3203 Algebraic Topology Notes

Based on the 2014 spring lectures by Prof F E A Johnson

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility whatsoever for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

```
Proposition Im (2n+1) C Ker (2n)
                                                      Proof- Let x. E. Im (Borry). Then 3 y & Carr(X) it. X= Barry(y), and Barry 3 m Barry(y)=0. Thus X & Ker (Da)/19. e.d.
Petrition The nth homodogy group of X (over HZ), Hn(X), is defined by Hn(X) = Ker(On) Im (Onn). Then the nth Besti number of X is dim Hn(X) = dim Ker(On) - dim Im(Onn)
                                                                                                                                                                                                                                                                                                                   ez 43 41 ez 42 41

2/1/0/24 = 12/4104 2/1/24 = 12/41/14. Thus, 31 = (110/14) (010/14)
                                                                                                                                                                                            e1 1/2 41
2/10/15 = 115+105
                                                        dim ter (24)=1, dim Im (2a)=1 since 2:C_2(\Delta^2) \rightarrow C_1(\Delta^2) is non-zero and dim C_2(\Delta^2)=1. As such, it posts number of \Delta^2=1-1=0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             12 January 2014
Prof FEA JOHNSON
Schüld LT.
  thing examined the case for the we now expand our consideration to arbitrary fields couch as IT = 00)
Let X be a simplified complex, \sigma \in S_X be an n-simplex. Once and for all, choose an ordering on rentiles of \sigma = (Vo < V_1 < \cdots < V_n).
Let X be a simplicial complex, \sigma \in S_X be an n-simplex. Once and for all, choose an ordering on vertices of \sigma = (Vo< V_1 < \cdots < V_n).

[3,0,2,3] = sgn(0,1)[0,1,2,3] = (-1)[0,1,3] |

We introduce a symbol [Vo, \cdots, Vn] with the property that [V = v] and [Vo, \cdots, Vn] = sgn(0,1) \cdot [Vo, \cdots, Vn] = (-1,0,1,2,3) , (-1,0,1,3] \cdot sgn(0,1,3) = (-1,0,1,3] \cdot sgn(0,1,2,3) = (-1,0,1,3,3) \cdot sgn(0,1,3) = (-1,0,1,3) \cdot sgn(0,1,3) = (-1,0,
arbonery

Then [Vo,..., Vn] is called an ordered a simplex tox field F, simplicial complex X, Cn(X:F) is a rector space over F with ordered n-simplices
 Analogously, me define In: Cn(x) -> Cn-1(x) by In [vo, ..., vn] = = (-1) [vo, ..., vr, ..., vn].
  [24,14,10] - [24,14,0] + [24,24,24,0] - [24,24,14,04] = [24,14,104,04] + [24,14,04] + [24,24,14,04] + [24,24,24,04] + [24,24,24,24,04]
                                                           Remoth: This squees with previous definition so over the, +1=-1.
     (Reportion) (Poincer'e's Lemms, general case)
                                                      3n-12n=0.
                                                      Froof - Again, it is enough to sheek all books elements. Thus 30.1 dn [Vo, ..., Vn] = 3n, 1 Fro (-1) [Vo, ..., \hat{V}_r, ..., \nu_r] = \frac{2}{r_2} (-1) \frac{1}{r_2} \
                                                                                       = \( \frac{\times_{n-1} [v_0, ..., v_{r-1}, \hat{v}_r, v_{r+1}, ..., v_n] - \frac{\times_{n-1} [v_0, ..., \hat{v}_r, ..., \hat{v}_r, ..., \hat{v}_r, ..., \hat{v}_r, ..., \hat{v}_r, ..., \hat{v}_n, ..., \hat{v}_n, ..., \hat{v}_n, ..., \hat{v}_n, ..., \hat{v}_n \) position
                                                                                    = \frac{\infty}{2} (-1)^r \left\frac{\sum_{\infty}}{2} (-1)^r \left\frac{\sum_{\infty}} \left\frac{\sum_{\infty}}{2} (-1)^r \left\frac{\su
                                                                               reindex = \( \frac{K^2 \cdot \
     by for any field It, me have a sequence of reason spaces Cr(X:IF) and linear maps \partial r:Cr(X) \to Cr(X) s.t. \partial r + \partial r = 0 [or \partial n \partial r + m = 0 equivalently].
     totalised The nth honday of X with coefficients in IT is a quotient space defined by H_n(X:F) = \frac{\ker \partial_n}{\operatorname{Int} \partial m_1}
      Quotient spaces.

(3 (wear map C \supset V \rightarrow V/U), C_{VJ} = V + U).

Let V be a rector space over F, W \subset V a rector subspace. Then V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W = V + W
                                                           Proof-Define []: V -> V/W by [V]=V+U, natural map. [] is surjective, so Im []= V/W. Kar [] is computable: V & Kar [] & FLOT = 20 January 20th
Proof-Define []: V -> V/W by [V]=V+U, natural map. [] is surjective, so Im []= V/W. Kar [] is computable: V & Kar [] & FLOT = 20 January 20th
Proof-Define []: V -> V/W by [V]=V+U, natural map. [] is surjective, so Im []= V/W. Kar [] is computable: V & Kar [] & FLOT = 20 January 20th
Proof-Define []: V -> V/W by [V]=V+U, natural map. [] is surjective, so Im []= V/W. Kar [] is computable: V & Kar [] & FLOT = 20 January 20th
Proof-Define []: V -> V/W by [V]=V+U, natural map. [] is surjective, so Im []= V/W. Kar [] is computable: V & Kar [] & FLOT = 20 January 20th
Proof-Define []: V -> January 20th
Proof-
                                                                                              V+U=0+4 ⇒ V-0∈U, i.e. V∈U > Ker C]=U. dim Ker [] + dim Im C]= dim V → dim W+ dim V/N= dim V.
      Frample - from first principles. H<sub>X</sub>(S^2:F). S^2=C standard model of S^2. G=C_1(S^2:F). G=S_2(S^2:F). G=S_2(S^2:F) is 4-dimensional.

E_1 E_2 E_3 E_4 E_5 E_6 E_6 E_6 E_7 E_8 E_8 E_9 E
                                                   2,(E1)= 2,[0,1]=[1]-[0]=-[0]+[1]=-e1+e2. 3,(E1)=9,[0,2]=-[0]+[2]=-e1+e3. 3,[6,3]=7,[0,3]=-[0]+[3]=-e1+e4. / Motion of 3, is
                                                  For 92: 3, [0,1,2] = [1,2] - [0,2] + [1,2] = E1-E2+E4. 3, [0,1,3] = [0,1]-[0,3]+[1,3] = E1-E3+E5. 3, [0,2,3] = [0,2]-[0,3]+[2,3] = E7-E3+E6.
                                                      2, [1,23] = [1,2]-[1,3]+[2,3] = E4-E5+E6. Making 3. in feat, we can
                                                          solve to get x1=-x4, x2=x4, x3=-x4, so if x4=-1, (-1) is a basis for the tremely i.e. [0,1,2]-[0,1,3]+[0,2,3]-[1,2,3].
                                                        Hx (52.FF) is: Ho= Co/Im 2y ⇒ dim tho = dim Co-dim Im 2y = 4-3=1. Thus, to ≃F. Hy= Ker 2y/Im 2z ⇒ dim Hy=dim Kev 2y-dim Im 2
                                                        dim H1=3-3=0 ⇒ H1=0. H2= Ker 2√ Im 33 = Ker 3, ⇒ dim H2= dim Ker 32=1 ⇒ H2 = F with books [0,1,2]-[0,1,3]+[0,2,3]-[1,2,3].
         To summarise, the homology of S^2 is H_K(S^2;\mathbb{F}) \equiv \{0, K=1, K\geqslant 3\}. We can in fact generalize this result: [hopotical H_K(S^1;\mathbb{F}) = \{0, K=1, K\geqslant 3\}].
             Given a finite simplicial complex X, produce C_{X}(X) = (0 \rightarrow C_{R}(X) \rightarrow C_{R-1}(X) \rightarrow C_{R-2}(X) \rightarrow \cdots \rightarrow C_{R+1}(X) \rightarrow C_{R-1}(X) \rightarrow \cdots \rightarrow C_{1}(X) \rightarrow \cdots \rightarrow C_{1}
             By a clasin complex me mean a sequence (Cr. Orlock where Cr are rector spaces over 17, Or: Cr -> Cr-1 is linear, C-1=0 by convection, then
             Definitional If Cx(Cr, Or) is a chain complex, me define H_K(CR) = Im(\partial_RH), special cose: H_K(CR) = 0, when Ker(\partial_R) = Im(\partial_RH), it has a special name
```

```
TEGENTION Let (... -> Vn+1 -> Vn-1 -> ···) be a sequence of rector spices Vr and linear maps fn: Vn -> Vn-1. The sequence is exact at VO whom [Ker 2n = Im 2n+1]
                             the sequence is exact when it is exact at each Vn.
  where consider on exact sequence of finite (eight: (0 > Vn fin Vn - > Vn + > Vr - > Vr - > Vn - > Vo -> 0), Ker (fr) = Im (fry) [leight n+1].
  Consider the special was n=1, 0 \rightarrow V_1 \xrightarrow{f} V_0 \rightarrow 0.
  (Reportion 0 -> 1/4 -> 1/6 -> 0 is exact (>> f: 1/4 -> Vo is an isomorphism.
                             Hoof- (>) Impl= Ker (V0→0) = V0, so V0= Impl), fis surjective. Ker(f) = Im (0→V1)=0, so fis injective. Thus, sequence is exact >> fis injective i.e. isomorphism
                                              (4) If f is an isomorphism, then f is surjective. So vo = Im(f) = Ker (vo→0). So Im (vy f > vo) = Ker (vo→0). Since f is injective, Ker(f)=0 = Im(0→v). The sequence is
                                                           exout at vo and v1, so it is exact. 1, q.e.d.
 The next special case is where n=2, giving short exact sequences of form 0 \rightarrow V_2 \xrightarrow{f_2} V_1 \xrightarrow{g_1} V_0 \xrightarrow{} 0.
 Proportion the short ender sequence 0 -> 12 -> 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1/2 > 1
                             front - (⇒) suppose sequence is exist. fi is surjective, fix injective (is shore). Moreover, then fi = Im fix by definition.
                                                (6) suppose (1), (iii) hold. By (iii), sequence is expected 1/1. By (i), sequence is exact at 1/0; and by (ii), sequence is exact at 1/2/1, q.e.d.
  temma (whitehead's Lemma)
                             Proof- Let PW be the statement of the theorem for n. PM will be proven by induction. P(1) = (0 -> 4 -> 0). If sequence is exist, for is an isomorphism, so dim Vo = dim V1.
                                                P(2): (0→ V2→ V1→ V6→ 0). We the rank-nulligetheorem: dim lm f1+ dim Herf1+ dim V1. As sequence is exact, f1 is surjective, 50 Im f1 = V0. Therefore,
                                                dim to t dim Ker fi = dim th. By exactness of sequence, Ker fi = Im f2, so applying theorem to f2, dim Tm (f2) t dim Ker (f2) = dim t2. f2 is injective so Ker(f2) = 0
                                                dim Ker(f<sub>1</sub>)= dim Im(f<sub>2</sub>)= dim V<sub>2</sub> ⇒ dim V<sub>3</sub> + dim V<sub>2</sub>= dim V<sub>12</sub> which proves statement P(2). We will prove <sup>©</sup> P(2) ∧ P(2n) → P(2n+1), P(2) ∧ P(2n+1) ⇒ P(2n+2).
                                               suppresequence (0 → V2nt1 → V2n → V2n → V2n → V2n → V0 → 0) is exect. At V2n we have sequence 5=10 → V2nt1 → V2n → Im(f2n) → 0) and
                                                S'= (0 -> Yer (fan-1) is Van-1 -> Van-1
                                                By P(2), dim Im(fin) + don (V2n+1) = dim (V2n). By P(2n), r=0 dim (V2x). + dim Ker(fin-1) = r=0 dim (V2x+1). But Im (fin) = Ker (fin-1) ⇒
                                                dim Ker (Part) = dim (Van) - dim (Van+1), so substituting, = odim (Van+1) = = = odim (Van+1). Grouping terms, we prove P(2n+1).
                                               thus, P(2) ∧ P(2n) ⇒ P(2n+1). Elember, P(2) ∧ P(2n-1) ⇒ P(2n). Thus, building up by induction, P(n) is true for all ny g.e.d.
  Suppose X is a simplicial complex, X= X+ UX- where X+, X- are subcomplexes. X+ 1 X- 1x x CX. The geometrical theorem below (stated nithout proof) is useful?
 Theorem (Nayor-Victoris theorem - geometrical).
                          (Mayor-Visavis theorem - geometrical).

repeating segment

\rightarrow H_{n+1}(X_+) \oplus H_{n+1}(X_-) \rightarrow H_{n+1}(X) \rightarrow H_n(X_+) \rightarrow H_n(X_+) \oplus H_n(X_-) \rightarrow H_n(X_+) \rightarrow H_n(
                                                                                                                                                                                                                                                                                                                                                                                                                          22 January 2014
Prof FEAJOHNSON .
Chemistry LT
 Let X be a finite simplicial complex, X \neq \emptyset. We what to indeplet what H_Y(X; F) implies: we begin with H_0.
 Throposton If X + $\phi$, dim Ho(X) \ge 1.
                             Front- By definition, Ho(4) = Co(N)/Im 24 becomes C1(X) → Co(X) → 0, so Ho(X)= Im (2): C1(X) → CD(X). Observe that CO(X) has basic [44],..., [4] where \(\frac{1}{2}\left(4\left(4\left(4\left)-1)\right(4\left(4\left(4\left)-1)\right)\).
                                             Testine Y: Co(N → F by Y([V;]) >1. Yis linear, Yis surjective (become me hit 16 F). Im (21) C Co(N. Im(21) is spanned by EW]-[V] where [V, W] is a 1-simplex
                                             (since 2, EV, W] = EW]-EV]). Then Y((W)-EV])= Y(W)-Y(V)=1-1=0, so Y: Im2,→ F is identically 0. Define induced map Yx: Co(N) Im(2))→ F by
                                             Yx (60]+Ima) = Ytv1, which is mell-defined. Yx is still linear and surjective, so 0 → Ker(fx) → Ho(x) +> FF → 0 is exact. Then din Ho(x)=1+dim For Kx >
 Deflusion let X = (Vx, Sx) be a finite simplicial complex. By a path in X, I mean a sequence of vertices (V0, ..., Vn) where each Vie Vx and each [Vi, Vi+1]
                          is an ordered 1-simplex. We say that X is connected when for each v, we tx, 3 path (40, ..., 4n) where v=V0=...=Vn=W.
                                                                                                                                                                                                                                                                                                                                                                                                                                                         not connected!
                            e.g. - In the diagram on the right, (Vo, Vi, V2, V3, V4) is a path, but (Vo, Vi, V3, V4) is not
Theorem set X be a finite simplicial complex. If X is connected, then dim Ho(X)=1.
                           Proof- We know that dim to (X)≥1, so it suffices to show that dim to (X)≤1. the (X)=Co(X)/Im 2q. Let V, W ∈ Vx. Show that [V]+ Im 2q = Cw]+ Im 2q. Since X is
                                             connected, let (Vo, ..., Vn) be a path from v=Vo to w=Vn, where [Vi, Vi+1] is a 1-simplex. Colculate of (=0 [Vi, Vi+1]) = 1=0 of [Vi, Vi+1] = 1=0 
                                            [Wil] of X, then decolor as a zdiction. Let dive color/Imag, des at Imag. Then Entitling I Im og, so Hole is pounded by Chattim of
                                          (since [wi]+ Im2 = [w1]+ Im2 so [wi]-[w1] & Im2). > HoW is sponned by a single element [V]+ Im2 where v is any reviex > dim HoW $1/1 q.e.ol.
```

```
togramment of X=(Vx, Sx) is a simplicial complex, define come CX=(Vcx, Scx) where if x & Vx is a disjoint point, Vcx=4x8v Vx, and
S_{CL} = S_{X} \cup \{\sigma \cup \{st\} : \sigma \in S_{X}\} \cup \{st\} \quad \text{[i.e. all original simplices to original simplices joined to $x$ to $t$ the cone on $a$ 2-simples <math display="block"> \begin{array}{c} C_{X} \\ 
                                               gives hn+3n[vo,..., vn] = hn-1 1 = H1 [vo,..., vr,..., vn] = ∑ (-1) [±, vo,..., vr,..., vn], Thuo, On+1 hn+ hn-1 on = Id Cn > tet ze Ker(3n: Cn → Cn-1)

| Ker(3n) |
| Then Id(z) = 3n+1 hn (±) + hn-1 3n(z). Thuo, z= 3n+1 hn(z) ∈ In 3n+1, ker (3n) ⊂ Im(3n+1) ⊂ ker (3n), so ker 3n = Im 3n+1, so Hn(Ch(F)=0, rn>1.
                                                    Moreover, CX is connected, so Ho(CX:F)=F, q.e.d.
legation If K is a simplicial complex, then CK is connected
                                    Roof-let * be come points and let v, w∈ Vox. If w=*, then [v,*] is a 1-simplex. If v=*, then [w,*] is a 1-simplex. If * $4\\u00e4\u00fc\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u00e4\u
  This general theorem has some useful applications: for example, \Delta^n is a cone for 1821. In fact, \Delta^n = C(\Delta^{n-1}). \sqrt{n} = \{0, ..., n'\}, \sqrt{\Delta^{n-1}} = \{0, ..., n'-1\}. Take cone point t = n. Then clearly,
 with cone point \star, C(\Delta^{n-1}) = \Delta^n. [Note -\Delta^1 = C(point), \Delta^2 = C\Delta, \Delta^3 = C(\Delta^2) \cdots
  Corollowy ++(1. F)=10 r20. [Remark-Hence, from the point of view of homology, comes behave like points].
 Then, now we seek to show that f(S';E) = 10 otherwise.

The \frac{1}{N-2} selection of X

[or \frac{1}{N-2} supplicish complex defined so plants: Vertex set of X^{(N)} = V_X = f(N) vertex set f(N) = f(N) vertex set f(N)
                                    e.g. - Sn = (Ant) (n) s1 = 2 (intrior absent), 2 = 2 (interior prosent). Thus, 51 = (2)(1) in general, 111 = (10,..., 111), all non-empty subad
                                                            and 5" = (10,..., n+1), all non-empty subsets except 10,..., n+1). so if or is an x-simplex of and and x < n, then or c 5", i.e. 5" = (111) (n)
                                   Those ret K be a souplicial complex, K(1) be the n-skeleton of K. Hy(K(1): F)= Hy(K:F) provided r = n-1.
                                 The boundary map 0 \rightarrow C_n(K^{(n)}) is zero, but for r \leq n, the boundary sup 2r are identical.

Chy (K^{(n)}) \xrightarrow{} C_{r-1}(K^{(n)})

Take r \leq n-1 (i.e. r+1 \leq n). Then me have that C_{r+1}(K^{(n)}) \xrightarrow{} C_{r+1}(K^{(n)}) \xrightarrow{} C_{r-1}(K^{(n)})

Then r \in C_{r+1}(K^{(n)}). Thus, r \in C_{r+1}(K^{(n)}) = C_{r+1
  (noting) for r ≤ n-1, n ≥ 1, thr(5": F) = 10 0< r ≤ n-1.
                                   Roof - We low 5" = (1 n+1)(n), so thr(1 n+1) = 10 o≤r≤n-1. g.e.d.
  Shis n-dimensional, so the (Sh) = 0 for r>n. Also, Hx(Sh) = 0 for 0 < r<n. How about Hn(Sh: #)? He will use the Moyer-Victoris Theorem. He lower Sh Cantal Colly (1,2) took at 124 (1,2) took at
    We define a simplicial complex, the writthee holt: If S^{n-1} is the standard in 1 sphere, C(S^{n-1}) is the cone of S^{n-1}, which is known as the writthee that.
   10,..., n-17 C to,..., n+ C To,..., n+11 give inclusions of simplicial complex and Can Cant? However, we do have an CSn Can+1. In fact, 5th Can CSn. (Can+1)
    In the inclusion 5^{n-1}CS^n, the vertex n does not belong to 5^{n-1}. We can use vertex n to ambed C(S^{n-1}) inside S^n. For instance S^2 is the union O(S^n) in S^2 in S^2 in S^2 is the union O(S^n).
    of bottom face, the case of 1, and the Hitmes hat with 3= come point. The intersection of the two cones is S^1 = \bigwedge_1^2.
    \mathfrak{S}^n = \Delta^n \cup C(\mathfrak{S}^{n-1}) where \Delta^n \cap C(\mathfrak{S}^{n-1}) = \mathfrak{S}^{n-1}, and n+1 = cone in C(\mathfrak{S}^{n-1}).
                                     Proof-Apply definitions, Von = 10,..., n, n+15, Von-1 = 10,..., n+1. Son = all non-empty subset of 10,..., n+17 except the whole set let one Son. Then either
                                                         (i) (ii) (ii) n+1 & or n+1 & or p(i), or \( \Delta^n \). If (ii), or \( C(S^{n-1}) \), the withher that \( S^n = \Delta^n \cup C(S^{n-1}) \), and \( \Delta^n \cap C(S^{n-1}) = S^{n-1} \) q.e.d.
   Have, we have decomposed S" into two parts. S"= X+ UX- where X= 1, X+= C(S"1), the nitches hat. So we can apply the Hoyer-Victoris theorem. (c.f. lig 03).
   0> F OF → 0, Ho= Ker (FOF →0)/Im (0 → FOF) = FOF. then, we shall that Hr(s1: F) = 10 1>2.
                                                           pecompose 5°= ∆° U C(S°), X+= ∆°, X= C(S°), X+ ∩ X== S°. Now use Mayor-Victoris Theorem: H1(X+) ⊕ H1(X+) ⊕ H1(X+) → H6(X+∩X-)

"" (consection) = FBF.
                                                            → H_0(X_+) \oplus H_0(X_-) \rightarrow H_0(S^1) \rightarrow 0. Our exact sequence is D \rightarrow H_1(S^1) \rightarrow \mathbb{F} \oplus \mathbb{F} \rightarrow \mathbb{F} \oplus \mathbb{F} \rightarrow \mathbb{F} \rightarrow 0. Then use whitehead's lemma: we get \mathbb{F} (conscited)

The redships that dum H_1(S^1) + 2 = 2 + 1 \Rightarrow \dim H_1(S^1) = 1 \Rightarrow H_1(S^1) \cong \mathbb{F}, indeed. Finally, we compute the general homology: MTP: H_1(S^1) \cong \mathbb{F}, n \ge 1.
                                                             let this proposition be P(n). From above P(1) is proven to be true. suppose n>2, P(n-1) proven. convider P(n): 6n = \( \Delta^n \cup C(S^{n-1}) = \( X^{-1} \cup X^{+1} \) respectively.
```

100	$ \bigcirc \text{ (cones)} $ $ \text{Or (cones)} $ $ \text{No } X_{+} = C(S^{n-1}), \ X_{-} = S^{n}, \ X_{+} \cap X_{-} = S^{n-1}, \ \text{ then Mayor-Nessois-Theorem gives } H_{n}(X_{+}) \bigoplus H_{n}(S^{n}) \longrightarrow H_{n-1}(S^{n-1}) \longrightarrow H_{n-1}(X_{+}) \bigoplus H_{n-1}(X_{$
	Hence we get $0 \rightarrow H_{n-1}(S^{n-1}) \rightarrow 0$ is a (very short) exact sequence, which is an isomorphism. $H_{n}(S^{n}) \cong H_{n-1}(S^{n-1}) \cong H_{n-1}(S^{n-1}) \oplus H_{n-1}(S^{$
1 440	mone are go o simple so to broad source cook represent mone is on borney mone.
1 1 11 7	Remark - 5" is known so the standard simplicial model of the n-sphere, which can be quite a could approximation: e.g. o , approximates O. We could better approximate
	the circle by adding points: 0 3 - 3 0 O. We still need to show that with these extra points (subclivisions), homeologies stay the same
	Likewise for approximations in 2-spheres: $\bigoplus \rightarrow \bigoplus \rightarrow \cdots \rightarrow \bigcirc$.
	29. Sanday 2019 Rof FEA JOHN JOR
	Inwhite of honology under subdivision.
	simplicial maps: Lot X=(Vx,5x), Y=(Vy,5y) be simplicial complexes. By a simplicial map f: X-> Y we mean a mapping f: Vx > Vy with the property that if \sigma \in Sx, then \(\forall (\sigma) \in Sy. \)
	Example - If $X = (V_X, S_X)$ is a simplicial complex, then $IdV_X : V_X \to V_X$ defines a simplicial mapping $IdX : X \to X$. (identity map).
	Traportion if f: X>Y, g: Y>Z are simplified mappings, then gof: X>Z is also simplified.
	Proof-dividue. Simulicial rector space. Remork - Magdrain topology produces a "cohorent" algebraic picture of geometry. X >> Hn(X:FF) such that if f: X >> Y is a simplicial sof, then meads get a linear map (T) (T)
	Hn(f): Hn(X:F) → Hn(Y:F), and "coherence" implies that Hn(ldx)=ldHn(X). Mso, if f:x > Y, g:Y > Z are simplicial, Hn(X) → Hn(Y) Hn(g) + Hn(Z) s.t. Hn(gof)=Hn(g)oth)
1	The two properties (I) and (II) define the as a function (E. Noether, S. Eitenberg)
	Framples of simplicial mappings - 3 X 2 3 2
	(1) Triongrupte the square in two ways: 0 , then f: 10,1,2,3+ > 10,1,2,3+ is defined by f(0)=1, f(1)=0, f(2)=3, f(3)=2. f is a simplicial isomorphism, is p2=1d.
· · · · · · · · · · · · · · · · · · ·	thorever, U: (0,1,2,3) -> 10,1,2,3) does NOT define a simplicial mapping from X to Y! (only for X>X, or Y>Y). Note have that SX = Sy so they are not the same complex!
	(3) Squash map: dimension read not be preserved. The C(51) = and map it onto a = 02. Let sq: 10.1,2.*+ > 10.1,2+ be sq(0)=0, sq(1)=1, sq(2)=2, sq(+)=1.
	observe how the 2-simplexes may: & * are mapped to & o-1 respectively. Note that the dimensions have been reduced.
	Simplicial complex Hn Hu (X:F) + Hruse Hu (X:F) = H. (C. (X:F))
	To turn homology hard a function, we need to recall definitions. The is a two stage process: Cy > Cy Hy Recall = 8. A lain complex we need a collection (Cr. 30) > 2 where
	Recoll- By a chain complex, we mean a collection (Cr. 3r) rao whose distinctions
	(i) each Crica rector space over Frank (ii) 2: Cr -> Cr-1 is linear, and (iii) 2r2/rel = 0 for all r, with the convention that C-1 = 0.
	Tophenion let $C_k = (C_r, \partial_r)_{r>0}$, $C_k = (C_r', \partial_r')_{r>0}$ be chain complexes over it by advant mapping $f: C_k \to C_k'$ we mean a collection $f: (f_r)_{r>0}$ where $f: C_r \to C_k'$ is break and such the
	each of the following diagrams commute: Lie from dr drt, trong dry trans
4	IR Ch = (Cr, dr), then Id Ch = (Id Cr) +>0 is a chain mapping.
	If f: x-> Y is a simplicial map, Cn(f): Cn(x) → Cn(Y) is defined by Cn(f) [to,, Yn] = [f(xo),, f(xn)], Cx(f) = (Cr(f)), Aso if g: Y → Z, Cn(gof) = Cn(gof) = Cn(gof) = Cx(gof) = Cx(gof)
	and Cx(ld) = 1d Cx. We have constructed distin complexes from simplicial complexes.
E No. 1	Hn 3 February 2014
Ti	frimplicial complexes, and simplicial maps $f = -\frac{1}{2} + \frac{1}{2} + \frac{1}{2$
1	Cn(g of) = Cn(X) → Cn(Z) Cn(X) is the rector space on the oriented simplies, and we defined Cn(f): Cn(X) → Cn(Y). Horeover, if X → 3 ≠ 7, then we have Cn(g of) [vo),, vn] = [g of(Vo),, g of(Vn)].
	= cn(q) [f(vo),, f(vn)] = cn(q) = Cn(f). Thus cn(q of) = cn(q) o cn(f), without, cn(ldx) [vo,,vn] = [vo,,vn] = [d(Cn(x)) : (Cn(f)) n>0 = Cx(f) and cx is a functor.
	0.1
	Finally, we show that the is a functor: Lest f: Cx -> Dx be a chain mapping over # i.e. Cx = (Cr, A)+>0, Dx = (Dr, Sr)+>0. f= (fr)+>0 for fr: (r-> Dr. Cnr1 ont) There for introduce any photographic first of the control of the first of first one for the control of the first of first one for the control of the first of first one for first one for the first one for the first one for first one
	Durt -Dn -Dn-1
	Then we want to define $H_n(G):H_n(C_K) o H_n(D_K)$. Note that elements of $H_n(C_K)$ look like $E+Im$ 3n+1 [for $E\in Kov$ 3n] and demonts of $H_n(D_K)$ look like $W+Im$ S_{n+1} [for $W\in Kov$ S_{n}].
	before Hn(f): Hn(CK) → Hn(Dx) by Hn(f)(z+ lm 3n+1)= fn(z)+lm Sn+1. Check that this is well-defored: suppose z+lm 3n+1= z+lm 3n+1 ⇒ z-z = lm(3n+1) ⇒ z-z = 3n+1(\$) for some
	Apply fn: fn(z) = fn(2)+ Im(SnH) = SnH fn+(x) & Im(SnH) > fn(z) - fn(z') & Im(SnH) = fn(z)+ Im(SnH); thus the map is well-defined. Hn(f) is linear so fo
	(II) Halgofo=Halg) oHalf: let Cx + Dx => Ex. Halgofo(z+1m 2nt) = (gnofa)/z+ Im 3nt1 = Halgofo(z+1m 2nt) =
	Likewise, (I) Hn (Id) = IdHn. Thus, Hn is a functor.
1	the contract of the contract o
	Unger-Vietnis Thronous, revisited.
8.	set X=X+UX-, where X is a simplicial complax and X+, X-are subcomplexes. They intersect at another subcomplex, X+NX We have the following communicative diagrams: X+NX- X+NX- X+ X+ X+ X+ X+ X+ X+ X+ X+
	Here, the maps it, jt, inj - are inclusion maps. They are trivially simplicial maps.
L.	Thus, we can apply the functor Hn to get smother commutative disgram (so shown overless).

2012_

i _{str} ju	ř.	in: Hn(x+) @ Hn(x-) → Hn(x	+uX-)	Hn(i+) Hn(x+) Hn(j+)
Now, melore $H_n(X_+ \cap X) \longrightarrow H_n(X_+) \oplus H_n(X) \longrightarrow H$	$\ln(X + U \cdot X -) = Hn(X)$ where we de	fine (z-1 +> Hn (j	+)(Z+) @ Hn(j-)(Z-)	Hn(x+0x-) +tn(x-) Hn(j.)
$i_{x}: H_{n}(X_{+} \cap X_{-}) \longrightarrow H_{n}(X_{+}) \oplus H_{n}(X_{-})$ and $\longrightarrow \begin{pmatrix} H_{n}(i_{+})(\omega) \\ H_{n}(i_{-})(\omega) \end{pmatrix}$	lusting educan convention for direct	it sums). From the Mayor-Victori	s theorem, the above seque	nie is exact (venfy!).
The difficult part remains however; which is to show the	re existence of the boundary" m	10p 2 as shown to the right.		- HN+1(X+1)X+) = HN(X+) & HN(X+) + HN(X
the Mayer-Victoria sequence infunctional w.r.t. decomposition	on. Suppose X=X+UX-, Y=Y+UY.	, and fish simplicial map fix > Y s	t. f(x+) c/+, f(x-) c/	3
		(-) $\xrightarrow{i_*} H_n(X_+) \oplus H_n(X) \xrightarrow{j_*}$		>114-1(x+0x-) -> 11-1(x+10x1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
Then the following sequence commutes:	Hurrich Hucker	(f) (Hn(f+) Hn(f-))	Hn(f)	Hn-1(f)
Note that the is invarious under isomorphism:	HMICH) - HNCY+O	1-)	+Hn(1)	
i.e. If we have f: x => Y, q, Y => X s-t. gof=1x, for	g=14, then H(g) = H(f) = 1d and	1 H(f) + H(g) = Id. This is a straig	informand consequence of f	runctoriality.
Moreover, homology is invariant under subdivision (the	is is an even tronger statement).	and the second second	2	
		ka ki sa Ya		
1. de 1.				
Let X be a finite simplicial complex. Then,				
Definition A simplex $\sigma \in S_X$ is called maximal corprincip	poll if o is not properly contained	in any other simplex.		each
A finite simplicial complex X can be regarded so	a finite union X = Aq U Az U	· U An, where each Ai is a ma	eximal simplicial complex (a	nd dimension of Di con differ.
e.g. Take X = 5 3, Then X Was 5	maximal simplies: 10,1,5t, 10,	2,37, 40,3,44, 11,24, 45,44.	H v 7 C to to t	
the notion of the subdivision at a maximal simples is ear				
		7.		$\rightarrow \triangle$
Example – Take $X = 6\sqrt{2}$ with all interiors include				2
subdivision of $\sigma = C(\partial \sigma)$ i.e. come on the b	journey. Thus X-> Solo-	(X), the subdivision of X at o	5	2 Stor(N).
Rejustion) of X= A, v An wherethe A; are the max	firmal simplices, and o = A; for	some particular is then we define	e the <u>subdivision</u> of X at	= sd σ(X) = (U Δr) υ c(3Δ;) υ (UΔ
i.e. we replace \$1 by C(3\$\Di).			and the second of the second	richte auten an er
theorem. There exists a simplicial map (squash map) Sq:	. Sd-(x) → X (r=1.) et.	(1) So = Id my A. : Pi = i my	Ca = W on DA	(D) Hu(Sa): Hu (Sd JX)) => Hu(X) Vn.
	Sq: C(∂∆;) → ∆;	by		
Roof-(1) choose & vertex vin ∆; (60 v € 20	(i). Define sqlw)=w if we	Δ_i , $5q(*)=v$ if * is the cone	point. closely sqba; = ld.	Now simply extend this map to get
$sq : Sd_{\sigma}(X) \rightarrow X$ by $sq = Id$ on	Δj (j≠i) / qe.d.	2 A Sa	2	
e.g In previous example, let v	1=3 and map the point * to	v=3, 0 3 3 →	Note again that	the choice of v is not unique.
6) X= 1,0 0 1, 0 1, 0 1, 10 1, 10 0.				
				-, , , ,
Then $X_{+}^{+} = c(2\Delta_{1})$ and $X_{-}^{-} = X_{-}$ $+ \ln(X_{+}^{+} \wedge X_{-}^{+}) \longrightarrow + \ln(X_{+}^{+}$ $0 \downarrow sq^{*} = ld$ $+ \ln(X_{+}^{+} \cap X_{-}^{+}) \longrightarrow + \ln(X_{-}^{+} \cap X_{-}^{+})$) \(\theta \ \(\text{X}_{-} \) \(\text{H}_{n}(\text{X}') \) \(\text{H}_{n}(\text{X}') \)	>Hn-1(X+nX-) >H	n-1 (X+) @ Hn-1(X')	
$ \begin{array}{c} \mathbb{O} \int Sq^* = Id \\ \mathbb{H}_n(X_1 \cap X_2) & \longrightarrow \mathbb{H}_n(X_1) \end{array} $	+) & Hn(X)	$ \begin{array}{c} $	(-1 (X+) @ Hn-1(X-)	is is a commutative diagram with exact rows.
Dince they are identical, the maps	1 and 1 are doviously isomo	phisms, We will show that @ a	nd Gare also isomorphi	sms: clearly, $X'_{+}=C(\partial \Delta_{i})$ is a cone, and
$X_{+} = \Delta_{i}$ is a simplex, so it is also a	1 cone. Now, Hr(X+) = Hr(X+)=0 Vr>1. Home, Sq = Hr (X+) = Hr(X+) is an	isomorphism $\forall r \ge 1$. Then consider $r = 0$.
• 11 11,				and 6 are dearly isomorphisms.
Thus, from the Five lemma (Exem	iss sheet 2), U.W. B, 6 dre	isomorphisms => B: MI(S	eq): Hn (sdo(X)) -> Hn	IN is an wamovphism / get
n ·				10 February 2014- Prof FEA JOHNSON.
tenins (five lemms).			5 do =	of x x2 solute 12/ Roberts 606.
Suppose given a commutative diagram of vector spaces	and linear maps as follows, in w	ich both vows are exact:	fo fo	$ f_2 f_2 f_4$
then if for for for for fix the isomorphisms, the			80 → 81 -	$\longrightarrow \beta_2 \longrightarrow \beta_3 \longrightarrow \beta_4$.
		2	ω βο	βι β2 β3
Proof-6) NTP: Pointjective. Let XEA2 be such				
> by exactness, x∈ Imdy >3.	$Z \in \mathbb{A}_1 \text{ s.t. } x_1(Z) = x \cdot \text{ then } f$	201(2)= f2 (N = B4 F1(2). 50 f1(2)	€ Ker(β4) = Im(β0), so	3 w ∈ Bo st. (30(w) = folz). Fo is an isomorphia
so it is surjective, hence By EAD	st. foly=w. Bofoly=Bolu	0) = fa(2). Also, fa(2) = fado (4).	fainjecture so doly)= 2.	α1 α, (y) = α, (z) = x = α, α, =0 => x=0/, q. ε. θ
10 NTP: f2 surjective. Let be B2. Need to-				
But the injecting so wa (WED => XEK				
IA.				rophism, so it is surjective. Choose teA1
s.t. falt)=w. Therefore fafa(t)=z	= f2 d1(t) = b - f2(y) => b=	f2(y+dilt)). Put a=y+dilt) EA	$\frac{1}{2}$. Then $\frac{1}{2}$ (a) = $\frac{1}{2}$, and $\frac{1}{2}$	is surjective, q.e.d.
sonaw, me have shown that if K is a subdivision of Kosta n	naximal simplex, then Hox(K) a	Hx(K). What happens at a non-n	nsximal sumplex?	subdivision at maximal simplex.
			~	
Infinition Let X=(Vx,Sx), Y=(Vx,Sx), be simplified complexes		THE THE OF SHAPENED A ONE 180	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Subdiscour at non-marinal simples
where Sxxy= 1SxUSyUlout: 0			3	mon-morinal simplex
Remork - A cone is a special case of a join, wh	were X is a single point. Then	X * Y = C(Y), the cone on Y.		
Note $-\Delta^{1} + \Delta^{1} = \Delta^{3}$ and movemen in general	l, Am*An = Am+n+1, 5mx	+s ⁿ ≅ s ^{m+n+1} .		x Y X*Y.

	If o's a non-maximal simplex in X and Δ is a maximal simplex in X st σ C Δ , then \exists unique simplex σ C Δ , σ C
	opposite face of o
	Observe that join has the following properties:
	(I) $X*Y=Y*Z$ (commutativity) (II) $X*(Y*Z)=(X*Y)*Z$. (III) $(CX)*Y$ is a cone, since $CX=fprint*X$, so $(CX)*Y=fprint*(X*Y)$ = $C(X*Y)$.
	Subdivision at a non-maximal simplex.
en oder Ergi	Let X be a finite simplicial complex, or a non-maximal simplex. List the maximal simplices of X: thus, $\Delta_{1}, \Delta_{2}, \dots, \Delta_{m}, \Delta_{m+1}, \dots, \Delta_{N}$ so that $\sigma \in \Delta_{i}$, $1 \le i \le m$, $\sigma \notin \Delta_{j}$, $m+1 \le j \le n$.
n = 64 B 12	let X+ be the subcomplex of X determined by A1,, Am with all faces of A1,, Am. X+ = A1 U VAn. Likewise, X- = Am+1 U VAN. Write A; = 0-4 Si, 15 is m
	where S_i is the apposite fore in Δi . $X_1 = 0 * (\frac{1}{i-1}S_i)$. In particular, $X_1 = 0 * C$ and $X_2 = 0 * C$ is a cone, becomes C is a cone, and a cone joined to anything is a cone. INTURBINED $S_1 = X_1 \cup X_2$ where $X_2 = C(30) * (\frac{1}{i-1}S_i)$, $X_2 = X_2$ and $X_2 = X_1 \cap X_2$. (where $X_1 = C(30) * (i-1)S_1 = X_2 = 0 * C$). In particular, $X_2 = X_1 \cap X_2 = 0 * C$ where $X_1 = C(30) * (i-1)S_1 = 0 * C$. In particular, $X_2 = X_1 \cap X_2 = 0 * C$. In particular, $X_3 = 0 * C$ is a cone, becomes C is a cone, and a cone joined to anything is a cone.
	The Sq x' = Sq x (Id [Si) where Sq: C(∂σ) → σ is a standard equesh map, Sq x' = Idx. Atoin, use Mayer-lieton's through the learns:
	Here, $Sq:H_K(X_t^+) \to H_K(X_t^+)$ is an isomorphism as X_t^+, X_t^+ are cones. $H_N(X_t^+ \cap X_t^-) \longrightarrow H_N(X_t^+ \cap X_t^+) \to H_N(X_t^+$
*	By Five Lemma, Sq. is an isomorphism.
	$\frac{H_{n}(X_{+}\cap X_{-}) \oplus H_{n}(X_{+}) \otimes H_{n}(X_{+} \cap X_{-})}{\text{Implicial complexes, let say that } X_{+}X_{+}' \text{ are combinatorially equivalent when } 3 ** sequence X_{0}X_{1},X_{N} of complexes, let X_{0}X_{1},X_{N} = X_{N}' and for each X_{0}X_{1},X_{N} = X_{N}' and X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' are combinatorially equivalent X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' are X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' are X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' are X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' are X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' are X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' are X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' and X_{0}X_{1},X_{N}' are X_{0}X_{1},X_{N}' and X_{0$
	either $X_{(+)} = Sd(X_i)$ or $X_i = Sd\sigma'(X_{i+1})$ for some $\sigma_i \sigma'$. We write $X \sim X'$.
1	
	He look to examples of "simplicial surfaces".
	• T2, the torus. T2 + 3 12 + , with all 2-simplies included. Or, we can triangulate. = T2. clearly, T2 and T2 are not the same thowever, we can subdivi
	them further to get an isomorphism: Hence, 72 \$ 1, but they share a common subdivision so as to become isomorphic. i.e. 12, 12 are combinatorially equivalent.
	Heave, $\psi_{st}(T^2;F)\cong H_{st}(\hat{T}^2;F).$
	Definition let v be a vertex in X. The link of v in X, denoted $4k(v,X)$ is the subcomplex of X consisting of those simplices or in X st (v) + \sigma is a simplex in X.
	e.g. — whing our model of T^2 earlier, T^2 when $L(AS,A) = 6$ $T^2 = 6$ $T^3 = 5^4(6)$ [Define: $S(n) = circle$ with $N (>3)$ subdivision points].
	Infinition) Let Σ be a simplicial complex. We say Σ is a contributorial surface when \forall rotices $v \in \Sigma$, $\exists n \geqslant 3$ st. $(k(v, \Sigma) \cong S^1(n)$.
<u> </u>	• Minimal model of 52. 0 (10t, 52) \(5(3) \) 2. If we take a non-minimal model, e.g. (k(*, X) = \) = 5(4).
	• \mathbb{RP}^{2} : (or Boy's surface) $2 \left(\sum_{j=1}^{2} \frac{1}{2} \right)^{2}$. Then $Lk(3, \mathbb{RP}^{2}) = \frac{1}{5} \left(\sum_{j=1}^{2} \frac{1}{2} \right)^{2} \cong S^{4}(5)$.
	A common feature of the two surfaces is that the every 1-souther lies in exactly two 2-simplies. As mill see, this is a general property of surfaces. 12 telemany 2014. 12 telemany 2014. 13 poposite direction from \$25 - compatible. 14 introduce an orientation for our model of the torus: 15:2 20 20 30 30 Chowish g LT.
, i	
	orienting 2 samplines in opposite directions gives a compatible answer and
	troverey, for RP2, we get a about in directions—as seen on right . So it is not arisonable.
	Definition A simplicial surface 2 is said to be assessable when it is possible to choose orientations of the 2-simplifies in such a very that every 1-simples receives appointe orientation from the 2-simplifies
	to which it belongs. 3 2
11	e.g. S2 is orientable. We represed 02 172 by of the
	After reading week, we will prove the orientation theorem:
	Theorem (On emphisus theorem).
	let Z be a connected sourface, and let IF be a field.
	ff if ∑ is orientable (ii) If 1+1=0, then H ₂ (∑:F) ≅ F (e.g. F=F ₂), and (ii) If 1+1≠0, then H ₂ (∑:F)= {0 if ∑ is non-orientable (e.g. F=Q,R, F ₃ ,F ₅ etc)
	Thoughton to be provided later.
	Euler dustractoristics
	TERMINAN LOT K=(VK,SK) be a finite simplicial complete. Let VK(n) be the number of n-simplices of K. Then the geometric Ender characteristic is given by Xgeom(K)= \(\sum_{n>0}^{\infty} (-1)^n VK(n) \).
	The homological Euler characteristic is given by $Y_{\text{hom}}(K) = \sum_{n \geq 0} (-1)^n \dim H_n(K: F)$.
	There en by the simplicial complex, it is field then Yhan (K) = Xgeam (K).
	Book - Let Cx(K:1F) be chain complex of K with coefficients in 1F. then dim Cn(K:1F) = DKW = no. of n-simplice of K. Consider Cn+1(K) - Cn(K) - Cn-(K), and also put
	(kt).
	Cn = Cn(K), Zn=Ker GN, Bn=Im(3n+1), so th= Zn/Bn s.t. dim th= dim Zn-dim Bn → dim Hn + dim Bn= dim Zn. Moreover, 0 → Zn → Cn → Bn→0 is
	exact, so dim Cn = dim 2n+ dim Bn-1 ⇒ dim Cn-dim Bn-1 = dim Zn Then (x)=(xx) st. dim Hn+ dim Bn = dim Cn-dim Bn-1 and then, we get
	$(+)^{n} \dim H_{n} + (-1)^{n} \dim B_{n} = (+)^{n} \dim C_{n} + (-1)^{n-1} \dim B_{n-1}.$ Summing over all n , $\sum_{n} (-1)^{n} \dim H_{n} + \sum_{n} (-1)^{n} \dim B_{n} = \sum_{n} (-1)^{n} \dim C_{n} + \sum_{n} (-1)^{n-1} \dim B_{n-1}.$
	Then By, Brit towns see equals so 1/2 hom (K) = 7 (1) dim th = 7 (4) dim Gr = 1/900m (K).
	· ·

2203-07

Examples - Calculate $H_X(T^2)$: We trianguiste T^2 as an right: χ^2 geom $(T^2)^2 \vee (\Omega - \nu \Pi) + \nu (\Omega = 9 - 27 + 18 = 0$. Thus, χ^2 hom $(T^2) = 0 \Rightarrow$ $\frac{\dim H_0(T^2;\mathbb{F})-\dim H_1(T^2;\mathbb{F})+\dim H_2(T^2;\mathbb{F})=0}{\det H_0(T^2;\mathbb{F})=\frac{\dim H_0(T^2;\mathbb{F})}{\det H_1(T^2;\mathbb{F})+1=0}} \frac{\dim H_2=1}{\det H_1(T^2;\mathbb{F})} \frac{dim H_2=1}{\det H$ · columbte Hx (RP2): Two cases, if 1+1=0 or +0. Then /geom (RP2) = 10(0) - 1/(1) + 1/(2) = 6-15+10=1. → /hom (RP2)=1 over any .F. If $f(+1\pm 0)$ $h_1=dim Hr$, then $h_2=h_1=1$. $h_2=1$ (connected), $h_2=0$ (not one-wable) $\Rightarrow -h_1=0 \Rightarrow h_1=0$. $H_k(\mathbb{R}^2:\mathbb{H})=10$ otherwise |f|+1+1=0, $h_0-h_1+h_2=1$. $h_0=1$ (connected) $h_2=1$ (always time), so $2-h_1=1 \Rightarrow h_1=1$. Hy(RP²:F)=10 otherwise Let Z be a fluite simplicial complex. We say that Z is a sturface when Y vertex $Y \in Z$, $U_{1} \subseteq S^{2}(Y) \subseteq S^{2}(Y)$ for one $Y \ge 3$. The idea is what the harizon is a circle. $(e_{1}, e_{2}, e_{3}) \subseteq S^{2}(Y) \subseteq S^{2}(Y)$. Solid $I_{1}(Y) \subseteq S^{2}(Y) \subseteq S^{2}(Y) \subseteq S^{2}(Y)$. this is a surface, however. (8) this is only "almost" a surface - it has one "bad point". First observe that in S1(n), every vertex belongs to exactly two 1-trimplices. [good] but not more e.g. Combined in a surface, every 1-simplex lies in exactly two 2-simplices. FORE- Let e=1/1/10) he a 1-simplex. Consider UK 5 (1) ≅ 5 (11). NOW WELK 5 (V) as wis joined to v. So w hos in exactly two 1-simplices, e1,e2 ⊂ UK 5 (V). then the joins eix v are 2-simplices containing e= {v, w}, i=1,2, q.e.d. Depution Two 2-timplices of take soid to be adjacent when ont is a 1-simplex i.e. of the 2-simplice constraining ont. Toofsiction by 2 be a surface, and let of t be 2-simplifies in E. By a copiety from onto t we make a sequence of 2-simplifies to , 07, ..., on such that of 00, t = 04 and of is adjacent e.g. for Tz, we have the standard triangulation Theorem let S be a connected scurpace, and let o, t be distinct 2-simplices in S. then there exists a copath from o to t. Troof - A priori true have three cases: (0) ant is a 1-simplex, (1) ant is a vortex or (2) ont = d. (ase (0) is easily recolved by setting to = 0, of = t by adjacently. For cosec(1), let ONT=1/1. Then counidar (k5(v) \sim 51(v)). Since v∈ \sigma, \sigma = e * \varphi \ where e \circ (k5(v)) \sigma 5(v). But \lk5(v) \sigma 5(v). let e=e0, e=eN, then we can dearly go from e to e shong adjacent edges e=e0, e1,..., eN=e'. But 00=e0*V=0, 01=e1*V,..., then ON = EN * V = I, so this is a copoth. Finally, me proce (2) using induction on the minimum length between of and I. let V be a restex of G, when rostex of I. Then woulder niviumum length of a path from v+0. W. then for PM, our induction base, n=1 > dv, wt is an edge, a 1-simplex. Then then think lies in exactly two 2-simplified & and B. VE of NOT 1, so by (see (1)), there is a copath from 5 to day, WE BOT, so by (1) I copath B=0 M+1, ..., ON = T Since of B are adjacent, there is a copath o=00, 01,..., 04-1,0N=T from a to T. then for inductive step, suppose proven for P (41) i.e. simplices to p joined by a path of length & M. Suppose 3 path of length mad from 0 to I. The path is of the form Yo, V1..., Ymal where V; are vertices, Yo & O, Vmalet where 1/1, Viril is a 1-simplex. Thead 2-simplex p which contains Vm. by induction, I capath or = to, the formal p and t are joined by a path of length 1. 50 3 copoth f=0', OK+1,..., TN=T. Then 0=00,...., ON=T is a copothy que d. Let Talbych be a 2-simplex we convoient or in 2 different ways. [0]=[a|b|,c]=[b|c,a]=[c|a|b]. The apposite orientexion is -[0]=[a|c|b]=[c|b|a]=[b|a|c].

Then [a|b] his incidence +1 in [a|b,a] and -1 in [a|c|b]. 2[a|b]. 2[a|b,c]=[b|c]-[a|c]\(\frac{\psi}{2}[a|b], \frac{\psi}{2}[a|b]] = [c|b]\(\frac{\psi}{2}[a|b] + [a|c]\) Extension let I be a connected surface. I is said to be accentable when one can essign accentations to 2-simplices in such a way that if On Tile a 1-simplex, then the incidence number of orat in o is opposite to the incidence number of ont in t. let Z be a finite connected surface. We seek to compute $H_2(Z:F)$ where F is some field consider the sequence $O \to G(Z:F) \xrightarrow{2} G(Z:F) \xrightarrow{2} G(Z:F) \xrightarrow{3} O$ where $O \to G(Z:F) \xrightarrow{3} G(Z:F) \xrightarrow{3} G(Z:F) \xrightarrow{3} O$ H₂(Σ : F) = Ker (Ω_3 : Ω_2 \to Ω_1). List the 2-simplies of Σ , Ω_1 ..., Ω_N . It denote Ω_1 with a particular orientation. In element of $\Omega_2(\Sigma : F)$ looks like $\Sigma = \sum_{i=1}^N \alpha_i [\sigma_i]_{i,j}$ and an element of $H_2(Z:|F|)$ is such an expression in which $\partial_2(z)=0$. Bopoising if $\partial_2(z)=0$ and some $\alpha_i=0$, then every $\alpha_i=0$ and z=0. Roof suppose that [0]=[0] and a:=0, and later the any other 2-simplex. Say [1]=[0]], it is there to show a;=0. Choose coputh 0 = from fret ruch that the Then the coefficient of Pan B2 in the expression 32(2)=0 is simply by ± 62=0 to coefficient of every 1-simplex in 32(2) must be 0 to 32(2)=0. by=0 >> 62=0 We iterate this process. Likewise, P_2 , P_3 are adjacent so $b_3 = 0, ..., b_K = 0 \Rightarrow coefficient of <math>[CC] = 0$, q.e.d.Hence, if $z=\frac{N}{1-2}$ $q:[\sigma:] \in H_2(\Sigma:F)$, then $z\neq 0 \Rightarrow error$ q:=0. We can refine this contenent furtherm.

Finite connected

Examples -(0) feet $F=F_2=40,11$. Then f_N surface $\frac{N}{2}$, we list the (unoriented) simplifies $\sigma_1,...,\sigma_N$. $\sigma_1,...,\sigma_N$. $\sigma_2[S]=0$. Here, we need not more about signs in calculating 32. If c is my 1-simplex, e=07 to ore 2-simplices and coefficient of Tel is 32(151) = coefficient of 0+ coefficient of T=1+1=0. This is true for every 1-simplex e, so 32(2)=0. [5]= = [0] is soled the mod 2 Fundamental class of 2.

	Totallogy Σ is a finite connected surface, #= 15=10,11. Then H₂(Σ:15) ≤ 15 with a single non-zero element (Σ) mod 2 fundamental class.
	Now let I be a finite connected orientable surface, and let I be any feed in which 1+1+0. A I is orientable, we assign definite orientations to the 2-simplices [0,1],, [0,1] s.t.
	(e,i) = -(e,j). if e= 5; n of (i + j) is a t-simplex, then inidence number of [e] in [oi] = -incidence number of [e] in [oj]. Define [E] = [e] [oi]. In the expression of 3 ([E]), the coefficient
SAT	ofle) is $(e,i)+(e,j)=0$ where $[\sigma_i]$, $[\sigma_j]$ are such that $e=\sigma_i$, e_j . This is true for every e , so $\Im_2[\Im_2]=0$. dearly $[\Im_2]\neq 0$.
	tabley If Z is a finite microcal surface and IF is a field in which 141=0, they Hz(Z:1F) +0 and contains [Z]. (fundamental class over 1F).
	Thrown let Σ be a finite connected oriented surface (IF some field). Then $H_{\Sigma}(\Sigma;F) \cong F$ generated by $L\Sigma J$.
	hoof-lift the 2-simplified of, on and assume they are comparistly oriented so that if of 1) of is a 1-simplex, then (e,i) t(e,j) = 0. Let = \frac{1}{2} a_i[o_i] \in \text{Kar } \frac{2}{2} = \text{Hz}.
	Chase a particular 1-simplex e. Then e=0; noj. The adjicant of [e] in expression 32(2)=0 must be 0. But also, conflicted of e = a; (e,i) + a; (e,j), so a; (e,i) = a;
	But (e,i)=-(e,j) so a;=aj. Then whim that Yi, K, ai=an. Choose a copan from of to OK. Then O:=fo,, Pp = OK. Let b; be the coefficient of f; (reindexing
	a; terms as before). Coefficients remain constant $-a_i = b_0 = b_1 = \cdots = b_p = a_k$. Let $\lambda = constant value of a_i as i = 1, \cdots, N, z = \lambda \Sigma (i.e. E). So H_2(Z:F) \cong F generated by \Sigma (generated by E \Sigma = sum of consistently oriented 2-simplices).$
	(generable by (Σ)=sum of consistently oriented 2-simplice). 1+1+0, 9-éol- sofor, we have shown let if Z is a fairte connected sourface, (1) H2(Z:F5) ≃ F5. (2) H2(Z:F) ≃ F if Z is arrentable. It remains only to show H2(Σ:F)=0 if Z is non-orientable.
CON CON	111 = 0. local Rof FED Johnson.
	To show the lost part, let Z be a finite connected non-orientable surfact the e-simplices [07],, con I taken with arthropy (but fixed) orientations. Then let us done (hemistry LT.
	funtion P:11,, Nt -> 1±17, and ZIPIE ColZ:1F) by Z(P)= = 7 p(i)[Oi]. There are 2 such p terms. Regardless of p chosen, 32[I(P)] to become I is noncointable. How suppose
	NEXT (3, C2→C1), 3(d)=0. We wish d=0. N= = [=] a:[0;] a;eff. suppose that 0; 0; or adjacent and 0; no;=e. In the formal expression for 3.6), coefficient of e is (±1)a;t (±1)a;
<u></u>	Since 266=0, then coefficient of e is 0, so a;=(±1)a; this is true for any adjacent 2-simplices or, o; . For each 1672, choose a copost, from or, to or, soing along coposts, me get ak=(±1)a,.
	so d = a1 (\(\frac{N}{\pi_2}\) for some \(\frac{N}{\pi_1}\) \), \(\frac{N}{\pi_1}\) \(\frac{N}{\pi_2}\) \(\frac{N}{\pi_1}\) \) for some \(\frac{N}{\pi_1}\) \(\frac{N}{\pi_1}\) \(\frac{N}{\pi_1}\) \(\frac{N}{\pi_2}\) \(\frac{N}{\pi_1}\) \(
	Hence, $H_{2}(\Sigma; F) = 0$ for Σ non-oxiontishle finge. d.
	the state of the s
	Gordond examples of surfaces.
	(9) 5^2 : $\bigcirc \sim \bigcirc \sim$ priguestike. HK(5^2 : F) = $\begin{pmatrix} F & k=0 \\ p & k=1 \\ p & k=2 \end{pmatrix}$ 5° is the priority in surface of genus 0.
	(1) T2: O ~ # HK(T:F) = { FOF K=1 FOF K=2 Ho implies T2 is connected, H2 implies that T2 is orientable.
	Governed states.
	Σ_1 \subset Σ_2 .
	suppose Σ_1, Σ_2 are simplicial surfaces. Let σ_1 be a 2-simplex in Σ_1, σ_2 be a 2-simplex in Σ_2 . permane the interiors of σ_1, σ_2 and then "glive" the boundaries together i.e. σ_1
	identify $a=a'$, $b=b'$, $c=c'$. Then the resulting simplex is the connected sum of Ξ_1 and Ξ_2 , denoted $\Xi_1\#\Xi_2$. For inverse, figure on the right is $T^2\#T^2$. A A A A A A A
	botting book, 5° is also called \$\int_0^+\$ is also called \$\int_0^+\$ is also called \$\int_0^+\$.
	Influidon) the orientable surface of general g is defined as $\Sigma_g^+ = T^2 \# \cdots \# T^2$ For instance if $g = 3$, $G = 3$. If $g = 5$, $G = 3$.
	Rambork-This gives on influite family Zot (9>0).
	For non-orientable surfaces, our book braiding block is \mathbb{RP}^2 . We call this surface Σ_0 , and it is triangulated is such $2\mathbb{E}^2$. Then, building from it, we define $\Sigma_1 = \mathbb{RP}^2 \# \mathbb{RP}^2$.
- 1	This has another description, the so-called tolera gottle, Kt. We can describe K2 as follows: We describe T2 by \$5\$, then K2; identified \$5\$
1	So we can triongulate it by 3 4. We will createdly show that K2 RP2 HR2. We fine, in general Sq = RP2 + # IRP2. with all this background, we can stope a theorem.
	4 13
	There (destriction theorem)
	let I be a first connected surface, then I is combinatorially equivalent to exactly one of Ξ_g^+ or Ξ_g^- (930).
	3. March 2014 Ref ERA Johnson Call Address of Address o
	We executive a few configures. On a restricte, if we identify edges to schematically represent complexes solvid IT roberts Got
	we get a caplinder or we get a Möbius band: (denoted Möb).
- 1	the boundary of the cylinder is given by 2 (cylinder) = 5° LIS¹, whereas the boundary of the cylinder is given by 2 (Möb) ≈ 5°. Hence, the cylinder + Möb!
	Earlier, we obtained that $K^2 \sim RP^2 \# RP^2$. consider $RP^2 \setminus 13,4,5$, which is the plane with the cooperate 2-simplest excluded.
	1 2 instructuring points X, X, Z. Then we also triongulate the Möbius band so follows:
	Motch each of the existing edger from RP2 to this triangulation. Moib = = 4 2 z to such, we see that the two complexes are combinatorially equivalent.
	2 0 3
	there $R^{0^2} - 12$ small of $\sim M\ddot{\omega} b$.

32m2 -

	Brolley If Z is a surface that contains Möb, then Z is non-onentable.	
	Those - Trying to orient RP? we get a contradiction without considering at least one 2-simplex.	
	Theorem $K^2 \sim R^2 + R^2$.	
	hoof- Recall definition of #. Let ∑, ∑ be triangulated surfaces. Define Zo to be Σ-12-simplext, likewise ∑o so ∑o-12-simplext. Hence 2∑o=	:51, 326 \square 51. Then
		n colourings 121 and 122
	Chestry, 2 is a Nibino bond. B = Mob = PPo. For S, we join the common edge 1	
	Hence, No is also Möb = RP2. So K2 = Möb y Möb = RP2 3 = RP2 = RP2 + RP2, q.e.d.	
	هر.	
	Dressly, we get a family of standard surfaces: Zo Z	
	2	
	The surfaces Σ_{g}^{+} and Σ_{g}^{-} correspond (c.f. Fundamental groups: Σ_{g}^{+} is a double correr of Σ_{g}^{-}).	
	Reportion $\ Z_1Z'\ _{2}$ we furthe simplicial surfaces, then $\chi(Z\#Z') = \chi(Z) + \chi(Z') - 2$ $\chi(Z) = \chi(Z) + \chi(Z') - 2$ $\chi(Z) = \chi(Z) - 1$ (since we have lost a 2-simplex). Use	· 1 - 1
	Proof-consider $\Sigma_1 \Sigma : Z = Z_0 \cup Z_0$ and $\chi(Z_0) = \chi(Z_1 - 1)$ (since we have lost a Z -simplex). Use	use x(20)= x(2)-1.
	Let $v(r) = r-simplices\ of\ \Sigma_0 $, $v'(r) = r-simplices\ of\ \Sigma_0 $. Then $v(\Sigma + \Sigma) = \sum_{i=0}^{\infty} v_i ^2 + \sum_{i=0}^{\infty} v_i ^2 +$	1-2/1.
	Roof-Alterdy seen this is true for $g=0,1$. Suppose true for some $g\ge1$, then $\Sigma_{g+1}=T$ # Σ_g^+ , then $\chi(\Sigma_{g+1})=\chi(T^2)+\chi(\Sigma_g^+)-2$, then by hype	
	$\chi(\Sigma_{q}^{+})=2-2q$, since $\chi(T^{+})=0$, $\chi(\Sigma_{q+1}^{+})=0+2-2q-2=2q=2-2(q+1)$. Since Σ_{q+1}^{+} is when table, $\pm 1_{2}(\Sigma_{q}^{+}:F)$ is 1-dimensional. Since it is	
	$H_0(\Sigma_q^{\dagger}:F)$ is 1-dimensional. Hence, $\chi(\Sigma_{q+1}^{\dagger})=2-2(q+1)=2-\dim H_1(\Sigma_q^{\dagger}:F)\Rightarrow \dim H_1(\Sigma_q^{\dagger}:F)=2(q+1)$. Honce, proven by inducting	m/1 q.e.d.
	Theorem let $F_2 = 10,11$ be the field with 2 elements. Then $Hr(Z_g: F_2) \cong \{F_2 : F_2\} \cong \{F_2 : F_3\}$	
	Roof-this is true for $g=0$, as $H_{K}(RR_{2}:R_{2})=\begin{cases} R_{2} & r=1 \\ R_{3} & r=2 \end{cases}$. Then suppose this is true for $g\geq0$. Then $\sum g+1=RP^{2}\#\sum g$. Then $\sum (\sum g+1)=\sum (RP^{2}+1)=1$	2)+x(\(\sugma_g\))-2.
	Since $\chi(PP^2)=1$, by induction hypothesis, $\chi(\overline{\Sigma g}+1)=\chi(\overline{\Sigma g}+1)=[1-(g+1)+1]-1=1-(g+1)$. Since $\overline{\Sigma g}$ is connected, the $(\overline{\Sigma g}+1)$	$F_2)\cong H_2(\Sigma_{g+1}:F_2)\cong F$.
	Hence, $\gamma(Z_{g+1}) = 2 - \dim H_1(Z_{g+1} : F) = 2 - (g+2) \Rightarrow \dim H_1(Z_{g+1} : F) = g+2 = (g+1)+1$. Hence, proven by induction, $g = 2$.	
	We now know that $\chi(\Sigma_g)=1-g$ [which is half of 2-2g]. Since χ is field-independent, we can columbte rational homologies quite easily.	
	[cootly let F be a feet in which 1+1 \$0.68 F = Q.R. 1831], then Hr(50:F) = (15) = 1	
	Anoth - H2(Zg:F)=0 as Zg is non-orientable, and since X(Zg) is conserved at 1-q, dim H0(Zg:F)=1 ⇒ dim H1(Zg:F)=gy q	e.d.
	Thrown let g,h >0 be integers, s,te11/19. Then $\Sigma_g^s \sim \Sigma_h^t \Leftrightarrow g=h$ and s=t. In particular, if g\$h or s\$t, then $H_*(\Sigma_g^s, \mathbb{Q}) *H_k(\Sigma_h^t, \mathbb{Q})$	•
	Proof - compute $H_X(-,\mathbb{Q})$, which distinguishes between the standard spaces.	
	Question: What happens for Zg # Zh? We nid executually see that T2# RP2~ RP2# RP4 # RP2. Analogously, we infer that Zg # Zh~ Zzgth.	This will be proven later.
	Fixed "Point" Theorems.	
	Recall the Intermediate lature Theorems. If f=1-1/13→5-1-1/13 is continuous, then ax € 1-1/13 sq. f(x)=x. We then consider similar theorems in higher dimensions	. <u> </u>
- 7	Here, for continuous f: [-1,1]2 -> [-1,1]2, 3x e [-1,1]2 s.t. f(x)=x. Lipewise for three dimensions and more, 3x e [-1,1]n, f(x)=x. First placed by Brown	1 1 1
		or.
	Let $f: [-1,1]^n \to [-1,1]^n$ be a continuous mapping. Then $\exists \times \in [-1,1]^n$ s.t. $f(x) = x$.	
	Brosom (lefahets's Friedsimplex theorem).	(P) den : P) (P) + 0
	Let X be a simplicial complex, f: X > X be a simplicial mapping. Hr(f): Hr(X:Q) -> Hr(X:Q) induces livear map. Define reflections 2's number \(\lambda(f) = \bar{\bar{\beta}}_0 (-1)^K \tau (\bar{\bar{\bar{\bar{\bar{\bar{\bar{\bar	(f)), men if vitite)
4 17 -	Au - ain / Au - ain / Au - Au	
	Pemark - If Hr/f) = (an - ann), then the trace is Tr(Hr/f) = 2 arr.	
	Digitalian on G. 1878 1 12 and the manufacture of the state of the sta	5 March 2014. Rof FEA JOHNSON ·
	monages of the country and trevial and trevial	hemistry LT.
	Proof- let A=(ay), B=(bke). Then (AB) == = ayibie, so (AB) == = ayibie, and Tr(AB) == = = (AB); == = = ayibie, then (BA) == = = ayibie, so (AB); == = = ayibie, and tr(AB) == = = = ayibie, then (BA) == = = = ayibie, then (BA) == = = = = ayibie, then (BA) == = = = = = = = = = = = = = = = = =	or of E)
	then Tr(BA): \(\frac{2}{5} \) (BA) \(\frac{2}{5} \) \(\frac{2}{5} \) \(\frac{1}{5} \) \(\frac{1}{	q.e.d.
	Remark - Beneare that $Tr(AB) \neq Tr(A)Tr(B)$. To see this, let $A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $A^2 = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$. Then $Tr(A^2) = 2$ but $Tr(A)^2 = 0$.	
	tember let A, P.G. M. (LF) with P. invertible, then Tr(PAP1) = Tr(A).	
	ROOP - Tr(PAP-1) = Tr(P(AP-1)) = Tr((AP-1)P) = Tr(AP-1P) = Tr(A)/, ged.	
	Remote - If Could is the characteristic polynomial of A, than Could = ± det (A-ti), then Tr(A) = ± coefficient of t.	

203-10.

E= E= to V be a finite diversional rector space over it, 5:V→V & linear map. Then bet Ley..., ent be a bosis for V. white s(e)= = {1 \in 2 \in 3 \in 1 \in 2 \in 3 \in 1 \in $S(P_i) = \sum_{j=1}^{N} P_j b_j$. Then $M_{\frac{1}{N}}^{\frac{N}{N}}(S) = B = (b_{ji})$. Then $M_{\frac{1}{N}}^{\frac{N}{N}}(S) = M_{\frac{N}{N}}^{\frac{N}{N}}(Id) \Rightarrow B = PAP^{-1}$ where $P = M_{\frac{N}{N}}^{\frac{N}{N}}(Id)$, the matrix of the change of basis. Then IT(B) = Tr(A). Hence, the trace of a linear map to independent of the chosen basis. If $S: V \to V$ is linear, dim V < too, then $TY(S) \in F$ is defined as follows; Write $S(e_i) = \sum_{j=1}^{N} e_j a_{ji}$, $A^{-1}(a_{ji})$, and define TT(S) = Tr(A). let K be a finite simplicial complex. f: K>Kd simplicial map. Then we get induced maps Crift: Crift: F). He can take $\operatorname{Tr}(\operatorname{Crift}) \in \mathbb{F}$. Perfine λ great $(\beta) = \sum_{r \geq 0} (1)^r \operatorname{Tr}(\operatorname{Crift})$ to be 0 -> u - V - W -> 0 Theorem With the above notation, Ageom (f) = 1 hom (f). We first need to prove solditivity of Ir on exact sequences. The on exact sequence of Flinesh maps, dim V finite. Assume diagram communities, PIRS livear.

ONE OF V SW >0

O Proof - observe U= Kox(?). Let leit1= = K be a basis for U, Tift is sen be a basis for M. P is surjective so chase = = = V, s.t. p(=) = (g) = (g p S(ei) = \(\frac{7}{2} p(ei) di; + \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (\(\frac{7}{2} \)), so \(\frac{7}{2} \) (\(\frac{7}{2} \) (Trus = Trus. Ripi = Z giv; for some viets then RP(\$\varphi\$) = \(\Sigma \varphi \varp O+ \(\frac{7}{5} \bigsign_{1} \sigma_{2} \cdot \frac{7}{5} \bigsign_{1} = \delta_{2} \bigsign_{1} \text{, hence TV(R) = TV(S). Hence, TV(S) = TV(Q) + TV(R) \bigsign_{1} q \in d. 3raf (thin) - 2r: Cr → Cr. Br = Im(2rm), Zr = Ker(2r). Br CZr, Hr = Br Zr. Then we get the commutative diagram 0 → Br → Zr → Hr → 0 10 March 2014

Since both rows are exact, we conclude that Tr (Zr(f)) = Tr (Br(f)) + Tr (Hr(f)). moreover, we | Br(f) | Zr(f) | Hr(f) | Tr (Br(f)) + Tr (Br(f) who have the diagram so on right? This gives no absorbe conclusion $\operatorname{Tr}(\operatorname{Cr}(f)) = \operatorname{Tr}(\operatorname{Zr}(f)) + \operatorname{Tr}(\operatorname{B}_{r-1}(f))$.

Then $\operatorname{Tr}(\operatorname{Zr}(f)) = \operatorname{Tr}(\operatorname{Cr}(F)) = \operatorname{Tr}(\operatorname{B}_{r-1}(f)) + \operatorname{Tr}(\operatorname{Br}(F)) + \operatorname{Tr}(\operatorname{Br}(F)) + \operatorname{Tr}(\operatorname{Br}(F)) + \operatorname{Tr}(\operatorname{Br}(F)) + \operatorname{Tr}(\operatorname{Br}(F)) + \operatorname{Tr}(\operatorname{Br}(F)) + \operatorname{Tr}(\operatorname{Br}(F))$. i.e. (1) Tr G(f) = (1) Tr Hx(f) + (-1) Tr Br(f) + (-1) Tr Br-1(f). Take elementing sum: \(\lambda geom (f) = \lambda \lambda \lambda \lambda (f) + \(\bar{\infty} \) Tr Br(f) + \(\bar{\infty} \) (-1) Tr Br-1(f). > hgeom(f) = hom(f) + = (1) Tr Br(f) - (3=r-n(1) B3(f) = hom(f) / q.e.d. what information does Agram(f) provide. Let $f:K \to K$, $Cr(f) \cdot Cr(K) \to Cr(K)$, $Cr(f) \cdot [v_0,...,v_r] = [f(v_0),...,f(v_r)]$. the matrix of Criff) is square. In each column we get of most one non-zero entry which is either +1 or -1. On the diagonal of Criff), we get non-zero entries only when that particular r-simplar gets mapped isomorphically to itself up to sign. If no r-simplar is mapped to itself, then diagonal of G(f)=0, so Tr(G(f)=0 (reny meak statement) So if no simplex of K is mapped to itself, then $\sum (-1)^n \operatorname{Tr} \operatorname{Crl} f) = 0$ (even weaker statement). If f:K→K is simplicial, K finite complex, then Nf1+0 > f maps at least one simplex of K to itself isomorphically, up to sign. from - 10 me have seen, if f maps no simplex to itself, then h geom (f)=0/ q.e.d. Note - Ageom(f) retains chough information to prove the theorem, but hum(f) is useful in applications. licalibry (fromwer's Fixed Simplex Theorem) -Let K be a finite complex s: $K \sim \Delta^n$ (i.e. combinatorially equivalent). Let $f: \Delta^k \to \Delta^k$ be simplicial. Then \exists simplex σ of K st. $f(r) = \sigma$ (ignoring sign). Then f(r) = T t so [v] = |f(v)|, so Holf)=|d, Tr Holf)=1, so f his a fixed simplex by lefscheiz's theorem. Amoration let K be a finite complex. Then ThK) = \(\ldk). hoof-id: K→K induces ldy: Cr(K:1F) -> Cr(K:1F). so Tr(Idy)= dim Cv(K:1F). so = (-1) Tr(Idy) + = (-1) dim (Cx:1F)= \lambda(k) \ dim (Cx:1F)= \lambda In general, N(f) depends on the field IF me are working over. For a sensible choice, if possible take F=Q. Roof-Take $H_K(K; \mathbb{Q}) \circ \{0\}$ k >0. How apply same proof as for Browner's Theorem, g.e.d. Sofar, we have death entirely with simplicial complexes and simplicial maps. As such, it is a finite throughout is completely computable in principle. Take $f = f_1, ..., f_k : \mathbb{R}^n \to \mathbb{R}$ smooth, $X(f) = \{ X \in \mathbb{R}^n \ \forall : \ f_i(x) = 0 \}$. With a bit of luck, X(f) mill be a manifold of dimension n-k. i.e. $\forall x \in X(f)$, \exists neighbourhood \forall in X(f), such that X = R^-k is diffeomorphic. Each such X(f) can be triangulated as a simplicial complex i.e. I simplicial complex K with maximal simplices 07,..., on let to be a complex set in Rook. Then $|K| = \bigcup_{i=1}^{n} |\sigma_i|$ and $h: |K| \rightarrow \chi(f)$ is a homeomorphism (THC whitelest, c⁴ triangulation Lemma, 1940). let K be a (furthe) simplicial complex, L. IKI 🛎 X(f). Since Hk(K) defined for K, we can expect to define it in the same way for X(f). However, it was later shown in 1915 that topological invariance holds

32~2-1

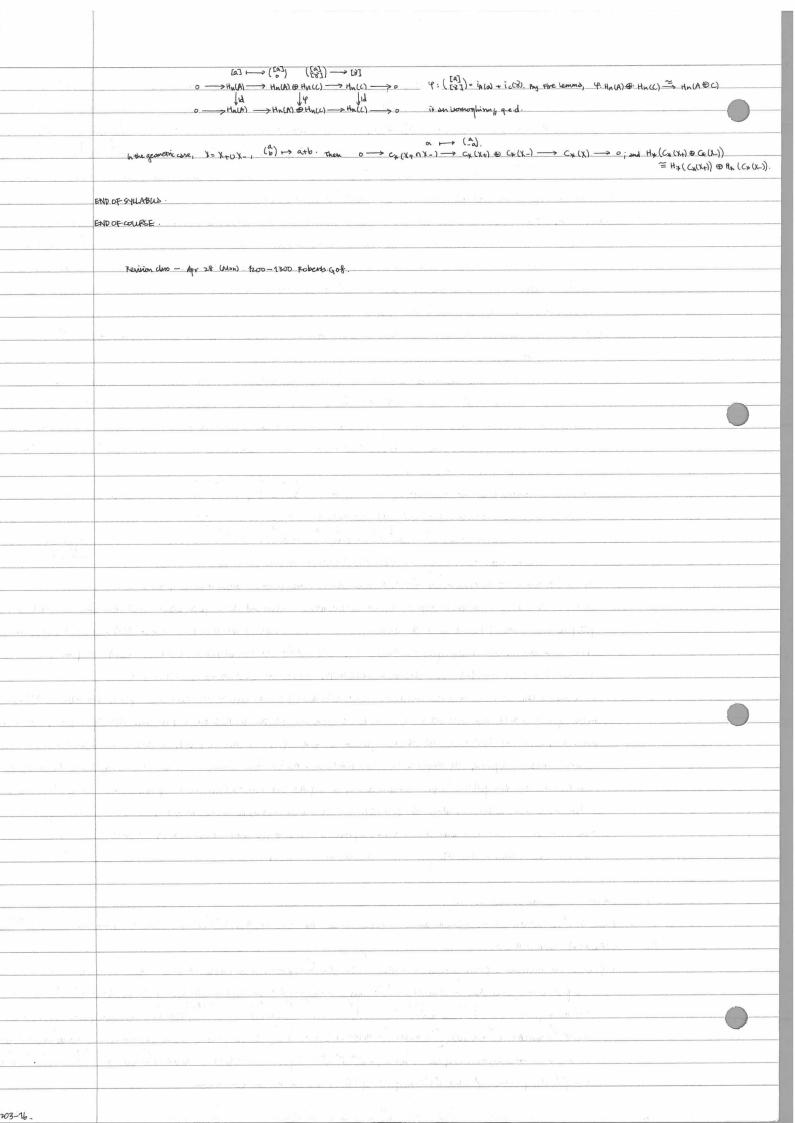
Topological invariance of Hx:			7		
The Browner Fixed Point theorem give	o that if D"= 1x = PR".	11x11 <15, 11x11= 1x2++ x2, f	$: D^{N} \to D^{N}$ countinuous. $\ni X \in$	D", f(x)= x. Browner's proof	not effective.
refunder's fixed point theorem. f: x-	X continuous, Xhom (f):			Thistion: h 1 IFI Th	
A		5 7 CR	$I^2 = \int_{-\infty}^{\infty} \left(c \mathbb{R}^2 \right)$	I3 = holfl do close do	you like to poh.
Roducts.			(0,0) (1,0)		I"~ 2".
The n-simplex is the efficient way to					
It is computationally inefficient to a	use cubes, but they are	e natural for products, I"XI	"≅ I" . Contractingly ha	were, $\Delta^m \times \Delta^n$ is not a six	uplex. It justed yields a prism.
For instance, consider $\Delta^2 \times I$,	(), which is no	ot a simplex. To triongulate a			
By a partially ordered set (poset) we	e mean a pair (X, <),	where 3 is a relation on X satis	fing (i) \x, x \x,	(ii) ¥ * y, (x≤y)∧(y≤x) <=	> x-y. and
$\frac{diii}{(x \leq y) \wedge (y \leq z)} \Leftrightarrow x \leq z.$					
Roduct of posets: suppose (X, S)	and (Y, S) are posets	. Then define a new partial and	eving on XXY by (X,y) =	(x',y') \$ (x ≤ x') \ (y ≤	y'). For instance, let us take
$X=Y=(0 \leftarrow 1)$. Then $X \times Y=$	(0,0)	This is not totally ordered, do t	there is no comparison between	en $(0,1)$ and $(1,0)$. \triangle^n has	vertex set 40,1,, n}.
We can impose shandand ordering on	vertices 0+1+	← n-1 ← n. So 3 notwood pa	utid ordaing on vertices of A	$M \times \Delta^{N}$, the standard triangu	lation of $\Delta^{m} \times \Delta^{n}$ is as follows:
· As member set take 50,1,, my x	40,1,, nt i.e. 1(1,5	5): 0 < r < m, 0 < s < a t A	simplices take the totally or	dered subsets.	
	get as above (0,0)	1(1,0), with torsuly and ared	dges. The two 2-simplices on	e 1(0,0), (0,1), (1,1)}, 1(0,0), (1,0), (1,1)}.
for $\Delta^2 \times \Delta^1$, we get the simplicial		$(0,0) \leq (1,0) \leq (1,1) \leq (2,1)$ another maximal simplex	(0.0)	(2,0)	((2,1)
		(0,0)	(1,0)	(0,0)	
· · · · · · · · · · · · · · · · · · ·	(4,4)	(1,1)	(1,0) NOT YEL	(1,1) - triangulated.	
How to tridugulate a cube: To every six	mplex and, we can associa	ste its bangiermic subdivision - i		1947	mpler description:
For Λ^2 , we get 0 Λ^n is $10,1,,n$.	2 544	Thon we get 10;	24 11,24 with central west	ex 10,1,27. Now take C(B	(Δ^n)), which yields a natural
For Δ^2 , we get 0 1 1 1 1 1 1 1 1 1 1	4-simplies	$B(\Delta^2) \qquad 10^{\circ}$ $T^{h+1} = \Gamma_0 \Lambda^{-1} \times \dots \times \Gamma_0 \Lambda^{-1}$	ANY AND	Exalt think of a nestex of	Int do a Runchian
And the same of the same of		1 Int = [0,1] x x [0,1] 00000		χρ: 10,, n} → 10,15, ×μ	
v: 40,1,, m> → 40,15. To each subs			ΛC	(0,0,,0)-	
(i.e. imagine this is a cone to invi	sive vertex (0,0,,0,	mith bangcentre at 11,1,, 1)		do Milita politi
WA 14		M M			12 Manh 2014 First FEA JOHNSON . Chamistry IT.
Neholine shown that $\Delta^{M} \times \Delta^{N}$ with between	iongulated using notural	order in A, A. suppose XY or	e simplicial completes. We can dec	orbe XXY in terms of OXI,	
where of its a simplex of X, I & si					
the exilest "get out" is to replace X					
Note that obviously, X~BW, Y~B					
dnious problem. Giren XIX can me	express HX(XXY:1F) in	n toms of H*(X:1F), H*(Y:1F)	? Anomer: Yes. We state a re	mult, and then prove several q	recific examples of it.
this theorem was first formalised by	Künneth (c. 1930).		- Terra de la companya del companya de la companya della companya	<u> </u>	
Theorem (Künneth Theorem).		<u> </u>	k		
HK(XXX:E) = PO +	4+(X:F) & Hk+(Y:F	=); or numerically, dim the	$(XXY: F) = \sum_{r=0}^{\infty} \dim H_r(X:TF) c$	lim HK-r(Y:1F).	
We will not prove this, but we will prov	re two consequences of it			300 000	
Landony (I) HK(XX△n:F) ≅		1 1 1			
(II) X (XxY) = X(X) X	(Y).				
Proof - (I) By induction.	$i: X \to X$ Define maps $v \mapsto (v \mapsto x)$	$\times \triangle^{N}$ $\pi : X \times \triangle^{n} \to X$ $V_{1}(0)$ $\pi(V_{1}, Y_{2}) = V$. i is	on indusion, It a projection. HX(XXAno F) is an isomorphism	Then we have	
	is a finate simplicial comple	(a) ix: H*(X:F) = x, then (b) T*: H*(X×4":F	→ H*(X×△n°F) is an isomore → H*(X×1F) is an isomore	pum prism	
	(4)	mt "i*+H*(X:F) → H*(X×			W. II IVITI DI IVVE
Hod		.,,			HEMON IA: HA (V.IL) SUX (V.S)-IL
	is an isomordais :	dim IN & m and X has executed K in	simplifies. Note that . Pom) =	KSO Punik) and . Punts	
		dim (x) < m and x has exactly k m (induction base) (indu- that: P(b) is true and P(b)	-simplicies. Note that · P(m) = chion Step)		o) = P(m).
	So it suffices to show t	that: P(0) is true and P(0	esimplicies. Note that $P(m) = ction Step)$ $m_1(k) \Rightarrow P(m_1(k+1)$. Take K	to be a 0-dimcomplex, X= 4x	0) = PLM). 1,,XM} with no simplies of dim >1.
	so it suffices to show then $X \times \Delta^m = \coprod_{i=1}^m C_i$	that: P(0) is true and P(0) $(x_1^n \times \Delta^n)$, claim: $H_0(X \times \Delta^n) \cong$	is implicion. Note that $Poin)$ = chion step? $m_1(k) \Rightarrow P(m_1(k+1))$. Take X . f_1^N , where N is the number of	to be a 0-dim complex, $X = 4x$ points, $H_K(X \times \Delta^n) = 0$ YI	0) = P(m). 1,,XM} with no simplies of dia 31.
	So it suffices to show then $X \times \triangle^m = \bigsqcup_{i=1}^m (1-i)^m$ Ho(X) \cong (F, HK(X) =	that: (induction besse) the state and $?0$ that: (induction besse) $?0$ that: $?0$ is time and $?0$ \approx $1 \times 1 $	estimptions. Note that \cdot Poin) = extra step) $M_{\rm p}(M) \Rightarrow P(M, k+1)$. Take X \mathbb{R}^N , where N is the number of M .	to be a 0-dim complex, $X = \frac{1}{2}$ points. $H_K(X \times \Delta^n) = 0$ 41 so $\downarrow 0 \rightarrow H_0(X) \oplus H_0(\frac{1}{2} X_1)$	0) $\equiv P(m)$. 1,, $X_{ }X_{ }$ with no simplies of dim ≥ 1 . $x \geq 1$ whereas $\Rightarrow H_0(X) \rightarrow 0.$
	So it suffices to show a then $X \times \Delta^m = \bigcup_{i=1}^m \{1, 1\}$ then $X \times \Delta^m = \bigcup_{i=1}^m \{1, 1\}$ $X \times X^m = \bigcup_{i=1}^m \{1, 1\}$	that: (induction besse) the state and $?0$ that: (induction besse) $?0$ that: $?0$ is time and $?0$ \approx $1 \times 1 $	estimptions. Note that \cdot Poin) = extra step) $M_{\rm p}(M) \Rightarrow P(M, k+1)$. Take X \mathbb{R}^N , where N is the number of M .	to be a 0-dim complex, $X = 4x$ points, $H_K(X \times \Delta^n) = 0$ YI	0) $\equiv P(m)$. 1,, $X_{ }X_{ }$ with no simplies of dim ≥ 1 . $x \geq 1$ whereas $\Rightarrow H_0(X) \rightarrow 0.$

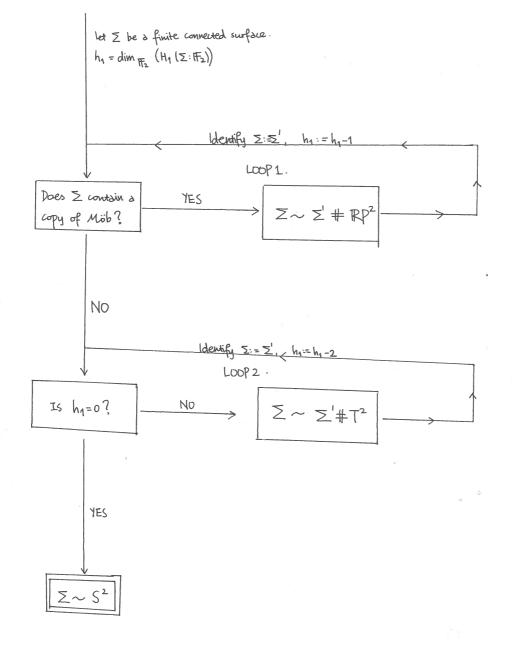
3203-12

```
\chi' = \chi^{(m-1)} \cup \sigma_1 \cup \cdots \cup \sigma_k. \chi = \chi' \cup \sigma_{k+1}, \sigma_{k+1} \subseteq \Delta^m with dim (\chi' \cap \sigma_{k+1}) \subseteq m-1. This gives us:
                                                                                         By five Lemma, (III) is an isomorphism/ q.e.d. so for any finite complex X, H_X(X)\cong H_X(X\times \Delta^n).
                                     Permote — the (X \times I) \cong He(X) — "homotopy invariance".

(addition) If X = X + 0 \times -, then X(X) + X(X + 0 \times X) = X(X) + X(X).

(I) For this, we require addition and multiplication properties of X: (neutriplication) Y(X \times Y) = Y(X)Y(Y). [tanget].
                                       Additive property: get exact sequences of chain complexes 0 \to C_R(X+\Omega X_-) \to C_R(X_+) \oplus C_R(X_-) \to C_R(X) \to 0. For each r_1 we get exact sequence 0 \to c_1(R_1 X_-) \to c_1(X_+) \oplus C_R(X_-) \to c_1(X_+) \to c_1(X_-) \to c_1(X
                                      Thus, dim cr(x+dim cr(x+nx-) = dim cr(x+) + dim cr(x+). Take attending sum: Z(+) dim cr(x) + Z(+) dim cr(x+nx-) = Z(+) dim cr(x+) + Z(-1) dim cr(x)
                                      × (x) x + (x+1x-) = x(x+) + x(x-)
 We have previously shown that H+ (X×△) ≅ H×W for finite X ⇒ ×(X×△)=×W. Moreover, ×(X)×(Y), the proof of which are will continue below:
                                    For XI Let QUI, IM) be the addresset that Y(XXY)=X(X) X(Y), when Y is a complex with dist Y is n with Y has exactly in simplifies of dissertion in, observe that Q(11/1) is time:
                                      \chi(\chi \times \Delta^n) = \chi(\chi) = \chi(\chi) \times (\Delta^n) so \chi(\Delta^n) = 1. Then put Q(n) = \bigwedge_{m > 0}^\infty Q(n, m). Observe that Q(n, n) \equiv Q(n-1). Hence it suffices to prove that Q(n, m) \Rightarrow Q(n, n + 1) of dim \leq n assuming that Q(n-1) is true. Assume that Q(n, m) and Q(n-1) are true. Then let Y be a complex with exactly m+1 n-simplifies. Then Y = Y^{(n-1)} \cup \sigma_1 \cup \cdots \cup \sigma_{m+1}
                                      where \sigma_i \sim \Delta^n. Define \gamma' = \gamma^{(n+1)} \cup \sigma_1 \cup \dots \cup \sigma_m, so 1 = \gamma' \cap \sigma_{m+1} \subset \gamma^{(n+1)}, then \gamma = \gamma' \vee \sigma_{m+1}, so \chi \times \chi' = (\chi \times \chi')_{\chi \times 1} (\chi \times \sigma_{m+1}) sy addition property,  = \rho_{\chi(\chi \times \chi') + \chi(\chi \times \chi') + \chi(\chi
                                        hore \chi(\Upsilon) + \chi(I) = \chi(\Upsilon') + \chi(\sigma_{m+1}). Nuttiplying through by \chi(X) gives \chi(X)\chi(\Upsilon) + \chi(X)\chi(\Gamma) = \chi(X)\chi(\Upsilon') + \chi(X)\chi(\sigma_{m+1}) = 0. comparing \sigma, \sigma
                                          we can cancel like terms to give 7(XXY)= X(X)X(Y), q.e.d.
  The product formula for \chi is definitely weater than the Kinmeth Theorem, which states that H_n(X \times Y) \cong \stackrel{K}{\longrightarrow} H_r(X) \otimes H_{n-r}(Y). Even so, \chi can still distinguish because interesting
  spaces: e.g. Take s = 1x ERA+1: 12 x2=17. Then compare 54 and 52x52, from the point of view of analysis, 54 and 52x52 are virtually identical-compact, metricoble,
 connected, locally Rt. However, 764)=2 but X(32x32)=7632x(52)=2x2=4. Hence, they are not identical.
  Recold—


(i)


Let Z be a finite connected simplicial surface. Then if Z is orientable, then \Sigma \sim 5^2 or \Sigma \sim T^2 or \Sigma \sim T^2 \# \cdots \# T^2 where g \approx 2. If Z is non-orientable, then
  I~ RP or I~ RP2 # ... # RP2 for some 9>2.
  We now more in to prove this theorem, after providing a small definition. Consider T^2 with indicated point *. (k(x)) = \sum_{i=1}^{n} i \le circle.
    Now remove the shoded triangle, then Lk(y) = \binom{w}{1} is an arc. (subdivided A^2).
Toefinition A bounded surface X is a simplicial complex in which Lk_X(v) \sim 5^{\circ} (circle) or Lk_X(v) \sim \Delta^{\circ} (sec).
Repositions set D be a finite bounded surface in which (i) 3D \sim 5^{1}, ((i) H_{1}(D: H_{2}) = 0. Then D \sim \Delta^{2}.
                          Proof - By induction on number of scinglices, N. If N=1, nothing to prove. Suppose the for N-1 and let D have N 2-simplices. Let o be a 2-simplex which come is
                                             one edge in 3D. If all three edges are in 3D, then D=\Delta^2 so we have nothing to prove. So assume \sigma has 1 or 2 edges in 3D.
                                             Mesplit was: cose I, cose II with opposite rester of edge in boundary lying in inscrior, cose II: where D= D'UOUD"
                                             No other cases exist as H_1(D:|F_2)=0. In case I, observe that H_1(D':F_2)=0 by Mayor-Nector's sequence: \sigma \cap D'\cong \Delta_1 then we have \sigma \longrightarrow H_1(D') \oplus \sigma \longrightarrow \sigma
H_2(D) \longrightarrow H_1(D' \cap \sigma) \longrightarrow H_1(D') \oplus H_1(\sigma) \longrightarrow H_1(D), so H_1(D)=0. D' \cap \sigma and \sigma and \sigma by subdivision.
                                             cose I is almost the same, where here I= D'No is a subdivided intend > HK(I)=0 YK>1. So me focus on the final result, case II:
                                             write D_= =D', D_= = 0 UD", Then D+ OD- is a single edge. Then H1 (P"OD-) -> H1(P+) @ H1(D-) -> H1(D), so H1(D+) = H1(D+) = O. By induction
                                             hypothesis, D+~ $\D^2$, D-~$\delta$. Then D= \D^2 \sqrt{2} \sigma \D^2 by subdivision, q.e.d.
Threacount let I be a finite connected surface st. H1(5:15)=0. Then I~52.
                          Proof-let to be a 2-simplex of I and write D= 5-0. Then Die a bounded actifice with 20=20=51(3). (12im Hy(D:15)=0. X=D¥0, I=D10 ≅51. Then me get the
                                          *xet sequence H_2(D) \oplus H_2(D) \rightarrow H_2(\Sigma) \rightarrow H_1(S^1) \rightarrow H_1(D) \oplus H_1(D) \rightarrow H_1(\Sigma). The proof that H_2(\Sigma) : H_2(\Sigma) also shows that H_2(D) = 0, as we can never connectional
                                            2D in expression for H_2(D). Then 0 \to \mathbb{F}_2 \to \mathbb{F}_2 \to H_1(D) \oplus 0 \to 0, and by whitehead's Lemma, H_1(D) = 0. Hence D \sim \Delta^2 \sim \Delta^2, and we have
                                              Z = DUO~52. We identify or with bottom 2-simplex o \( \sigma_1.
                         Remark—This has an analogue in dimension 3: If X is faile simplicial 3-manifold in which every loop is contractible within X, then X~53 this is the famous Poincaré conjecture
```

An even more general analogue is this is if X is any compact manifold in which every loop is contractible and $H_X(X) \cong H_X(S^n)$. Then $X \sim S^n$, (n-dim Poincaré confedence)
This was solved for dimension 35 by 1961, dimension 4 by 1976. (Friedman), dimension 3 by 2003 (Perelmann).
Broof- for classification Theorem -
STEP D: Hy(Z)=D ⇒ Z~S. STEP 1: let S be a finite connected surface mich courtains no Möbius bond, then Hy(Z:F3) +D → Z~Z#T" where Z is a consession surface.
the boundary of 122-2-simplest is connected bet this be C+, then 2C+~ S1. Aprof of STEP 1- H1(2) +0. Since we more over 1/2, an element
of $G(Z:F_2)$ is simply a calection of 1-simplices. Take a non-zero element $z \in H_1(Z:F_2)$, which is represented by the smallest possible number of 1-simplices $z \in G_1(Z:F_2)$, which is represented by the smallest possible number of 1-simplices.
Than Z is an impedded 5° contained in Z: Z is a connected 1-complex, which cannot take any free edges (i.e.) otherwise 32 = 0. Then Z is an impedded 5° contained in Z: Z is a connected 1-complex, which cannot take any free edges (i.e.) otherwise 32 = 0.
H-must be a collection of circles [as something life \(\psi\) is not minimal]. So \(\pi\) = \(\sigma\) = \(\sigma\). Then me seek to "thicken" the circle \(\pri_2\), by taking \(\pri_2\)? A bequasition
the second banycentric subdivision. Then me follow the external orttline of every small simplex that intersects with the original color into the condition of every small simplex that intersects with the original color into the condition of every small simplex that intersects with the original color into the condition of every small simplex that intersects with the original color into the color
edge, i.e. in this case \(\frac{1}{2}\) \(\fra
(Note-since edge lies in a surface, it belongs to exactly two samplices) Locally, this truckers and to 0 12 3 4 5 6 7 8 19 months to 19 months to 12 3 4 5 6 7 8 19 months to 19 months that the samplices of the
. I strip (as sean on tribugulation on right]. Complete thickening must have disconnected boundary, otherwise & contains a Möbius bound, Chemistry LT.
which needed produce a contradiction. Now consider Z-C. $\partial(Z-C) = 5^1 \sqcup 5^1$ disconnected, but Z-C is connected otherwise, if Z-C = X+UX-, where
X+ 1 X- = \$\psi\$, then X+ \(\frac{1}{2}\), \(\frac{1}{2}\) \(\frac{1}{2}\) = [2] = Hq (\frac{1}{2}\); \(\frac{1}{2}\); \(\fra
so [2'] = 0 in th [2; th), which is a contradiction as 2 to in the Chance V+, V on different components of 20 and join them by an arc w.
then there is not; such that $C_0 = C \cup thickening of W. asim C_0 = T - 1 disct = \{1, 1, 1\}. Invited \Sigma = (\Sigma - C_0) \cup C_1.$
2(5-C+)=51=2ct. Par ≥1=(5-c+) 2 A2, T2 C+2 A2 A2 Hence, ≥ ~ 2 #T2/ q.e-d. Tres [Is H(\$\subsetext{Start}) NO - 5-1-1-1-2
Thus for our flowchart looks like this: \(\Z\) is a finite convexed surface, contains no Möb. \(\Z\) = 0? \(\Z\) \
let \(\S = \S' \(\frac{1}{4}\tau^2\) \(\frac{1}{2}\) + \(\frac{1}{2}\) - 2 = \(\frac{1}{2}\) - 2 = \(\frac{1}{2}\) - 2 = \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) - 2 = \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) - 2 = \(\frac{1}{2}\) + \(\frac{1}{2}\) - 2 = \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) + \(\frac{1}{2}\) - 2 = \(\frac{1}{2}\) + \(\frac{1}\) + \(\frac{1}{2}\) +
have finitely many iterations of the loop, picking up a copy of To Each time. Hence, we have
Consultancy: If I is a finite connected startface which contains no Möb, then (i) Z~5° OR (ii) Z~T° (loop once) OR (iii) Z~T° (connects to phore). (connects to phore)
let Σ be a finite connected surface. Then Σ is orientable ⇔ Σ contains no Möb. Σίν στομαθε > Σουθείο ΣΕΣ ΤΗΡ ΣΕΣ ΤΗ ΕΡΙ ΣΕΣ ΤΗ ΕΡ
Proof = (=) Trivial (=) By above, E~5, Tor T # # T
Contral suppose 2 does contrat more. 2 12 more from the suppose of the suppose 2 does contrat more.
Prof FEA JOHNSON
Moveover, 7(5)= x(z ± xx) = x(z + 1, 1 = 1, 0 me can only go around copp finitely many nines. Schild 17/Poberts GO6.
Proof - 52 # S is simply a subdivision of \(\frac{2}{2} \text{ a principal simplexy q.e.d.} \)
(0 times LODP 2). (II) $\Sigma \sim S^2 \pm RP^2 \pm \pm RP^2$ (b times around LOP 1) (0 times LODP 2).
(II) \(\sum \times \tau \tau \tau \tau \tau \tau \tau \tau
where a, b > 0 for all cases. For case (II), we use the following theorem to simplify working - such that case (IV) reduces to case (II).
theorem $T^2 + R^2 \sim R^2 + R^2 + R^2 + R^2$
remark - Accepting this theorem gives the dissortistion theorem: Egiren on previous page - cross-refer), is T2##RP2 ~ RP2##RP2 ~ RP2##RP2 ~ RP2##RP2
Reaf - consider P2 2 Then purchase Höb as such () Then take a direction and follow it through to get the schemotic representation
then D2V = RP2#T2, then RP2#K2~ RP2#RP2 #RP2, and taking some Michius board, RP2#K2 has a schematic reproduction
directions of the Civil directions of the condition them the each other:
A = D More reference live down to get tongent > D > D > D > D RP*#K*.
I promoved and formal and the second
Machinia Nager-Victoria Theorems.
Becomes let 0 > Ax -> Bx P > Cx > 0 be on exact equence of chain completes. Then 3 homomorphisms S: Hat(C) > than(A) such that the following sequence is exact for Al n:
$\frac{H_{MTL}(p)}{H_{NTL}(B)} \xrightarrow{H_{NLL}(c)} \xrightarrow{S} \frac{H_{NL}(p)}{(ip)} H_{NL}(B) \xrightarrow{S} H_{N-L}(A) \xrightarrow{H_{N-L}(B)} \frac{H_{N-L}(i)}{(ip)} H_{N-L}(B).$
(not examinable) Noof-consider the commutative disprass so on right: Hypotheris - each such disprass is a commutative disprass of linear maps in which 0 -> Ant 1 -> BH1 -> CH1 -> 0 Noof-consider the commutative disprass so on right: Hypotheris - each such disprass is a commutative disprass of linear maps in which 0 -> Ant 1 -> BH1 -> CH1 -> 0 Noof-consider the commutative disprass so on right: Hypotheris - each such disprass is a commutative disprass of linear maps in which 0 -> Ant 1 -> BH1 -> CH1 -> 0 Noof-consider the commutative disprass so on right: Hypotheris - each such disprass is a commutative disprass of linear maps in which 0 -> Ant 1 -> BH1 -> CH1 -> 0 Noof-consider the commutative disprass so on right: Hypotheris - each such disprass is a commutative disprass of linear maps in which 0 -> Ant 1 -> BH1 -> CH1 -> 0 Noof-consider the commutative disprass so on right: Hypotheris - each such disprass is a commutative disprass of linear maps in which 0 -> Ant 1 -> BH1 -> CH1 -> 0 Noof-consider the commutative disprass so on right: Hypotheris - each such disprass is a commutative disprass of linear maps in which 0 -> Ant 1 -> BH1 -> CH1 -> 0 Noof-consider the commutative disprass so on right is a commutative disprass of linear maps in which 0 -> Ant 1 -> CH1 -> 0 Noof-consider the commutative disprass so on right is a commutative disprass of linear maps in which 0 -> Ant 1 -> CH1
rows are exact, 2n2n4 = 0 for K=ABB, c. Ne begin by consonacting maps & (snake Lemma). start with diagram: 0 >> Am in Bu Pa ch > 0
Hmm1 (c) = Zmy(c)/Im (3m2) where Zny(c)= (ze Cny; 2my(z)=0). Hn(A) = Zn(A) Im (3my). Zn(A) = (a ∈ An: 3m(a)=0). 0 → An-1 2m 2m 2m 2m 2m 2m 2m 2

203-14

Then doesn't the diagram on the right: the idea is to define $S(Z)=in^{-1}$ and $I_{n+1}(Z)$. We first define $S:Z_{n+1}(C)\to H_n(A)=I_n$ and Take ZE ZHH (C) so 2nH (Z)=0. By executives, first: Birst > Chy original so choose be Birt: First(b)=Z. 0 > Anti int) Birt 1 Birt > Chirt > 0 such that in(a) = And (b). The idea is to associate 2 no a. calculate ana : in-1 ana = 2 in in(a) > 0 - An-1 in-1 Bn-1 in-1 2 n (a) = 3 n 2nn (b) = 0. Since in-1 is injective, In (a) = 0. So as 3 (A) - Ne month like to say zera is a mapping, but it isn't! However, me do know. Thronton The share defines a mapping S: Zn+1 (c) → Hn(A), S(Z)= [a] = [in 2n+1 pn+1 (z)], [a] ∈ Hn(A). Proof-Apparently [a] depends upon a specific choice of be BAH s.t.] No. (b)=2. We must show that if me take another durice of b, then handogy doss of [a] does not change. ie. we have b, b'EBAH both satisfying from (b) = z = fat (b). We have a, a' & An such that in (a) = 3 AH (b), in (a') = 3 AH (b'). So in (a-a') = 3 AH (b-b') and also PATT (b-b) = PATT (b) - PATT (b) = z-z=0. Then b-b' & Ker (PATT) = Im (int), so 3 de Ant st int (d) = b-b' so now, SAH int (d) = 2 mil (b-b'). so, in 3A+1 (d)= in (a-a'). But in is injective (example), so a-a' = 2A+1(d) → [a]=[a'] ∈ Hn(A). i.e. [a] is independent of particular choice of bie. S: ZnH(C) -> Hn(A), S(Z)= [in 3 nH pnH (z)] is med-defined / q.ed. (contd) - It is dear that S. ZAM (C) → HM(A) is linear because PART, and I, in one all linear we really want to define S: HMM(C) → HM(A), HMM(C) = IM(2)AR) Boportion If ZE Im (2/12), then S(Z)=0. Proof- Write = 3 not (S), 3 ∈ Crop2 · βroz · Broz -> Crop2 is surjective so choose β ∈ Bross, βroz (β) = 5. prof 3 not 2 (β) = 3 not 2 prop (β) = 2 not 2 prop (β) a: 2(2)= [a], we can chance b= 2n+2(p), so in(a)= 2n+(b)= 2n+(b)= 2n+2(p)=0. But in is injective, so a=0, [a]=0 i.e. z. E. Im(2n+2) then 2(2)=0/4e.d (contd)-Final definition: Sx: Hn+(C) -> Hn(A), Sx[=]=[in-] 2n+1 [n+1 [=]]. This is mell-defined so [=]==+Im 2n+2 and S(Im 2n+2)=0. Sx is linear. so given on exact requence of chain complexes, 0 -> Ax is Bx P > Cx -> 0, we have produced a sequence of linear maps HHH(B) -> HHH(C) >> HHH(B) >7. whe still have to prove that the sequence itself is exact. $0 \longrightarrow A \times \longrightarrow B \times \longrightarrow C \times \longrightarrow 0$ Remark - The construction of S_k is natural in the following sence - suppose $0 \longrightarrow A \times \longrightarrow C \times \longrightarrow 0$ is a diagram, then it commutes. 26 March 2014 Rof FEA JOHNSON Chamistry LT. Let $0 \rightarrow A_{X} \xrightarrow{i} B_{F} \xrightarrow{i} C_{X} \rightarrow 0$ be exact, constructed, $S:H_{RH}(C) \rightarrow H_{N}(A)$. We get a sequence as follows: $(I) \xrightarrow{f} (I) \xrightarrow{f} (I) \xrightarrow{f} (I) \xrightarrow{f} H_{N}(A) \xrightarrow{i} H_{N}(B) \xrightarrow{p} H_{N}(C)$ Here, $(B) \xrightarrow{p} H_{N}(C) \xrightarrow{h} H_{N}(A) \xrightarrow{i} H_{N}(B) \xrightarrow{p} H_{N}(C)$. We then down that this sequence is exact, and we demonstrate this by parts. Executions of (I): (a) Sp=0 (b) Ker(s) C In(p). For (a), let [6] Ethnt(8) so be But and 36=0. Sp[6] = [a] when a E Zn(A) satisfies in(a)=3(?) when p(?)=p(b). So we can take ?=b, and in(a)= 2b=0. in is injective, so a=0; for (b), let [Z] ∈ Hant(C) be such that S[Z]=0 so Z∈Zant(C) i.e. 2Z=0. S[=]=0 mans that in (3d)= 26 more p(b)=2, Diggs 4= 36 so 3(6-ing(d))=0 > 6-ing(d) & Zner(B) and p(b-ing(d))=p(b)-pia = p(b)-D; so p(b-int(d))=z > p[b-int(d)]=[z] i.e. S[z]=0 > [z] e Im(p), so q.e.d.(a), q.e.d.(b) > q.e.d.(I) exoct. For exactness at (II), (a) ib=0 (b) KerlifcIml8). For (a), let [z] = HnH(c) (10 z + Cn+1, 2=0) is[z] = i[i-12p-1(z)] = [2p-1(z)] = 0...[2(1)=0]. for UD, suppose [a] = Hn(A) sorriges i[a]=[0]=[7?], so a ∈ An and Ja=0, and i(a)=Jb. (b ∈ Bn+1). Put z=p(b) ∈ (n+1. J(z)= 2p(b)=p3b=pi(a)=0 because pi=0. Thus, we have = € Zn+1(C) and i(a) = 76 where p(b) = Z · By definition of S, we see that S[2]=[a], so i[a]=0 > [a] ∈ Im(S), > qe d (II) exact For exactness at (III), (a) poi=0, (b) Kerry) c Im.(i). (a) is trivial becourse An > Bn -> Cn is shready a so Pnoin=0. For (b), suppose that [b] = Hn(B) and p(i) so be Bn and 3b=0. Then pn(b)=2(?) for ? = Cn+1. pn+ 2=? i.e. pn(b)=2(2) where 2= Cn+1. Pn+1 is subjective, so choose Bn+1 Pn+1 > Cn+1 = β ∈ Bnel st. Pnel(β)=2, pn(b-2p) = pn(b)-pn2(β) = pn(b)-2pnel(β)=2z-2=0. So 3 q ∈ An such that in(a)=b-2β. Then 3in(a)=2b-27β=0-0. So in-1(3a)=0, but in-1 is injective so 2a=0 ⇒ a∈ Zn(A) and in(a)=b-2β. So i[a]=[b-2β]=[b], so p[b]=0 → 3 [a] e Hn(A) → i [a]=[b]. q.e.d. (b), q.e.d. (II) exect. → 1, q.e.d. than does this all relate to the geometric form of the theorem? Experience If $A_{x} = (A_{r}, 2^{A})$, $C_{x} = (C_{r}, 3^{C})_{r}$ then define the direct sum of choin complexes $A_{x} \oplus C_{x} = (A_{y} \oplus C_{r}, (3^{A} \circ 2^{C}))_{r}$. i.e. $3: A_{nel} \oplus C_{nel} \longrightarrow A_{n} \oplus C_{n-1} \rightarrow (3^{C})_{r} = (3^{A} \circ 2^{C})_{r}$ Konollaray Hn(A, & Cx) = Hn(A) & Hn(C). Frof- We have an exact sequence of chain complexes 0 -> Ax -> Ax + Cx -> Cx -> 0. However the boundary map 5: HnH(Cx) -> Hn(A) is necessarily equi to 0 for this exact sequence. April \longrightarrow Anti \oplus Conti \longrightarrow Conti \longrightarrow Conti \longrightarrow Anti \oplus Conti \longrightarrow Conti \longrightarrow And Conti \longrightarrow C HINTE (A) = HINTE then paid = Ida, paic = Ida. paid (a) = pa(a)=a, paic(3)=8. So mehave the communitive diagram -

