazzi equations

What makes the Gauss curvature so important when considering abstract geometry is that you only need FFF, you don't need to consider embeddings.

 $-\frac{(1+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2})(2+2^{2$ 

 $\frac{1}{(1,...)} = \frac{1}{(1,...)} + \frac{1}{(1,...)$ 

as lamasic Geometry of Suraces

Theorem . Bornet 100 200, plan 797 more bounded at ton 9100 00 Let E, F, G, e, F, g be differentiable functions on some on some open set VCR2 on which E, G and EG-F2 are all smally positive. If these functions sastify the Mainardi - Codazzi equations lunere the Christoffel symbols are defined in terms of E, F, G as before) then for each geV = a neighbourhood UeV of q and a diffeomorphism o: U-DO(U) st the negular surface o(U) has Edu<sup>2</sup> + 2 F dudy + G dy<sup>2</sup>, and Home ed y no had edee<sup>2</sup> + 2f dudv + g dv<sup>2</sup> as its FFF and 2FF respectively. Further more if U is connected and if of: U-Dof(U) is another diffeomorphism satisfying the same condutions, then there is a rigid body motion R st Q = R.o.

#### The Intrinsic Geometry of Surfaces

For shuff that is defined from FFF only, we will look at - characterisation of surfaces through curvature geodesics - natural analogs of straight lines, surfaces covariant denvatures. Covanant Derivable months and a condition Detraction to a grant USV of a and a diffed man DEV Let V be an open set in Z. A differential (tangential) vector field on V 13 a smooth function w: V-DR3 st VpEV w(p)eTp Z. Let y: I - DZ be a curve on Z. Any vector field w restricted to S(I) could be written locally as  $w(s(t)) = a(t)\sigma_a(u(t), v(t)) + b(t)\sigma_v(u(t), v(t))$ where  $\chi(t) = \sigma(u(t), v(t))$ So  $dw = a'\sigma v + a(\sigma v v v') + b'\sigma v + b(\sigma v v v' + \sigma v v')$ dt So using the expressions for our, our etc in terms of M's, e, f, q we have :  $dw = (a' + a(\Gamma_{4}'u' + \Gamma_{12}'v') + b(\Gamma_{12}'u' + \Gamma_{22}'v'))\sigma_{4}$ dt + (b'+ ["au' + [2 av' + [2 bu' + [2 bv'])or u, v -> determine 8 + (eau'+ f (av'+ bu') + g bv') N The covariant derivative of w in the direction & is the projection of dw onto me tangent plane Tp Z.

 $\nabla_{\mathbf{x}'} \boldsymbol{\omega} = (\dots, \boldsymbol{\sigma}_{\mathbf{u}} + (\dots, \boldsymbol{\sigma}_{\mathbf{v}}))$ 

To emphasise dependence on time sometimes write  $\nabla_{\mathcal{S}'} w$ 

#### Depution:

A smooth vector field w along a curve  $\delta: I \longrightarrow \Sigma$  is sound to be parallel if  $\nabla_{\delta'} w = 0$   $\forall t \in I$ 

(To define  $\nabla_{\mathcal{S}}$  is meed only be defined on  $\mathcal{S}(I)$ , not necessarily on an open set in  $\Sigma$ .)

## Theorem:

Let w, and we be parallel vector fields along a smooth curve  $\gamma: I \longrightarrow \Sigma$ . Then  $\langle w_1, w_2 \rangle_p$  is a constant. In particular  $|w_1|$ ,  $|w_2|$  and the angle between them is constant.

Proof: Note: if w is a parallel vector field then  $\frac{dw}{dt}|_{p}$  is propohonal to  $\tilde{N}$  and therefore orthogonal to  $T_{p}\Sigma$ . In particular  $\langle w, \frac{dw}{dt} \rangle = 0$ Consider  $\frac{d}{dt}\langle w_{1}, w_{2} \rangle = \langle w_{1}' / w_{2} \rangle + \langle w_{1}, w_{2} \rangle = 0$ 

Theorem :

Let  $\forall: J \rightarrow \Sigma$ , be a curve in  $\Sigma$ , and choose we e that  $T_{\delta(t_0)}\Sigma$ . for some  $t_0 \in I$ . Then there is a unique parallel vector field w(t) along  $\delta(t)$  with  $w(t_0) = w_0$ .

Detunction: Designed Designed (Va) while

The vector field defined above is called the parallel transport of us along y.

Geodesics the full is simply anong

(eq local max/selon (are whenever) - from (ver various)) b:

Dependion:

A non-constant parametric curve  $x: I \rightarrow \Sigma$  is said to be geodesic if x' is parallel along xie  $\nabla_{x'} x' = 0$ 

I Geodesics are culles such that y'' is orchogonal to TPE at each point.

Parallel vector field => length is constant

& geodesic => 1811 is constant

ie & is constant speed, so we can always reparametrise

so that it is unit speed (parametisal "erclength)

 $I = |\xi'|^2 = \langle \psi' \sigma \psi + \psi' \sigma \psi + \psi' \sigma \psi \rangle \qquad \xi(t) = \sigma(\psi(t), \psi(t))$ = E(\u03b2 + 2F\u03b2 + \u03b2 F\u03b2 + \u03b2 F \u03b2 + \u03b2

Toke the curve (flylight) to be whit speech (it y is archergen for this curve.

$$\overline{\nabla_{s'} s'} = 0 \iff \delta'' = \text{orthogonal to } T_p \Sigma$$

$$\delta \xi = \sigma(u, v) , W = a \sigma u + b \sigma v \qquad \delta' = u' \sigma u + v' \sigma v$$

$$\text{ie plug } a = u', b = v' \text{ in our formula for } \nabla_{s'} W = 0$$

$$\int u'' + \Gamma_{u'}(u')^2 + 2\Gamma_{v'}(u') + \Gamma_{v'}(v')^2 = 0$$

$$\int v'' + \Gamma_{u'}^2(u')^2 + 2\Gamma_{v'}^2(u') + \Gamma_{v'}^2(v')^2 = 0$$

Corollary: Choose  $p \in \Sigma$  and  $w \in T_p \Sigma$  then  $\exists$  a unique geodesic  $\forall$  on  $\Sigma$ which passes through p and has tangent vector w there.

#### Theorem:

An alternate form of the geodesic Mapplequations is  

$$\frac{d}{dt} (Eu' + Fv') = \frac{1}{2} (Euu'^2 + 2F_U u'v' + G_U v'^2)$$

$$\frac{d}{dt} (Fu' + Gv') = \frac{1}{2} (Evu'^2 + 2F_U u'v' + G_V v'^2)$$

$$2$$

Proof: 8" is armagened to TpZ.  $\delta = \sigma(u,v)$   $\delta' = u'\sigma_u + v'\sigma_v$ So  $0 = \delta'' \cdot \sigma_u = \left(\frac{d}{dt} \left(u'\sigma_u + v'\sigma_v\right)\right) \cdot \sigma_u$ 

$$= \frac{d}{dt} \left( (u'\sigma_u + v'\sigma_v) \cdot \sigma_u \right) - \left( u'\sigma_u + v'\sigma_v \right) \cdot \frac{d\sigma_u}{dt}$$

$$= \frac{d}{dt} \left( u'E + v'F \right) - \left( u'\sigma_u + v'\sigma_v \right) \cdot \left( \sigma_{uu} + \sigma_{uv} v' \right)$$

$$= \frac{d}{dt} \left( u'E + v'F \right) - \left( u'\sigma_u + v'\sigma_v \right) \cdot \left( \sigma_{uu} + \sigma_{uv} v' \right)$$

$$= \frac{1}{2} \underbrace{d(Eu' + Fv')}_{2} = (\sigma_{U} \circ \sigma_{UU})(u')^{2} + (\sigma_{U} \circ \sigma_{UV} + \sigma_{V} \circ \sigma_{UV})u'v' + \sigma_{V} \cdot \sigma_{UV}v'}_{2}$$

$$= \underbrace{1}_{2} \underbrace{Eu(U')^{2}}_{2} + \underbrace{FuU'v' + 1}_{2} \underbrace{Gu(v')^{2}}_{2}$$

same for other equation starting with &" or = 0.

## Example: Geodesics of rotationally symmetric surfaces

$$\sigma(u,v) = (f(v)\cos u, f(v)\sin u, g(v))$$

$$= v \sigma_{u} = (-f(v)\sin u, f(v)\cos u, 0)$$

$$\sigma_{v} = (f'(v)\cos u, f'(v)\sin u, g'(v))$$

$$E = |\sigma_{u}|^{2} = f(v)^{2} \quad F = \sigma_{u} \cdot \sigma_{v} = 0 \quad G = (f')^{2} + (g')^{2}$$
Take the curve (f(v), g(u)) to be unit speech (ie v is arclength for this curve)

Then  $G = (f')^2 + (g')^2 = 1$ FFF f(v)2 du2 + dv2 1 becomes  $d(f(y)^2 u') = 0$ at 2 becomes  $V'' = f(v) f'(v) (v')^2$ Consider the case when u(t) = Uo a constant (curves on the surface contained in a plane also containing the Z-axis) Then 3 is sanshed identically and 4 => V"=0 => V(t)= at+B (U(L), V(L)) = (U, aL+B) = (e) x ye of boo of eralose E So any such curve with constant speed is a geodesic. Next consider V(t)=Vo is a constant. Then 3 becomes u"= 0 and 4 becomes O = f(vo) f'(vo) untre u'2 +0 since anothenuse image of & is =D f'(vo) = 0 So geodesics in planes perp to the z-axis occur at values V for which F(V) is stationary (eg local max/min of distance from z-axis) In general note that  $< \sigma_{0}, \delta' > = < \sigma_{0}, \sigma_{0} \cup' + \sigma_{v} \vee' >$ = EU'+ FV'+ =  $f(y^2)$ 3 (=) < ou, x'> is a constant. le IJUIL &'ICOSA = G anget between them Also IJUI = JE = f(v) = distance to Z-axis, which we call r. If I is porometrised by arclength, then 1811=1 So we have <u>Clairant's relation</u>; roos & = const We can show 4 is automatically satisfied

## Geodesic and normal curvatures

| Regular surface Z, "C              | urve parametrised by circlength in Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | $1 \ becomes 1 \ d \ (f(x)^2 u^1) = 0 \ d \ (f(x)^2 u^1) \ d \ (f(x)^2 u^2) \ d \ (f(x)^$ |
| 8'(5)                              | S'(s) is a unit tangent vector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    | N(8(s)) is the unit normal to the surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                    | (and I to V'(s))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Obviously Sty (s), N               | (s(s)), N(s(s)) × s'(s) } is an orthonormal basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| for R <sup>3</sup>                 | S-OXIS) VIEW (SIXD-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | prat "to (8'(s) has pulso anabi barrans a gunant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    | and kn st &"(s) = knN + kgN × 8'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    | So and such curvery (the constrant' space to and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| kn normal curva                    | iture                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ky geodesic cur                    | Varine DEUthdrengs and Averable south                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | Then & becomes U"= O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| WAR Rg = O D= D X IS C             | geodesic. Mu (w) 1 (w) 1 = 0 = composit of bab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 'Usual' curvabline of              | curve (chapter 1) 0= (w) 9 4=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                    | So geodesics in places proute (an version                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1 di                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Normal curvature : kn =            | < N . 8 's> man ( and second stand and so and so and so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Now < Nox(s), x'(s) ?              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | $<(N \cdot \delta)(s), \delta''(s) > = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| dt                                 | kn Kiviotluud.ub? s <'8, up >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| = $P_{R_0} = - < (N_0 \times)'(s)$ | ,8'(s)>' (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                    | , 8'(s) > FUDINI + 1 (CONTON 1040) + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                    | San Kar X 12 10 200 200 200 200 200 200 200 200 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $= 0  k_n = - < (0N) W, W$         | Statut dange benund benund                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    | Also lout of Enorfful Salastanagero Brithand India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                    | y of brunking about the 2nd FF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                                  | Sandethave Claudint's relation ( ras(Autrop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                    | E TP Is self adjoint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    | ors e, e2 (principal directions E'valuies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0                                  | principle curvatures)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | + k2)] be unit speech (12 vis arclength for this curve)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| FIRE TI ZLOI                       | the solution of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Any vector we Toz of unit length, can be written as W= ercos q tessin q for some q. kn(p) = Ip(w)= - < (ON) = W, W > = - < (DN3p)(e, cos P+ e2 son P), e, cos P+ e2 sun P> = < kieicosq + k2e2 sinq, eicosq + p2 sinq > =  $R_1 (\cos \varphi)^2 + R_2 (\sin \varphi)^2$ Euler's formula:  $k_n(p) = \mathbb{I}_p(w) = k_1(e\cos \varphi)^2 + k_2(\sin \varphi)^2$ In particular if ki, ke have the same sign, then kn(p) has the same sign for all curves mrough p (unix speed). frenet trame  $\delta''(0) = t'(0)$ = kn wanne principle normal vector So kn(p) = < kn, N> = krn, N> procipie normal to surface Denninon: For any pe Z & we Tp Z, let Pn be the plane through p parallel to w & N(p) The intersection Zn Pw is called the normal section of Z at p in direction w Pw 6 = d a N Normal section lies in Pw so n lies in Pw principle normal to normal section N (normal to surface, 10 orentation & un sir (ace) also lies in Pw (by construction) SO NE to Desig

 $kn = k < \hat{n}, N > = \pm k$ (+ sign when curve turns in direction of N) approximation From euler's formula, if k, >0, k2>0 => kn(p)>0 (for all w) allors Mag LIND Edit 14 k, <0, k2 <0 => kn(p) < 0 1f k, >0, k2 <0 in the 27 (Anne) at + (Penne) at = (w) all = (a) and Definition: K(p)=kik2>0 p is called an elliptic point. K(p) < 0 => k, k2 have different signs, p is called a hyperbolic point. K(p)=0 and (DN)p=0 =D p is a planar point. 8"(s)= KnN + kgN×8' 8 unit speed. < M. nd>= (a)nd In the following ei, ez will be an orthonormal basis for Tp 5. eg er= 00 ez = Eor-Fou JE JE(EG-F2) Will say N= eixez Lemma: = - < (1) \* (3) \* (3) > (9) (9) (9) 8 (0) 07 (10) 000 Let Z be an oriented regular surface with orientation N. Let enez be smooth functions st at each pEZ, Senezi is an orthonormal basis for Txis, Z and N=eixez. (& curve through p). Let 2 be a smooth function st & = e, coso teesing Then  $k_g = \partial' - e_1 \cdot e_2'$ 8(5) Proof:  $\xi'' = e_1' \cos \theta + e_2' \sin \theta + (-e_1 \sin \theta + e_2 \cos \theta) \theta'$ Nxd'= - eisin0+ ezcos0 So Kg = < 8", N×8'> =< e'(050+e2 SUND+ 0'(-e, SUND+e2005), -e, SUN 0+e20050> Use < e1, e, >=1, < e1, e2>=0=><e1, e1>=0, < e1, e2>+<e1, e2>=0 etc.

=  $V_{R_{q}} = \langle e_{1}^{\prime}, e_{2} \rangle \cos^{2}\theta - \langle e_{2}^{\prime}, e_{1} \rangle \sin^{2}\theta + \theta^{\prime}(\sin^{2}\theta + \cos^{2}\theta) \rangle$ = 2-e.ºez lemma of Using the same notation as above and and  $(e_1)_{\circ} \cdot (e_2)_{\circ} - (e_1)_{\circ} \cdot (e_2)_{\circ} = e_g - f^2 = 2.$ JEG-F2 du die

Proof: [e, ez, N] is an orthonormal basis for R3 eileilu = 0 and ez (ez)v = 0 etc So I scolors a bic, d st  $(e_1)_{u} = Ge_2 + C \widetilde{N}$  $(e_1)v = be_2 + dN$ Noting e. (ez) = - (ei) ez we have (e2) = - ae, + E C N for some c, à (e2) v= -be, +d N So (ei)ulez) v - (ei)v(ez) = cd - cd =  $(\tilde{N} \cdot (e_1)_{\circ})(\tilde{N} \cdot (e_2)_{\circ}) - (\tilde{N} \cdot (e_2)_{\circ})(\tilde{N} \cdot (e_1)_{\circ})$ = (Nu · e1XNv· e2) - (N· e2)(Nv · e1)

Use the identity  $(A \times B) \cdot (C \times D) = (A \cdot C)(B \cdot D) - (A \cdot D)(B \cdot C)$  to get  $\hat{N} = \hat{N} = (\hat{N} + \hat{N} +$ = eq-f2 busing equation 4-12 JEG-F2

Dennihon:

A map  $\forall : E0, 1] = P \Sigma$  is a parametrised piecwise regular cuive if  $\forall$  is continuous and  $\exists$  to, ti,..., that, e E0, 1] where  $0 = t_0 < t_1 < ... < th < th = 1$ such that the restriction of  $\forall$  to  $Et_j, t_{j+1}$  is a regular curve (called a regular arc). Infotons that the

It follows that "it"):= lim o'(1) and o'(t; )= um o'(1) exist.

Furthermore, & is called sumple if & (a) + & (b) Vaib in EOII) It is closed & 10) = 8(1). The points & (to),..., & (tn+1) are called vertices.

Define the exterior angle & EC-TI, TJ at VILEJ) as follows: laj is the smallest determination of the angle from &'(tj) to &'(tj) If lailto or TT, then &'(tj) × &'(tj) is non-zero If it points in the same direction as N then we define a; to be positive (otherwise it is negetive) and and

For I xil= TI look in online notes

Theorem: Turning Tangents Theorem of the With above notation.  $\sum_{i=1}^{n} \left[ \partial(s_{j+1}^{-1}) - \partial(s_{j}^{+1}) \right] + \sum_{i=1}^{n} \alpha_{i}^{-1} = 2\pi$ tes ordens th.?

#### Dehnubon:

A region R of an oriented surface is called sumple if it is homeomorphic to the disc (ie bounded and has no holes), and its boundary OR is the trace of a simple closed perpiecewisc regular curve  $\mathcal{X}: \mathbb{I} - \mathcal{PZ}$ 

book Look up shift about onentation in notes

Gauss - Bonnet Theorem (Local)

U  $\subset \mathbb{R}^2$  homeomorphism to open disc.,  $\mathcal{O} : U - \mathcal{V} \Sigma$ . Let  $\mathbb{R} \subseteq \mathcal{O}(U)$  be a simple regular region of  $\Sigma$  with bounding eurve  $\mathcal{J} : \mathbb{I} \to \Sigma$  parametrised by arclength

Let  $\delta(s_0), \dots, \delta(s_n)$  and  $\alpha_{0,\dots,\alpha_n}$  be the vertices and extension angles respectively. Then  $p_{s_{off}}$   $p_{s_{off}}$ 

Z. J. kg(s)ds + J] KdA + Z. K. = 2TT geodesic R cause curvance

Proct: intergraining 1 gives  $\sum_{s=1}^{s+1} k_g ds = \sum_{s=1}^{s+1} \partial^s ds - \sum_{s=1}^{s+1} e^s ds$  $= \sum_{i=1}^{n} (\Theta(s_{i+1}) - \Theta(s_{i}^{*}) - \sum_{i=1}^{n} \int e_{1} \cdot e_{2}' \, ds$ 

Using the himing tangents theorem, the proof is done if we can show that  $\sum_{j=0}^{s_{j+1}} e_1 \cdot e_2^{j} ds = \iint K dA$ 

 $\int_{s_1}^{s_{1+1}} e_1 \cdot e_2' ds = \sum_{k=0}^{s_{1+1}} \int_{s_1}^{s_{1+1}} e_1 \cdot ((e_2) \cdot U' + (e_2) \cdot V') ds$ use greenstrim  $= \sum_{n=1}^{n} \int_{\infty}^{\infty} \left( \left[ e_1 \cdot (e_2) \cdot \right] \cdot \cdot + \left[ e_1 \cdot (e_2) \cdot \right] \cdot \cdot \right) ds \qquad \left[ \left[ \operatorname{Pau+Qdv} = \int_{\infty}^{\infty} \left( \int_{\infty}^{\infty} - \frac{\partial^2}{\partial v} \right) ds \right] \right) ds$ =  $\iint ([e_1 \cdot (e_2)_v]_v - [e_1 \cdot (e_2)_v]_v) dv dv$ = [[[e1]0"(e2)v - (e1)v(e2)0] dudv I eg-f2 JEG-F2 dudu FEdudv  $\iint \frac{e_{g}-f^{2}}{\sqrt{EG-F^{2}}} \frac{dA}{\sqrt{EG-F^{2}}} = \iint K dA.$ M® MIQUELRIUS

## Definition!

A region RCZ is said to be regular if it is compact and its boundary OR is the finite union of non-intersecting, piecewise negular curves.

R compact => OR = 9.

A simple region with only 3 vertices is called a triangle. Per the all all a

Detruction:

MARA trangulation of a regular region RCZ is a finite family 2 of briangles Ti,..., To such that

1 UT = R

2 For i= j back Tin Tj is either empty, a single vertex or a single edge

Griven a thangulation, we define

= number of faces (number of triangles

= number of edges

V = number of vertices.

The Euler characteristic of T is X = F-E+V The following facts will be assumed: 1. Every regular region, of a regular surface admits a thangulation. 2. Euler characteristic is independent of triangulation. 3. Let I be an oriented surface and Son? be a parametrisation comparishe with this orientation. Then 3 a tringulation of R st each TET is contained in the image of some parametersation Ox (Ux). Furthermore if the boundary of every briangle in T is positively onented, then adjacent thangles determine opposite orientation on the common edge. Example: Sphere E14 F=4, E=6, V=4  $\chi(S^2) = F - E + V = 4 - 6 + 4 = 2.$ Example: Disc, D. X(0) = F-E+V = 1-3+3 = @1-1 buse a 103 maint Example: F = 18, E = 29, V = 9 $\chi(T^2) = 18 - 27 + 9 = 0$ . Z. Kgds+ IKdA + Zai = 2T X(R).

(Global) Gauss - Bonnet Theorem month doos to the septo inner in a to me of Let The RCZ be a regular region of an oriented surface, and let CI,..., Cp be simple closed regular Brankladdes curves which form the boundary OR of R. Suppose that each Ci is positively oriented and let di,..., an be the set of external angles of the curves Then  $\sum_{k=1}^{n} kg(s)ds + \iint_{R} kdA + \sum_{k=1}^{n} \alpha c = 2\pi \chi(R)$ C11 .... Cp .

where s is the arclength of ci and Sci Kg(s) ds is the sum of intergrals over the regular arcs of ci.

Proof: Consider a triangulation of R of the form above,  $T = T_i$ ? Let  $\{x_j\}, x_{j^2}, x_{j^3}\}$  be the external angles of  $T_j$ . Apply local Gauss-Bonnet Theorem to each  $T_j$  and sum the results.

$$\int_{T_{i}} k_{g}(s) ds + \iint_{T_{i}} k_{dA} + \sum_{a=1}^{s} \alpha_{ij} = 2\pi$$

$$\sum_{c_{i}} \int_{c_{i}} k_{g}(s) ds + \iint_{R} k_{dA} + \sum_{l=1}^{F} \sum_{p=1}^{3} \alpha_{lj} = 2\pi F$$

because the common edges have oppisitete orientations, so Skyds ") terms cancel between adjacent  $\Delta_a$ .

In terms of the interior angles,  $q_{jk} = \pi - q_{jk}$ , we have  $\sum_{i=1}^{3} \sum_{k=1}^{3} q_{jk} = 3\pi F - \sum_{j=1}^{2} q_{jk}$ 

Let  $E_e = \text{the number of external edges in } Y$ . (ie in  $\partial R$ ).  $E_i = \text{the number of internal edges in } Y$ .  $V_e = \text{number of external vertices}$ 

Vi = number of internal verticles. Since the Ci are closed Ee = Ve.

3F = 2Ei + Ee

(for each  $\Delta$ , if I count the 3 edges, we have counted each interior twice and each extensor edge once).

$$\sum_{j=1}^{+} \sum_{i=1}^{3} \alpha_{jk} = 2\pi E_i + \pi E_e - \sum_{j=1}^{+} \sum_{k=1}^{3} \varphi_{jk}$$

Ve = Vec + Vet

extenor vertices from triangulation only.

'corners ' of bounding curve C:

# exterior vertices at

The sum of the internal angles fat each interior point is 2T. The sum of the interior angles at each exterior vertex that is not at a vertex of one of the Cis. 15 TT. The sum of the internal angles at each extensor venex that is at a venex of a Ci is Ti - x, So  $\Sigma \Sigma Q_{jk} = 2\pi V_i + \pi Vet + \sum_{l=1}^{\infty} (\pi - \alpha_l)$ =  $2\pi V_i + \pi V_{et} + \pi V_{ee} - \sum_{i=1}^{n} \alpha_i$ So \* becomes,  $\Sigma$ ,  $\Sigma$ ,  $\alpha_{jk} = 2\pi E_i + \pi E_e - \pi V_e - 2\pi V_i + \Sigma_i \alpha_i$ subtract T(ve-Ee)=0 from RHS. So ZZ di = 2TT (Ei+Ee-Ve-Vi) + Zeu COORDER VIO TO STO ADDITION PLACE  $= Q \Pi (E - V) + Z \propto L$ So \* Z Skg(s)ds + SKdA + Zac = 27 (F-E+V) = 27 X(R) Applications : For a compact connected surface  $\Sigma$ , the quantity  $g: 2 - \chi(\Sigma)$  is called the genus ("# propriot holes") Theonom: Let ECR3 be a compact surface. Then X(E) takes the values 2,0,-2,-4,... (ie g(Z)=9,1,2,3,...) Furmermore IF È CR3 is a second compact connected surface St X(Z)=X(Z) then Z is homeomorphic to Z (continuous map  $q: \Sigma, -\nu \tilde{\Sigma}, q^{-1}$  continuous). Also assuming Jordon curve lemma. Corollary: 200 Local Gauss - Bonnet Thm is true, even if we drop the conduction mar RCO(U) Corollary: Let 5, be an orientable compact surface, than Then I Kat = 2TT X(Z)

Coronary: Any compact surface with positive Gauss curvature is homeomorphic to the sphere. Proof: K>O=D X(E)= \_L ] KdA > OD + (des mas) / eb) Since X(5) e E2, 0, -2,... 3. =>  $\chi(\Sigma) = 2$ , but  $\chi(S^2) = 2$ => Z homeomorphic to S<sup>2</sup>

## Corollary:

Let  $\Sigma$  be an oneatable surface with  $K \le 0$ . Then 2 geodesics cannot meet twice in such a way that they i form the boundary of a simple region R of  $\Sigma$ .

Froof : Grauss Bonnet Unm SK dA+ x, + x2 = 2TT (Skgds = 03, kg=0)

By uniqueness of geodesics,  $\alpha_1 < \pi_1, \alpha_2 < \pi_1$ But  $\alpha_1 + \alpha_2 + \iint K dt < \pi + \pi + 0 < 2\pi$  contradienon.

## Jacobi's Theorem.

Let  $\gamma: I \longrightarrow \mathbb{R}^3$  be a closed regular curve with non-zero curvature Assume the curve  $\hat{\mathbb{H}}(I) \subseteq S^2$  traced by the principle normal is simple Then  $\underline{\mathbb{T}}(I)$  divides the sphere into 2 regions of equal area.

nas Q 8 n(s) Proof: Let is be the arclength of n and kg be the geodosic curvature of i as a function of S. No 11 = d kg= n: (nxn) Taking N= "outer normal" =n Ikadi + IKAA = QTT (unex) = 1 (East ) = (a) + (a) 8"= KnN+ kg XN Frenet: dt = kn dn = -kt-zb db = zn ds

 $\underline{n} = \underline{dn} = \underline{dn} \underline{ds} = -(\underline{k}\underline{t} + \underline{z}\underline{b})\underline{ds}$  $\hat{s}$  ardength for  $\underline{n} \in D$   $|\hat{n}| = 1 = D |d\underline{s}| = 1$  $|d\underline{s}| = \sqrt{R^2 + Z^2}$  $\underbrace{\vec{n}}_{d\hat{s}} = -(k\underline{b} + \underline{z}\underline{b}) \underbrace{d\hat{s}}_{d\hat{s}} - (\underbrace{ds}_{d\hat{s}})^2 ((\underline{k}_{s\underline{b}} + \underline{z}_{s\underline{b}}) + (\underline{k}_{z\underline{c}} + \underline{z}_{z\underline{c}})\underline{n})$   $(\underline{k}_{d\underline{c}} + \underline{z}_{d\underline{c}}) \underbrace{d\hat{s}}_{d\underline{s}} - (\underbrace{ds}_{d\underline{s}})^2 ((\underline{k}_{s\underline{b}} + \underline{z}_{s\underline{b}}) + (\underline{k}_{z\underline{c}} + \underline{z}_{z\underline{c}})\underline{n})$  $kg = (n \times n) \times n = \frac{ds}{ds} (kb - zt) \cdot n$  $= O + \left(\frac{dS}{dS}\right)^3 \left(-zk_s + kz_s\right) + O$ =- kZs-Zbs ds from \*  $R^2 + c^2$  ds  $= -\frac{d}{ds} \tan^{-1}\left(\frac{z}{R}\right) \frac{ds}{d\hat{s}}$ GB Thm \*\* -  $\int \frac{d}{dt} \tan^{-1}(\frac{\pi}{k}) \frac{ds}{ds} d\hat{s} + \iint \frac{\pi}{k} dA = 2\pi$ => Area of region is 217 = 1/2 total surface area.

## The exponential map and geodesics polar coordinates.

Recall: Given  $p\in \Sigma$  and  $w\in T_p\Sigma$ , there is a unique geodesic  $\chi:(-\varepsilon,\varepsilon) \rightarrow \Sigma$ . with  $\chi(o) = p$ ,  $\chi'(o) = w$ 

To keep track write  $\delta(t) = \delta(t; p, w).$ 

#### Dennihon:

For any pez. and sufficiently small w (Iwi small), we define exp, by exp, (w):= 8(1, p, w)

Recall that geodesics are constant speed and here 18'(0)1=1w1, so  $exp_{p}(w)$  results in the point in  $\Sigma$ , obtained by moving a distance IwI along the geodesic through p in direction w.

Given a point  $p\in \Sigma$   $\exists \varepsilon > 0$  such that  $e \times p_p$  is a diffeomorphism from  $B_{\varepsilon}(0) \subset T_p \Sigma$ , onto its image on in  $\Sigma$ .

If we describe we Tp 5. using cartesian coordinates, we get coordinates on a neighbourhood of p in 5. called geodesic normal coordinates If we use polar coordinates, we get geodesic polar coordinates

| Pho        | So (p, 0)-paars on Tp Z. give a parametrisation |  |
|------------|-------------------------------------------------|--|
| 10 10/00 0 | $exp_{\rho}(\rho, \theta)$                      |  |

Theorem:

Let  $0: U \cap V \cap L \subseteq \Sigma$  be a parametrisation by geodesic polar coordinates  $(p, \theta)$ . Then the coeffs  $E(p, \theta)$ ,  $F(p, \theta)$ ,  $G(p, \theta)$  of the first findemental form satisfy,

$$E \equiv 1$$
,  $F \equiv 0$ ,  $\lim_{p \to 0} G \equiv 0$ ,  $\lim_{p \to 0} (\sqrt{G})_p \equiv 0$ 

Proof: parametrisation:  $\sigma(\rho, 0) = exp_{\rho}(\rho, 0)$ 

Consider the curve  $\delta(p) = \sigma(p, \theta_0) = \exp_{\rho}(p, \theta_0)$   $\theta_0$  const (not in direction of  $\ell$ ) p = distance we move along the geodesic  $\delta$ , so  $p = \text{arclength of } \delta$ . So  $1 = 1 \delta'(p) |^2 = |\sigma_p(p, \theta)|^2 = E(p, \theta) = \delta E = 1$ Geodesic equations

$$\frac{d}{dt} \left( E \dot{p} + F \dot{\theta} \right) = \frac{1}{2} \left( E p \dot{p}^2 + 2 F p \dot{p} \dot{\theta} + G p \dot{\theta}^2 \right)$$

 $\frac{d}{dt} (F_{p}^{i} + G_{0}^{i}) = \frac{1}{2} (E_{0} p^{2} + 2F_{0} p^{i} + G_{0} \theta^{2})$ 

We know that  $\partial = \partial$ . is a geodesic and E = 1d(1p) = 0 = p = 0dt.  $\frac{d}{dt} (F_{p}^{\circ}) = 0 \iff F_{p} = 0 \iff \frac{\partial F(p, 0)}{\partial p} = 0$  $((F_{p}\dot{p}+F_{p}\dot{a})\dot{p}+F_{p}\dot{p}=0$  =>  $F_{p}=0.)$  $\mathcal{O}(p, \theta) = \exp((p, \theta))$  is a diffeomorphism (derivatives are continuous) =D 2 expr(p, 2) is continuous. 06 But  $expp(0, \theta) = p$  const So un a expr( $p, \theta$ ) =  $\frac{\partial}{\partial \theta}$  const = 0  $\lim_{p \to 0} F(p, \partial) = \lim_{p \to 0} \langle \sigma_p, \sigma_{\partial} \rangle = \lim_{p \to 0} \langle \frac{\partial}{\partial p} \exp(p, \partial), \frac{\partial}{\partial \theta} \exp(p, \partial) \rangle$ E O TOO DA But F doesn't depend on  $P = P F \equiv O$ . in terms of the greatesic normal coordinates i = pcoso, V = psino (usual cartesian coords on B2(0)) We have  $\sqrt{EG-E^2} = \sqrt{EG} - F^2 \partial(G, \hat{v})$ 2 (P.0)  $\sqrt{G} = \sqrt{\hat{E}\hat{G} - \hat{F}^2}\rho$ 2021 a) Then the coeffs E (a), F (a. 9), G (a. 9)  $= b \sqrt{G} = p \sqrt{(1 \cdot 1 - O^2)} + O(p)$ VG-DO as P-DO  $(\overline{J}_{\overline{A}})_{\overline{P}} - \overline{P} |$ FFF is just & dp2 + Gd02 Theorem (mindens) Any 2 negular surfaces with the same constant Gauss curvature are locally isometric

Proof: Recall (HW program) IF F=0 K =  $\frac{1}{2\sqrt{EG}} \left( \left( \frac{E_v}{\sqrt{EG}} \right)_v + \left( \frac{G_u}{\sqrt{EG}} \right)_u \right)$ 

6

in geodesic polar coordinates E=1, E=0 =D K= - (VG)pp VG (JG)pp + KJG=0 (2nd order const coeff "ODE" for JG) Case 1: K=0 = 0 ( $\sqrt{G}$ ) p = 0 = 0 ( $\sqrt{G}$ )  $p = \alpha$  ( $\theta$ ) Also  $(\overline{G})_{p} \rightarrow 1$  as  $p \rightarrow 0$  so  $\alpha(a) \equiv 1$ .  $= b \left( \sqrt{G} \right) p = 1 = b \sqrt{G} = p + \beta(\theta)$ VG-DO  $\beta(0) = \lim_{p \to 0} (\sqrt{G} - p) = 0 - 0 = 0 = 0 = 0 \quad =$ =D FFF is dp2+p2d02 Case 2: K>O (look for solutions of form JG = erp)  $(2+K=0=D \int G = \alpha(\theta) \cos \int K p + \beta(\theta) \sin \sqrt{K} p$  $\lim_{n \to 0} p \to 0, \ \sqrt{a} \to 0$ O= Q(O)=D JG=B(O)SINJEP =D(IG)p=JKB(B)COSKP P-DO 1= TKB(0) = B(0)= /TK =D JG = TR SUNJEP So FFF is dp2+ 1 (SUNTRp)2 dd2 Case 3: KKO JG = x(0) cosh J-Kp + B(0) sunh (J-Kp ... FFF is dp2+1 (sunh2J-Kp)d02 (-K) So any 2 surfaces with the same constants. K have the same these FFFs leach answer obtained above is unique.) 2 surfaces, sume FFF S=> locally isomethic. In geodesic polars, the curves 0= const are geodesics, the curves p=const are called "geodesic ardes" (but they are not geodesics) Theorem : Let L be the arclength of the geodesic cide p=r centred at pe 2 Then K(p)= um 3 2TTr-L r->0 TT r3 where K(p) is the crauss curvature at p.

Proof: Work in geodesic polars (P.D) centred at p. contract plan and property and provide \* => (TG)ppp + KpJG + K(JG)p=0 Take Elimit p-DO, JG-DO, (JG)p-DI × => (JG)ppe = -KeJG - K (JG)p - D - K - O - K ×× Taylor series 12  $\sqrt{G(p,0)} = \sqrt{G(0,0)} + p(\sqrt{G})p(0,0) + p^2(\sqrt{G})pp(0,0) + p^3(\sqrt{G})pp(+0)p^3)$ where  $O(p^3)$  represents some through function  $g(p, \partial)$  st  $g(p, \partial) = 00$  as  $p \to 0$ . So  $\sqrt{a} = p - p^3 K + o(p^3)$ Recall the length of a curve 8= jt, Voc 2+ y2+z2 dt = jt JE(u')2+2FU'V++G(U')2 dt In our case  $L = \lim_{e \to 0} \int_{-\infty}^{2\pi - 1} d\theta \quad (p = r \cos) \quad (0) = 0$  $= P L = 2 \pi r - \frac{c^3}{3} \pi K + o(c^3)$ =  $V(p) = lum 3 2\pi r - 1$ Lemma: Wirtinger's inequality For any differentiable function F: [0, Ti] -DR with F(0)=0, F(T)=0  $\int_{-\pi}^{\pi} F(t)^{2} dt \leq \int_{-\pi}^{\pi} \left(\frac{dF}{dt}\right)^{2} dt$ where one equality noids if and only of I const stc, st F(t) = csint V te [0, T]. Proof: Lot GLE) = F(E)/SINE VEC (0, T) Then F = Gsunt + Gcost  $\dot{F}^2 = \dot{G}^2 (\sin^2 t + 2 \dot{G} G sunt cost + G^2 cos^2 t)$ Using intergration by parts  $\int_{0}^{\pi} (2G\hat{G}_{t}) \operatorname{sunt} \cos t dt = G^{2} \operatorname{sunt} \cos t \Big|_{0}^{\pi} - \int_{0}^{\pi} G^{2} (\cos^{2}t \cdot s - \sin^{2}dt) dt$  $= \int_0^{\pi} F(t^2)^2 dt - \int_0^{\pi} G^2 \cos^2 t dt$ de

Intergramming IF gives  
IS F' at = 15 C sun reat + 15 F rat > 15 E rat  
where equality heads iff 15 à à sin r t dt = 0  

$$e > \dot{C} = 0 e > 0 e > 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e = 0 e =$$

Ta

## The Rigiduty of the Sphere

Recall : pEZ is unbillical if and only if the principle curvatures are equal: k.(p)=k2(p) = 00 (10) I is called totally umbilical d=> p is umbilical, tpe 5.

#### Theorem:

The only totally unbilical connected surfaces are the open subsets of (1000 planes and spheres ~ (DN) e. = key

proof: Since  $\Sigma$  is totally unibellical  $\exists$  smooth function  $= D - (DN)p \leq 2 = k \leq 2$  $f(v_i,v)$  st  $(DN) = f(v_i,v)$  id  $(f(v_i,v) = -K)$ .

(K=R1=R2)

So in particular  $(DN)\sigma_{0} = f\sigma_{0}$  and  $(ON)\sigma_{v} = f\sigma_{v}$ . But  $(DN)\sigma_{0} = N_{0}$  etc. So  $N_{0} = f\sigma_{0}$  and  $N_{v} = f\sigma_{v}$  + So  $(f\sigma_{0})_{v} = (N_{0})_{v} = (f\sigma_{v})_{v}$  i=0  $f_{v}\sigma_{v} + f\sigma_{v}v = f_{v}\sigma_{v} + f\sigma_{v}v$  $f_{v}\sigma_{v} = f_{v}\sigma_{v}$ 

=> fu = fv = 0 since ou ou are linearly independent => f = const

Case 1 f=0

Then  $* = D \hat{N}_U = \hat{N}_V = 0 = D \hat{N} = const$ =  $D \sum is a plane$ Case 2  $f \neq 0$  $D = L \hat{N} = C$ 

=  $0 | 0 (u,v) - \underline{c} | = | \underline{f} N | = 1 = 0 o(u,v)$  lies on the sphere centred at  $| \underline{f} | \underline{c} wth radius / | \underline{f} |.$ 

## Corollarly : suit

The only totally unbilical surfaces which are closed subsets of R<sup>3</sup> are spheres and planes.

## Lemma:

Any non-umbrilical point of a negator surface has a right which is the integrate of a parametrisation for which F = f = 0.

Theorems (Weber).  
Let 
$$\Sigma$$
 be an onented surface own principal autoanties  $R$ , size  
Suppose that the following contations hold at some point p is  $\Sigma$   
1 K(p)>0  
2 Ri has a local minimum at p  
Then p is an unbilled point.  
Ploof: Assume that p is not unbilled.  
Ploof: Assume the provestion of the elements.  
Ploof: Assume the element

m

M® MIQUELRIUS

So  $(\prod_{i=1}^{2})_{v} = E(R_{i})_{v} + (E_{i})_{v}$ G Ki-kz (G Ki-kz)v Similarly  $(\prod_{2}^{2})_{0} = (\underline{k}_{2})_{00} + (\underline{k}_{2})_{0}$ R1-R2 (k1-k2)0 Assumption | => LHS of 3 is >0 at p 2 = 0 (k,)v(p)=0 and (k,)vu(p)>0 3 => (k2)u(p)=0 and (k2)uu(p)50 => RHS of 3 50 contradiction!

## Lemma:

A regular compact surfaces  $\Sigma \subseteq \mathbb{R}^3$  has at least one elliptic outwood point. (ie  $\exists p \in \Sigma$  st K(p) > 0.

Proof:  $\exists$  sphere S centred at 0 of Maximum radius st  $\Sigma \cap S \neq \emptyset$ Choose  $p \in \Sigma \cap S$ ,  $\Sigma$  and S are tangent at pChoose  $w \in T_p \Sigma$ . Let  $\delta_1: (-\epsilon, \epsilon) \to \Sigma$  and  $\delta_2: (-\epsilon, \epsilon) \to S$  be unit

speed parametrisations of the normal sections of  $\Sigma$ , and S in direction w. Let N(p) be the unit normal to S (and  $\Sigma$ ) at p pointing towards 0.

N(p) = p

Since S is the largest sphere intersecting 
$$\Sigma$$
, we must have  
 $\langle \chi, (s), N(p) \rangle \ge \langle \chi_2(s), N(p) \rangle$   
 $4=P \langle \chi, (s) - p, N(p) \rangle \ge \langle \chi_2(s) - p, N(p) \rangle$   
 $4=P \langle \chi, (s) - p, N(p) \rangle \ge \langle \chi_2(s) - p, N(p) \rangle \ge \langle \chi_2(s) + s \chi'_2(s) + s \chi'_2($ 

= Deach principal curvature of ∑ at p≥ 1/R so K(p)= b,(p) k2(p) ≥ 1 >0

# TReonem: (Liebmann) Let I be a compost connected regular surface with constant Gauss curvature. Then Z is a sphere. Proof: Since K is constant the previous lemma shows that K>0. Label principle curvature st k,(g) < k2(g) VGEZ Since Z is compact ke must have a maximum at some point pEZ. Also k, (q) = K/k2(q) so k, has a minimum at p. . Hilber's Theorem => p is umbilical. For any gez (tions) to the k2 (q) 5 k2 (p) since max of kiat p = k, (p) p is umbilical. ER. (g) sure munof b. is at p So k2(q) ≤ k, (q) but by defn k, (q) ≤ k2(q) => kilg)=k2(g) VgEZ => Z is totally unbilical. tist n'(s), b(st) tomains nonthand an ann Theorem . Rigidity of spheres Let 5 be a sphere of radius R>O and let 2 be a connected Burface IF E is ana locally isometric to S the E is a sphere of radius Rid uniquenes salus more is exactly one salud Proof: Isometries preserve K. So Z has constant Gauss curvature K=1. By Liebmann's Thm = D sphere.

Revision Notes

-Gives important formula. and the same was here and was in Example questions:

lai) Verify that (S-tan-1's, log(s'ti), 1) is parametrised by arclength. a) Let t.n. b. be R<sup>3</sup> valued functions of set solving t'= KD D'= - Kt-D b'= Th for set, where

| Define | t(s)t     | 5) <u>t</u> . <u>n</u> | t.b | M'=AM-MA *        |
|--------|-----------|------------------------|-----|-------------------|
| M      | (S) = D.1 | Emon-n                 | 000 | pg(da)> = suprum> |
|        | b .t      | <u>b.</u> p            | h-h | 9- =              |

Suppose that for some value S. of S, the vectors E(S.). D(S.) b(S.) form, a right handed onthonormal frame. Show that (E(S), D(S), b(S)) remains right handed orthonormal frame.

We have initial value problem \* with M(So)=I Existence and uniqueness says there is exactly one soin of the problem.

cleany MEI is a solution of this minal value problem ... It is the only solution.

SO MEI = P Stin, b } is orthonormal.

Initially right handed continuity shows it can't suddenly become left handed.

2. Let  $\sigma$  be a parametrisation of a negular surface  $\Sigma$  with orientation N and let  $\tilde{N} = N \cdot \sigma$ .

i) Show that (DN) pou (U.v.v.) = Nu (v.v.) where p= o (v.v.)

| Let    | $\delta(t) = \sigma(u_0 + t, v_0)$                         |
|--------|------------------------------------------------------------|
| So     | $\chi(o) = p = \sigma(v_0, v_0)$                           |
|        | $\chi'(0) = \sigma_0(v_0, v_0)$                            |
| SO (DN | )pou(uo, vo)=(Nox)'(0)=d((Nox)(uottivo))) = (Noo)u(uo 140) |
|        | at                                                         |

(1) Show that Nuluiv) = aluivio oluiv) + bor Gives important formula  $N_V(u,v) = c(u,v)\sigma_U(u,v) + d\sigma_V$ with (ab) = ... lexplicity given in paper). N is a unit lie constant length) vector, so Nue and Nv are orthogonal to N and hence is TpZ. Furthermore for ovs is a basis for TPE, so I arbical st I and 2 are true  $\langle \sigma_{0,1} \rangle = \rho \langle \tilde{N}_{0,0} \rangle = q \langle \sigma_{0,0} \rangle \sigma_{0,0} + b \langle \sigma_{0,0} \rangle \sigma_{0,0}$ AMMAZIME /idd Ford analland <NU, OU> = < (DN)pourous from i a - 12m =-e did and tod -e=aE+bF. were not be some value 3. be store the verte -F = aF + bG  $ab / E \neq = -(ef)$ FECENDE CALEGIA (F9) -g=cF+dG u) A surface. Z is said to be parallel to Z if it has a parametrisation & (U,V) = o(U,V) + a D(U,V). Where a is a constant. Show that ouxor = (1-2Har+Kaz)o, xor. GU = OUTANU JONNONDO 2 20, 13 (= I = MOR  $\hat{\alpha}_{v} = \sigma_{v} + \alpha \hat{N} \hat{v} + \alpha \hat{N} \hat{$ 

Let  $\Phi$  be a parametrisation of a requirer surface  $\Sigma$  with eventation  $\mathcal{A}$  and let  $\tilde{\mathbf{N}} = \mathbf{N} \cdot \boldsymbol{\nabla}$ .