3202 Galois Theory Notes

Based on the 2012 spring lectures by Dr M L Roberts

The Author has made every effort to copy down all the content on the board during lectures. The Author accepts no responsibility what so ever for mistakes on the notes or changes to the syllabus for the current year. The Author highly recommends that reader attends all lectures, making his/her own notes and to use this document as a reference only.

Evariste Galois 1811-1832

- i) Establishes a 1-1 correspondence between extensions of gittless fields and groups
- u) Analyses the questions of solving polynomials equations in terms of roots ("radicals") and in particular shows that quintic equations cannot be solved in radicals.
- the angle and aublicating the cube using ruler and compasses.
- i) Fields and Groups

The Fundamental Theorem of Galois Theory associates to a field extension KCF (e.g. R S C) a group & called the & Galois group of the extension and under certain conditions gives a 1-1 correspondence between fields L such that K S L S F and subgroups of G

Al do Hi

Won't look at this in any detail now, but note 2 things,

a) a is the group of automorphisms of F which fix k

(An automorphism P of algebraic structure is a byective map

which preserves the structure; fixing k means P(k) = k Ykek)

Looking at the automorphism group is often a way of getting

information about a structure (not just in this context).

b) More generally this is an example of attaching a group to

some other structure (In this case a field extension)

This also appears in many other contexts ag

eg. (co)-homology

This attaches to a geometrical object (eg surface) a group

and the group tells you something about the surface

(1) Solving Polynomial Equations

at + b = 0 at2+ bt+c=0 note not=-b+ 1b2-4acono 1-10 sodaldo 107 (

Cubic et3+at2+bt+c=0 2y=t+a/3 change variables private to enorsoup and estulant lu y3+py+q= 0 eurone rolling in bas ("eloubor") edoor to

4= U+ V

 $(U+V)^3 + o(U+V) + q = 0$

U3+V3+3UV(U+V)+p(U+V)+q=0 domas los 100 200 200 100 (U3+V3+q)+(U+V)(3UV+p)=0 and padagate bas signs and

we have a solution if U3+V3+q=0 and 3UV+p=0 BUV=+pno zbo7 (N3+N3=-0

u= U3 V= V3 U+V= -9 27UV = - p3

- ρ³/_{27u} 21- ρ³/_{27u} = - 9-11 ειρίοθ θο μενουπ Ιστροπ extension KCF (eg RSC) a group & c

extension and under certain conditions do = 10 - 10 + 2 m

U= -9 + 192+ 4 P3/27

Similarly for quarties 7 to small groundlup to quarp and at a lo

(An automorphism P of algebraic structure is a bijective map can all polynomial equations be solved in this way is by radicals in particular, what about quintics?

Galois Theory proves the answer is 'no' no el sin plantones anomal Attach a field extension to the equation; show that the Galois group doesn't have a certain property: show that if equation is soluble by radicals, the field extension has the property Lusing the translation provided by the fundamental Theorem) iu) Geometric propiems. Bisect angle, can you trisect & angle? (2) Squaring the circle 9 equal 10 11 15 Ti constructable? Q3) Duplicating the cube 9 and por a month of them & says (84%) le is 3/2 commiconstructable? using the idea of the degree of a field extension one can prove all these are impossible. Hardout 1.

A field extension is a monomorphism (injective, nomomorphism)

L: K-DL, where K and L are subfields of C. We say K is

the small field and L is the large field.

Examples:

 $b: R \rightarrow C$ Inclusion maps.

$$f: Q \longrightarrow P$$
 $P = \{a+bi: a,b \in Q\}$. $(P = Q(i))$
 $a \longmapsto p = (b=0)$

Need to check f is a monomorphism, quitrivial

Need to check Q, P subfields of Q

Need to check multiplicative inverse for Pour on promise (a + bi) (a - bi) = 1

We can usually identify K with its image i(K), so i is thought of as an inclusion map and K can be mought of as a subfield of L. We then use the notation L: K (or LIK) for the extension and say that L is the extension of K.

Definition:

Let $X \subseteq \mathbb{C}$. Then the subfield generated by X is the intersection of all subfields of \mathbb{C} that contain X.

This is equivalent to either of

- 1. The (unique) smallest subfield of C that contains X
- 2. The set of all elements they of a that can be obtained from elements of X by a finite sequence of field operations provided X \$ 103 or \$.

Example: 4: Q(i) - D C 12: Q(i) - DC 12 15 also a field 4 = id Q(i) SC. (a+ib) = a-ib monomorphism Proposudon: Every subfield of a contains Q. Proof: Let KS C be a suppeld. Then O. I EK by det". So inductively 1+1+...+1=n & K for every A interger n>0. K is closed under addition, so -nek = b ZEK. If pige I and q \$0, K closed under multiplication so & 'EK So pq-10 K = 0 Q CK. su(5+) D = (1 AEV - X -) D = (2) D SO Corollary: 5 + 1700 3non on als sand pod at a ? = (w) D. e &= b 31 alon Let XSC. Then the subfield of a generated by X contains Q. Notation: We denote the subfield of a generated by X by Example: X = \$1,533 K 2 Q K = {q+p131p, q e Q} Need to consider multiplicative inverses (q+p(3))'=q=p(3) meldonomonom o si $4(\sqrt{3}+\sqrt{3}) = 9^2 + 3p^2 +$ (q+p/3)(q-p/3) = q2-3p2 = 10+0 subfield : d/0) = 000-1 $q^2 - \rho^2 \sqrt{3}$ $q^2 - 3\rho^2$ If L: K is a field extension and Y is a subset of L, then the subfield of C generated by KUY is written K(Y) and is said to be obtained from k by adjoining Y. Band to Man all I = 1 f(t)/act) = f, ac K(t)? Example: K(w), K= Q W= e211/3 W3=111-11-11

d=p+qw+rw3

L = K(Y)

```
Want to show Lisa subfield of C
L closed - d=p+qw+(w2) B= a+bw+cw2
 d+BEL, aBEL = D L closed ditale Do (3) D bi=
YdeL JaleL
 Consider p+qw instead supplied
(w^3=1, w^3-1=0, (w-1)(w^2+w+1)=0=0 w^2+w+1=0=0 w^2=-w-1)
 (p+qw)(p+qw2) = p2+pqw+pqw2+q2
                    Prof. Let KS C be a supposed. Then O. 1 Spt.pq-q=1
 =D (p+qw) = p+qw2 = A+Bw + A = n=1+...+++ phynoupa os
  p2-pq+q2 mass Hantide, northbo ashou basolo 21 X
 OR Q(w) = Q(-1/2-13/2i) = Q(F3) (since 1/2, 2 ∈ Q)
 Note: If a=3/2, Q(x)= {a+6 x+cx2+a,b,c e Q?
 a obviously Rational Expressions
 Nee (X) of clark X much provide provide and provide and some and some and some
         t3+1 02+05 01050 mot 50+03 = x 0 0 x 1851.18 = X
 If R is an intergral domain then there is a method of constructing a
field of fractions of R ie. a monomorphism P: R \rightarrow Q such that \bigvee q \in Q = \frac{Q(r)}{\varphi(s)} for some r, s \in R.
 In general, let S=RXR 1503 = {(a,b): a,b \in R, b \neq 0} and define
 (a,b)~(a',b') if ab'=a'b
  Let Q = { [(a,b)]} = set of equivalence classes : moringo
 Define [(a,b)]+[(c,d)]=[(aq+bc,bd)] etc.
 K[t] = {ao+ait+...+ant | ane k} und betonen a to bightus
 K(t) = field of fractions of K[t] of silvers described of the
 1. += {f(t)/g(t): fige K[t]}. of a more can be obtained from
 K [ti...tn] eg ti2+t2 - ht2 etc 2000 - 00 - 00 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 - 000 -
  K(ti...tn) field of fractions of k Iti...tn] = with wp+9=6
```

Definition: Les a supporte of or An isomorphism between two field extensions Bick - Di and 1: L-DI is a pair X, p of isomorphisms X: K-DL, p: R - D i such that YREK J (A(K)) = p (i(K)) - D P((CR)) "commutative diagram" Identify K with i(K) and L with i(L) If we identify K and L eq. p. Q(i) -> Q(i) p(a+bi) = a-bi

Sumple extensions. chapter 5: Algebraic and Transcendental Extensions 100 Introduced There are two distinct types of sumple extensions: one there are pa monic polardotagistes of six Let K be a subfield of C and let acc. Then a is algebraic over K if there exists a non-zero polynomial over K such that p(x)=0. Otherwise, a is transcendental. Note: We shorten algebraic over Q to algebraic and transcendental over a to transcendental. 1. The number $\alpha = \sqrt{2}$ is algebraic (over α) because $\alpha^2 - 2 = 0$ 2. The number of=352 is algebraic because of 3-2=0 3. It is transcendental (proof later) may so 4. \ = TT is algebraic over Q(T) because \ \(2 - TT = 0 ce that has a as a zocalma mo-5. x= TT is transcendental over a Suppose p(TT) = 0 / p(t) + 0 log double out one page $p(\sqrt{\pi}) = a(\pi) + \sqrt{\pi}b(\pi)$ n = 0 $p \neq q \neq 1$ $o \geq 0 = (\infty) \circ -(\infty)q$ even degree odd degree bomanny bag samman by $a(\pi) = -\sqrt{\pi}b(\pi)$ Q2(T) = T b2(T) $a^{2}(\pi) - \pi^{2}b^{2}(\pi) = 0$ =0 $f(\pi)=0$ for $f(t)=a^{2}(t)-t^{2}b(t)\neq0$ mal 1 sk be a field extension appositionary final del Ism => PVMM70 TI is algebraic, contradiction

K(t), the field of rational expressions of K[t] is a sumple

transpendental extension of KSC. bossenon books and books

Proof: K(t): K is clearly a simple extension generated by t. p, polynomial over K st p(t)=0

p=0 by det of K(t), so it is transcendental.

The Minimal Polynomial ons-100 0 2721x9 91011 91 31 300 pour = C mothaparablesquestion to = (to) q

Definition:

Note: We shorten alactoraic over a to alactorate and enange A polynomial f(t) = ao + ait + ... + ant" over a subfield K of C is monic If an = 1.

Clearly, every polynomial is a constant multiple of some monic polynomial and for a non-zero polynomial this monic polynomial 1s unique!

Suppose that KCX1: K is a simple algebraic extension. there is a polynomial pe over K such that p(x)=0. We may distitle & suppose that p is monic. Therefore there exists at least one monie polynomial of

smallest degree that has a as a zoro. We claum p is unique. Dravo lotrophesenon et The >

Suppose p, q are two such polynomials? - (77) Then $p(\alpha) - q(\alpha) = 0$, so if $p \neq q$ then some constant multiple of p-q is a monic polynomial with a as a zero, contrary to the definition.

Dota won:

Let L: K be a field extension and suppose that ack is algebraic over K. Then the minimal polynomial of x over K is the unique monic polynomial mover k of smallest degree such mat $m(\alpha) = 0$

Example: ie C 15 algebraic over Ry om(t)= t2+1 m is monic and to make to m(i)=i2+1=0 are there are pamonic polynomials stof smaller degree st i is a sero. ttr, I are only options (if minimal polynomial = DieR) => minimal polynomial of i over R is m(t)=t2+1. If & is algebraic over KSI subfield, then mx is irreducible over k. Ma divides every polynomical of which a is a zero. Proof: suppose ma is reducible, m=fg, df<0m, dg<0m assume fig are monic $m(\alpha) = 0$, $f(\alpha)g(\alpha) = 0$ / 6/41, 6/42, 67, 40 = (8) A 69 + 840 => f(x)=0 or q(x)=0 1 +2 pan 4 a mon son 2 contradiction to definition of mail of mail of Let p be a polynomial over K st p(a)=0 (3)+10 = 10 I polynomials q, r st p=qm+r dr<dm $p(\alpha) = q(\alpha)m(\alpha) + r(\alpha) = 0$ = $p(\alpha) = 0$ If r \$0, concradiction = 0 r = 0, = 0 p = qm = 0 m/p. Theorem KEC subfield and m is irreducible, monic polynomial over K. ? Then I are a such that a is algebraic over K and m is minimal polynomial of a

Proof: Lot DEC such that m(a)=0=0 malm but m, monic irreducible

=D ma=m.

It turns out that finding the minimal polynomial of some & is a fundemental but of earchianon. This tells as that what to do : to find some polynomial f such that f(a)=0 and check for irreducibility.

If f is irreducible then f is the minimal polynomial. If not factorise to get polynomial g of smaller degree such that $g(\alpha)=0$ and a simple assertion as $g(\alpha)=0$ are there are parmonic por another at of smoother mileared Example: Minimal polynomial \$12 over Q (x=3\2 lomonulog lominum 31) enorigo ulno eno 1 2++ $\alpha^3 - 2 = 0$ = (+) m 21 9 39 m i docalo monuto de la man q = 1 $f(t) = t^3 - 2$, $f(\alpha) = 0$ furreducible (eisenstiens prime 2) so fis minimal polynomial Example: Minimal polynomial x= i+50 over Q vo signature $\alpha^2 = -1 + 2 + 2i\sqrt{2}$ x2-1= 2:50 (2-1)2 = -186>06 1 mg>16 1 pt-m (1 sides) 100 21 vm seoggie 1 toff x4-2x2+9=0 multiplime sometimes Clearly no linear factors since roots are ± i ± \(\frac{1}{2}\) auadradic factor would have to be of the form (t = + (= ± i ± 52))(t= (± i ± 52)) = (mail = m Check this never & Q[t] (100k at coeffs of t and constants) : f creducible, so f minimal polynomial. (S) + (months) = (sog Recall: degree that has was a zong/m = mp=q d= , 0=70= to claim of iscumple. In the company was a file is Rring, IAR and the second policy of the second poli men o (ideal o (a) = 0, so If p + 9 then some constant multiple rire e I = pri-re I manufally pinem add thumber poster and a proposition destru CIETITER = D CICETONO X 1800 DIONOSONO EL MONTO DE MONTO eg. 6Z DZ Let 1: K be a field extension and suppose that XeL is misely me The quotient rung R/I has elements which are cosets

I+r={i+r:ieI} (I+c)+(I+s)=I+(c+s)+ en eller ent, compliance to the largement of (I+r)(I+s)=I+rs o boo to lost tool vous 7 los monulos smos bod

```
why do these operations make sense? To distant (1+3+) 1 = (1+3+) [3] ?
             (eq 6Z+1=6Z+7) d 0 = d+
De c'+r'=i+r
   r'= i'-i+r
Hence "I+r=I+sr', I+s=I+s' then
(r'+5')-(r+s) = (r'-r)+(s'+s) @ I / 100 Ms od (0) + (m)
I + (r'+s') = I + (r+s) = : addition is well defined.
Symilarly (151-rs = (15-15+115-15) 19 5/ 8 (30)+ (m)=1
                = r'(s'-s) + (r'-r)s eI
:. Itrs = Itr's' multiplication is well defined.
Check rung axioms.
The zero is I+O = Inquired form
Example: Z/6Z = { 6Z, 6Z+1, 6Z+2, 6Z+3, 6Z+4, 6Z+5}
               = {0,1,2,3,4,5}
4 x 3 = (67 + 4 × 62 + 3) Me appendix of the depending of
There is a ring homomorphism P: R - OR/I given by P(r)= I+r
eq: P: Z - P 2/6Z sends a to amod 6 100 F
    11 -- 5
 Ker P = T
 It is useful to have a unique way of representing elements in R/I
 as Itr.
Let mck[t]. Then each element of K[t]/(m) ((m)=mk[t])
can be written uniquely as (m)+f(t), where of <om
```

```
R[t]/(t2+1) = 1(t2+1) + at+b: a, b & R3
            = { attb : a, b e R } = C sample and the T
(t+1)(t+2) = t2+3++2
         = (t^2+1)+(3t+1)
Proof: Let (m) + f(t) be any element of K[t]/(m).) = (2+1)-(2+1)
Write f(t)= m(t) +q(t)+r(t) mor < om (en)+I=(e+1)+I
Then (m)+f(t) = (m)+r(t), ie every coset is of required form.
Suppose (m)+f(t)=(m)+g(t) Twhere dfidg com
Then f(t)-g(t) e(m) many many many many modern of the
\frac{f(t)-g(t)}{g(t)} = m(t)s(t) = D s(t) = 0
deg < 2 m 2 lo
=> f(t) = g(t).
K[t]/(m) is a field = D mis ureducable over K. YHAN - EXP
Proof: = Suppose m is irreducible. Let 0 = (m) + f e K[t]/(m)
Them and mtf. Since m is irreducible, this means m and fare
coprime.
By Thm 3.9 (book) ] r(t), s(t) & K[t] st m(t)r(t)+f(t)s(t)=1
Then ((m)+f)((m)+s)=(m)+fs=(m)+1
10 FS = TAR
=> suppose m(t) = f(t)g(t)
Then \bar{O} = (m) + m = ((m) + f)((m) + g) = fg
Since K[t]/(m) is a field, f = 0 or g = 0
le f(t) e(m) or q(t) e(m)
Factorisation m=fg is trivial 12 + 8,811,87= 15315 mg
       Classifying simple extensions
Any sumple transcendental extension K(x): K is isomorphic
```

to K(t): K with an isomorphism P: K(t) - PK(x) such that


P(t)=d and PIK=Id. Proof: define P(f(t)/g(t)) = f(a)/g(x) This is well defined[since & is transendental, g(x) +0] and is a ring homomorphism and PCR) = k, VREK. Q (f(t)/g(t)) = 0 = D f(a)/g(a) = 0 = D f(a) = 0 = D f = 0 So Ker 9 = 103 and Pis injective. P is also surjective (since any element of K(x)) is of the form f(a)/g(a)), P(t) = a.d. = (5) >+ 518d+02 - (518) 0. This P is in the required form. Let K(d): K be a simple algebraic extension. Let m(t) be minimal polynomial of a over K. Then I an isomorphism p: K[t]/(m) - P K(a) st P(t) = a and Plk = id. DR(i)= Con Janasana and Supar again Proof: Define 0: K[t]/(m) - OK(a) by P(F) = f(a) This is well defined: if f=g ie (m)+f= (m)+q, then g-f ∈ (m) say g(t)-f(t) = m(t)r(t): Then g(a)-f(a) = m(a)r(a) = 0 so f(x)=g(x). clearly ring nomomorphism and is injective? (if P(f) = 0, the $f(\alpha) = 0$, so f is multiple of m, so $\bar{f} = \bar{0}$).

Then Imp is a subfield of K(a) (since K[t]/(m) is a

field) and it contains K and a = P(+)

By derining K(x)=Imp. +ax+b carbe R. S. br = x19 pag x=(+)9 le P is an isomorphism with required properties. Since every element of KEt] is & # / KHE/ AHOUR uniquely of the form (m)+f(t) &f < dm (=n) 1e. amon a0 + a, t+... + an-itn-1 any element of K(X) is uniquely of the form Lc.f Q(12) = Ea+ b12: a, be as, we showed this directly by snowing (a+bvz) 1 is of the form x+yvz, but it now follows immedicately from the result] a book 201 = 9 000 eq. Q(3/2) = 5a+b3/2+c(3/2)2:0,b,c eQ3 Corollary: Suppose & and & have the same minimum polynomial over K Then I an isomorphism P: K(a) - DK(B) st Pk = id and eq. x=3/2 B=3/2w w= e211/3 x and β born have the minimal polynomial t³-2 $\mathbb{Q}(\mathbb{A}) \cong \mathbb{Q}(\mathbb{B})$ Let & be algebraic over K, with minimal polynomial m of degree n. Then 11, d, d2,..., dn-13 is a K-basis for K(d) 18 every element of K(x) can be written uniquely as RotR, at. .. + Rn-, and (Riek)

Proof: Restatement of previous lemma. eq. Q(Ta)=fa+b(a:a,bea) (w-1)(w2+ w+1) =0 so min poly t2+t+1 Q(w) = latbw: a, be B3 + unique (a) = 9a+bw+cw2; a, b, ce as Let i: K-ol be a field isomorphism. Then there exists an isomorphism i: KIt] - DLIt] given by i(aotait+...+anth)=i(ao)+i(ai)+...+i(an)t Usually write i instead of i Theorem: Suppose K, LEC, i:K-DL is an isomorphism. Let K(X): K and L(B): L be simple algebraic extensions and st î (ma) = mB, where ma and mp are the minuncal polynomials of a and p respectively Then I an isomorphism j: K(a) -> L(B) st J(a)=B and jlx = i Proof: K[t] - DL[t] TD L[t]/(mp) Ker Ø = { f(t) E K[t] : Ø(f) = 0} t) EK[t]: i(f) = mB(t) r(t)} = {f(t) ex[t]: f = ma(t) s(t)}= (ma) }

The elegree of the extension L: K is the dimension of L as a exercise space over K, denoted [L:K]. += Cxc=[0] eq. Q(12): Q, Q(12) = {a+b\arra}: a, b \in Q} actal has a basis over a = {1, \(2\) so \(\ta(\ta) : \(\ta \) = 2. Theorem: (short Tower Law) If K. L. M are subfields of and K SL SM then EM: KJ = [M: L] [L: K]. DOD BEAU Proof: Let [M: L] = d, D[L: K] = e ie foci, and basis for M overner as a vector space over 1 oly,.... yes basis for L as a vector space over K Want to show ? origis is is a basis for M as a vector space Need to prove linear independence and spanning. LI: Zikijxiyj = 0 (kijek) 2. (Z Kij xi) yj = 0 = D Kij = 0 Span: Scell can be written sc = Zi ligj light But Ni = Zhijxi hijek. Example: [Q(i, 12): Q] = [Q(i, 12): Q(12)][Q(12): Q] have already shown that [Q(\sigma): Q]=2. Want to show {1, i} is a basis for Q(i, \sqrt{2}) over Q(\sqrt{2} span: Q(i, \sqrt{2}) = a + bi + (\sqrt{2} + di \sqrt{2}

 $= (a + c\sqrt{2}) + (b + d\sqrt{2})$

€ Q(√2)

eQ(12

```
LI: a+C\2+(b+d\2); =00 = Im
= D a + C/Q = 0, b+ d/2 = 0 1 (1)/m
= D [Q(i, 12): Q(12)] = 2 0 000 = 1
=> [Q(i, 12): Q] = 2 x 2 = 4. [Note ] = 1
  O((2,i)
           Child ( ) Defix 1, 1×52, ix 1, ix 120 Separa Dean land
  0(5)
Note: The tower law is analogous to Legrange's theorem IG/MI = IG/NIN/MI
If Koskis...skn are subfields of C, then
   [Kn: Ko] = [Kn: Kn-1][Kn-1: Kn-2]... [K1: K0]
Proof: Induction on n. (24338)
Let K(x): K be a simple extension. If it is trainscendental, then
[K(\alpha): K] = \alpha. If it is algebraic, then [K(\alpha): K] = \delta m \alpha variation
Proof: If K(a): K is transcendental
claim: The set {1, \alpha, ..., \alpha } is LI over k for any new
Proof of claum: Assume (1, x, ..., xn3 is not LI over K.
  3 Kiek (not all ki=0) St Ko+Kix+...+knxn=0
     is root of Ko+Kit+...+ Knt $0
So {1, x,..., xn} lies in K(x) and is LI the N. samox
Since a arbitrary, this means we can find an arbitrary large
set in K(X) which is XI. I sized to all I is a month of small
=> [K(x): K]>n Ynen and some the solo + hely an entitle to a none
=D [K(x): K] = x (C|b+a) + (C|a+b) =
```

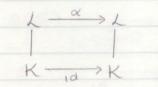
```
If K(x): K is algebraic, then by Lemma 5.14 $1, a,..., xni3 is
a basis for K (x) over K where n is the degree of mx over
K. So [K(x): K] = amx.
                                             or or way geling Com
Example: Find [Q(i+13): Q]
d2 = 2+21/3
(x2-2)2=-12
X4-4 X2+16=0
f. monic, f(x)=0 Need to show f is irreducible over Q.
 roots of f(t) are ± 53 ± i e Q so no lunear factors in Q
 auadratic factors would have to be of the form
 (t-(+13+i))(t-(+13+i)) this is not possible in QIt]
 2f = 4 => [Q(C+12): Q]=4
 Alternative method:
 Claim: Q(i+13)= Q(i,13)
 (i+\sqrt{3})^{-1} = \frac{1}{i+\sqrt{3}} \times \frac{i-\sqrt{3}}{i-\sqrt{3}} = \frac{i-\sqrt{3}}{-1-3} = \frac{1}{4}(\sqrt{3}-i)
 [Q(i,13):Q]=[Q(i,13):Q[i]][Q(i):Q]
 m=t+1 min polynomial for Mi over D
 = D [Q(i): Q] = 2
 p=t2-3 is min polynomial for \( \frac{13}{3} \) over \( \Q(i), \( \frac{13}{3} \)) = \( \Q(i), \( \frac{13}{3} \))
= D [Q(i) [3): Q(i)] = 2
=D [0(i,5):0] = 2x2 = 4
 An extension is called finite if it wishas finite digree.
```

Dehnution: An extension L: K is algebraic if every element of

is algebraic over K. Harman

```
eg. Any finite extension L: K is algebraic. Hot plant of the Let x ∈ L and let [L: K] < ∞.
Then the set {1, \alpha, ..., \alphanger } is a set of size n+1 in a vector
 space gygs K(x) of degree &n over K.
Then the set is linearly dependent over KEX DI har signed
le ∃Biek (not au 0) st ∑ kixi=0

f(t) = ∑ kiti f≠0 f(x)=0 = p a algebraic over k.
eg. Q(V2): Q is algebraic
 Any simple algebraic extension is algebraic 148 44 + 44 = 1497 del
eg. Let L=Q(J2, 3J2, 4J2, 5J2,...)
Claim i) L: Q algebraic
    (a) [L:0] = 0 my on a paitelt on (a) to slow
illet ach. Then aca (12, 12, 1., 1/2) for some n.
eg Q (52, 352, 42) - 1 2889 2499 (2498) 04 d(1140 Phr) = +)((1 ± 81 ±) - 4)
[K] Ko]=[] < 4nt+12n11kn-2]. [Kijkebubon (+)74=
 Q(\sqrt{2}, \sqrt[3]{2}) By tower law [Q(\sqrt{2}, \sqrt{2}): Q] \leq n! \leq \infty
ii) K(1): K be a sumple extettsion Elfla is iften exercitation, then
 [L:Q]=[L:Q(\sqrt{2})][Q(\sqrt{2}):Q]
    Q(V2) > 1 × n = n \tag{n}. only of number = m
 Proof of Claum: Assume (1, a, ..., and 18 not (1) [6000 : KELT) D] 4=
 Lemma: K (not all ki=0) St. Kot Kikt, 4 = kox ( = (op: (E))) 0] (=
 [L:K] < 00 (FD L:K algebraic and L:K is finitely generated.
 Proof: => We already saw L: K algebraic
 Let sci...son be K-basis for L then L= K(sci...son) so
 Lis finitely generated over k. I work on A moderated
 & Suppose L: K algebraic and finitely generated, and all
```


Say $L = K(\alpha_1, ..., \alpha_r)$ Then $[L:K] = [K(\alpha_1, ..., \alpha_r) : K(\alpha_1, ..., \alpha_{r-1})] \times ... \times [K(\alpha_1) : K]$ Since L:K is algebraic each $[K(\alpha_1, ..., \alpha_{r-1}, X\alpha_r) : K(\alpha_1, ..., \alpha_{r-1})]$ $<\infty$ By tower law $[L:K] < \infty$.

Polynomials and Extensions

Definition:

Let L: K be a field extension, (LSC).

A K-automorphism of L is a field automorphism $\alpha: L - PL$ s.t. $\alpha(R) = R$ $\forall R \in K$ (we say α fixes K).

SO Dem(x-1(x+y) = x-1(x) + x-1(y).

(le it is an automorphism of the extension)

Theorem:

The set of K-auts of L forms a group under composition of mappings.

Proof: Suppose α , β are K-auts of L.

Then $\alpha \circ \beta : L \to D L$ which is again a field homomorphism and byective and $\forall R \in K$ $(\alpha \circ \beta)(R) = \alpha(\beta(R)) = \alpha(R) = R$ If $\alpha \circ \beta$ is a $\alpha \circ \beta$ is a $\alpha \circ \beta$ is associative.

If $\alpha \circ \beta$ is a $\alpha \circ \beta$ is associative.

If $\alpha \circ \beta$ is a $\alpha \circ \beta$ is associative.

If $\alpha \circ \beta$ is a $\alpha \circ \beta$ is associative.

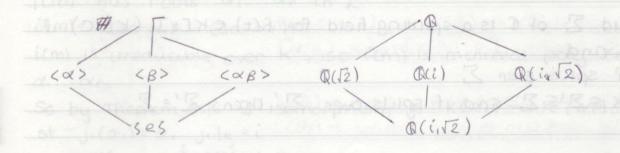
If $\alpha \circ \beta$ is a $\alpha \circ \beta$ is associative.

If $\alpha \circ \beta$ is a $\alpha \circ \beta$ is associative.

If $\alpha \circ \beta$ is a $\alpha \circ \beta$ is a $\alpha \circ \beta$ is byective there is an inverse map $\alpha \circ \beta$ is a $\alpha \circ \beta$ inverse map $\alpha \circ \beta$ is a $\alpha \circ$

Also from $\forall x \in K \ \alpha(xi) = x$ so $\alpha^{-1}(x) = x$. 1e x-1 is a K-aut of L. Definition: The Galois Group T (h: K) of the extension h: K is the group of K-automorphisms of L. Example: T(C:R) Let d: C-DRC be an R-aut of C. $\alpha(i)^2 = \alpha(i^2) = \alpha(-1) = -1$ The same of the sa $\alpha(i)^* = \pm i$ There are only two possible R-auts of a: di where di(i)=i and dzk where dz(i)=-i $\alpha_i(a+bi) = \alpha_i(a) + \alpha_i(b)\alpha_i(i)$ = a + b i ie di = id Then identity is an R-aut of C. $\alpha_2(a+bi) = a+b\alpha_2(i)$ = a-bi Is this an iR-aut of C? Yes, complex conjugation is a field automorphism. ZW=ZW, Z+W=Z+W r=r YreR. X2 € [(C: R) r(C: R) = fid, a23 = C2 Example: $\Gamma(\mathfrak{A}(\sqrt[3]{2}):\mathfrak{A})$ Let $\alpha : \Omega(3\sqrt{2}) \to \Omega(3\sqrt{2})$ be a Q-aut $\alpha(3\sqrt{2})^3 = \alpha((3\sqrt{2})^3) = \alpha(2) = 2$: a (3/2) is a root of 2 inside O(3/2) SR. $\propto (a+b^3\sqrt{2}+c(3\sqrt{2})^2)=c+b^3\sqrt{2}+c(3\sqrt{2})^2$

T (Q(3/2): Q) = { 1d }


If XEG, then X(12)=±12, X(13)=±13. &(12) and &(13) determine & completely. This gives 4 presupic elements of G. 1d: J9 + > J2 eq x3 12 and - 12 have the same min polynomial t2-2 over a. By 5.18 3 0 (12) - DO(-12) st 0 (12) = - 12 and 9 a = 1d 13 and - 13 have the same mun poly t2-3 over Q(12) (need to check this is irreducible over a(2). Use 5.13. Q(12)(-13) 12 \$ - 52 D (-52) = Q(52 L:K T(L:K) = group of K-automorphisms of L. Main theorem sets up a correspondence between Correspondence is a follows: Let F = 2 fields M St K = M = L3 (intermediate held G = & H: H & T (L: K) (subgroups of galois group) If Me F, define M* = 5ger (L:K): qcm)=m +meM3 Then Masr(L:K) in fact Ma=r(L:M) IF HEG, define H = fx EL: h(x) = x YheH3.

```
* and t are order-neversing ie MEN => M* = N * = D ! slamox?
           - MIN OF LEH S J = OH T = J T ( D) NO MOND DON )
(Suppose MEN and gen". Then g(n)=n theN show tons
Hence g(m)=m \meM so geM*. Thus N* \in M*)
MeMat, HeHta
M* is group element fixing M Element fixing M
M*+ is all field elements fixed by M* - + E)
  is all field elements fixed by all groups elements that fix M
Indudes M. mangalog against supple and all of the change of the
  Let xeM ship your 8-5+ mod min some and avoid 81- mo 81
If geM*, then g(x)=x (det n M*)
10 \forall g \in M^*, g(\infty) = \infty (\exists l \cdot (\exists l) \notin I^* (\exists l \cdot (\exists l) \notin I^* (\exists l \cdot (\exists l) \notin I^*
The Fundemental Theorem of Galois Theory shows that, under some
extra hypothesis M=M*+ and H=H+* for all M,+1
le * and t are mutal inverses: * + = 1 d =
Thuis then means there is a 1-1 order reversing correspondence
 between intermediate fields and subgroups.
 Information can then be transferred from subgroups to fields
 eg. What are all subfields of O
 eg. What are all subfields of Q(i, \(\int_2\)?
 The hypothesis needed for the fundemental theorem
 So we can use it to answer this.
 [(Q(i, 12):Q)= & 1d, a, B, aB3
 \alpha(i) = -i
\beta(i) = i
\alpha\beta(i) = i
 a (12)= 12 B(12)=-12 B(12)=-12 Blooms = 7
 \alpha(i\sqrt{2}) = -i\sqrt{2} \beta(i\sqrt{2}) = -i\sqrt{2} \alpha\beta(i\sqrt{2}) = i\sqrt{2}
 What is G?
              IF Me F, deline M' = Eget (L:K): Granton F
  SQ, Q) Be, B) (se, QB) M mot as (XXX) TO M
           If Helf adefine H = Face L : how per Whell
```

By Fundamental Theorem # $I \neq F = SeS^{\dagger} = \Omega(GVZ)$ $I \neq I \neq I$ $Se_{i} \times S^{\dagger} = Sxe \Omega(I_{i}, VZ)$ $I \in I \times S^{\dagger} = Sxe \Omega(I_{i}, VZ)$ $I \in I \times S^{\dagger} = Sxe \Omega(I_{i}, VZ)$ $I \in I \times S^{\dagger} = I \times S$ $I \in I \times S^{\dagger} = I \times S$ $I \in I \times S^{\dagger} = I \times S$ $I \in I \times S^{\dagger} = I \times S$ $I \in I \times S^{\dagger} = I \times S$ $I \in I \times S^{\dagger} = I \times S$ $I \in I \times S^{\dagger} = I \times S$ $I \in I \times S$ $I \in$

 $x = a+bi+c\sqrt{2}+di\sqrt{2}$ (a,b,c,deQ) $x(x) = a-bi+c\sqrt{2}-di\sqrt{2}$ Sunce $x_1, i, x_2, i\sqrt{2}$ Q basis $x_1, x_2, i\sqrt{2}$ Q basis

♦D x=a+c√2 (a,ceQ).

NORMALITY & SEPERABILITY

There are two properties (to do with roots of irreducible polynomials) which L: k needs for Fundamental Theorem to hold.

Spirtting Relds

Definition: 17

If K is a subfield of C, f is a polynomial over K then f splits over K if it can be written as a product of linear factors over K if $f(x) = k(x-x_1) \dots (x-x_n)$ for some k, $x \in K$.

eg. | x3-1 spilts over C. x3-1 = (x-1)(x-1)(x-1)

x2-2 splits over Q(12) to small and manager appropriately $x^2-2=(x-\sqrt{2})(x+\sqrt{2})$ x2-2 does not split over Q. ace almian you am ace Malana in about the clearly di... on are roots of f in C. Every polynomical has all its roots in Q, so f splits over K iff au roots lie in K. Axin Dabisdon disky Totiden = se If f(t) ex[t] and K & L & C then f can be regarded as a polynomial over & so it makes sense to talk about f splitting. over Localides III by Gold = Do Definition: A subfield Z of C is a splitting field for f(t) EK[t] (KEC) if KSZ and 1. f sputs over 2 (110) (5110) < 3x5 < 8x 2. IFK = Z' = Z, and f splits over Z' then Z' = Z, If KSC, fit) EKIT then there ame exists a unique splitting field 2. for f over K and [Z; K] < 0. Proof: Let f=c(oc-a,)...(oc-an) over Q (Let Z. = K(x,...xn) on to stood when on of somogong out one went Then f splits over Z and if f splits over Z's Z, then by unique factorisation xi... xn EZ' so Z = K(x,...xn)= Z So It = 20 use it to answer this was abled particle? Clearly only field with this property. 2. = K(x,... xn) B(0)= (a € 0)= (Each di is algebraic over Kie each [K(a, ...di-)(di) : K(a, ...di)] < & By Tower Law [Z: K] < 0. 12 m of 6 (2) 46 (8) 46 (8) 40 (4) OVER K IF IT CAN DO WILLTON OS A OFFICIAL OF LINCOPE FOR PRINCIPAL

Let i: k-PK' be an isomorphism of subfields of C, fek[t]. Let I be splitting field for f over K.

Let L2 K! be st i(f) spits over L. Then I monomorphism j: Z -oL st jlk=i Let f=c(x-oi)...(x-on) over 2 Let m= min poly of o, over K Then mif. Hence ((m) ((f) and if i(f) splits over & so i(m) has roots a ... or in 1 i(m)= k(oc-x1)...(oc-x1). icm) is irreducible over K', so icm) is minimal paly #6 of So by Theorem 5.16 & isomorphism Ji: K(O,) - OK'(XI). st $J_1(\sigma_1) = \alpha_1$ $J_1 \mid_{\varepsilon} = i$ $K(\sigma_1) = \sigma_{1-\sigma\alpha_1} \triangleright K(\alpha_1)$ Now let g(t) = f(t)/(+-oi) EK(oi)[t]. I is splitting field of g over K(o) Ji(g) EK'(ai) [t] and Ji(g) span'splits over 29=n-1. By induction Fi: 5 - DL monomorphism st j | k(0,1) = J1 Let i: k-ok' be an isomorphism f(t) EKIT, Let Z be splitting field of f

over K and I' the splitting field field

of E(f) over K. Then I iso 1:2 -02'

st Jlk = i

```
10 5 'K = Z': K'
 Proof: By remma & monomorphism I with these properties
                Now J(E) = Z' but icf) splits over j(Z.)
                [f(t) = c(x-\sigma_1)...(sc-\sigma_n)] is Z(t) = i(f) = i(f) = i(g)(x-j(\sigma_1))
                 [-,(\infty-j(\sigma_n))]
                Since Z' sputting held j(Z)= Z'
 le J surjective so isomorphism.
 Normality
 A field extension L: K is normal if any irreducible polynomial
over k with one root in 2 splits over L.
The only obvious normal extension is C: K.
Q(3/2): Q is not normal.
f(t)=t3-2. Then f is irreducible over Q. 100)14
f has one root in Q(3/2) namely 3/2.
f does not split over Q(3/2) because other two roots are complex
f(t)= +3-2=(t-3/2)(t23/2++3/4). rreducible over Q(3/2).
Theorem: Krkvino
L: K is normal and finite I L is a splitting field over K.
(eg Q (i, 12): Q Is normal since it is splitting field of (t2+1)(t2-2) over Q).
Proof:= > Suppose L: k normal and finite.
By 6.11 L= K(x1...xn) for some q'algebraic over K.
Let mi=min poly of di over K and let f=mi...mn
since L: K is normal and mi is irreducible over K with
 one root a: in L, m: splits over L.
Hence & splits over L. Also any field over which f
 splets contains k and di... on without
 Hence contains K(x,...xn)=L ... L 15 splitting fleid of fover K.
```

A= Suppose L= splitting held of gitle KIt]

[L:K] < 00 since L is obtained from K by adjoining the roots of g. a finite number of algebraic elements.

Let f be an irreducable paynomical over K.

We must show that if f has at least one zero in L then all its zeroes are in L.

Let M=splitting field for fg over K.

Let M=splitting field for fg over K.

Let 0, 0, be two roots of f in M

We show [L(0,1): L] = [L(0,2): L]

(this implies 0, E L = 0 0, EL).

M = K(roots, g, f)

L = K(roots g)

 $L(0_1)$ $L(0_2)$ $K(0_1)$ $K(0_2)$

 θ_1 and θ_2 are roots of irreducible polynomial $f(t) \in K[t] \infty K(\theta_1): K \in K(\theta_2): K$ and $[K(\theta_1): K] = EK(\theta_2): K]$ (thm 5.13).

L(2) is splitting field of g(t) over K(2).
L(2) is splitting field of g(t) over K(2).

 $\begin{array}{c|c} L(\partial_1) & \xrightarrow{5} L(\partial_2) \\ & \downarrow \\ & \downarrow$

By 9.6 \exists 150 j: $L(\partial_1) - PL(\partial_2)$ st $J|_{\kappa(\partial_1)} = i$ Hence $[L(\partial_1): K(\partial_1)] = [L(\partial_2): K(\partial_2)]$.

By Tower Law: [L(01):L][L:K]=[L(01):K]=[L(01):K(01)][K(01):K].
[L(02):L][L:K]=[L(02):K]=[L(02):K(02)][K(02):K]

Two right hand sides are equal

[L(O): L] [L:K] = [L(O2): L] [L:K]

[L(O): L]=[L(O2):L].

Seperability

Definition:

An irreducible polynomial over K(EC) is seperable if it has no repeated roots (in C or in a splitting field).

```
Deprition:
If f(t)=antn+...+ ao, detene of (t)=nantn'+...+an
NB: This is a formal derivative - no limits needed!
Properties: O(f+q)=Df+Dq
    0(fg) = Ofg + fDg
(O \circ O(\lambda f) = \lambda O(f).
TWEEtHER Proposition:
Suppose figektt ] and KSL. Then fig coprime over K + b fig coprime over L
Proof: & fig coprime over L = D over K. (1)
= D fig copnime over over K
=D Jhike K[t] st fn+gk=1 =D fig coprime over d.
Lemma: 2 T
Let f(t) EK[t] be polynomial over KCC. Let 2 = splitting field.
Then I has repeated o I f and of are not copnine in kItJ.
(un Z or C)
Proof: = D Suppose P(t) = (t-\alpha)^2 g(t) \( \int \frac{7}{2} \), (t)
Df(t)=(t-\alpha)^2Dg(t)+2(t-\alpha)g(t)
     = (t-a)[(t-a)Dg(t) + 2g(t)]
f, Of not copanie in SILT (non trivial common factor t-a).
f. Of not copnime in KIt].
$ suppose f has no repeated root
Prove by induction on of that f and of are coprime. in ZItt], hence in KIt]
In Z(t), f(t)=(t-x)q(t), t-x/q and let f=m
Of = g+ (+-d) Og. mange and mile
Suppose f and Df have a common irreducible common factor say
hlf, hlpf
 KNG NDF SO HTHE XDG SO ATDG
If h= k-d, t-alof=g+(t-alog so t-alg contradiction
```

otherwise hig , hill so hilt-xilly so hilly.
So his common factor of g and Dg.
hig and hilly and ag< of By induction, contradiction.
So f and of are coprime.

Proposition:

If K is a subfield of C, FEKETI is unreduced seperable (ie doesn't have repeated roots)

Not true in helds of characteristic p eg $\mathbb{Z}_p(s^p) \subseteq \mathbb{Z}_p(s)$ $f(t) = t^p - s^p \in \mathbb{Z}_p(s^p)[t]$ f(t) irreducible over $\mathbb{Z}_p(s^p)$, but over $\mathbb{Z}_p(s)$ $f(t) = (t-s)^p$ le f has the root s repealed p times.

Proof: Suppose of has a repeated root in C.

Then f. Of have a common factor of degree > 1 in K[t]

fureducible = > f divides Of. But 2(Of) < 2f, so Df = 0

=> f constant.

Any irreducible polynomial (over KEC) of degree n has exactly n distinct (not repeated) roots in a splitting field.

COUNTING PRINCIPLES.

Lemma:

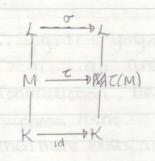
if K and L are subfields of C, then every set of distinct monomorphisms K-D L is linearly independent over L.

Theorem:

Let G be a funite subgroup of automorphisms of a field K and let to be the fixed field of G. Then [K:Ko]=[G]:

m=[K:Ko] Sx...xm3 basis for K over Ko.

```
Want to prove m=n.
suppose m<n.
consider the equations in 4...yn, pall or pale Dir as gold ply solutions
       yigi(xi)+...+ yigh(xi)= 000 bis on mequations in n unknowns
       yig, (x2)+.....+ yigh (x2) = 0 (homocpheous), so there is
      y.g.(xm)+...+yngn(xm)=0
Then for any XEK, X=XIXI+...+ amXm for some dieko.
Then yigi(x)+...+yngn(x)=yigi(xixi+...+amam)+...+yngn(xixi+...+amam)
                  = y, (xig,(xi)+...+ y,xmg,(xm)) +
                       ye(xigz(xi)+...+ &mgz(xm)) +
                  yoldigalxi) + .... + amga(xm)) = 1511 ns = 1511
                     = 010 +020 + ... + om 0 = 0.
 i. y.g.t. - tyngn = 0
 . gi...ga are linearly dependent over K
 Contradiction, Dedekin's Lemma. Barbagar o 2001 ) seague: 1001
 Suppose 1<m
Then mere exists a set of n+1 elements of K, Linearly independent over Ko
 say for ... , or my
Then there exist yi, not all zero such that is so lowery of slabble born find
   4.9.(x1)+...+ yn+19.(xn+1)=0 0 m door (bosseger son) sonress
    y.g2(x1)+...+ yn+1g2(xn+1)=0
   yigh(xi)+...+ Yntigh(xnti)=0
 Take shortest such relation by renumbering young to, yet = ... = yati=0.
    4191(x1)+...+ 4191(x1)=0
    yign(xi)+ .... + yign(xi)=0
   g(y,)gg,(x,)+...+g(y,)gg,(x,)=0
   g(y))ggh(x)+ ... + g(y))ggn(xr)=6 pomorus to quopour sund o st 2 351
   91(41)91(x1)+...+9(41)91(x1)=0
   q(y1)g2(x1)+...+q(y1)g2(xx)=0
   g(y) gn(x1)+...+g(yn)gn(x1)=0.
```


```
Multiply system () by g(y1) and system () by y, and subtract?
 (q(y1) y2 - g(y2)y1)g1(x1) + . . . = 0
(q(y1)y2-g(y2)y1)g2(x1)+...
(g(y1) y2-g(y2)g1)gn(x1)+...-0
This is a system like (1) with gi = g(g_i)g_i - g_ig(g_i) (i = 2,...r)
This would be a system with less non-zero terms, a contradiction
: glynyi-y,glyi)=0 ti
 a = q(y 1)y: = y, g(yi)
giy"= g(yiyi')
This is the for all gea, so yey, eko
Say yiyi'= zieko
Then yi= y, Zi (zi+0)
Now the first equations (1) with gi = 1d is
yiocit. ... + yrxcr=0 100 bisacks
: 1 y 1 Z 1 DC 1 + ... + y 1 Z 1 DC = 0
   Z1001+ ... + Zrocr = 0
Then Ex. ... xr's are unearly independent over to.
contradiction to assuming m>n.
K-monomorphisms
Definition:
Let KSM, LSC. Then a K-monomorphism 9: L
monomorphism such that PRIK = id
 P(x^3-2) = P(x^3) - P(2) = P(x)^3 - 2
```

P(0)=0

 $\begin{aligned}
& \varphi(\alpha)^3 = 2 \\
& \varphi(\alpha) = \alpha \text{ or } \alpha \omega \text{ or } \alpha \omega^2 \\
& \varphi_1 = \text{id} \quad \varphi_2(\alpha) = \alpha \omega \quad \varphi_3(\alpha) = \alpha \omega^2 \\
& \varphi(\alpha) = \varphi(\alpha) = \varphi(\alpha) \quad \varphi_3(\alpha) = \varphi(\alpha$

Theorem:

Let $C:M \to L$ be a K-monomorphism. Then $\exists \sigma: L \to L$ K-automorphism st @Im = T

Proof: L=splitting field for some poly fover K
L=splitting field for some poly fover M

(L=K(\alpha \cdots \cdots

By thm 9.6 I isomorphism

O: L-DL st olm=7

L ~ TCM M ~ TOCM f 1 = D f

Proposition:

Suppose L: K is a finite normal extension and α and β are roots of the same polyholidize irreducible polynomial $m(t) \in K[t]$.

Then \exists a K-automorphism of L, σ , st $\sigma(\alpha) = \beta$ (note $\alpha \in \Gamma(L:K)$).

Proof: $1 \xrightarrow{\circ} DL + by 11.3$ $K(\alpha) \xrightarrow{\rho} K(\beta) + by 5.13$ Now $\beta: K(\alpha) \to b$ $K \xrightarrow{id} K$

 $\frac{\varphi: \mathbb{G}(\alpha) \longrightarrow \mathbb{C}}{\varphi(\alpha^{\pm} - 2) = \varphi(\alpha^{\pm}) - \varphi(2) = \varphi(\alpha)^{\pm} - 2}$

0=(0)9

Let L be a finite extension K. A normal closure of L: K is an 2. If LEMEN and M: K is normal, then M=N. eq. Normal closure of Q(42): Q X=452, X4-2=0 = ECLISE f(x) = x+-2, roots un 452, -452, 452i, -452i > KB) > 4 N=Q(452,i) N normal since it is splitting held for f. No marrowan smaller normal extension. eq. Normal closure of Q (e2Tis): Q ω5=1, ω5-1=0, roots 1/41, ω, ω2, ω3, ω4 Q(w): a is in fact sputta normal dosure If L: K a finite extension in Q, then there exists a unique normal closure NE f of L: K, which is a finite extension of K. Proof: Need field extension N:K normal finite \$D N splitting held. 3 Existence: Let on. or be a basis for Lover K and let my be munimal polynomial of ocjover K. Let N be splitting held for f= Tim; over L. As KEL and Nepulting field for fover L, N is also a splitting held for fover K. Hence N: K normal and finite. Suppose LEPEN where P: K is normal. Each polynomial mi nos a zero at sej eP, so by normality of splits in P. Since

N is splitting held for f, we have P= N.

LEZ, SO LEZEM, LEZEN. Z: K is normal

Therefore N Is normal closure.

uniqueness: Suppose M and N are both normal closures. Then f spirts in M and N, so Z = M, E = N, Z splitting held of f.

So by def of normal dosure I=M, I=N =D M=M.

•

Normal closure of KCa) = sputting field of ma Normal closure of K(X/B) = splitting field of mamp. Lemma: Then T(L) CN le K-monomorphism from L can't get outside N. In particular if L: K is normal, so N=L then any K-monomorphism L-DC has T(L)SL. Proof: Let del with min poly mover K. m(d)=0 T(m(x))=0 m(T(X))=0 since T is a homomorphism le TCal is another root of m. m reducible, N: K normal, m has one rooten in N = ball roots of m are in N = 0 T(x) EN. For a finite extension L:K, F.A.E 1 L: K our normal extension 2. I finite, normal, N of K containing L st every K-monomorphism T: L-DN is a K-aut of L. 3. For every finite extension M of K containing L, every K-monomopphism T: L-DM is a K-automorphism of L. small stored and block Proof: First note any K-mono, T: L-DL is in fact a K-aut of L. This is because if t: L-DL K-mono, Kst(L) sh and L: K= T(L): K, so [L: K] = [T(L): K] , we come in moral 11 soot one By Tower Law T(L)=Language Man Man M sengal seeman

1=13 By last result, T(L) = L so by remark above I is K-aut 3=12. Take N = normal closure of L: K, by B, N has resquired property. 2=pl. Let f be creduable over K with one root of in L. Let B be any other root of f: then BEN since N: K is normal. By 11.4 I as K-aut o of N St O(X)= B. Then of I is a K-mono from Linto N. By 2, this is a K-aut of Lie SO B= O(d) e L. il Lik hormal. 2 says N N Theorem: Suppose that L: K be a finite extension of degree n. Then there are exactly n K-automorphisms from L into N, the normal dosure of L: K (and hence into any normal extension M: 15 contains L). Let L:K be finite and normal. Then there are precisely [L:K] K-automorphism of hie. IT(L:K) = [L:K]. Proof of onm: Use induction on n=[L:K] nom-(x) x o n=1, nothing to prove. Suppose [L:K]=R> | and result holds for all extensions of aggree < R. Let a ELK. Let m=min poly of a over K. 3m=[K(x1: K]=r, 1>1 S= R/r < R. 10 S TO F(101K) m has one root, a in N, so m splits in N. Let roots be d=d1, d2,..., d3 (all dispinct) Now L: K(x) is a finite extension, N: K(x) is normal closure of L: K(x) and [L: K(x)] = SKK. By induction there are exactly & K(a)-monomorphisms L-DN say Rives

Now & and di have the same minimal polynomial in over K and dieN and N:K nomal By 11. 4 3 K-aut zi of M st Zi(a)=di (i=1,2,...,r) Let Pij = Ziej It remains to show - Tips (L) i) all Pij distinct ii) any K-mono L-DM is = K(x) -1d K(xi) Some Pij i) Suppose Pij = Ppq Tips = Topa mong mad=0 Tip;(x)= Tppq(x) $M(\alpha) = O_{\mathcal{L}_i}(\alpha) = \mathcal{L}_{\rho}(\alpha)$ mitted die de me = 0 i=ponomono Tips'= Tipq mzitifj=zitifg kammanatan dagagaz geografyat any man pan) = ball f; = pq = b j = q. ii) Let T: L-ON be a K-mono & has men poly m over K, T(x) root of m T(d)=di for some i. $(T_i^i T_i)(x) = T_i^i (di) = x$ Ti'T is a K-mono that fixes & so Tit: L-ON is a K(a)-mono Zi'Z=P; for some i T=Tip; = Pi; landisharantemorphismon ships bno 12 x=[xxx] singue

Let L:K be a finite normal extension. Then the fixed field of r(L:K) is K.

```
eq. Q(12): Q
(Q(12):Q) = ?(d, Z), Z(12) =-12
r(Q(12):Q) = {xeQ(12):7(x)=x3.
            = Q = < 9:00 = 1d > 3 Cc = 0(11) = (1)
Compare Q(3/2): Q (not normal
r(Q(32): Q)= 8103
r(Q(3/2):Q))+= {xeQ(3/2):1d(x)=x}
     (3\sqrt{2}) \neq \alpha.
                                   [L:K]=n
                                  By 11.11 / [(L:K)) = n=1=
                                  By 10. 5 [L: K.]=n
    n Ko = fixed field of [(L:K) (18)
                                  By tower law Ko=K.
Suppose KELSM and M: K finite. Then the number of K-monomorphisms
L-DM is less man or equal too S[L: K]. d= m6=[0:1]
Proof: Let N be normal closure of M:K morning part of M:K
N:K is functe and there are exactly [L:K] K-monomorphisms
L-ON (by 11.10)
Any K-mono L-DM is a K-mono L-DN
:. Namber of K-monos L-DM IS & IL: K]
Theorem:
Let L: K be a finite extension sit fixed field of [(L: K) is K
Proof: Apply 10.5 to T(L:K)
[L:K]=11. (L:K) = n say
Let N= normal closure of L: K b= 0
There are [L:K]=n K-monos L-DN
But there are IT (I K) = n K-auts of
Hence very K-mon L-DNIS a K-aut of L. By 11. 9 L. Knormal
```

Find splitting field & of t-1 over a restricted and the find of

Find r(L: a)

Find all intermediate Relds.

1. t=-1=0 => t=e2mio/7

w= e 2 ni/7, Roots are 1, w, w2,... w6

L=Q(w).

2. W7-1=0

m(t)= t 7-1

t=S+1 m = (S+1) -1

56+ 785+ ... +7

By essensions (prime 7) m is irreducible (717 Cr 715156).

in is mun paynomial of w over a simple M21

: [L: Q] = 2m = 6 [N + 1] & control post of po

3. G = r(L: K) By Fundemental Thin |G|=6.

4. Let geG, q is determined by glw)

q(w) must be a root of me I showed par Me- I prom- & you

le glud = wi for some 15 i 6. Man 1 somme Ho manner

This gives us 6 possible elements of G: g: where g:(w)=wi

5. Since |G| = 6 and only possible the Manual for elements of G are

g...go, they must be in fact be K-aut and make up G

le G= {g, g2, g3, g4, g5, g6}

6. g2(w)=w2

 $g_2^2(\omega) = g_2(\omega^2) = (g_2(\omega))^2 = \omega^4$

93 (w)= 92 (w4)= w8=w ge=1d x: 110 musois lamon=11 101

g3(w)=w3,

93(w)=w=w 93(w)=93(w2)=w6

MI MIGUELRIUS

```
:. o(g3)>3
: 0(g3)=6
G = CG = < g3: g3 = 1d 5
Renama go=g G= < g:g6=1d> = C6 g(w)= w3 0/0)+
                    <93>= 1e,933
 i) "Literal minded"
 Let xEL x=a+bw+cw2+dw3+ew4+fw5 (a,b,c,d,e,f ea) uniquely
Kg2) += loceL: h(x) =x Youhe < g2> }.
 = 10ceL: g2(x)=x3.
92 (a+bw+cw2+dw3+ew4+fw3)= a+bw2+cw4+dw6+ew8+fw10
                         = (a-d) + w(e-d) + w^2(b-d) + w^3(f-d)
                        + w4 (c-d) - dw5
=Pd=0, b=e, b=c, f=d=0
x=a+bw +bw (a,be a) x=a+bw+bw+bw+ (a,bea)
<92>+= {a+b(w+w2+w4):0,b&@3
 = Q (w+w2+w+)
ii) 92(w)=w2
  β2(ω4)= W
 : x= w+w2+w4 e < g2> + Q(x) e < g2> +
```

By Fundemental Tim Q(x) = Q or <q2>+</q2>	
w+w2+w+=qeQ	
f(t)=t"+t3+t-q f(w)=0 = (w) = 0 = 55	
contradienos min poly of w of degree 6.	
+ '	
13-1-0 det 400 2016/3	
93(w) = w6, 93(w6)=w	
w+666493+	
Q(w+w*) = Q or < 93>+	Ibi? - In washing
Q(w+w6) + Q (summar argument as above)	
$Q(w+w^6) = \langle g^3 \rangle^{\frac{1}{4}}$	
A transfer to the same of the	1/2
we conjugate of w so Q(w+w6) = Q(cos	35/7). <10>
d= w+w2+w4 = +7584 +7	
2= w2+w4 +w+2w3+2w5+2w6	
X+X2= 2w+2w2+ 2w8+2w4+2w5+2w6	
1. (=-21=0m=6	
$\alpha^2 + \alpha + 2 = 0$	
Q = + 1 ± √-7, , , Gus (ma) dentena + 4 10+8, GA + 6	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Soluble Subgroups.	
(Fuetta) = 60 - George George + Managerat D =	
Definition: Definition:	where gi(w)= wi
A group a is soluble if I subgroups to	In of G such that
ses=Gos Gis & Gn=Gi such that Gi & Gi	
10 G = [g, da gd. g) dough swd+wd+0=20 f	
eg. Gabelion => G soluble 2000	
se3=Go ≤ G,=G	
Gi/Go = G abelion	
On is soluble	
Pn = (x,y:xn=y2=e,yx=x1y>)	
1 2 6 10	
ses = Go & G. = (x) & Gn = G.	

Theorem: Let a be a group, H&A, N&A, dosward 1286 17409 Makoastages i) a soluble = + H soluble. ii) a soluble = D G/N soluble iti) N and G/N soluble = D G soluble. Proof: 18 i) Let 9e3 &= Go & G. S. S. G. & G. G. G. A Git. Git. /Gi abelion. Then Se3= Ho & H, & ... & Ho = Handlegood prophyse M Higher (if x ether, hie Hi then x hixe Gi (because hi & Gi This et (because oc, hiet) or him et (because oc, hiet) should Hitt - Gut AH = Git AH 3 , x F 9 1000000 er X: 1 noisensive nA Hill Gin (GinH) = (Guille & abelian to the Maria Election Har is abelian real com (46)(00,16) Let G be a finite simple soluble group. Then G & Cp. Proof: We have ses=Go & Gi & ... & Gn-1 & Gn = G St Gi & Git1 and City/G: is abelian. an- AG. By simplicity an- 1= 8e3. G= Gn/Gn-, is abolion many by glus and also assume the a belion simple

If n is not prime, Co has subgroups, so G = Cp.

Corollary :		
1 0 (00) = 0 = box		
Sn is not soluble	for n >5.	
Proof: Suppose S	on 15 soluble	
Then And Sn sol		
But An is sumple	(proof emilled, look i	n book). Slowles M/2 bno M (
An = Cp, not tru	ie, An not soluble	Single Code at a Code
Sn not soluble.		
	G. G. Octof Coper	let 101 Ecos Co. S. S. Con.
@ (10 + ca) # @ (bove) . Hoid = itt tol
	0	cast all 2 2 H2 off 232 now
Definition:		
	(3.43	midt oc ve
		(Hm. D) ASD HASD SH (i=1n). SD &
	dini EK(d1d1.1)	(i=1n).
2) I nie N st 2g. n=3	$\alpha_i^{ni} \in K(\alpha_1, \ldots, \alpha_{l-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$	(i=1n). Q(5/2, 3/3-5/2, 12+3)/3-5/2)
2) I nie N st 2g. n=3 L=K(d,,\alpha_2,\alpha_3)	$\alpha_i^{ni} \in K(\alpha_1,, \alpha_{l-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$	Q(5/2, 3/3-5/2, 12+3/3-5/2)
2) I nie N st 2g. n=3 L=K(d,x2,x3) di'e K	$\alpha_i^{ni} \in K(\alpha_1,, \alpha_{l-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$ $K(\alpha_1)(\alpha_2)$	Q(\$\(\frac{1}{2}\), \$\(\frac{1}{3}\) = \$\(\frac{1}{3}\), \$\(\frac{1}{3}\), \$\(\frac{1}{3}\) = \$\(\frac{1}{3}\), \$\(\frac{1}{
2) \exists nie \mathbb{N} st $2g \cdot n = 3$ $L = K(d_1 x_2, x_3)$ $d_1^n \in K$ $d_2^n \in K$	$\alpha_i^{ni} \in K(\alpha_1, \ldots, \alpha_{l-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$ $K(\alpha_1)(\alpha_2)$	Q(\$\square 1, \square 3, \square
2) \exists nie \mathbb{N} st $2g \cdot n = 3$ $L = K(\alpha_1, \alpha_2, \alpha_3)$ $\alpha_1^n \in K$ $\alpha_2^n \in K$ $\alpha_3^n \in K$	$\alpha_i^{ni} \in K(\alpha_1, \ldots, \alpha_{l-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$ $K(\alpha_1)(\alpha_2)$ $K(\alpha_1)$	Q(\$\square\) Q(\$\square\) Q(\$\square\) Q(\$\square\) Q(\$\square\) Q(\$\square\) Q(\$\square\)
2) I nie N st 2g. n=3 L=K(d,\alpha_2,\alpha_3) d''' e K \alpha_2^n e K \alpha_3^n e K The \alpha_1^n are called the	$\alpha_i^{ni} \in K(\alpha_1, \ldots, \alpha_{l-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$ $K(\alpha_1)(\alpha_2)$ $K(\alpha_1)$ $K(\alpha_1)$	Q(\$\square 2\) (i=1n). Q(\$\square 2\), \square 3\square 3-\square 5\square 2\) Q(\$\square 2\)(8\square 3-\square 5\square 2\) Q(\$\square 5\square 2\) Q(\$\square 5\square 2\)
2) I nie NV st 2g. n=3 L=K(di,x2,x3) dine K x2 e K x3 e K The di are called the radical sequence	$ \alpha_{i}^{ni} \in K(\alpha_{1},\alpha_{l-1}) $ $ K(\alpha_{1},\alpha_{2})(\alpha_{3}) $ $ K(\alpha_{1})(\alpha_{2}) $ $ K(\alpha_{l}) $ $ k(\alpha_{l}) $ $ k(\alpha_{l}) $	Q(\$\square\) \\ \Q(\$\square\) \\ \Q(\$\sq
2) I nie NV st 2g. n=3 L=K(di,x2,x3) dine K x2 e K x3 e K The di are called the radical sequence for L: K.	$ \alpha_{i}^{ni} \in K(\alpha_{1},\alpha_{l-1}) $ $ K(\alpha_{1},\alpha_{2})(\alpha_{3}) $ $ K(\alpha_{1})(\alpha_{2}) $ $ K(\alpha_{r}) $ The $ A_{r}$	Q(\$\square\) \(\frac{1}{2}\), \(\frac{1}
2) I nie NV st 2g. n=3 L=K(d,x2,x3) x''' e K x''' e K x''' e K The x' are called the radical sequence for L: K.	$ \alpha_{i}^{ni} \in K(\alpha_{1},\alpha_{l-1}) $ $ K(\alpha_{1},\alpha_{2})(\alpha_{3}) $ $ K(\alpha_{1})(\alpha_{2}) $ $ K(\alpha_{1}) $ The $ A_{1}$	Q(\$\square\) \(\frac{1}{2}\), \(\frac{1}
2) I nie NV st 2g. n=3 L=K(d,x2,x3) xin e K xin e K xin e K The xi are called the radical sequence for L: K. Idea to show quir	$\alpha_i^{ni} \in K(\alpha_1,, \alpha_{i-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$ $K(\alpha_1)(\alpha_2)$ $K(\alpha_i)$ he $K(\alpha_i)$	(i=1n). Q(\$\square{2}, 3\s-5\square{2}, \square{2} + 3\square{3} - 5\square{2}) Q(\$\square{2}\chi 3\square{3} - 5\square{2}) Q(\$\square{5}\square{2}) Q(\$\square{5}\square{2}) Q(\$\square{5}\square{2}) Q(\$\square{5}\square{2}) Q(\$\square{5}\square{2})
2) I nie N st 19. n=3 L=K(dix2ix3) di'e K xin e K xin e K The di are called the radical sequence for L: K. Idea to show quir	$\alpha_i^{ni} \in K(\alpha_1,, \alpha_{l-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$ $K(\alpha_1)(\alpha_2)$ $K(\alpha_1)$ he K. Atic not soluble by α_1	Q(5/2, 3/3 - 5/2, 12 + 3 / 3 - 5/2) $Q(5/2)(3/3 - 5/2)$ $Q(5/2)$ $Q(5/2)$ $Q(5/2)$ $Q(5/2)$ $Q(5/2)$
2) I nie NV st 2g. n=3 L=K(di,x2,x3) di'e K x2 e K x3 e K The di are called the radical sequence for L: K. Idea to show quir	$Ai^{ni} \in K(\alpha_1,, \alpha_{l-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$ $K(\alpha_1)(\alpha_2)$ $K(\alpha_1)$ he K. Atic not soluble by α_1	Q(5/2, 3/3 - 5/2, 12 + 3 / 3 - 5/2) $Q(5/2)(3/3 - 5/2)$ $Q(5/2)$ $Q(5/2)$ $Q(5/2)$ $Q(5/2)$ $Q(5/2)$
2) I nie NV st 2g. n=3 L=K(dix2, \alpha_3) \(\pi_1^n \in K \) \(\pi_2^n \in K \) \(\pi_3^n \in K \) The \(\pi_1^n \in K \) The \(\pi_1	$Ai^{ni} \in K(\alpha_1,, \alpha_{L-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$ $K(\alpha_1)(\alpha_2)$ $K(\alpha_1)$	(i=1n). Q(\$\frac{1}{2}, \frac{1}{3} - 5\frac{1}{2}) Q(\$\frac{1}{2}\left(\frac{1}{3} - 5\frac{1}{2}\right) Q(\$
2) I nie NV st 2g. n=3 L=K(di,x2,x3) di'e K di'e K Xs e K The di are called the radical sequence for L: K. Idea to show quir 1. So not soluble 2. M: K radicals 3. I quintic f o	$Ai^{ni} \in K(\alpha_1,, \alpha_{L-1})$ $K(\alpha_1, \alpha_2)(\alpha_3)$ $K(\alpha_1)(\alpha_2)$ $K(\alpha_1)$	(i=1n). $Q(\sqrt{3}2, \sqrt{3}3-\sqrt{2}, \sqrt{2}+3\sqrt{3}-\sqrt{2})$ $Q(\sqrt{3}2)(\sqrt{3}3-\sqrt{2})$ $Q(\sqrt{3}2)$
2) I nie N st 2g. n=3 L=K(dix2, \alpha_3) \(\alpha_1^n \in K \) \(\alpha_2^n \in K \) \(\alpha_3^n \in K \) The di are called the radical Sequence for L: K. Idea to show quir 1. So not soluble 2. M: K radicals 3. I quintic f of	K(\alpha_1\alpha_2)(\alpha_3) K(\alpha_1\alpha_2)(\alpha_3) K(\alpha_1)(\alpha_2) K(\alpha_1) He had soluble by race then \Gamma(L:K) is solver \Pi_1 splitting field.	(i=1n). $Q(\sqrt{3}2, \sqrt{3}3-\sqrt{2}, \sqrt{2}+3\sqrt{3}-\sqrt{2})$ $Q(\sqrt{3}2)(\sqrt{3}3-\sqrt{2})$ $Q(\sqrt{3}2)$

If a is not private to has supprouded so a state

```
Lemma: = southing held of to-d, over M.
Let L: K be radical, M: K radical closure of L: K. Then M: K is radical
Proof: Let L= K(x,...xr) dine K(x,...,di.).
Let file min pay of di overy Fundamental of that to soon and to sall to
P=F....Fr. Then M splitting Reid of fover K.
Let the roots of fi di= pin... Bipi
M=K(B1, B12,... B1P1, B2,1,... B2, P2, .... BC1.... B1, Br)
Since di and Bij ane roots of the same min poly fi, by 5.13
3 K-isomorphism o: K(xi) - DK(Bij).
By 11.4 or extents to a K-automorphism T: M-DM.
ainie K(d....di-1) say dii= q(d1....di-1)
T(aini) = T(g(x,..., ai)) Max) = P(212x)/
T(dini) = g(T(di)... ](dc-1)).
Bij € q (T(d1),..., T(d(-1)) signal (X:1) ] (X:1)
 Z(fi(xi))=7(0)=0
fi(z(di))=0
T(di) = some Bigi
Bij = g(Biq... Bi-iq...)
By € K (Bi... Bipi... Bi-194, ... Bi-1,pi...).
domma
Let p be a prime, L sputting field of tP-1 over K. Then I(L: K) is
abelian
Proof: Roots of tP-1 are wi (1=0,1...,p-1) w= ezni/p, so (= k(w)).
Any g & T (L: K) is determined by g(w) and g(w) = wi for some is
Suppose que wi h(w)=wi h)
 (gn)(w) = g(n(w)) = g(w) = g(w) = wij
gn=ng so T (L:K) is abelian.
```

```
Suppose the splits Fink (ie wee 201/ cK). Let a be splitting field of
th-G over K for some a EK. Then T(L:K) is abelian.
Proof: Let a be a root of the a in L.
Then the other roots are dw, aw2, ... alwn-1 mg Magatters 12.
Any get (L:12) is determined by g(x) and g(x)= xwi for some il
Then if h(x)=xwi, then (gh)(x)=xwi=cng)(d)
gh=hq.
T(L:K) abelian. M. Som Many Brown Brown Down Dod Stooks of 4 11 113
L: K normal and radical = P [ (L: K) soluble ( soluble )
Proof: L=K(d1...dm) die K(d1...d1.)
wlog, all ni prime
Prove by induction on my write p=n, mais slesses
diek, may assume didk.
Let f= min poly of d, over K.
Since L: K normal , f splits in L. man and and and and and and
Let B be another root of f in L.
Let $ 2 = di/B SO 2 = @ 1/BP = 1
Hence E ≠ 1 has order p. and 1, E,..., Ep-1 are the pt roots of
tp-1 sputs in L.
Let MEL be the splitting held of the lover K
consider Land on Valle M (di) normal (4) 1) Tap page
    L: M(d) is radical, with radical
    M(d1) sequence d1, \(\alpha_{21}\). \(\alpha_{m}\).
              By induction \Gamma(L:M(\alpha_i)) is soluble
```

```
2. M(a) = sputting field of to-d, over M. stables
  By 15.6 r(M(di): M) is abelian.
3. T(M:K) is an abelian by 15.5.
                        By Fundemental Thm
                    T(M(d1):M) = T(L:M)
    M(di)
                     T(L:M) has a normal subgroup T (L:M(d)) which
                  is soluble with soluble quotient
  By 14.4(3) F(2:M (15) soluble book (20)0 (10)0
            (D: 1) Tr (M: K) = r(RL: K)/000 0 0
        Nomal. 12 18 By same argument r(L:K) is soluble.
Let KSLSM and M: K radical. Then T(L:K) soluble.
Proof: Let Ko = fixed Reid of T(L:K) and let N: Ko = normal
of M: Ko.
                            F(L:KO) = F(N:KO)/C(N:L) ] F(L:K)
 Ko
Let f(t)=t5-6t+3 @ QCt] is not soluble by radicals.
 1. L= splitting field of f over a. Show r(L:a) = Ss.
```

2. Hence r(L:a) is not soluble M 1940 35-9+ to bland portlying = (10) Most 3. Hence by 15.3 IF KELEM, M is not radical. (M: (DM) 7 2.21 p8 4. So by def", f is not soluble by radicals. Lemma HANNA Let f be an irreducible polynomial of degree p (prime) over a, with exactly 2 non-real roots. Let L=splitting held of f over a. Then r(L: a) = Sp. Proof: If roots of f are di... dp (all distinct since f ur), then any ger (L:Q) is determined by g(x1)...g(xp). and each g(xi) = xj for some j. Say g(ai) = docis. Then or ESp The map g - to is a group nomomorphism r(L: a) - tSp. We can think of the gatois group (L: a) as a subgroup of Sp So GSp. no moderne de la Co [L: a] is divisible by p (Tower Law: a & a (x1) & L) i. p divides [G]. i. & has an element of order p (Cauchy's Thm or from Sylow Thm). Only elements of order p is Sp are the p-cycles. t= complex conjugation includes an element of G, which is a 2-cycle (switches 2 non-near roots, fixes others). Insulan MIM has M2 12 Mills Wlog t = (12) Also by taking a power of p-cycle, wlog c= (123...p) ∈ G. c*tc-1=(2.3) c2tc-2-(24) all adjacent transpositions & Q. every of Sp is a product of adjacent transposition .. Ge & Sp. Marian splitting Assessed 49-14-14-14 it only remains to show that f(t) = t5-6t+3 is irreducible with exactly 2 non-real roots Irreducible by Esenstiens prime 3 otherwellthan - towns extent I no maybooling by raducate