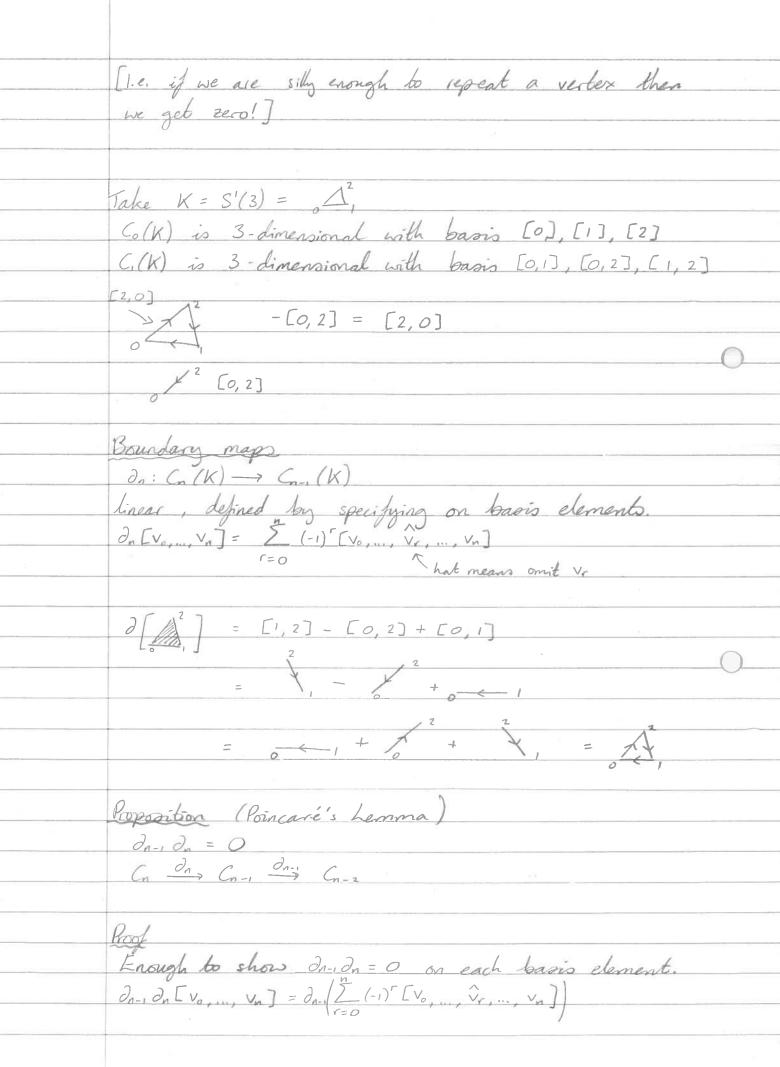
3203 Algebraic Topology Notes

Based on the 2018 spring lectures by Prof F E A Johnson

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

MATH 3203		
08-01-18	Algebraic Topology (Not to be confused with General Topology or Point Set Topology)	Prof F Johnson 100% exam.
	Poincaré c 1885 3 Algebraic Topology Brouwer c 1910 Lefschetz 1925-1960 Frechet 3 General and Point Set Topology Hausdorff)	7
0		
	Book: A Combinatorial Introduction to Topology - M	Henle (Dover)
	O-dim 1-dim building block 2-simplex Naive!	
	Naive! 3-simplex Naive! I XI Naive!	
0	Def ⁿ By a simplicial complex K we mean a $K = (V_K, S_K)$ where i) V_K is a set (vertex set) ii) S_K is a set of finite non-empty substitute that (a) $S_K : S_K : S$	ets of Vk
	(a). Ev3 ∈ Sx for each v∈ Vk (b) If $\sigma \in S_K$ and $\tau \subset \sigma$, $\tau \neq \emptyset$, then τ	e Sk
	Vx is the vertex set of K Sx is the simplex set of K	


Examples Δ' = ({0, 1}, { {0}, {1}, {0,1}})

N

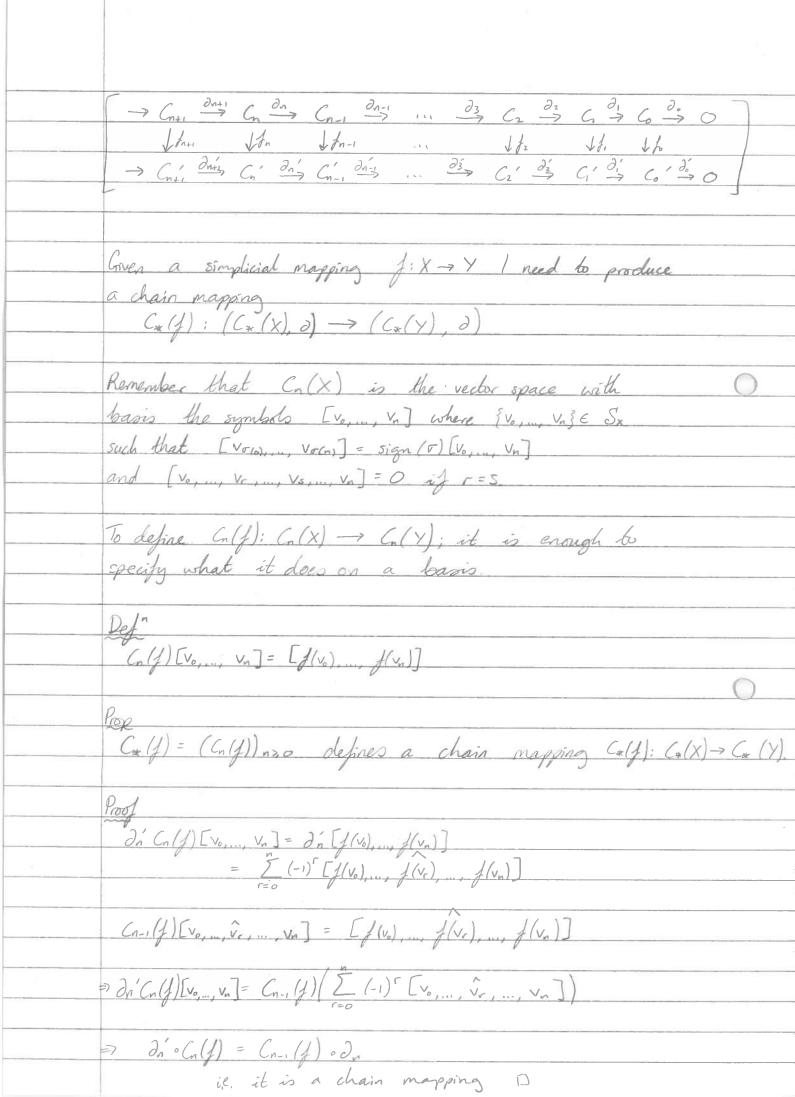
Vertex
Set

Simplex
Set $\Delta^2 = (\{0, 1, 2\}, S_{\Delta^2})$ SA2 = { {0}, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}} Def n Let K = (VK, SK) y o∈ & define dim(v) = 101-1 So dim {v} = 0 dim {v,w} = 1 dim {u, v, w} = 2 The standard n-simplex 1" $\Delta^n = (V_{\Delta^n}, S_{\Delta^n})$ Van = {0, ..., n} Son = { T & {0, in, n} : T # \$} The basic circle S': $\Delta^2 = S'(3)$ $\Delta^2 = \sqrt{2}$ middle missing! $S_{s'} = \{\{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}\}\}$ $S'(4) = {}^{3}$ $\sqrt{s'(4)} = {}^{2}$ $\sqrt{s'(4)$ S 5'(4) = { 803, 813, 823, 833, 80, 13, 81, 23, 82, 33, 80, 33} MATH 3203 08-01-18 S'(5) = 4 \rightarrow 2 S'(n) = circle with a subdivision points. Basic n-sphere = boundary of basic (n+1) - simplex $V_{sn} = \{0, ..., n+1\}$ $S_{sn} = \{\alpha \in \{0, ..., n+1\} : \alpha \neq \emptyset, |\alpha| < n+2\}$ So basic 2 sphere, 5²:

S² = A 2 middle missing Vertex set = {0,1,2,3} Simplex set = 3 { 03, {13, {23, {33, {0,13, {0,23, {0,33, §1,23, {1,33, {2,3}, {0,1,23, {0,1,33, 30, 2, 33, {1, 2, 3} } 4 vertices 6 1-simplices 4. 2-simplices. Let K = (VK, SK) be a simplicial complex. Pick your favourite field (eg. Q) For each n > 0 (integer) we will construct i) a vector space $C_n(K)$ (= $C_n(K; F)$) over Fin linear maps dn: Ca(K) -> Cn-1(K) (n>1). Construct Cn(K): If T = {Ve, m, Vn} E Sx (n - simplex) choose (arbitrarily) some order Vo < V, < ... < Vn. The basis vectors for Cn(K) are "symbols" [vo, v, ..., vn] ∈ Cn(K) such that [vo(o), ..., vo(n)] = sign(o).[vo, ..., vn] plus the obvious rule [vo, ..., Vn] = 0 if vr = vs , r ≠ s.

 $= \sum_{r=0}^{n} (-1)^r \partial_{n-1} \left[v_0, \dots, \hat{v_r}, \dots, v_n \right]$ 08-01-18 $\partial_{n-1} \left[V_{0,m}, \hat{V}_{r,m}, V_{n} \right] = \sum_{s=0}^{r-1} (-1)^{s} \left[V_{0,m}, \hat{V}_{s,m}, \hat{V}_{r,m}, V_{n} \right]$ $\frac{1}{f} \left(-1 \right)^{S-1} \left[V_{0, m_1} \hat{V}_{r_1, m_2} \hat{V}_{s_1, m_2} V_{n_1} \right] \\
= \frac{1}{S = r+1} \quad \text{since } V_{r_1} \text{ is missing} \\
So \quad \partial_{n-1} \partial_{n} \left[V_{0, m_2} V_{n_1} \right] = \frac{1}{S < r_1} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_1, m_2} \hat{V}_{r_1, m_2} V_{n_1} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_1, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_1, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2, m_2} \hat{V}_{r_2, m_2} V_{n_2} \right] \\
= \frac{1}{S < r_2} \left(-1 \right)^{r+S} \left[V_{0, m_2} \hat{V}_{s_2, m_2} \hat{V}_{s_2$ + \(\(\(\) \(\ But B = - A => 2n-12n [Vo, ..., Vn] = 0 K simplicial complex $C_{n+1}(K) \xrightarrow{\partial_{n+1}} C_n(K) \xrightarrow{\partial_n} C_{n-1}(K) \qquad \partial_n \cdot \partial_{n+1} = 0$ Im (dn+1) < Ker (dn) Ker (dn) < Cn (K) vector subspace called the set of n-cycles. Im (da+1) < Ker(dn) (< Cn(K)) vector subspace "n-boundaries" Take gustient U/V Ker (dn) / Im (dn+1).

Left $K = (V_K, S_K)$ simplicial complex (fix field F)


Define $H_n(K) = Ker(\partial_n)/$ $I_m(\partial_{n+1})$ with coefficients in F

(or write $H_n(K; F)$ if you want to stress F). Hn(K: F) = nth homology of K with wells in F. 1st objective: Find out how to compute these groups EASILY. Recall defⁿ:

U vector subspace of V. $V/u = \{x + U : x \in V\}$ is, set of cosets of U in V. Rule of Equality: x+U=x'+U \Rightarrow x'-xc \xiU. V/U is naturally a vector space Addition: x+U+y+U= x+y+U Scalar multiplication: $\lambda(x+U) = \lambda x + U$ tero: O+U=U Observe we have a cannonical mapping b(x) = x + U obviously surjective so Im (4) = V/u 4(x) = 0 iff x+ U = U = x+U = 0+U = x=x-0 eU So Ker (4) = U

MATH 3203	
00 01 10	
08-01-18	P -
	Prope
	Let UCV be a vector subspace.
	If dim (V) is finite then dim (V/u) = dim (V) - dim (U).
	alm (101) = alm (V) am (V).
	Poof
	Kernel - Rank Thm:
	dim Kery + dim Im y = dim V
	=> dim U + dim V/U = dim V
0	
	How to compute homology the hard way
	How to compute homology the hard way
	Hn(K: F) = Ker dn / Im dn+1
Market Comment	
	$H_*(S^2; F) = H_*(S^2)$
	3
	$S^2 = \int_{-\infty}^{\infty} 2 \text{ middle missing.}$
0	Co(S ²) is 4-dimensional, basis: [0], [1], [2], [3]. C ₁ (S ²) is 6-dim, basis: [0,1], [0,2], [0,3], [1,2], [1,3], [2,3]
	C, (5²) is 6-dim, basis: [0,1], [0,2], [0,3], [1,2], [1,3], [2,3]
	C2(S2) is 4-dim, basis: [0,1,2], [0,1,3], [0,2,3], [1,2,3]
	$C_2 \xrightarrow{\partial_2} C_i \xrightarrow{\partial_1} C_o$
	$\partial_1(\ell_1) = \partial_1[0,1] = [1] - [0] = -e_1 + e_2$
	$\partial_{1}(\theta_{2}) = [2] - [0] = -e_{1} + e_{3}$
	$\partial_1(\mathcal{Y}_3) = [3] - [0] = -e, +e_{\mathbf{A}}$
	$\partial_1(Y_4) = [2] - [1] = -e_2 + e_3$
	$\partial_{1}(4s) = [3] - [1] = -e_{2} + e_{4}$
	$\partial_{i}(\gamma_{6}) = [3] - [2] = -e_{3} + e_{4}$

Simplicial maps X = (Vx, Sx), Y = (Vx, Sx) simplicial complexes By a simplicial mapping f: X -> Y I mean a mapping of sets f: Vx -> Vy in such a way that f(o) ∈ Sx if o ∈ Sx TESX = forESX simplices -> simplices. 0 1 3 0 13 e.g. f(0) = 3, f(3) = 0, f(1) = 2, f(2) = 1defines a simplicial map $f: X \rightarrow X$. whereas $g: \{0,1,2,3\} \longrightarrow \{0,1,2,3\}$ g(0)=1, g(1)=2, g(2)=3, g(3)=0is not simplicial because \$2,33 € Sx but a({2,33}) = {3,03 & Sx Squash map Formally: X = ({0,1,2,3}, Sx) Sx = { {0}, {1}, {2}, {3}, {0,1}, {0,2}, {0,3}, {1,2}, {1,3}, {2,3}, {0, 2, 3}, {0, 1, 3}, {1, 2, 3}} Consider $f: X \to Y$, f(0) = 0, f(1) = 1, f(2) = 2, f(3) = 0 $f(\{0,2,3\}) = \{0,2\}, f(\{0,1,3\}) = \{0,1\}, f(\{1,2,3\}) = \{0,1,2\}$

MATH 3203	
15-01-18	
100118	5 Sindicial complexes? 5 Veitor spaces ?
	Simplicial complexes? Simplicial maps Veitor spaces Linear maps Veitor spaces Linear maps
	Ca H*
	S Chain complexes 3 & chain maps 3
	(& chain maps)
	Pick a field F
	Last time:
	If X is a simplicial complex
- '	$C_{\bullet \bullet}(X,F) = C_{\times}(X), \partial$
	(/V) -/ - 1 / [v . 7 & v 2 cd
	Cn(X) vector space on symbols [vo,, vn], {vo,, vn} ESX
	∂: (n → (n-1, ∂[v₀,, vn] = ∑(-1) [v₀,, vr]
	$f: X \rightarrow Y$
	$C_n(f): C_n(x) \rightarrow C_n(y)$ $C_n(f)[v_0,, v_n] = [f(v_0),, f(v_n)]$
	$\partial_n^{\gamma} C_n(\xi) = C_{n-1}(\xi) \partial_n^{\chi}$
	x + x 2 = 1
	X + Y => Z , f, g simplicial maps Cn (f og) = Cn (f) o Cn (g)
	(1°3) = (n(1)° (n(9)
	Today:
	Now investigate Hn: 5 Chain complexes 3 -> 5 Vector spaces 3 { & chain mappings } & linear mappings }
	(& chain mappings) (& linear mappings)
	Del
	Hn (C*) = Ker On = nth homology group of Co
	Hn (C*) = Ker On = nth homology group of Co
	In duti
	1. 11. 11. 7 (2) 11. 2
	In the liturature often see Zn(Co) = Ker In n-cycles

```
B_n(C_*) = I_m(\partial_{n+1}) n-boundaries

H_n(C_*) = Z_n(C_*)/B_n(C_*).
 Suppose f = (fn) 120 : (C*, d) -> (D*, S)
is a chain mapping, i.e.

C_{n+1} \xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1}

f_{n+1} \downarrow \qquad f_n \downarrow \qquad f_{n-1} \downarrow \qquad commutes for

D_{n+1} \xrightarrow{\delta_{n+1}} D_n \xrightarrow{\delta_n} D_{n-1} \qquad each n.
 Need to define linear map H_n(f): H_n(C) \rightarrow H_n(D), H_n(C) = Z_n(C) / B_n(C), H_n(D) = Z_n(D) / B_n(D).
Elements of H_n(C) have form z+I_m(\partial_{n+1}), z\in Z_n(C) i.e. \partial_n(z)=0
Elements of H_n(D) have form z' + I_m(S_{n+1}), z' \in Z_n(D)
Def"
H_n(f)(z+I_m(\partial_{n+1}^c))=f_n(z)+I_m(S_{n+1}^p)
This is a meaningful def".

\begin{cases}
\frac{1}{2} \in \text{Ker}(\partial_{n}^{c}), & S_{n}^{p} f_{n}(\overline{z}) = f_{n-1}(\partial_{n}^{c}(\overline{z})) \\
= f_{n-1}(0) = 0
\end{cases}

= \int_{n}^{\infty} f_{n}(\overline{z}) \in \text{Ker}(S_{n}^{p}).

Also f_n(I_m \partial_{n+1}^c) \subset I_m(S_{n+1}^p):

Suppose b \in I_m(\partial_{n+1}^c), b = \partial_{n+1}^c(\omega)

f_n \partial_{n+1}^c(\omega) = S_{n+1}^p f_{n+1}(\omega) \in I_m(\partial_{n+1}^p)
Clear that each Hn (4) is linear is one, Sn, fn)
```

Hn(X; F) = Hn (C*(X: F)) Defn If X is a non-empty simplicial complex then Ho(X:F) = O. Define * to be "simplicial point". $V_* = \{ * \}$, $S_* = \{ \{ * \} \}$ i.e. just a single point. $C_n(*:F)=$ F n=0 O $n\neq 0$ 0 0, 6(*:F) 0, 0 $H_o(*;F) = \ker(G(*;F) \rightarrow O) \cong G(*,F) = F$ Im (0 → 6(*; F)) Now consider the simplicial map $C: X \longrightarrow *$ $C(v) = * \forall v \in V_X$ c induces Ho(c): Ho(X) -> Ho(*) Claim: Ho(c) is surjective. As X ≠ Ø, choose ve Vx. Consider i: * -> X, i(*) = V coi: * > # is the identity. So Ho(c) · Ho(i) = Ho(coi) = ldy (x) = ld so to(c) is surjective. Ho(i) is injective ⇒ H.(X:F) ≠ O.

MATH 3203	
15-01-18	
	Connectivity
	X = (Vx, Sx) simplicial complex.
	Let v, w ∈ Vx (vertices of X), v≠w.
	By a path in X from v to w I mean a
	finite sequence of vertices (Vo,, VN) Vi EVx such that
	(i) Vo = V, (ii) VN = w, (iii) {Vi-1, Vi} is a 1-simplex in X.
	We say that X is connected when for any vertices
	v, w ∈ Vx, v ≠ w. 3 a path in X from v to w.
-0	
	Examples
	X= A
	2 x is connected.
	Examples X= 0
	e.g. (0, 2, 3, 4, 5) is a path from 0 to 5,
	but (0,2 4,5) is not a path.
0	Y = \ Y is not connected.
	Y = V is not connected. No path from 2 to 5.
	4
	3
	Theorem
	Let X be a non-emply simplicial complex.
	y x is connected then Ho(x:F) = F.
	Poof
	We know to (X:F) = 0 so it suffices to show that
	dim Ho(X:F) < 1. Also assume X is finite.
	List the vertices of X thus vo, v,, vn (arbitracily)
	Then [vo] [v,], [vn] forms a basis for Co(X: IF).

	Elementary basis change:
	[Vo], [V,]-[Vo], [V]-[Vo],, [VN]-[Vo] is still a basis for G(X).
	First claim that if $w \in V_X$, $w \neq v$ then
	[w]-[v] & Im d.
	Since X is connected, I can choose a path
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(wo, w,, wn) in X from wo = v to wn = w.
	[wi, with is a 1-simplex for 0 \in i \in n-1.
	d[wi, witi] = [witi] - [wi] (by def).
	$[\omega_n] - [\omega_0] = \sum_{i=0}^{N-1} [\omega_{i+1}] - [\omega_i] = \sum_{i=0}^{N-1} \partial_i [\omega_{i}, \omega_{i+1}]$
	$\tilde{i}=0$ $\tilde{i}=0$
	$=\partial_{i}\left(\sum_{i=0}^{n-1}\left[\omega_{i},\omega_{i+i}\right]\right)\in\mathbb{I}_{m}\partial_{i}$
	But wo = v, wn = w, so
	[w]-[v] ∈ Imd, as claimed.
	In the above basis [[vo]]v {[vr]-[vo]] Isrs N.
	Each [vr]-[vo] ∈ Im d,
	So Ho(X:F) = Co(X:F)/Imd,
	so HolX: F) is represented by No1+Im(2,)
	So dim Ho(X:F) <1.
	Ч
	ie, we've proved:
	Thin
	If X + & is connected then dim Ho(X; F)=1
1	In general, we'll see that dim Ho (X: F) = no. of connected components of X.

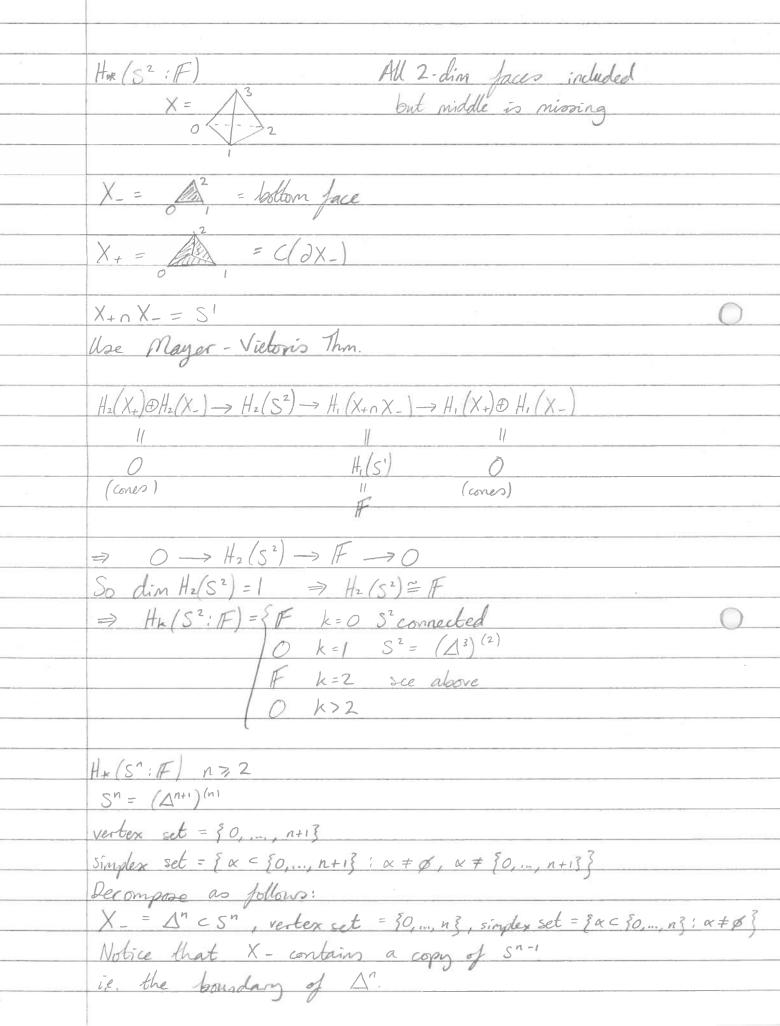
MAIH 3203	
16 01 18	
15-01-18	11 - 1 11
	If it is a single point, then
	Hr (ox, F) = SF, r=0
	(0, r≠0.
	Cones
	Let X=(Vx, Sx) be a simplicial complex.
	Define a new complex CX = cone on X
	by choosing a disjoint point * , * \$ Vx
0	CS' : cone on two s;
	core point x X = S' (middle missing) S'_
$\triangle^{s'} \rightarrow \triangle^{cs}$	circles core point x X = S' (middle mirring) C[S'_{+} \su S'_{-}]
	C[S; uS']
	Definition
	X = (Vx, Sx) simplicial complex, * & Vx
	CX = (Vcx, Scx) where
	$V_{CX} = \{ w \} \cup V_X$
	Scx = Sx u { [*]} u { [*] u \ [*] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	and the simplicen cored
	original 1 all simplices joined simplices cone point to the cone point
	Theorem
	Let X be a simplicial complex.
	H _c (CX: F)= {F, r=0
	0, 170
	i.e. CX has the homology of a point.
	Proof
	C*(CX) is the chain complex of CX.
	Define hn: Cn (CX) -> Cn+1 (CX) linear map.
	by h_ [vo,, vn] = [*, vo,, vn].
	Note if $v_c = *$ then $h[v_0,, v_n] = 0$ due to repetition of vertex.]
	Le man in the man of vertex

 $\frac{\partial_{n+1} h_n \left[v_{0,...,} V_n \right] = \partial_{n+1} \left[*, v_{0,...,} V_n \right]}{= \left[v_{0,...,} V_n \right] + \sum_{i=1}^{n} (-1)^{i+1} \left[*, v_{0,...,} \hat{V_i}, ..., V_n \right]}$ $= [v_0, ..., v_n] + h_{n-1} (\sum_{r=0}^{n} (-1)^{r+1} [v_0, ..., v_r, ..., v_n])$ = [Vo,..., Vn] - hn-1 dn[Vo,..., Vn] and so $\partial_{n+1}h_n + h_{n-1}\partial_n = 1d$ Suppose no, 1 and let z ∈ Zn(CX) then $\partial_n(z) = 0$. So $|d(z)| = \partial_{n+1}h_n(z) + h_{n-1}(0) = \partial_{n+1}h_n(z) \in B_n(CX)$ ie. Zn(CX) = Bn(CX) for nal So Hn(CX: F) = 0 for n >1 (Check CX is connected). 7-01-18 Theorem Let X be any simplicial complex and CX = cone on X Then $H_r(CX; F) = \{F, r = 0\}$ ie. CX behaves like a point as regards homology. Proof CX is connected: Vcx = Vx LI f # 3 Let V, W E Vex, V + W. Either * E { v, w} or v e Vx and w e Vx. Suppose w= * then [v, *) & Sicx so I've joined v to w Likewise if V= * , w = *. If v, we Vx, then [v, *] & Sex, [*, w] & Sex. So again I've joined v to w. So CX is connected. So H. (CXIF) = F.

17-01-18	
	Now suppose 131.
	Need to show Hn (CX:F) = O. Write Cn = Cn (CX:F)
	For each n > 0 define
	Cn+1 and Cn on Cn-1 hm: Cm -> Cm+1, defined
	$\frac{h_{n}}{C_{n+1}} = \frac{h_{n-1}}{C_{n}} = \frac{h_{n}}{C_{n-1}} = \frac{h_{n}}{C_{n-1}} = \frac{h_{n}}{C_{n}} = $
	$C_{n+1} \longrightarrow C_n \longrightarrow C_{n-1}$
	Claim: hr., In + In+, hn = Id. "Chain contraction"
	Claim: hn., In + In+, hn = Id. "Chain contraction". It is enough to check this on the standard basis of Con.
	C
	$\begin{bmatrix} \nabla_{o_1, \dots, v_n} \nabla_{o_1, \dots,$
	$h_{n-1} \partial_n \left[V_0, \dots, V_n \right] = \sum_{r=0}^{\infty} (-1)^r \left[*, V_0, \dots, \hat{V_r}, \dots, V_n \right]$
	$h_n \left[V_0,, V_n \right] = \left[*, V_0,, V_n \right]$
	Jatiha [vo,, vn] = [vo,, vn] + \(\sum_{r=0}^{n} (-1)^{r+1} [*, vo,, \hat{v}_{r,, vn}] \)
0	$= \begin{bmatrix} v_0, \dots, v_n \end{bmatrix} - \underbrace{\sum_{r=0}^{n} (-1)^r \begin{bmatrix} *, v_0, \dots, v_r \end{bmatrix}}_{r=0} $
	=> [dn+1 hn + hn-1 dn] [Vo,, Vn]
	$= \left[V_0, \dots, V_n \right] - \frac{\sum_{r=0}^{n} (-1)^r \left[\frac{1}{r}, V_0, \dots, \hat{V}_r, \dots, V_n \right]}{r=0} + \frac{\sum_{r=0}^{n} (-1)^r \left[\frac{1}{r}, V_0, \dots, \hat{V}_r, \dots, V_n \right]}{r=0}$
*	= [Vo, vn]
	=> dn+1hn+hn-1dn = 1d as claimed.
	Let $z \in Z_n(CX)$, $n \ge 1$
	$\partial_n(z) = 0$
	$z = \partial_{n+1}h_n(z) + h_{n-1}\partial_n(z)$
	=> Z = Dn+1hn (Z) & Bn (CX)
	ie Zn(CX) = Bn(CX)

But Bn(CX) = Zn(CX) => Bn (CX) = Zn (CX) $\Rightarrow H_n(CX; F) = Z_n(CX)/B_n(CX) = 0$ $\Delta^{n+1} = C\Delta^n \quad (n \ge 0)$ Von= {0, ..., n+1}, Von = {0, ..., n} Put *= n+1. ordlary $H_r(\Delta^n, F) = \begin{cases} F & r = 0 \\ 0 & r \neq 0 \end{cases}$ $\Delta' = C\Delta^{\circ}$, $\Delta^{\circ} = \{0\}$ single point.

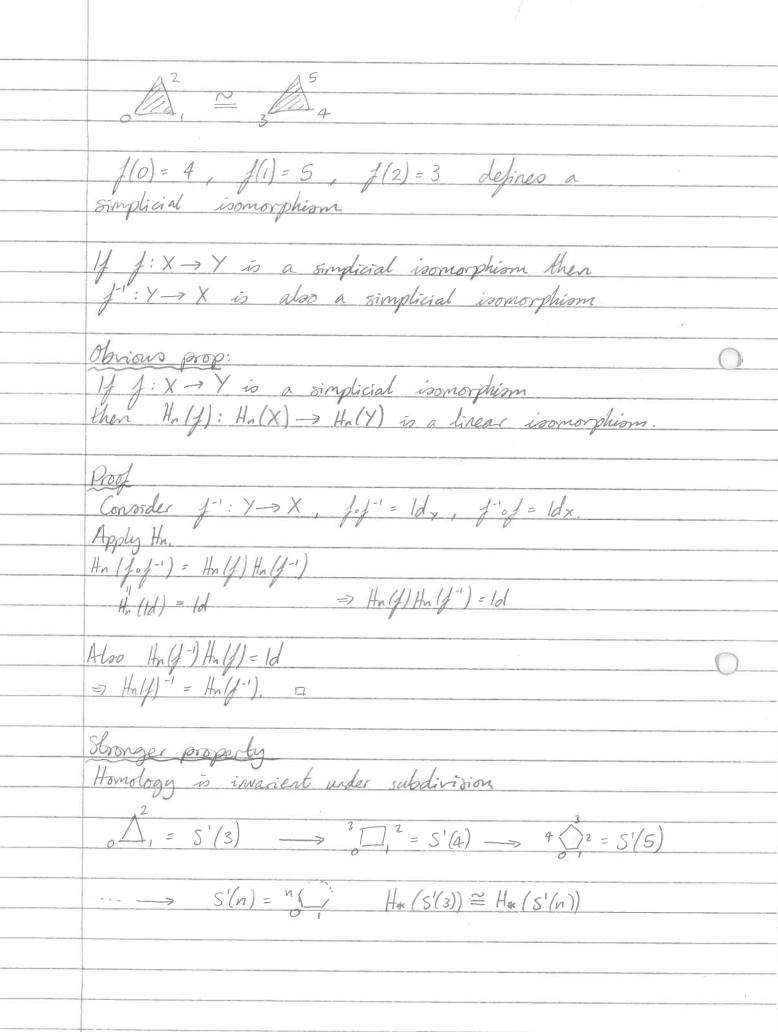
So, here taking cone point to be 1 $\Delta^2 = \Delta^2 = C(-)$ cone point = 2. Let $X = (V_X, S_X)$ be a simplicial complex. Let $n \ge 0$. Define $X^{(n)} = (V_X, \{ \sigma \in S_X : |\sigma| \le n + 1 \} \text{ i.e. st. dim}(\sigma) \le n)$ X (n) is called the n-skeleton of X. In English, to get X'n, throw away all simplices in X of dimension > n. Theorem $H_c(X^n; F) = SH_c(X; F)$ r < n $Z_n(X:F)$

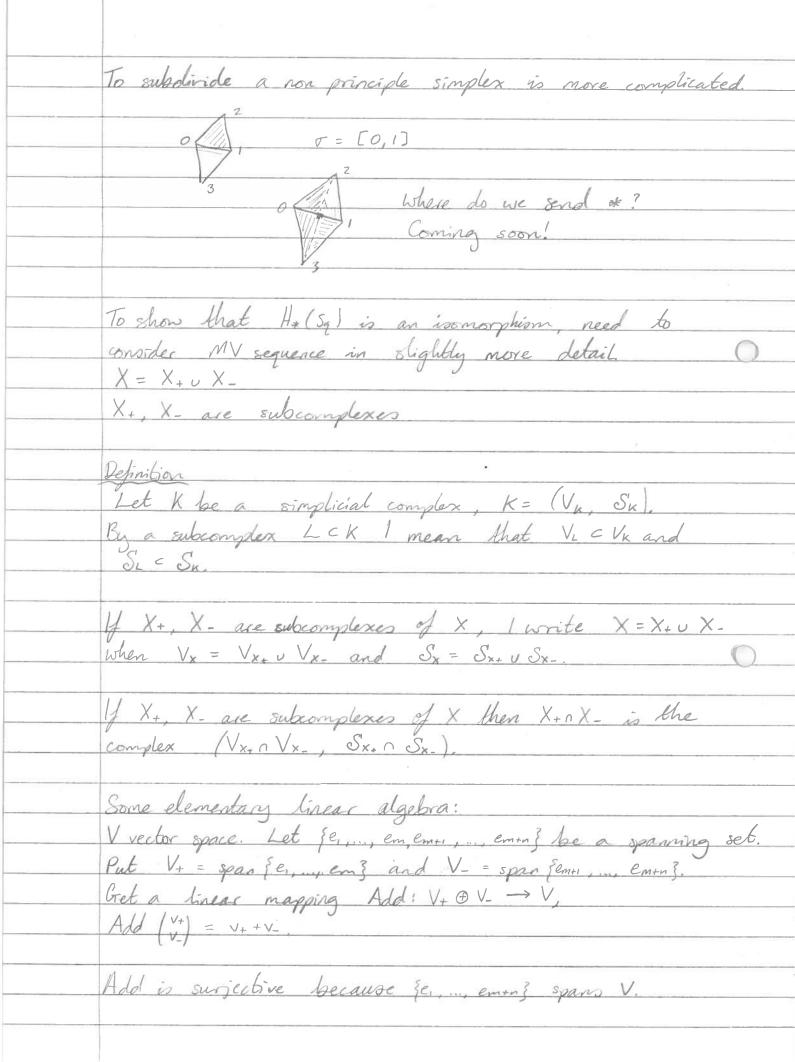

MATH 3203	
17-01-18	
	By def of X(n),
	By def of X (n),
	$C_r(X^{(n)}; F) = C_r(X; F) r \leq n$
	$\partial_r: C_r(X^{(n)}) \rightarrow C_{r-1}(X^{(n)}) \equiv \partial_r: C_r(X) \rightarrow C_{r-1}(X)$ provided ren.
	$O \longrightarrow C_n(X^{(n)}) \xrightarrow{\partial_n} C_{n-1}(X^{(n)})$
	111
	$C_{n+1}(X) \xrightarrow{\partial_{n+1}} C_n(X) \xrightarrow{\partial_n} C_{n-1}(X)$
0	For ren:
	$H_r(X^{(n)};F) = H_c(X;F)$
	$Ke^{r}\partial_{r} \equiv Ke^{r}\partial_{r}$
	In den In den Natural surjection:
	$H_n(X^{(n)}) \to H_n(X)$
	$H_n(X^{(n)}; F) = Ker \partial_n$ Not an isomorphism
	Hn (X:F) = Ker dn / Im dn+1 [Not an isomorphism in general]
	Example 1
	Take the standard model of 8"
	$V_{S^n} = \{0,, n+1\}$
	$S_{S^n} = \sigma \subset \{0, \dots, n+1\}$, $\sigma \neq \emptyset$ and $dim(\sigma) \leq n$ i.e. $ \sigma \leq n+1$
-	n
	$S^{n} = \left(\Delta^{n+1}\right)^{(n)} (n > 0)$
	$S = \{\Delta\} (N7,0)$
	Corollary
	Let n 31.
	$H_r(S^n:F) = $ $F_r = 0$
	$ O \leq r \leq n-1$
	? r=n
	(O r > n

	Roof	
	For ren	
	$H_{\Gamma}(S^n;F)\cong H_{\Gamma}(\Delta^{n+1};F)$	
	But so far we don't know the value Hn (5": IF) in gen	reral
	We did show that H2 (S2, F) = F	
27-01-18	Recall: H. (CX; F) = { F, r=0	
		0
	$H_{r}(\Delta^{n}; F) = \begin{cases} F, & r = 0 \\ 0, & r \neq 0 \end{cases}$	
	S^n standard model of n - sphere. $S^n = (\Delta^{n+1})^{(n)}, n > 2$	
	$H_r(S^n;F) = \{F, r=0\}$	
	? , r=n	
	O, r > n.	
	$H_2(S^2;F)=F.$	0
	Exact sequences [Huranicz c 1936]	
	$U \xrightarrow{S} V \xrightarrow{T} W$	
	U, V, W vector spaces	
	S, T linear maps	
	Say the sequence is exact at V when Ker T = Im S.	

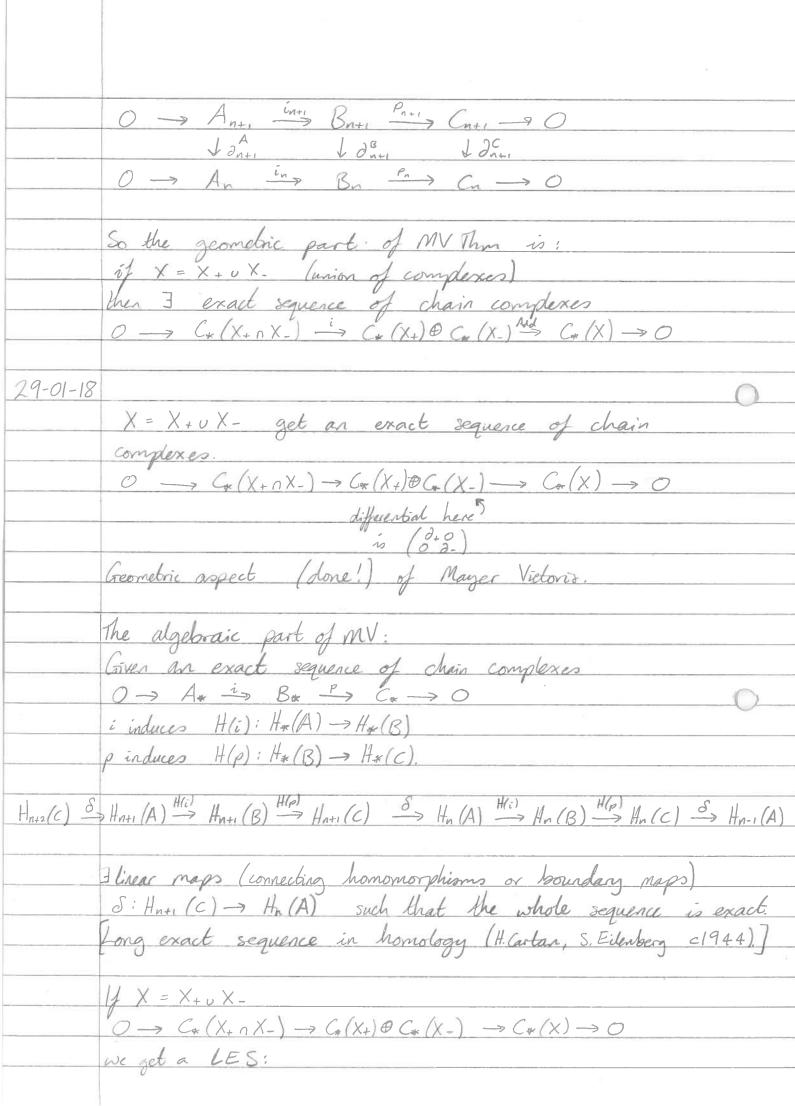
MATH 3203	
10 -1 10	
22-01-18	
	Types of exact sequences
	$(i) \lor \xrightarrow{\mathcal{T}} W \longrightarrow O$
	exact at $W \Leftrightarrow T$ is surjective $Ker(W \to 0) = W = Im T$
	na (W = > 0) W = +111
	$(u) O \longrightarrow \mathcal{U} \xrightarrow{S} V$
	exact at U \(\S is injective
	$I_m(0 \rightarrow u) = 0 = Ker S$
_0	
	(iii) Very short exact sequence
	$0 \rightarrow u \rightarrow v \rightarrow 0$
	exact (at U and V) (=> T is an isomorphism.
	(T is both injective and surjective).
	(iv) Short exact sequence (SES)
	$0 \to \mathcal{U} \xrightarrow{S} V \xrightarrow{T} \mathcal{W} \to 0$
	exact (at U, V, W) (=> S injective, T surjective and KerT=Ims.
-0-	If U, V, W are as - dimensional (For us NEVER)
	then this is at we can say.
	However if V is finite dimensional then so are U, W
	and in this case dim V = dim U + dim W
	(by Kernel-Rank Thm).
	1 0 -> U S V T W -> 0 is exact, then
	T surjective so dim W = dim Im (T)
	Sinjective so dim U = dim Im (s) = dim Ker(T)
	dim (V) = dim Ker (T) + dim Im (T) = dim U + dim W.

	In general given a sequence of vector spaces and
	tinear maps Vn+1 Vn Tn-1 Vn-1
	then the squence is is exact at Vn
	(Ker (Tn) = Im (Tn+1)
	Such a sequence is exact when exact at each Vn.
	C
	Main Theorem of the Course:
	Mayer - Victoris Thon
	Let X be a simplicial complex and suppose we
	can write X=X+UX- where X+ and X- are subcomplexes
	of X, then there exists a long exact sequence
	of the following form: (# = coefficients)
	$H_{n+1}(X) \rightarrow H_n(X_{+} \cap X_{-}) \rightarrow H_n(X_{+}) \oplus H_n(X_{-}) \rightarrow H_n(X) \rightarrow H_{n-1}(X_{+} \cap X_{-}) \rightarrow \dots$
	and finishes like
* 6 1	$\rightarrow H_1(X_{+}\cap X_{-}) \rightarrow H_1(X_{+}) \oplus H_1(X_{-}) \rightarrow H_1(X) \rightarrow H_0(X_{+}) \rightarrow H_0(X_{+}) \rightarrow H_0(X_{-}) \rightarrow H_0(X) \rightarrow O.$
	Example
	$H_*(S':F), X = \bigwedge^2 (= S'(3))$
	o ————————————————————————————————————
	$X_{-} = \frac{1}{2}$, $X_{+} = \frac{1}{2}$
	X+ is the cone on two points, {0,1}
	X- is the cone on a single point, {0}
	X + 0 X = 0
	Use the Mayer-Vietoris Thm.


MATH 3203	
22-01-18	
	$H_1(X_+) \oplus H_1(X) \rightarrow H_1(S') \rightarrow H_0(X_+ \cap X) \rightarrow H_0(X_+) \oplus H_0(X) \rightarrow H_0(X) \rightarrow 0$
	$0 \longrightarrow H_i(S') \longrightarrow F \oplus F \longrightarrow F \oplus F \longrightarrow F \longrightarrow 0$
	$C_n(X_{+} \cap X_{-}) = \begin{cases} F \oplus F & n = 0 \\ 0 & n \neq 0 \end{cases} \Rightarrow f_0(X_{+} \cap X_{-}) \cong F \oplus F.$
	So we have $0 \rightarrow H_1(S') \stackrel{J}{\rightarrow} F^2 \stackrel{J}{\rightarrow} F^2 \stackrel{T}{\rightarrow} F \rightarrow 0$ $\stackrel{\downarrow}{\text{Im }} S = \stackrel{?}{\text{Ke-T}}$
	Split into two exact sequences: $0 \rightarrow H_1(S^1) \xrightarrow{J} F^2 \xrightarrow{S} I_m(S) \rightarrow 0$ $0 \rightarrow Ker(T) \rightarrow F^2 \xrightarrow{T} F \rightarrow 0$
	dim Ker T = 1 so dim Im S = 1
	$0 \longrightarrow H_1(S') \longrightarrow F^2 \longrightarrow F \longrightarrow 0$ $\overline{Im}(S)$
_0	So dim H ₁ (S')+1=2 dim H ₁ (S')=1
	To summarise: $H_k(S':F) = \begin{cases} F & k = 0 \\ S' & connected \end{cases}$


22-01-18	
72 OL 10	$X_{+} = cone \text{ on } \partial \Delta^{n} \subset S^{n}$
	taking n+1 to be the cone point.
	In detail:
	Vertex set = {0,, n+1}
	Simplex set = { $\alpha \in \{0,,n+1\}$ s.t. $\alpha \neq \emptyset$, $\alpha \neq \{0,,n+1\}$, $\alpha \neq \{0,,n\}$ }
	$S_0 S^n = X_{+u} X_{-}, S^{n-1} = X_{+n} X_{-}$
	Now use MV Thm:
	Hn(X+)@Hn(X-) -> Hn(S") -> Hn-1(S") -> Hn-1(X+)@Hn-1(X-)
0	
	$0 \longrightarrow H_n(s^n) \stackrel{\cong}{\longrightarrow} H_{n-1}(s^{n-1}) \longrightarrow 0$ (cones) (cones)
	(cones) (cones)
	$\Rightarrow H_n(S^n) \cong H_{n-1}(S^{n-1})$
	Inductive hypothesis Hn-1(5"-1)=F
	Inductive hypothesis $H_{n-1}(S^{n-1}) \cong F$ Conclusion: $H_n(S^n) \cong F$
	Summary: Hx(5": F) = {F k=0, (n>1)
	Summary: $H_k(S^n; F) = \S F k = 0, (n > 1)$ $F k = n,$ $O otherwise.$
	O otherwise.
0	
	Whitehead's Tock
	Suppose 0 -> Vn Tn Vn-, ->> V, T-> V> O
	is an exact sequence of finite dimensional vector spaces
	and linear maps.
	Then \(\sum_{720} \) \dim\(\V_{2r} = \sum_{730} \) \dim\(\V_{2r+1} \) \tag{730}
	F70 F70
	Proof
	Let P(2n) be the statement that it
	Let $\mathcal{P}(2n)$ be the statement that if $0 \rightarrow V_{2n} \rightarrow V_{2n-1} \rightarrow \rightarrow V_{i} \rightarrow V_{0} \rightarrow 0$
	is exact then \(\frac{5}{4} \text{dim}(V_{2r}) = \frac{5}{4} \text{dim}(V_{2r+1}).
	r=0
	Let P(2n+1) be the statement that if

 $0 \rightarrow V_{2n+1} \rightarrow V_{2n} \rightarrow \dots \rightarrow V_{i} \rightarrow V_{o} \rightarrow 0$ is exact then I dim (V2r) = I dim (V2r+1). 0 -> V, To Vo -> 0 exact, then dim V, = dim Vo Also, O -> V2 T2> V, T1> Vo -> O exact, then dim Vo + dim V2 = dim V1. This is P(2). It suffices to show that $\Im(2n) \Rightarrow \Im(2n+1)$ and $\Im(2n+1) \Rightarrow \Im(2n+2)$. O Proof are very similar. $\Im(2n+1) \Rightarrow \Im(2n+2)$ left as exercise. $\mathcal{P}(2n) \Rightarrow \mathcal{P}(2n+1)$: We'll start with 0 -> Vzn+1 -> Vzn -> Vzn-1 -> V, T-> Vo -> O Split the exact sequence O-> KerTzn-1-> Vzn-1 -> V, T, Vo -> O 0 -> V2n+1 T2n+1 V2n T2n Im T2n -> 0 Both exact. By hypothesis $\mathcal{D}(2n)$: $\dim(\ker T_{2n-1}) + \sum_{r=0}^{n-1} \dim V_{2r} = \sum_{r=0}^{n-1} \dim V_{2r+1}$ Ker-Rank Thm tells us dim (V2n+1) + dim (Im T2n) = dim (V2n) So dim(Vzn+1) + dim(Ker Tzn-1) = dim(Vzn). So. dim V2n+1 + dim (Ker T2n-1) + Z dim V2r = dim V2n+1 + Z dim V2r+1 dim (V2n) + 2 dim (V2r) = 2 dim (V2r+1) So $P(2n) \Rightarrow P(2n+1) \square$


MATH 3203	
22-01-18	
	Let's redo Hax S' using Whitehead's trick.
	$C_1 = A^2$
	$S' = \Delta'$, $X_{-} = \overline{A}$, $X_{+} = A^{2}$,
	$X_{+} \cap X_{-} = i$
	$H_{\bullet}(X_{+}) \oplus H_{\bullet}(X_{-}) \rightarrow H_{\bullet}(S') \rightarrow H_{\bullet}(X_{+} \cap X_{-}) \rightarrow H_{\bullet}(X_{+}) \oplus H_{\bullet}(X_{-}) \rightarrow H_{\bullet}(S') \rightarrow O$
	O ? FOF FOF FOR connected
	corres 2 connected, connected
	$\Rightarrow 0 \rightarrow H(S') \rightarrow F^2 \rightarrow F^2 \rightarrow F \rightarrow 0$
	Use Whitehead:
1 la Laboratoria	dim F + dim F2 = dim F2 + dim H1(5')
MATERIAL AND ADDRESS OF THE PARTY OF THE PAR	$\Rightarrow 1 + 2 = 2 + \dim H_1(S')$ $\Rightarrow \dim H_1(S') = I \Rightarrow H_1(S') = I$
	$\Rightarrow a_{m} H_{1}(3) = 1 \Rightarrow H_{1}(3) = 1$
	$\Rightarrow H_k(s'; F) = \{F \mid k=0,1\}$
	$\Rightarrow H_k(s'; F) = \{F, k=0, 1\}$ $(0, k>1.$
	11 ,58 , 2 -> 51/./
	Hn: {Simp. complexes} -> { Vector spres } (& simp. maps) (& linear maps)
	Functor X => 7 2> Z
	$H_n(g \circ f) = H_n(g) \circ H_n(g)$
	$H_n(1d) = 1d$
	f: X -> Y simplicial map
	We say I is a simplicial isomorphism when
	We say of is a simplicial isomorphism when f: Vx -> Vy is bijective and fx: Sx -> Sy is also bijective,
-	$f_{\text{ex}}(\sigma) = f(\sigma)$

24-01-18	
	Homology is invarient under subdivision (to be shown in next few rectures)
	Jew lectures)
	First: Subdivision of a principle simplex
	Assume that X is a finite dimensional simplicial complex.
	ie. IN: Y TE Sx dim(o) & N.
	In a finite dimensional complex, every simplex is
	contained in at least one maximal simplex (or principle
	simplex, i.e. σ is maximal \Leftrightarrow $\sigma \in \tau$, $\tau \in S_x \Rightarrow \sigma = \tau$.
	.7
0	K 16 Here to is principle.
	1/2/11/9
	K 6 8 Here Day is principle.
	Sd (K) = subdivision of K at σ The subdivi
	76/8
	Formally one replaces to (leaving all
	its faces in place) and supoblates C(20)
0	
	(squash)
	To show H* (Sdo(K)) = H*(K) we construct a mapping
	$S_q: Sd_{\sigma}(K) \rightarrow K$ and show $H_*(S_q): H_*(Sd_{\sigma}(K)) \stackrel{\cong}{=} H_*(K)$
	is an isomorphism.
	11, 2, *3 → {1, 2}
	$\frac{S_2}{\{1,6,*\}\mapsto \{1,6\}}$ $\{*\}\mapsto \{1\}$
	2 (*3 -> 513
	$\{2,6,*\} \mapsto \{1,2,6\}$
	So is the identity wherever it makes sense.
	Sq(*) is a vertex in 2 or.

24-01-18	
	In general Add is not injective.
	Ker (Add) = { (V+) : V+ + V- = 0}
	ce. { V-=-V+ € V+
	(v+ = -v- EV-
	\Rightarrow $V_{+} \in V_{+} \cap V_{-}$ and $V_{-} = -V_{+}$.
	So get an exact sequence 0 -> V+nV> V+ + V> V -> 0
	$0 \longrightarrow V_{+} \cap V_{-} \xrightarrow{i} V_{+} \oplus V_{-} \xrightarrow{i} V \longrightarrow 0$
	$i(v) = \begin{pmatrix} v \\ -v \end{pmatrix}$
_0	dim (V+) + dim (V-) = dim (V) + dim (V+ n V-) (algebra 2)
	C. L. al 1 and
	Geometric part of MV sequence.
5-7-2-3-5	X = X + V X - , X, X + , X - Simplicial complexes
	Cn(X), Cn(X+), Cn(X-), Cn(X+nX-) and so
	get an exact sequence
	$0 \to G_{n+1}(X+nX-) \xrightarrow{i} G_{n+1}(X+) \oplus G_{n+1}(X-) \to G_{n+1}(X) \to 0 \forall n$ $\downarrow \partial_{n+1} \qquad \downarrow \begin{pmatrix} \partial_{n+1} & 0 \\ 0 & \partial_{n+1} \end{pmatrix} \qquad \downarrow \partial_{n+1}$
	0 -> (/V -V) - (/V) -> (/V) -> 0
0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$0 \rightarrow C_{n-1}(X_{+} \cap X_{-}) \rightarrow C_{n-1}(X_{+}) \oplus C_{n-1}(X_{-}) \rightarrow C_{n-1}(X) \rightarrow 0$
	These sequences are compatible with the boundary maps
	<u>lefisition</u>
	By an exact sequence of (algebraic) chain complexes
	$0 \rightarrow A_{*} \stackrel{\sim}{\rightarrow} B_{*} \stackrel{\rho}{\rightarrow} C_{*} \rightarrow 0$
	I mean that (i) $A_{k} = (A_{n}, \partial_{n}^{A})$, $B_{k} = (B_{n}, \partial_{n}^{B})$, $C_{k} = (C_{n}, \partial_{n}^{C})$
	are all chain complexes,
	(ii) i, p are chain mappings (i.e. they commute with boundary maps) (iii) For each n, 0 -> An in Bn in Cn -> O is exact.
	on the second

MATH 3203 29-01-18 Let $f: X \to Y$, $f(X_{+}) \subset Y_{+}$, $f(X_{-}) \subset Y_{-}$ so $f(X_{+} \cap X_{-}) \subset Y_{+} \cap Y_{-}$ Naturality: the diagram above commutes. We'll show that if $X' = Sd_{\sigma}(X)$ where σ is a principle simplex then $S_q : H_*(X') \xrightarrow{Sq_*} H_*(X) \text{ where } S_q \text{ is the squash map.}$ X is a simplicial complex and $\tau \in S_X$ is a principle simplex. Assume X is finite discount (not necessary but easier). List the principle simplicies of X starting with T = To, Ti, IN. Write X+ for the subcomplex generated by o, Write X- for the subcomplex of X generated by $\sigma_1,...,\sigma_N$ (i.e. $\sigma_1,...,\sigma_N$ and all their faces). So $X = X + \cap X -$ and $X + \cap X - \subset \partial \sigma$. ie. I and all its faces. Now form subdivision $Sd_{\sigma}(X) = X'$. $X' = X' \cup X' \quad \text{where} \quad X' = X - \text{ and } X' = C(\partial_{\sigma})$ ie replace or by C(dr). map * -> either a, b, orc * Sn > 6 ce suppose Sy(*) = a and Sal = 60.

Now extend S_q to $S_q: X' \rightarrow X$ $S_q \mid_{X_+} = S_q$, $S_q \mid_{X} = Id$ $(X' = X_-)$ Hn (X+'n X-') -> Hn (X+) + Hn (X-) -> Hn (X') -> Hn-1 (X+'n X-') -> Hn-1 (X+) + Hn-1 (X-') $\cong \downarrow Id \qquad \cong \downarrow \begin{pmatrix} s_2 & 0 \\ 0 & Id \end{pmatrix} \qquad \downarrow s_2 \qquad \cong \downarrow Id \qquad \cong \downarrow \begin{pmatrix} s_2 & 0 \\ 0 & Id \end{pmatrix}$ Hr(X+nX-) -> Hr(X+)@Hn(X-) -> Hr(X) -> Hr-1(X+nX-) -> Hr-1(X+)@Hn-1(X-) X+n X- = do and Sqla = ld, Sq: X- -> X- = ld Horume X is connected (for simplicity)
Then X' is also connected Sq: $H_n(X') \xrightarrow{\sim} H_n(X)$ is an isomorphism $\forall n > 0$. For n=0, both connected so okay. Suppose n=1. Then Sq: H. (X+) @ H. (X-') => H. (X+) @ H. (X_-) Sq: H, (X') @ H, (X') => H, (X+) @ H, (X-) because $H_1(X_+)=0$ since X_+ is a cone, $H_1(X_+)=0$ since $X_+=\langle \sigma \rangle$ is a simplex When n >, 2. $H_n(X_+') = 0 = H_{n-1}(X_+')$ cone. $H_n(X_+) = 0 = H_{n-1}(X_+)$ simplex. So in each case n > 1, we have a commutative diagram as above with exact rows and where outer maps are isomorphisms. Now appeal to Five Lemma to conclude that 'Sq: Hn (X') => Hn(X) is an isomorphism.

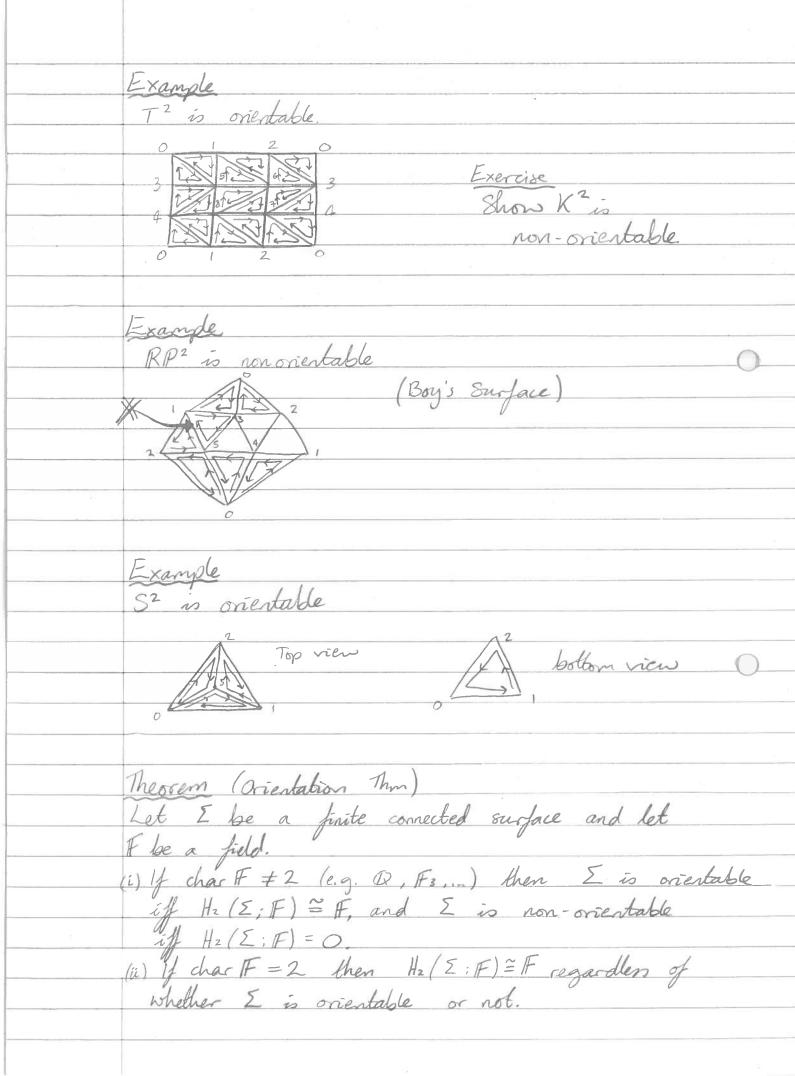
29-01-18	
	Five Lemma
	Given a commutative diagram of abelian groups
	and homomorphisms with exact rows, and
	for for fa fa are isomorphisms, then for is also an isomorphism.
	$A_0 \xrightarrow{\kappa_0} A_1 \xrightarrow{\alpha_1} A_2 \xrightarrow{\alpha_2} A_3 \xrightarrow{\alpha_3} A_4$
	If. It. It. It. It.
	Bo Bo B, B, B, B2 B2 B3 B4
Microsoft	
	Proof (diagram chasing).
-0-	1). Je is injective:
	Suppose x & Az has f2(x) = O.
	WTS: x = 0
	So B2(f2(x)) = 0
	So $f_3(\alpha_2(x)) = 0$ (commutativity)
	f3 injective so $\alpha_2(n) = 0$
	=> sc E Ker az = Im a,
	Choose $y \in A$, s,t , α , $(y) = \infty$
	So $f_2(\alpha, (y)) = f_2(x) = 0$
	$\Rightarrow \beta_1(f_1(y)) = 0$ (commutativity)
	=> fily) EKERBI = ImBo
	Choose $z \in \beta_0$ s.t. $\beta_0(z) = f_1(y)$
	jo is surjective so choose w∈Ao st. folw = €
	$\beta_0(f_0(\omega)) = \beta_0(z) = f_1(y)$
	$\beta_0\left(f_0(\omega)\right) = f_1\left(\kappa_0(\omega)\right)$
	So $f(x_0(w)) = f(y) \Rightarrow x_0(w) = y$ since $f(x_0) = y$ since $f(x_0) = y$
	$\Rightarrow \alpha_1 \alpha_0(\omega) = \alpha_1(y) = \alpha$
	But $\alpha_1\alpha_0 = 0$ so $\alpha = 0$. So β_2 is injective.
	(ii) to a summa fine. NTT: CA = st 1 (1 = x = cD)
	(ii) fz is surjective: NTF: y \(A \) sb. fz(y) = \(\chi \), \(\chi \) \(\beta \)
	β_3 is surjective so choose $\omega \in A_3$: $\beta_3(\omega) = \beta_2(\pi)$ $\beta_3(\beta_3(\omega)) = \beta_3(\beta_2(\pi)) = 0$ $(\beta_3\beta_2 = 0)$
	$f_4(\alpha_3(\omega)) = \beta_3(f_3(\omega)) = 0.$

MATH 3203

$\int a$ is injective so $\alpha_3(\omega) = 0$.	
WEKeraz = Imaz	
Choose y' & Az st. az(y') = w	
$\beta_2(f_2(y')) = f_3(\alpha_2(y')) = f_3(\omega) = \beta_2(x)$	
So B2(x - f2 (y')) = 0	10
So x-f2(y') \in Ker \beta_2 = Im \beta,	
Chouse $z \in \mathcal{B}$, $s.t.$ $\beta_1(z) = \alpha - \beta_2(y)$	
fi is surjective, so choose u ∈ A, st. f. (u) = Z.	
$\beta_1(f_1(u)) = \beta_1(z) = x - f_2(y')$	
	0
$f_2(\alpha_i(u)) = \alpha - f_2(y')$	
$\Rightarrow x = f_2(y' + \alpha_1(u))$ Put $x = x(+x(u))$	
Put $y = y' + \alpha_1(u)$.	
So fr is surjective,	
So now we've proved that $H_*(Sd_{\sigma}(X)) \cong H_*(X)$ provided	
· · · · · · · · · · · · · · · · · · ·	
o is a principle simplex.	
Joins, links and stars:	
Suppose K, L are simplicial complexes and KnL = \$.	
 Define the abstract join K*L as follows;	
K L ->	
 $\Delta' * \Delta' = \Delta^3 \qquad \left[S^m * S^n = S^{m+n+1} \right]$	
[3*3-5]	
\ \ - \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
$V_{K*L} = V_{K} \sqcup V_{L} \qquad (K_{\Lambda} L = \emptyset)$	
SK*L = SKU SLU (OUT: OE SK, TESL)	
 i.e. we join everything in K to everything in L.	

MATH 3203	
29-01-18	
	Special case: K = single point = pt.
	$K*L= {pt} *L= C(L)$ (cone on L).
	ed / /
	Obvious fact
	Suppose K, L, M are complexes st. KnL = Ø, KnM = Ø, LnM = Ø.
	Then (K * L) * M = K * (L * M).
	Pool
	Look at definition.
	Corollary If $K \cong \Delta^m$, then $K * L$ is a cone.
	$K*L = C(\Delta^{m-1}*L)$
	Boof
	Write 1 = {pt} * 1 "-1
	$\Delta^{m} *L = \{pt\} * (\Delta^{m-1} *L)$
	= c(\(\D \mathreal{m-1} \neq L \)
	(1)
	$K = P$ (non principle simplex in K). $Lk(g,K) = (1) \cup (2)$
	p (non principle simplex in K).
	let te Su San Hat Timble to a K
	Let $\tau \in S_K$. Say that τ is joinable to ρ in K when $\rho \cap \tau = \beta$ and $\rho \cup \tau \in S_K$
	Define Lk(p, K) by link of p in K.
	LK(p, K) consists of all simplices of K st. o is
	joinable to p in K.

Tautologically: p * Lk(p, K) imbeds as a subcomplex of K.
This subcomplex is called the Star of p in K.


[In above example Star(p, K) = Φ] Pop p * 2k/p, K) is a cone (so it has brivial homology) Proof
p is a simplex. Subdivision at a non-principle simplex. Let s be a non-principle simplex of X. Let X+ be subcomplex of X generated by the principle simplices which contain p. Then X+ = p * Lk(p, K) Let X- be subcomplex of X generated by the principle simplices which do not contain p. X+n X-= 2p * Lk(p, K). Then $Sd_p(x) = X + U X - where X + = C(\partial_p) * Lk(p, K)$. H* Sd (x) = H* (x).

MATH 3203	
31-01-18	
	X simplicial complex (finite)
	p a non-principle simplex
	X = X + v X - where X + = p * Lk(p,K)
	$X_{+n}X_{-} = \partial_{p}*Lk(p, K)$
	Define $Sd_p(x) = X + ' \cup X - X + ' = C(\partial_p) * Lk(p,K)$
	$X_{+} = C(\partial \rho) * Lk(\rho, K)$
	$X \longrightarrow X_{+} = M_{1}$
0	X = -
	Lk(p, K) = .
4 /	
Maria e	X' () X+' = +
	$D : S : X' \rightarrow V$
	Define $S_q: X' \to X$ $S_q _{X} = Id, S_q _{X} \text{ maps cone point to a vertex in } \partial \rho$
	1/x- 10. , af x, maps come point to a veriex in op
0	Map core point to a for example.
	Hn(X+nX-) -> Hn(X+/DHn(X-) -> Hn(X') -> Hn-(X+nX-) -> Hn-(X+/) +Hn-(X-)
	11d (5° i) 159 11d 1(3° id)
	Hn(X+1X-) -> Hn(X+)@Hn(X)-> Hn(X) -> Hn-1(X+1X-) -> Hn-1(X+)@Hn-1(X-)
	O 0 0 0 0 0
	At O and 3 we obviously have isomorphisms (= ld) At O and 4 both X = p*Lk(p,K) and X = C(2p)*Lk(p,K)
	are cones, so both are isomorphisms.
	⇒ We have an isomorphism at @ by the Five-Lemma
	ie. $S_q:H_n(X') \stackrel{\sim}{\to} H_n(X)$.
	Hn (Sto[x)) This finishes the proof of homology invarience under subdivision
	Would under Without Ding

Definition Let X, Y be simplicial complexes. Suy that X, Y are combinatorially equivalent (X~Y) when 3 finite sequence of complexes Xo, X, ..., XN s.t. Xo = X XN = Y (simplicially isomorphic) and for each is I either Xi = Sdp (Xi-1) for some p or Xi-1 = Sdp (Xi) for some p. Corollary If X~Y, then H*(X) = H*(Y) Basic circle: S' = \(\frac{1}{2}\) = S'(3) (no middle) Subdivide: S'(4)= []2 Then H* (S'(4)) = H* (S'(3)) $\frac{1}{2} \int_{5}^{c} = S'(8) , H_{*}(S'(8)) \cong H_{*}(S'(3))$ H*(S'(10'0)) ~ H*(S'(3)) T2 = 5'x5' 2-torus A simplicial model of T2 = S'x5'

05-02-18 Definition A simplicial surface is a complex K= (VK, SK) such that $\forall v \in V_k \exists n \text{ s.t. } Lk(v, K) \cong S'(n),$ where S'(n) = circle with n vertices. Generalisation By a simplicial n-nanifold X=(Vx, Sx) we mean a simplicial complex in which $\forall v \in V_n$, $Lk(v, X) \sim S^{n-1}$ A surface is a simplicial 2-manifold. Example (throhedron)

Basic S^2 is a surface. $Lk(v, S^2) \cong S'(3)$. If Σ is a surface, ρ a simplex, then $Sd_{\rho}(\Sigma)$ is still a surface. In the doderahedron E, Lk(v, E) = S'(5). T' standard model of 2-torus. Em 3 Lk(8, T2) ~ S'(6) Klein bolble, K2 E.F Lh/8, K2) = S'(6)

MATH3203	
05-02-18	
	How to compute homology of sufaces quickly.
	Euler Characteristic (Primitive def")
	Let K= (VK, SK) be a finite simplicial complex.
	Let $K = (V_K, S_K)$ be a finite simplicial complex. For each $r > 0$ put $S_X(r) = \{ \sigma \in S_X : dim(\sigma) = r, i.e. \sigma = r+1 \}$. $X_{geom}(K) = \sum_{r>0} (-1)^r S_X(r) $
	In English this is the alternating sum of r-simplices.]
0	Observe that $ S_{x}(r) = dim_{F}(C_{r}(K;F))$ for any field F.
	So we think of Xgeom (K) as
	So we think of $X_{geom}(K)$ as $X_{geom}(K) = \sum_{r \ge 0} (-1)^r d_{im_{\overline{F}}}(C_r(K:F))$
	We also have homological Euler characteristic
	We also have homological Euler characteristic $ \chi_{hom}(K) = \sum_{r \neq 0} (-1)^r dim_{\pi}(H_r(K:F)). $
	Theorem
0	If K is a finite simplicial complex then X hom(K) = Xgeon (K).
• •	
	Pool
	Wate $C_r = C_r(K:F)$ (fix F) $\partial_r : C_r \to C_{r-1}$
	$Z_r = Ker \partial r$, $B_{r-1} = Im \partial r$
	$B_c = I_m \partial_{c+1}$
	Hr = Zr /Br (write Hr = Hr(K:F)
	We have two exact sequences
	1: 0 → Z → C → B-1 → O
($(\mathbf{I}): 0 \to B_c \to \mathbf{Z}_c \to H_c \to 0$

From (I), dim Cr = dim Zr + dim Br-1
From (II), dim Zr = dim Hr + dim Br So dim Cr = dim Hr + dim Br + dim Br-, Take alternating sums, - 00 < r < 00. Σ(-1) dim Cr = Σ(-1) dim Hr + Σ(-1) dim Br + Σ(-1) dim Br-1 [[-1] dim Br-1 = (-1) [(-1) r-1 Br-1 = -B So Z(-1) dim Cr = Z (-1) dim Hr So Xgeom(K) = Xhom(K). How to compute homology of surfaces assuming the orientation thm. H* (RP2, Q) Xgeom (IRIP2) = 6-15+10 => Xgeom (RP2)= 1 H* (RP2; Q) (connected) ho = dim Ho (RP2 Q) _ h = dim H. (IRIP20) (non-orientable) h == dim Hz (RIP, Q) = 0 Khom (IRP2) = 1 = ho - h, + hz $= 1 - h_1 + 0 \Rightarrow h_1 = 0.$

05-02-18 $\frac{1}{2} H_r(RP^2, Q) = \frac{1}{2} Q, r = 0$ $(0, r \ge 1)$ H* (RP2, F2) (F2 field with two elements) dim to = ho = 1 connected dim H = h = ? din Hz = hz = 1 (Fz has char = 2) Xnon (RIP2)=1=1-h,+1 => h,=1 $\Rightarrow H_k(RP^2, F_2) = \begin{cases} F_2, k=0,1,2\\ 0, k=3. \end{cases}$ Fany field, Tonientable. 3 9 vertices, 27 1-simplices 4 18 2-simplices $\chi(\tau^2) = 9 - 27 + 18 = 0.$ Write hi = din Hi (T2; F) ho = 1 (connected) h== 1 (orientable) ho-h, + hz = 0 => h, = ho + hz = 2 > /k(T2; F) = { F k=0 FOF L=1 IF k=2 0 k7,3

MATH 3203

I surface. Ho(E:F) tells you whether & is connected. II, (E:F) tells you how "big" & is. H2(∑:F) tells you whether ∑ is orientable. Connected sum Definition
Let I be a simplicial surface.
Let Io be the complex obtained by removing Es is a "bounded surface", it has boundary $\partial \Sigma_0 = \partial \sigma$. Suppose Σ , Σ' are simplicial surfaces, $\Sigma \cap \Sigma' = \emptyset$. To form the connected sum , we remove a 2-simplex of from E, o' from E' and glue the boundaries. $\sum \# \sum = \sum_{o} \bigcup \sum_{o}'$ $\partial \Sigma_{o} = \partial \Sigma_{f}'$

MATH 3203	
05-02-18	
	U. 5 is a lite consisted subset of
	I is combinatorially equivalent to exactly one
	I is combinatorially equivalent to exactly one of the following:
	S^{2} T^{2} T^{2} # T^{2} # T^{2} # # T^{2}
	3
	\mathbb{RP}^2 \mathbb{K}^2 $\mathbb{RP}^2 \# \dots \# \mathbb{RP}^2$
	RP2#RP2 5
-0	
07-02-18	
	Σ , Σ' connected surfaces, $\Sigma \# \Sigma' = \Sigma_{\circ} \cup \Sigma_{\circ}'$
	Σ., Σ' are Σ, Σ' with one 2-simplex removed.
	Up to combinatorial equivalence the cerult is independent
	of the particular simplices removed.
	Generalization:
0	If X, X' are connected simplicial n-manifolds. X # X' = X !! X' where X X' 100 X X' it.
	x # X' = X v X' where Xo, X' are X, X' with one n-simplex removed
	Rose
	If Σ , Σ' are connected surfaces, then $\chi(\Sigma \# \Sigma') = \chi(\Sigma) + \chi(\Sigma') - 2$
	Rool
	Poof De Ab
	$\chi(\Sigma_{o}) = \chi(\Sigma) - 1$, $\chi(\Sigma_{o}') = \chi(\Sigma') - 1$ (removing a 2 simplex) $\chi(\Sigma_{o}) = \chi(\Sigma) - \chi(\Sigma)$, $\chi(\Sigma_{o}') = \chi(\Sigma') - 1$ (removing a 2 simplex).
	$\chi(\Sigma \# \Sigma') = \chi(\Sigma_o) + \chi(\Sigma_o')$ κ visual proof
	volum proof

Chain complex proof: $\Sigma * \Sigma' = \Sigma_o \cup \Sigma_o' \quad (\partial \sim S')$ $\partial = \partial' \quad \Sigma_o \cap \Sigma_o' = \partial \sim S'$ We get an exact sequence of chain complexes. O → C*(2) → C*(\(\S_0\)) ⊕ C*(\(\S_0'\)) → C*(\(\S_+\S'\)) → O In each dimension we have an exact sequence O -> Cn(2) -> Cn(\(\S_{\circ}\)) \(\Phi\) (\(\S_{\circ}'\)) -> Cn(\(\S_{\circ}\)) dim Cn (E# E') + dim Cn (2) = dim Cn (Eo) + dim Cn (Eo') Take alternating sums: X(E# E') + X(d) = X(E0) + X(E') $\partial = \Sigma_{on} \Sigma_{o'} \sim S'$, $\chi(\partial) = 0$ $\Rightarrow \chi(\Sigma \# \Sigma') = \chi(\Sigma_o) + \chi(\Sigma_o')$ $= \chi(\Sigma) + \chi(\Sigma') - 2$ Here we've used the following 0 -> A => B => C => 0 exact sequence of chain complexes, then X(B*) = X(A*) + X(C*) Same formula true in ever dimensions] Σ_{+}^{\prime} (orientable, genus!) $\chi(T^{2}) = 0$ For g > 2, $\sum_{+}^{9} = T^{2} # ... # T^{2}$ Prop X(E,3) = 2-29

MATH 3202 07-02-18 True for g = 0, 1, 2. Suppose proved for g. $\sum_{+}^{9+1} = \sum_{+}^{9} \# T^2$ $\chi(\Sigma_{+}^{3+1}) = \chi(\Sigma_{+}^{3}) + \chi(T^{2}) - 2$ = 2-2g - 2 = 2 - 2(g+1)Corollary If F is any field, then $H_k(\Sigma^3:F) = \{F, k=0\}$ $F^{20}, k=1$ | F , k=2 0 k 7, 3 Put h: = dim H: (E+ 9) X(E,3) = ho - h, + hz = 2 - 29 ho = 1 connected hz = 1 orientable => 2-h, = 2-2g => h, =2g. Corollary $\Sigma_{+}^{h} \sim \Sigma_{+}^{h} \iff g = h$ They are distinguished by homology.

$$RP^2 = \Sigma^{\circ} \quad (\text{non-orientable Surface of genus 0})$$

$$[S^2 \text{ double covers } RP^2]$$

$$RP^2 \# RP^2 = \Sigma^{-1} \quad (\text{non orientable , genus 1})$$

$$[T^2 \text{ double covers } \Sigma^{-1}]$$

$$RP^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}} \quad (\text{non orientable , genus g})$$

$$[T^2 \# RP^2 = \Sigma^{\frac{\alpha}{2}}$$

MATH 3203	
07 02 10	
07-02-18	\mathcal{P}_{-}
	Rog H*(\Sigma^3:F) 2 invertible in F
	$H_k(\Sigma^3:F)=\int F k=0$
	$H_k(\Sigma^3:F)=\int F, k=0$ $F^3, k=1 \qquad (F^0=0 \text{ by convention})$
	$\int O, k=2$
	(0, k73)
	0 1
	Proof X = ho - h, + hz, ho = 1 connected, hz = 0 non-orientable
0	
	= 1-9
	$\Rightarrow 1-h, = 1-g \Rightarrow h, = g.$
	Pop
	1/2=0 in F, then
	$H_{k}(\Sigma^{9};F) = SF$ $k=0$ F^{9+1} $k=1$
	F^{get} , $h=1$ $F = k=2$
	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$
0	(0, 14)
	Proof
	h = 1 (connected), h = 1 (orientation than 2=0 in F)
	$\Rightarrow 1-h, +1 = 1-a$
	$\Rightarrow h_1 = 2 - 1 + g = g + l$

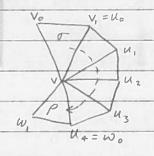
19-07 10		
19-02-18	0:11 1	
	Orientation Thm	
	X finite connected surface, then	
	(i) H2(X:F2) ≈ F2 if 1+1=0 in F2	
	(i) H2(X:F) ≈ F if X is orientable	
	(iii) H2(X: IF) = 0 if X is not orientable and 1+1 = 2 7 0.	
	In particular if F is a field of char (F) # 2, then	
	H2(X:F) ≠0 ⇔ X orientable.	
	Recall that X is connected when Y V, w & Vx 3 sequence	
	(vx) osrsp, vr E Vx and v=vo,, VN=w, {vr, vr+13 is a	0
	1-simplex for 0 \in \in N-1.	
	(Vr)OSTEN is a path from v to w.	
	TOVE OF THE STATE	
	Definition	
	Let X be a simplicial surface.	/
	Let \(\tau, \rho \) be 2-simplifies of X. By a copath from \(\tau \)	to p
	I mean a sequence of 2-simplices (or) occen st.	
	σ= σ ₀ ,, σ _N =ρ s.t. σ _C Ω σ _C σ _C is a 1-simplex for Ω≤r≤N-1.	
	1	
	Theorem	0
	If X is a connected simplicial surface and o,p are 2-sim	plices
	in X, then I copath from o to p (+p).	
	Proof	
	Let o, p be 2-simplices of X, o +p. Then a priori	
	there are 3 possibilities.	
	(i) Tap is a 1-simplex.	
	(ii) one is a 0-simplex.	
	$(ii) \sigma_{n\rho} = \emptyset$.	
	If (i) then (o,p) is a copath, so okay.	
	(ii) Suppose $\sigma \circ \rho = \{v\}$, $v \in V_{\times}$.	
	So $\sigma = \{v_0, v_1, v_3, \rho = \{w_0, w_1, v_3\}$	
	w, wo	

19-02-18

Observe that

{vo, v,3 < Lh(v, X), {wo, w,3 < Lh(v, X)}

The points vo, v, wo, w, are pairwise distinct, otherwise back to case 1.


The hypothesis on X (surface) means Lh(v, X) ~ S'(n).

Now join v, to ω_0 by a path in 2k(v, X) ($\sim S'(n)$).

I have a sequence $(u_r)_{0 \le r \le m}$, $u_r \in Lk(v, X)$, $\{u_r, u_{r+1}\} \in Lk(v, X)$, $u_0 = v$, $u_m = \omega_0$.

Define $\sigma_0 = \sigma$, $\sigma_1 = \{u_0, u_1, v\} \in S_X$, $\sigma_2 = \{u_1, u_2, v\}$, ..., $\sigma_m = \{u_{m-1}, u_{m,1}, v\}$, $\sigma_{m+1} = \{w_0, w_1, v\}$.

Then (or) 0 = - = M+1 is a copath from to p.

Let v = length of a shortest path from a vertex of σ be a vertex of ρ .

If v = 0, back to case l or 2.

Induction base: v = l.

So $\exists vertex \ v \in \sigma$, vertex $w \in \rho$. $\{v, w\}$ is a l-simplex of X.

Let τ be a 2-simplex \mathfrak{gt} , $\{v, w\} \subset \tau$.

By cases l and 2, \exists a copath from σ to $\dot{\tau}$ ($v \in \sigma \circ \tau$)

and \exists copath from τ to ρ ($w \in \tau \circ \rho$).

Hence \exists copath from σ to ρ (concatenate the copaths).

This proves the induction base.

Induction step: Suppose that v = length of a shortest path from o to p, v ? 2. Suppose statement is true for v-1. Let (No, ..., Vv) be a shortest path from o to p, $V_0 \in \sigma$, $V_v \in \rho$. Let & be a 2-simplex s.t. Vv., ex By induction hor I capath from o to z By induction base I copath from a to p. So 3 coputh from or to p. Proof (of orientation than) Let X be a finite connected simplicial surface. Enumerate the 2-simplices of X To, , To and give each or an artitrary, but fixed, local orientation To start with, let F be some field. A typical element $\alpha \in C_2(X:F_2)$ looks like $\alpha = \sum_{i=1}^{N} a_i \sigma_i$ Question: When does $\alpha \in Z_2(X:F) = \ker(\partial_2: C_2 \rightarrow C_1)$? Enumerate the 1-simplices of X, and give each (arbitrarily) a local (fixed) orientation, to, ..., $\partial_2(\alpha) = \sum_{s=0}^{\infty} b_s r_s$ Let of, or be the two 2-simplices such that 25 = 0+100 d2(0+) = + 25 + other terms not involving 25 $\partial_2(\sigma_-) = \pm \tau_+ + 11$ d2(a) = (+ a + a) 22 + other terms not involving 25. Incidence number: on-simplex rco (n-1)-simplex σ = [Vo,..., Vn], [σ, τ] = (-1) where τ = [Vo,..., Vr-1, Vr+1, ..., Vn] 2(α) = (ασ, [σ, τς) + ασ. [σ., τς]) τς + terms not involving το

y 2 ≠0 in F then either (i) ∃ c: {0,..., N} → [±1] st. [c(σ_r)σ_r, τ] + [c(σ_s)σ_s, τ] = 0 whenever T = or nos. This is precisely the definition of orientability. or (ii) \to: \{0, ..., N\} -> \{±1\} \\ 3 \, s \((r \neq s)\) \s. $[c(\sigma_r)\sigma_r, \tau] + [c(\sigma_s)\sigma_s, \tau] = \pm 2$, $\sigma_{r} \cap \sigma_s$ is a 1-simplex. Intermediate conclusion: alf 2=0 in F, then H2(x:F) +0. (any \$(c) ∈ Z2(X:F)) B If 2 = 0 then H2(X: F) = 0 (X orientable. (In particular H2(X:F) = O if X nonorientable). (Final stretch!) Assume 2 +0 in F, X orientable. Then we know $H_2(X:F) \neq 0$. In particular 3 c: {0,..., N3 -> {±13 st. 22 (3(c)) +0. Q: How big is H2(X:F) when X connected, orientable, 2 +0 in F? Every $\alpha \in \mathbb{Z}_2(X:F)$ has form $\alpha = a \S(c)$, $a \in F$, and Uc: {0, ..., N} → {±1} is some function s.t. d2(\$(c)) = 0. So suppose I have two functions c: {0, ..., N} -> {±13, d: {0,..., N} -> {±1} st. d2(((c)) = 0 and d2(((d)) = 0, d+c. Wlog. assume 3 , st. c(r) = +1, d(r) = -1. Suppose osnor is a 1-simplex of them $[\sigma_s, \tau] + [\sigma_r, \tau] = 0$ Then [d(s) os, z] + [d(r) or, z] = 0 \Rightarrow d(r) = -c(r), d(s) = -c(s). So for adjacent 2-simplices or, or, changing c(r) to -c(r)=d(r) necessarily changes d(s) to -c(s) = d(s). Now go along a copath, $d(\omega) = -c(\omega) \forall \omega \in \{0, ..., N\}$

MAI# 5203	
19-02-18	
1 0 = 10	Final conclusion:
	If X connected, orientable surface,
	To,, on are the 2-simplices, then
	3c: 30,, N3 -> {±13} such that
- 3 11 2 7 2 1 1 1 1	$\alpha \in \mathbb{Z}_2(X:F) \Rightarrow \alpha = \alpha_0 \tilde{\mathfrak{z}}(c)$ st, $\tilde{\mathfrak{z}}(c)$ generates $\mathbb{Z}(X:F)$.
	E(c) is a "purdamental class".
	- 3(c) = 3(-c) is the only other fundamental class.
	So $H_2(X:F) \cong F$.
0	If 1+1=0 in F, then 3! Junction c: {0,, N} → {±1} < F
	since $-1=1$.
	So if 1+1=0 in F, then Hz(X:F) = F.
21-02-18	
	Lefschetz Fixed Singlex Theorem (coming soon)
	Recommutative ring. $A \in M_n(R)$ (non matrices over R). $A = (a_{ij})_{1 \le i \le n}$, $T_r(A) := \sum_{i=1}^{n} a_{ii}$ (trace of A)
	$A = \{a_{ij}\}_{1 \leq i \leq n}$, $A \cap \{A\}_{i=1}^{n}$ $A \cap \{A\}_{i=1}^{n$
0	Proportion
	Let A, B & M, (R). Then Tr (AB) = Tr (BA).
	Roof
	Proof $AB = (Cik), Cik = \sum_{j=1}^{n} a_{ij}b_{jk}$
	$c_{ii} = \sum_{j=1}^{n} a_{ij}b_{ji}$
	$T_{r}(AB) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}b_{ji} = \sum_{j=1}^{n} \sum_{i=1}^{n} a_{ij}b_{ji}$
	$= \sum_{j=1}^{n} \sum_{i=1}^{n} b_{ji} a_{ij} \qquad (since R commutative)$
	$= T_r(BA)$

Warning: TrAB # TrATIB Gorollan If A, PEMn(R) and P is invertible, then Tr (PAP-1) = Tr (A). Tr (PAP") = Tr (P(AP")) = Tr ((AP")P) = Tr (A) Trace of a linear map. Let F be a field. $T: V \rightarrow V$ be an F-linear map where $\dim(V)$ is finite. Take a basis $E = \{e, \dots, en \}$ for V. Represent Tas a matrix. T(e;) = \$\hat{2} a_{ji}e; $Tr(T)_{g} = \sum_{i} a_{ii}$ This is Trace referred to a specific basis \mathcal{E} . Suppose we change basis, $\phi = \{\varphi_1, \dots, \varphi_n\}$. $T(\psi_i) = \sum_{j=1}^n \tilde{a}_{ji} \, \psi_j$ To(T) = 5 au $A = (a_{ji}), \tilde{A} = (\tilde{a}_{ji})$ Then $\tilde{A} = PAP''$ where P is the matrix of change of basis $M(\tau)^{\phi}_{\phi} = M(Id)^{\phi}_{\epsilon} M(\tau)^{\epsilon}_{\epsilon} M(Id)^{\epsilon}_{\phi}$ à P A P-1 So $T_c(T)_{\mathcal{G}} = T_c(\widetilde{A}) = T_c(PAP^{-1}) = T_c(A) = T_c(T)_{\mathcal{E}}$ So Tr(T) is an absolute invarient of linear maps T:V -> V, V f.d /F.

For each Isreq, choose exerEV St. plenor) = Pr (p surjective).

Let [4,.... 49] be a basis for W.

Then {e, ek, ek, ekty} is a basis for V We want to express matrix of TV in terms of matrices of Tu, Tw. Wate Tu(ei) = Eajie; , A=(aji) (kxk mabix) Write Tw (4) = 2 dsr Ps , D= (dsr) (qxq mabrix) Then $\exists k \times q \text{ matrix} \quad B = \{b_{j,k+i}\} \mid \leq j \leq k, \quad 1 \leq i \leq q,$ Such that matrix of $\forall k \in \{e_1, \dots, e_{k+1}\}$ is $\{A, B\}$ $\{O, D\}$ $T_{V}(e_{k+i}) = \sum_{j=1}^{k} b_{j k+i} e_{j} + \sum_{s=1}^{q} d_{k+s k+i} e_{k+s}$ Commutativity of G shows that $d_{k+i,k+i} = d_{si}$. Tr (AB) = Tr(A) + Tr(D) => Tr (Tv) = Tr(Tw) + Tr (Tw)

=> Ageom(f) = 2 hom (f) + [(1) T- (Br(f)) - [(1) T- (Br-1(f)).

So Ageon (f) = Thom (f). Note if we take $f = 1d: K \rightarrow K$ we get $\chi_{geom}(K) = \chi_{hom}(K)$. Beware: X is independent of F, however & (1) depends on F. Usually take F = Q. Theorem (hefschetz Fixed Simplex Thm). Let J: K -> K be a simplicial map where K is a finite simplicial complex. Pick a field (advice: F= Q) If $\lambda(f) \neq 0$ then 3 a simplex σ of K st. $f(\sigma) = \sigma$. (as sets, not necessarily as oriented simplices) Work with Agean(f) Igeom (f) = [-1) Tr (Cr(f)) Cr(f): Cr(K:F) -> Cr(K:F). This is quite a special sort of linear map Cr (f) (basis element) = 5 + some basis element Expressed as a matrix, in each ow/column, Cr(f) has at most one non-zero element ±1 If we enumerate the r-simplices of K o, ... on, $(c_r(f) \text{ is } N \times N \text{ matrix, } (c_r(f) \text{ has a non-zero entry } (\pm 1) \text{ in } (i,i)^{th} \text{ position } \iff f(\sigma_i) = \pm \sigma_i.$ If I fixes no r-simplex, then diagonal of C(J) = 0 => Tr (Cr(1)) = 0 Suppose of fixes no simplex whatover, then So if I fixes no simplex whatovever, then ageom(4) = E(1) Tr(Cr(1)) MATH 3203

28-02-18	
	Products
	Problem: 1 x 2 is not a simplex.
	$I = [0,1], I^2 = D, I^3 = D, I^{n+1} = I^n \times I$
	Posets
	0 1 -1
	Deficition (1)
	A partially ordered set (poset) (A, \(\int)\) where (i). A is a set
	(ii) < < A × A a < b < > (a, b) < <
	satisfies a ≤ b n b ≤ c => a ≤ c (bransitive) and
	$a \le b \land b \le a \Rightarrow a = b$, and $a \le a$ (reflexive).
	Special case: totally ordered set:
	in which case tabe A either a < b or b < a.
	erg. (N, =) is totally ordered
	e.g. ({0,, n}, ≤) is totally ordered
	Roduct of posets: (A, \(\ext{A} \), (B, \(\xi_8 \))
	Define \preceq on $A \times B$ by $(a,b) \not \preceq (a',b') \Leftrightarrow (a \leq_{A} a') \wedge (b \leq_{B} b')$
	(a,b) \approx $(a',b') \Leftrightarrow (a \leq a') \wedge (b \leq b')$
	Bewase: f(A, =), (B, =) then (A × B, =) isn't unless
	either A or B is a point.
	A = {0,13,0 ≤ 1
	$A \times A \qquad (1,0) \leftarrow (1,1)$
	(0,0) \leftarrow (0,1) This briangulates $\Delta' \times \Delta'$.
	$(0,0) \leftarrow (0,1)$

MATH 3203	
28-02-18	
	Simplicial realisation of a poset
	Let (A, \(\) be a poset.
	Define a simplicial complex
	$N(A, \leq)$ (the "nerve of (A, \leq) ")
	Vertex set = A.
	Simplices are the finite totally ordered subsets.
0	(In previous example, N(A, <) = briangulated square)
	How be triangulate 1m × 1n:
	Take A = {0,, m}, B = {0,, n},
	both with standard ordering.
	$N(A, \leq) = \Delta^m, N(B, \leq) = \Delta^n$
	N(A×B, ≤) trangulates Dm×Dn.
- 17d m 1	
	Example
	$\triangle' \times \triangle^2$ $\wedge^{(2,1)}$
	(2,0)
0	
	(0,0) $(1,0)$
	The maximal totally ordered subsets are
	$(0,0) \leq (1,0) \leq (2,0) \leq (2,1)$
	$(0,0) \in (1,0) \in (1,1) \in (2,1)$
)	$(0,0) \in (0,1) \in (1,1) \in (2,1)$
	Triangulated by three 3-simplices.
	Defraction
	By an ordered simplicial complex (K, <) I mean that
	(i) K=(Vm, Sm) is a simplicial complex
	(ii) = is a partial ordering on VK in such a way that
	(iii) each $\sigma \in S_{\kappa}$ is totally ordered.

Any finite simplicial complex K imbeds as a subcomplex of D' (where n = |VK|-1) Index Vx as {vo,..., vn}. Map Vx -> {0,..., n}, V, +> r. Every simplex of K maps to a simplex of 1" Every nonempty subset of D" is a simplex) Consequently: Every finite simplex K admits the structure of an ordered simplicial complex (K, E) Troof
Imbed Kin Dⁿ and take induced ordering. Let (K, \(\xe\)), (L, \(\xe\)) be ordered simplicial complexes. Define $(K \times L, \in)$ as follows:

Take $V_{K \times L} = V_K \times V_L$ and take the product ordering on $V_{K \times L}$.

Define the simplices of $K \times L$ to be the totally ordered

subsets of $\sigma \times \tau$ where σ ranges through S_K and I ranges through SL. eg by S'(3) × S'(3). So H* (K × L; F) is defined for any two simplicial complexes K and L. How do we compute Ha (KxL: F)? ans: Künnett The

MANH 3203	
100	
28-02-18	
	We'll show:
	Thm
	Let K, L be finite simplicial complexes, then
	$\chi(K \times L) = \chi(K)\chi(L)$
	0
	Prop
	Let (A, &) be a poet and suppose (A, &) has an
± 1	absolute minimum (i.e. suppose 3 a & A s.t. Y b & A a & 6)
0	Then N(A, \le) is a cone.
	Proof
	Let a be the absolute minimum.
	Define A' = A - {a}.
	So (A', \(\leq\)) is also a poset, and
	$\frac{1}{2} \frac{1}{2} \left(\frac{1}{2} , N(A) \right) = N(A')$
	ii) N(A) = C(N(A')) by taking a as the cone point.
	Cocollary $H_k(\Delta^m \times \Delta^n : F) = \begin{cases} F, & k=0 \\ 0, & k\neq 0 \end{cases}$
0	$H_k/\Delta^m \times \Delta^m : I_f) = I_f , k=0$
	$(0, k \neq 0)$
	Roof 1/60 2) An 1/60 3)
	$\Delta^m = N(\{0,,n\}), \Delta^n = N(\{0,,n\})$ and $(0,0)$ is an absolute minimum.
	and (0,0) is an absolute nivirum.
	We'll first prove:
	Thm 1 1 1 1 1 1
	Let K be a finite complex. Then
	$\chi(K \times \Delta^n) = \chi(K)$.

Let K, L be simplicial complexes s.t. $V_{K} \cap V_{L} = \phi$ Then $H_{n}(K \cup L) \cong H_{n}(K) \oplus H_{n}(L)$ for each n. KUL = KUL with KOL = \$ Hn(Kn2) = O Vn. An(KnL) - Hn(K)@Hn(L) = Hn(KUL) -> Hn. (KnL) Pop Let K= {1, ..., m} be O-dim complex with m vertices. Then X(K × Dn) = m. Roof (by induction on m) m=1, nothing to prove. Suppose proved for m-1. Let K+ = {1, ..., m-1}, K-= {m} $K = K_{+} \cup K_{-}$, $K_{+} \cap K_{-} = \emptyset$ Put $X = K \times \Delta^{n}$, $X_{+} = K_{+} \times \Delta^{n}$, $X_{-} = K_{-} \times \Delta^{n}$ X+0 X- = Ø O-> C+ (X+nX-) -> Cm (X+) D Cm (X-) -> Cm (X) -> O => X([1,..., m-1] × D") + X([m] × D") = X(X) \Rightarrow (m-1) + 1 = m

MATH 3203 05-03-18 X, Y finite complexes $\chi(x * y) = \chi(x)\chi(y)$ Suppose X = X+ v X- , X+, X- subcomplexes of X , X finite. Additivity of X: $\chi(x) + \chi(x_{+} \cap x_{-}) = \chi(x_{+}) + \chi(x_{-})$ Have an exact sequence of chain complexes 0 → C*(X+n X-) → C*(X+) ⊕ C*(X-) → C*(X) → O For each n, dim Cn(X) + dim Cn(X+nX-) = dim Cn(X+) + dim Cn(X-) Take alternating sums: Xgeon (X) + Xgeom (X+ 1) = Xgeom (X+) + Xgeom (X-). 1/ X = X+ v X-, X+n X- = Ø Then X(X) = X(X+) + X(X-). Let Y be a finite complex, let {1,..., m} be a O-dim complex (m distinct points). Form {1,..., m} x Y. Then X({1, ..., m } x Y) = m X(Y). Poof (by induction on m) For m=1, nothing to prove. Suppose proved for m-1. Define Z+= {1, ..., m-1} × Y, Z = {m} × Y Z+12-=\$ X({1,..., m] x Y) = X(Z+) + X(Z-) = (m-1) X(Y) + X(Y) = m X(Y).

We also showed that $\Delta^n \times \Delta^m$ is briangulable as a cone, so $\chi(\Delta^n \times \Delta^m) = 1 = \chi(\Delta^m)$. Let X be a finite complex. Then X(X × DM) = X(X) Vm > O. Fix m and let P(n,h) be the statement $\mathcal{G}(n,k): X(X \times \Delta^m) = X(X)$ when X is a finite complex of dimension = n and X has exactly k simplices of dimension n. $P(n): X(X \times \Delta^m) = X(X)$ whenever X is a finite complex of dimension & n. Observe that P(n+1, 0) = P(n). P(0, k) is tone for all k. So if X is a O-dimensional complex having exactly k points $\{v_1, \dots, v_n\}$ then $\chi(\chi \times \Delta^m) = k \chi(\Delta^m) = k = \chi(\chi)$. We've already shown this. P(0) = 1 P(0, k), so P(0) is tome. We'll show that P(n-1) , P(n,k) => P(n,k+1). Let X be a finite complex of dimension n, which has exactly (k+1) simplices of dimension n, T, The Write X = X+0 X- where $X+=X^{(n-1)}\cup\sigma_1\cup\ldots\cup\sigma_k$, $X-=\sigma_{k+1}$ (subcomplex determined by σ_{k+1}) Then $X+\cap X-\subset X^{(n-1)}$ dim (X+ n X-) & n-1. $\chi(\chi) + \chi(\chi_{+} \cap \chi_{-}) = \chi(\chi_{+}) + \chi(\sigma_{k+1})$ Now take product with A": X × Dm = X + × Dm U X - × Dm $(X_{+} \times \Delta^{m})_{0} (X_{-} \times \Delta^{m}) = (X_{+}_{0} \times X_{-}) \times \Delta^{m}$

MATH 3203

05-03-18

$$\frac{\chi((X+nX-)\times\Delta^m)=\chi(X+nX-)}{\chi(X+\times\Delta^m)=\chi(X)}=\frac{\chi(X+nX-)}{\log}\frac{\beta(n-1)}{\beta(n,k)}$$

$$\frac{\chi((X+x\Delta^m)=\chi(X))}{\chi((\sigma_{k+1}\times\Delta^m)=1=\chi(\sigma_{k+1})}$$

So
$$\chi(\chi \times \Delta^m) + \chi(\chi_{+}, \chi_{-}) \times \Delta^m = \chi(\chi_{+} \times \Delta^m) + \chi(\sigma_{k+1} \times \Delta^m)$$

$$\chi(\chi) + \chi(\chi_{+}, \chi_{-}) = \chi(\chi_{+}) + \chi(\sigma_{k+1})$$

Hence $X(X \times \Delta^m) = X(X)$ and $S(n-1) \wedge S(n,k) \Rightarrow S(n,k+1)$ Now consider $S(0,1) \Rightarrow S(0,2) \Rightarrow ... \Rightarrow S(0,k) \Rightarrow S(0,k+1) \Rightarrow ... \Rightarrow S(0)$

$$S(0) = S(1,0) \Rightarrow S(1,1) \Rightarrow S(1,2) \Rightarrow \dots \Rightarrow S(1,k+1) \Rightarrow \dots \Rightarrow S(1)$$

$$S(1) = S(2,0) \Rightarrow S(2,1) \Rightarrow S(2,2) \Rightarrow \dots \Rightarrow S(2)$$

$$Y(1) = Y(2,0) \Rightarrow Y(2,1) \Rightarrow Y(2,2) \Rightarrow \dots \Rightarrow Y(2)$$

So
$$P(0) \wedge P(n) \Rightarrow P(n+1)$$
, so $P(n)$ true for all n

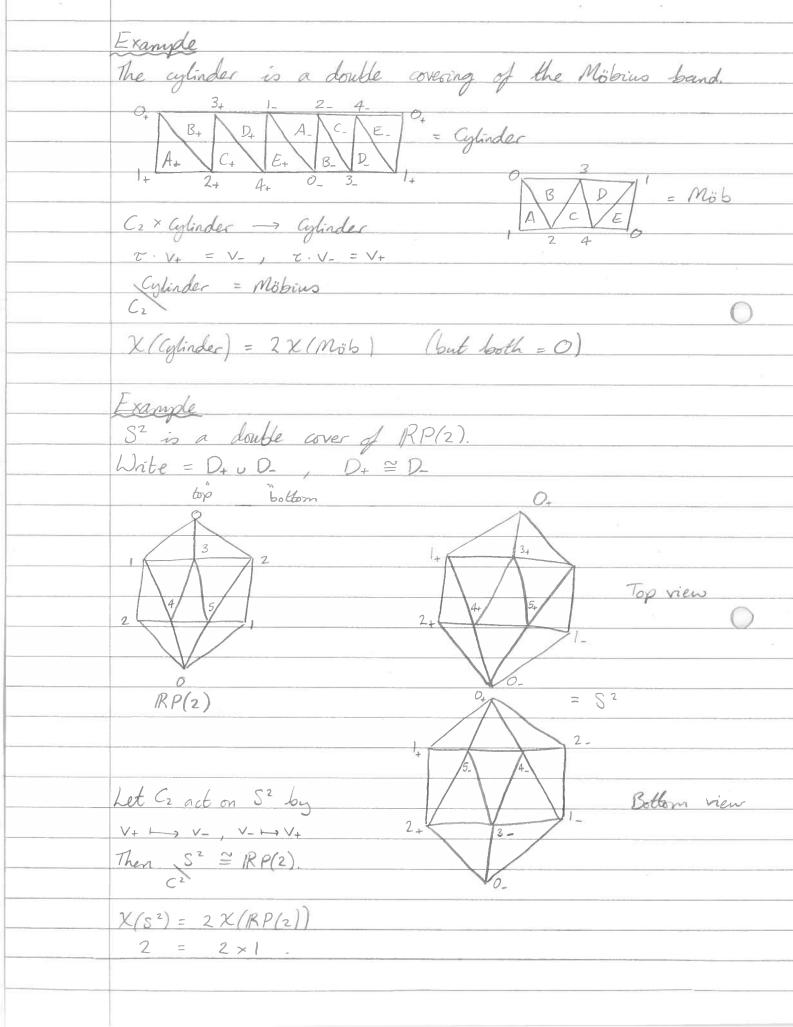
Theorem

Let
$$X, Y$$
 be finite complexes, then

 $X(X \times Y) = X(X) X(Y)$.

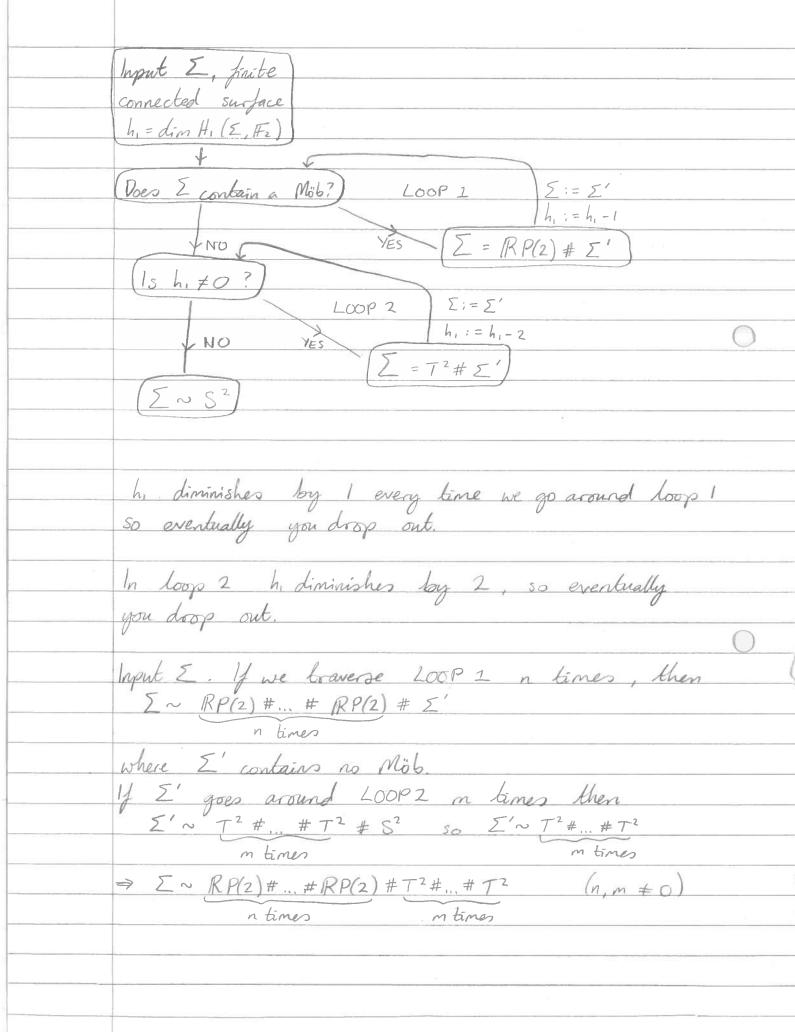
Fix X and define statements Q(n,k), Q(n) as follows: $Q(n,k): X(X\times Y) = X(X)X(Y)$ whenever Y is a finite complex of dim $\leq n$ and has exactly k simplices

of dimension n, o, on


Observe: Q(n) = Q(n+1,0).

We need to show Q(0, h) is true for all k. Y= {v,,,,,, vk}, X(Y)=k $\times \times = \square \times \{v_i\}$ $\chi(x \times y) = k \chi(x) =$ So Q(0) is true so Q(1,0) is true We'll show that Q(n-1) \ Q(n, h) = Q(n, h+1) This will be enough by the same type of double induction argument we had before Assume Q(n-1) is true and Q(n, k) is toue. Let Y be a finite complex of dimension < n having exactly (k+1) simplices of dimension n, v, v, v, v, Wate Y= Y+ v Y- where Y+ = Y(n-1) v J, v. v Ju, Y- = Jk+1. Y+ n Y- C Y(n-1) so dim (Y+n Y-) sn-1. $\chi(\chi \times \chi) + \chi(\chi \times (\chi_{+}, \chi_{-})) = \chi(\chi \times \chi_{+}) + \chi(\chi \times \sigma_{k+1})$ $\sigma_{k+1} \cong \mathbb{Z}^{n}$ 11 Q(n-1) 1/ Q(n, k) 11 by previous lemma $\chi(\chi \times \chi) + \chi(\chi) \chi(\chi_{+}, \chi_{-}) = \chi(\chi) \chi(\chi_{+}) + \chi(\chi)$ Then x(xxy) = x(x)(x(y+)+x(y-)-x(y+ny-)) $= \chi(x) \chi(y) =$ la terms of General Topology:

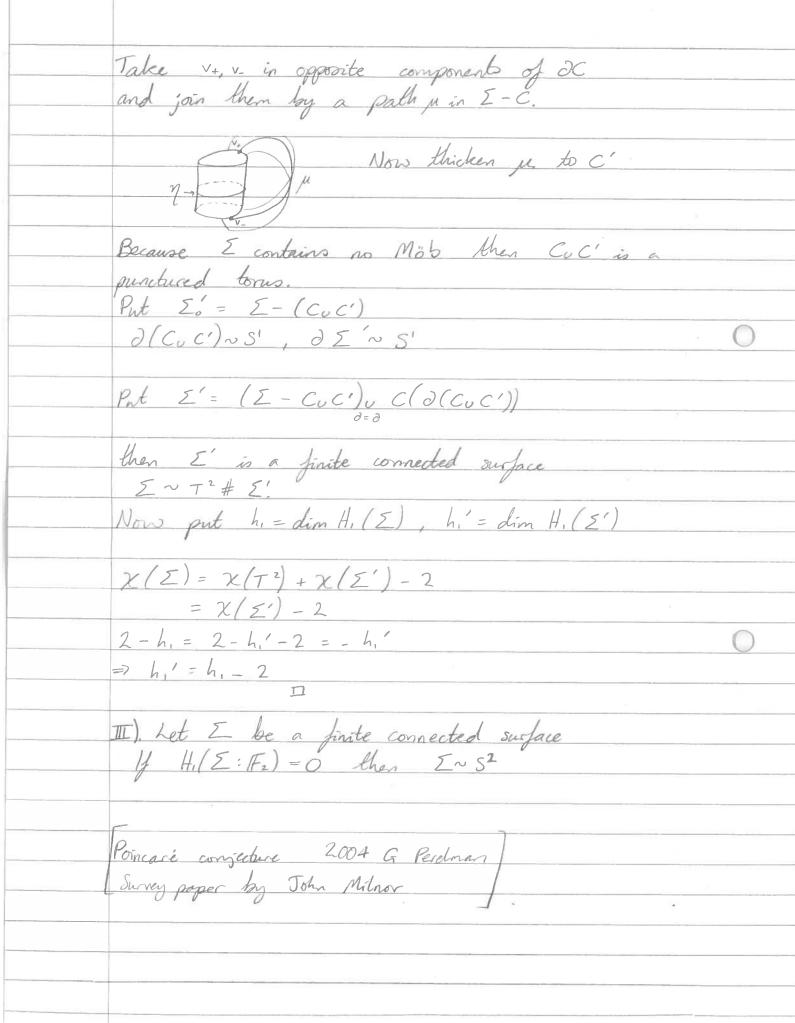
St is compact, connected, locally like Rn, and simply connected


S2×S2 " " " $\chi(S^4) = 2$, $\chi(S^2 \times S^2) = 2 \times 2 = 4$ F field. Kunneth Theorem: If X Y are finite complexes, then Hn (XxY: F) = + Hu (X: F) & Hn-k (Y: F) (dim V&W = dim Vdim W).

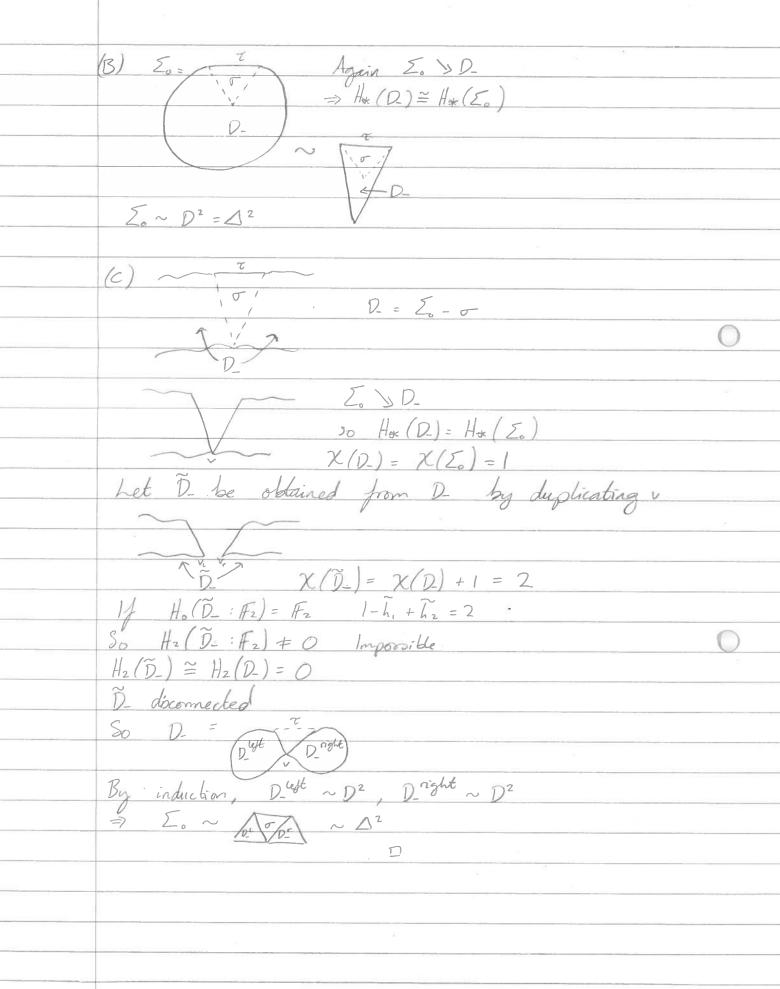
MATH 3203	
05-03-18	
	$H*(S^3\times S^1)$
	Ho = Ho (S3) & Ho (S') = F
	H. = H.(53) @ H.(5') @ H.(53) @ H.(5') = F
	O F
	H2 = H2(53) & Ho(S') & H1(S3) & H1 (S') & H0(S3) & H2(S') = 0
	H3 = H3(53) @ Ho(5') @ H2(53) @ H1(5') @ H1(53) @ H2(5') @ Ho(53) @ H3(5')
	= F
	Ha = Ha(S3) & Ho(S') @ H3(S3) @ H1(S') @ O
	$=\mathcal{F}$
0.	
	=> Hk (53x5') = SF, k=0
	$\int \mathcal{F}, k=1$
341) ==	$\int O_{\cdot, \cdot} k = 2$
	F , k=3
	(F, k=4
	Definition
	Let X, Y be simplicial complexes
	Let p: X -> Y be a simplicial map.
	Let d'be an integer ?1.
	We say that p is a covering map of degree d
	when for each simplex of Y 3 exactly
	d simplices of X of X of X of x of x
	and $\rho: \sigma_i \xrightarrow{\sim} \sigma$ for each i.
	Papartien
	Let p: X -> Y be a simplicial covering of degree d
	Let p: X -> Y be a simplicial covering of degree d where X, Y are finite complexes.
	Then $X(X) = dX(Y)$.
	Proof
	Calculate X geom in each case.
	the state of the s

06 62 16	
05-03-18	Finite connected surfaces come in two families
	Orientable: 52 72 T2#T2 T2#T2
	1 1 1
	Non-orientable: RP(2) RP(2)#RP(2) RP(2)#RP(2) RP(2)#RP(2)#RP(2)#RP(2)#RP(2)#RP(2)
	There is a double covering in each case.
	$\sum_{i=1}^{9} T^{2} + T^{2}$
0	$\sum_{+}^{9} = T^{2} # \dots # T^{2}$ $\int double cover$
	1 double cover
	$\sum_{i=1}^{3} = RP(2) # #RP(2)$
	9+1
	$\chi_{+} = 2 - 2g = 2(1-g)$
	X-=1-9
07-03-18	Classification of Surfaces (All homology with be with Fz coeffs, Ha (E) = Ha (E, Fz)
	We proceed via steps I-I
	I). Let E be a finite connected surface. 4 2
	contains a copy of Möb, then INP(2)#5'
	and $\dim H_1(\Sigma') = \dim H_1(\Sigma) - 1$
	I). If E is a finite connected surface such that
	a) I contains no copy of Möb, and
	b) H. (E) #0 then E is again a connected sum
	$\Sigma = T^2 \# \Sigma'$ and $\dim H_1(\Sigma') = \dim H_1(\Sigma) - 2$
	II). If Σ is a finite connected surface such that H.(Σ)=0
	then I~ S?
	IV). If I is a finite connected surface, then
	$\Sigma \# S^2 \sim \Sigma$
	V) $RP(2) # T^2 \sim RP(2) # RP(2) # RP(2)$

MATH 3203

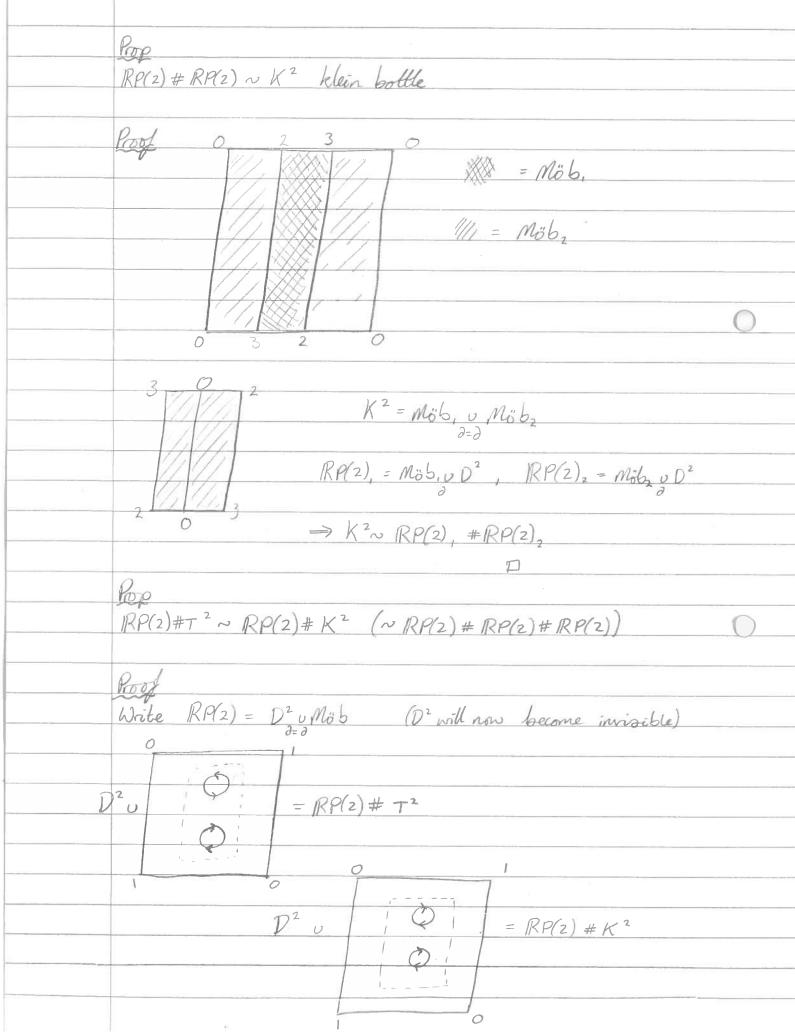


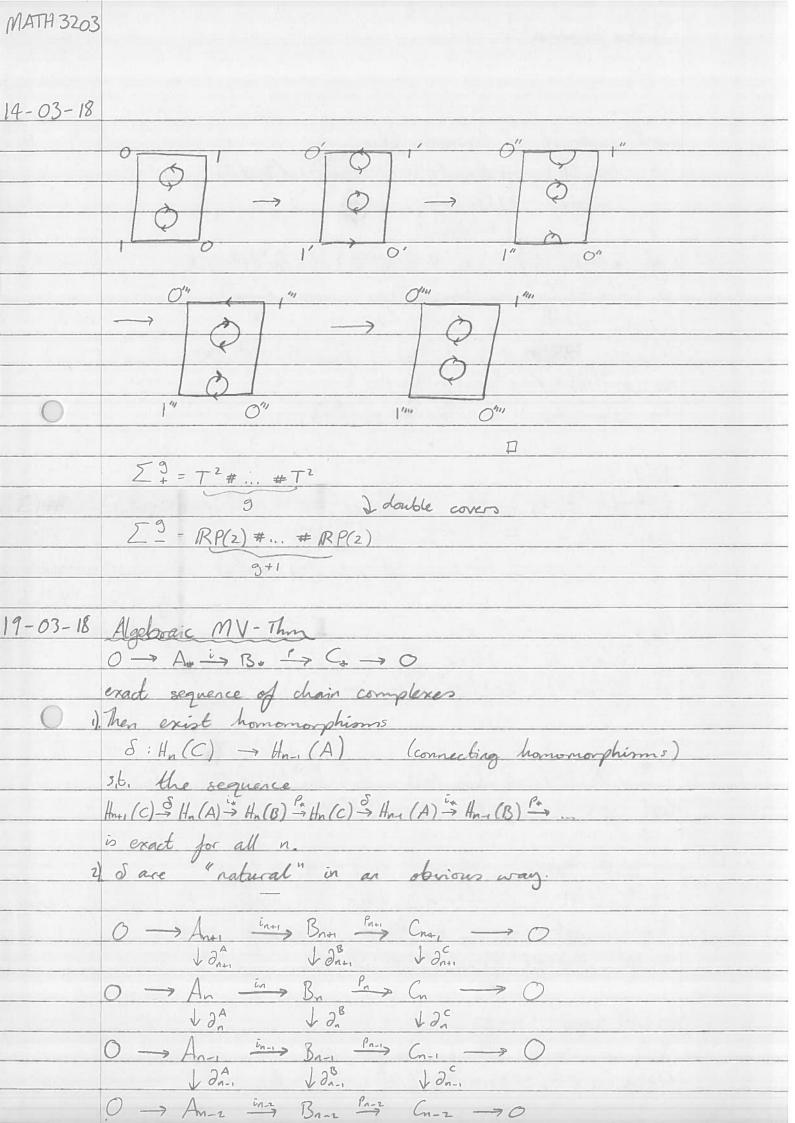
MATH 3203	
07-03-18	
	Special cases
	(i) n-m=0 => I~ S2
	(ii) $n = 0, m \neq 0 \Rightarrow \Sigma \sim T^2 + + T^2$
	m copies
	(iii) n +0, m=0 ⇒ ∑ ~ RP(2) + + RP(2)
	n cospies
	However if n+0, m+0, then
	However if n+0, m+0, then $\sum \sim RP(2) \# \# RP(2) \# T^2 \# \# T^2$
	$\Rightarrow \sum \sim \frac{RP(2) \# \# RP(2)}{n+2m \text{ copies}}$
	- Copies
	Conclusion
	A finite connected surface & is combinatorially equivalent
	to exactly one of
	(i) S^2 , (ii) T^2 , (iii) $T^2 + \dots + T^2$
	3
	(iv) RP(2), (v) RP(2) # " # IRP(2)
0	9+1
	Pop
	RP(2) - Disc ~ Möb
	0 1 2
	Boot 1
	$\frac{1}{\left \frac{3}{3} \right ^{2}} = RP(2) - D_{isc}$
	3 0 Y
	2×10^{-3} 1×10^{-3}
	4 - 2 - 2
	y \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \


I = Mobo Eo 2Mob = 5', 25'= 5' Define $\Sigma' = \Sigma_0' \cup D^2$ s' dim HI E' = dim H. E -1 12-03-18 [F = Fz] I). I finite connected surface, if I contains a copy of Möb then $\Sigma \sim RP(2) \# \Sigma'$ where Σ' is a finite connected surface and dim H, (E') = dim H, (E)-1. Triangulate E in such a way that Möb consists of a finite number of 2-simplices. Enumerate 2-simplices of E, o, ,, on, on, on, on st., on triangulate Möb. Let I's be the subcomplex determined by om, ,..., Then Möbn E' = boundary of Möb ~ S'(n).
Put E' = Eo'v C(OMöb). Then Σ' is a finite connected surface and $\Sigma = \mathbb{R}P(2) \# \Sigma'$. (Note that C(2Möb)~ C(S')~ 12) RP(2)~ Möbu C(2Möb) Now compute h'= dim H, (E') [where h = dim H, (E)] $\chi(\Sigma) = \chi(IRP(z)) + \chi(\Sigma') - 2$ $2-h_1 = 1 + 2-h_1' - 2$ $-h_1 = -h_1' - 1$ $h_1 = h_1' + 1$ $h_1' = h_1 - 1$

MATH 3203	
12-03-18	
	I). Let I be a finite connected surface which
	II). Let Σ be a finite connected surface which contains no Möb. If $h_1 = \dim H_1(\Sigma) \neq 0$, then
	$\Sigma \sim +^2 \# \Sigma'$ where $h_i' = \dim H_i(\Sigma')$ satisfies
	$h_1' = h_1 - 2$
	Recall that Ha (Cylinder) = Ha (Möb) = { # k=0
	$ \begin{cases} F & k = 1 \\ 0 & k > 2 \end{cases} $
0	Def "
	Let Cyl be a cylinder a E (our finite connected surface)
	Let i: Cyl Co E. Say that Cyl is essential
	if $i_*: H_1(C_{\mathcal{G}^{L}}) \to H_1(\Xi)$ is injective
Land Land	Likewise if Möb cs E, say that Möb is
	essential iff in: H.(Möb) -> H.(E) is injective.
	Lemma
	Let Σ be a finite connected surface. If $H_1(\Sigma; F_2) \neq 0$ then Σ contains either
0	
	(i) an exential cylinder, or (ii) an exential Möb.
	(w) we experience year.
20	Proof
	Let $j \in H_1(\Sigma : F_2) = Z_1(\Sigma)/B_1(\Sigma)$
	Represent & by a finite linear combination
	Represent & by a finite linear combination (with Fz coefficients) of 1-simplies, with $\partial = 0$ because
	(EE,/R
	Ty Dy Dy
	So represent & by a subgraph in which for every
	1-simplex in \$, 23 = 3 (is no free edges) (otherwise 23 = 0)

Now search through all & EH. (E) = Z, /B, , } #0, and chance one (call it n) represented by the fewert no. of 1-simplices. Claim that n is an imbedded circle. If not, η has a singularity $\sum_{n=1}^{n} \eta = \eta_1 + \eta_2 + ... + \eta_m$ Choose the smallest. So now we have $\eta \subset \Sigma$, $\eta \sim S'(n)$ for some n Draw it: Locally represented thus: Each 1-simplex of n is contained in exactly two 2-simplices of I. Subdivide everything: Subdivide again: This is called "thickening" Take the 2-simplices in the 2nd subdivision which intersect of somewhere. We now have a "neighbourhood" of y which locally looks like y x I.

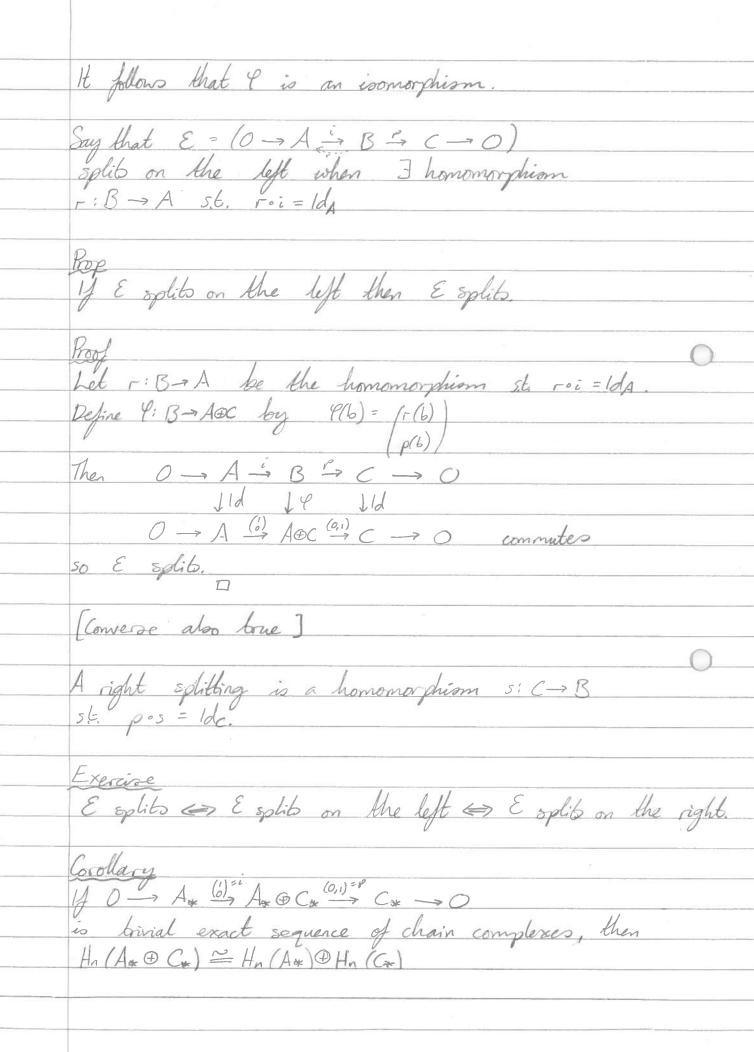



12-03-18 Σ finite connected surface, $h_1 = \dim H_1(\Sigma; F_2) = 0$ Define $\Sigma_0 = \Sigma - (2 - disc)$ this is a "surface with boundary". $= \Sigma - D^2$ So is connected and H. (E. : Fz)=0 (Hz(Eo:Fz)=0 obvious) We prove $\Sigma_0 \sim D^2 = \Delta^2$ by induction on no. = n of 2 simplices of Σ_0 . If n=1, nothing to prove. If n=2, $\Rightarrow \sim D^2$ Suppose proved when no. of 2-simplies of I. < n and suppose So has a 2-simplices. Choose a 2-simplex of Eo st. at least one face of σ is in $\partial \Sigma$. There are three possible configurations: (A) Thas two 1-faces in 25. (B) o has exactly one 1-face, in 250 and the apposite vertex to T is in the interior (C) o has exactly one 1-face & in 25. and the opposite vertex to & is also in 2 E. (A) $\Sigma_0 = G$ $\Sigma_0 = \sigma \cup D_-$ (D) and by induction $D_- \sim D^2$ Σ_0 collapses onto D_- , $\Sigma_0 \rightarrow D_- \rightarrow H_*(\Sigma_0) = H_*(D_-)$ $\Rightarrow \Sigma_{o} \sim \langle \sigma \rangle \sim D^{2}$

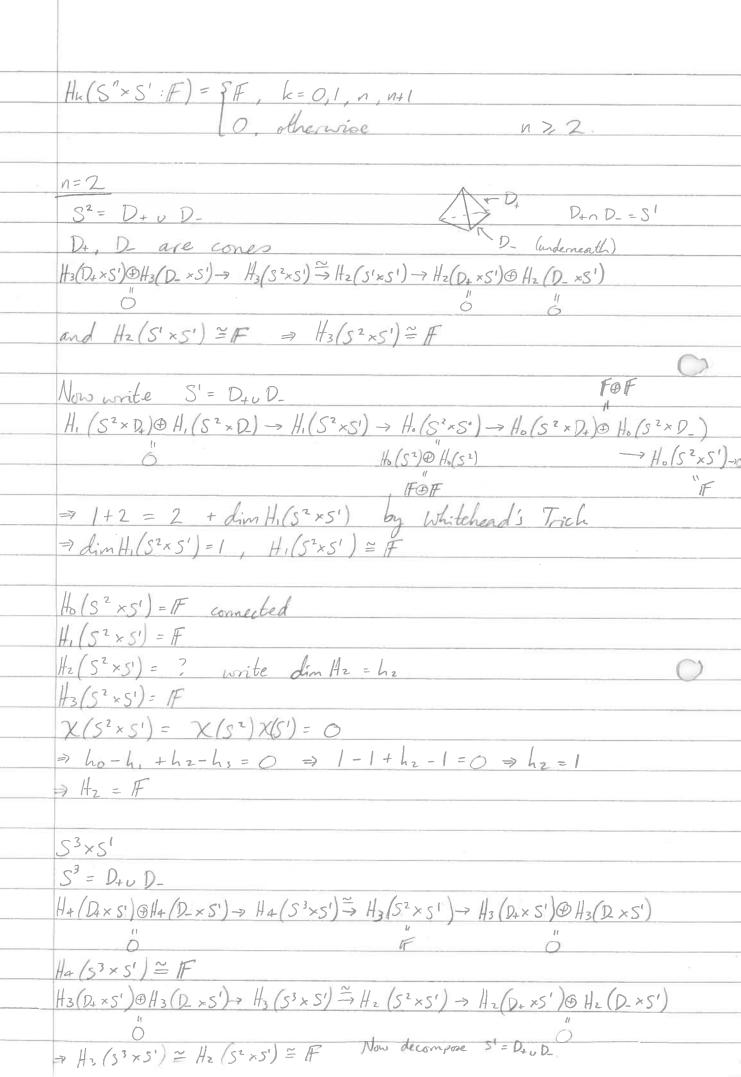
14	-03-18	
		4 To is a finite connected "bounded" surface with
		boundary ~ S', and H, (E. : Fz) = 0
		then Io ~ D2
		Corollary (Step IV)
1000		Σ finite connected surface with H,(Σ: Fz) = O
		then $\Sigma \sim S^2$
		Proof
-	0	Put $\Sigma_0 = S^2 - \Delta^2$
		Δ^2 some 2-simplex
		11/5/21/(2) 1/5/1/5/21/(2) 1/5/21/(2)
-	47	$H_2(\Sigma) \oplus H_2(\Delta^2) \rightarrow H_2(\Sigma) \rightarrow H_1(\Sigma \cap \Delta^2) \rightarrow H_1(\Sigma) \oplus H_1(\Delta^2) \rightarrow H_1(\Sigma)$
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
75.41		By Whitehead's trick, $H_1(\Sigma_0) = 0$. $\Rightarrow \Sigma_0 \sim D^2$
		$\Rightarrow \sum_{i} \sim D^2 \cup A^2 \sim S^2$
		11 d=d
	0	So if I is a finite connected surface, then we have one of the following:
		$\Sigma \sim RP(2) \# \# RP(2)$ loop 1 n times, loop 2 0 times $\Sigma \sim T^2 \# \# T^2$ loop 1 0 times, loop 2 m times
		m
		$\Sigma \sim RP(2) # # RP(2) # T^2 # # T^2 loop 1 n times, loop 2 m times.$
		We'll show RP(2) # T2 ~ RP(2) # RP(2) # RP(2)
	9	⇒ E ~ RP(2)# # RP(2)
		n+2m

MATH 3203

"Snake Lemma"	
X	
We'll construct a homomorphism	
$S: Z_n(C) \longrightarrow A_{n-1}(A) = Z(A)/B_n(A).$	
$\ker \partial_n^{C} \longrightarrow \left(\frac{\ker \partial_n^{A}}{\operatorname{Im} \partial_{n+1}^{A}} \right)$	
Let z ∈ Zn(C), i.e. z ∈ Cn(C) st. dn(z) = O.	
 pr: Bn -> Cn is surjective (exactness)	
 Choose be Bn s.t. pn(b) = Z	
 Consider $\partial_n^{B}(b)$ st. p_{n-1} $\partial_n^{B}(b) = \partial_n^{C}(b) = \partial_n^{C}(z) = C$	
So dn (6) E Ker (pn.,) = Im (in.,)	
so ∃a∈An-1 st. in-1(a) = ∂n ⁸ (b)	0
Def	
Let z \(\mathbe{Z}_n(c)\). By a choice for \(\mathbe{z}\) I mean a	
pair (b, a) st. { b ∈ Bn st. pn(b) = Z	
$(a \in A_n $ s.t. $i_{n-1}(a) = \partial_n(b)$	
	_
Page	
If (b,a) is a choice for $z \in Z_n(C)$, then $a \in Z_{n-1}(A) = \ker(\partial_{n-1} : A_{n-1} \to A_{n-2})$.	
a ∈ Zn. (A) = Ker (dn. : An> An-2).	
Proof	
$i_{n-2} \partial_{n-1}(a) = \partial_{n-1}(i_{n-1}(a)) = \partial_{n-1} \partial_{n}(b) = 0$, $\partial_{n} = 0$	
Proof $i_{n-2} \partial_{n-1}^{A}(a) = \partial_{n-1}^{B}(i_{n-1}(a)) = \partial_{n-1}^{B} \partial_{n}^{B}(b) = 0, \partial \partial = 0$ But i_{n-2} is injective, so $\partial_{n-1}^{A}(a) = 0$	
z ∈ Zn(c). Make a choice (b, a) for z, so a ∈ Zn-1(A). z make to make this into a	
a \ Zn-1(A). Zmpa Have to make this into a	mappin
(b, a) is not usique, so have to ensure end	
 result doesn't depend on choice.	
 Special case: Z=O	
 Make a choice (b,a) for Z=0.	
Claim a & Br. (A) = Im (2n : An -> An.)	


MATH 3203	
19-03-18	
	Since p. (b) = 0 (= z)
	Then b ∈ Ker (pn) = Im (in)
	Choose $\alpha \in A_n$ st. $i_n(\alpha) = b$
	$i_{n-1}\partial_n^A(\alpha) = \partial_n^B i_n(\alpha) = \partial_n^B(b)$
	But in-1(a) = 0,8(b)
	in-1 is injective so $a = \partial_n^A(\alpha) \in B_{n-1}(A)$.
	In general suppose (b, a), (b', a') are both
	choices for Z. Then
0	(b-b', a-a') is a choice for O.
	So a-a' & Bn-1 (A)
	$z \mapsto a \in Z_{n-1}(A)$, $z \mapsto a' \in Z_{n-1}(A)$
	and $a - a' \in \mathbb{S}_{n-1}(A)$
	So [a] = [a'] \(\text{H}_{n-1}(A) \)
	1.1-4-
	We've now constructed a mapping $S: Z_n(C) \to H_{n-1}(A)$
	$\delta(z) = \int_{A} e^{-\frac{\pi}{2}} (A) / R (A)$
	by $S(z) = [a] \in \mathbb{Z}_{n-1}(A) / \mathbb{B}_{n-1}(A)$ whenever (b,a) is a choice for z for some b .
	Crosice per to for sorre o.
	It is easy to show that this is a group homomorphism.
	The state of the s
	What we really want is a homomorphism
	What we really want is a homomorphism $S: H_n(C) \to H_{n-1}(A)$ $\stackrel{\text{Z}}{\text{Z}}_n(C)/\mathfrak{F}_n(C) \qquad \text{Need to show} \qquad \mathcal{S}(B_n(C)) = 0$
	Zu(c)/2 Need to show S(Bu(c)) = 0
	* On (C)
	So suppose z \in Bn(c)
	Choose 3 € Cn+1 5, E, 2n+1 (5) = Z
	pro, is surjective so choose B & Bn+1 st. pm. (B) = 5
	∂n pn+1(B) = ∂n (S) = 2 so pn dn+1 (B) = 2
	and dn dn+, (B) = 0 so in-, (0) = 2n 2n+, (B)
	so (Ino 1 (B), O) is a choice for z ∈ Bn(c)

ce. d(z) = 0 so S(Bn(c)) = 0 So Sinduces S: Hn(C) -> Hnn(A) (connecting homo) "Zn(c), Bn(c) Now need to show three things: Hn (A) ix Hn (B) Px Hn (C) is exact Hn (B) Po An(c) So Hn-1 (A) is exact (III) Hn+, (c) & Hn (A) is Hn (B) is exact. Proof of I P+i+ = 0 because prin = 0 NTS: if BE Zn (B) is such that PA[B] = O then Ja E Zn(A) s.t. in [a] = [B] pr(B) & Im (dati: Cn+1 -> Cn) So $\exists J \in C_{n+1}$ s.t. $p_n(\beta) = \partial_{n+1}(5)$. pn+1 is surjective so choose n & Bn+1 st. pn+1(1) = } 2n+1 pn+1(n) = 2n+1 (5) So produti(y) = duti(5) pr (B) = pr dn+1 (M) B- dn+1(n) = Ker(pn) = Im(in) So $\exists \alpha \in A_n$ st. $i_n(\alpha) = \beta - \partial_{n+1}(\eta)$ [note $\partial_n^B(\beta) = 0$] $\partial_n^B i_n(\alpha) = \partial_n^B(\beta) - \partial_n^B \partial_{n+1}(\eta) = 0 \quad [\partial \partial = 0]$ Since $\beta \in \mathcal{Z}_n(\beta)$ So $i_n \cdot \partial_n^A(\alpha) = \partial_n^B i_n(\alpha) = 0$ in is injective so $\partial_n^A(\alpha)=0$, $\alpha\in\mathbb{Z}_n(A)$, $\mathcal{L}_{i*}[\alpha]=[\beta]$ Pool of (I) First observe that Spr = O. Let b∈ Zn(B), 80 pn(b) ∈ Zn(C) We have to evaluate of on [pr (6)] Make a choice for pn(6). There is an obvious choice (6,0). (2,18(6)=0) So Sp+[6]=0


19-03-18 Next we have to show that if $z \in Z_n(C)$ satisfies S[z]=0 then $\exists b \in Z_n(B)$ s.t. $p_*[b]=[z]$. We know that I choice (b, a) for Z s.t. a ∈ Bn-, (A) = Im (2n), b ∈ Bn st. pn (b) = 2 and in-, (a) = 2, B(b) Choose & E An st. In (x) = a [pin = 0] and consider to - in(a) Then pr(b-in(a)) = = so now on (b-in(a)) = DnB(b) - DnB(in (a)) = 2, B(b) - in-, 2, A(a) = 2nB(b) - in-, (a) = 0 So (b-in(a), 0) is a choice for Pn(b) = = So p+ [6] = [Z]. Let ZE Zn+1 (C) and make a choice (b, a) for Z. Can assume a E Zn (A). $p_{n+1}(b) = 2$, $\partial_n^B(b) = i_n(a)$ $i_* [a] = [\partial_{n+1}^B(b)] = 0$ $\partial_{n+1}^B(b) \in B_n(B)$ NTS: if a & Zn satisfies in [a] = 0 then 3 = E Zn+, (C) : S[2] = [a]. ix [a] = 0 means in (a) = 2n+1 (b) for some b & Bn+1 Put z = pn+1 (6) and calculate 2n+1 (2) dn+, pn+, (b) - pn dn+, (b) = pnin(a) = 0 so dn+1(2)=0 and now look at def" of S ZE Zn+1(C) and (b, a) is a choice for z =) S[2] = [a].

We've established the existence of long exact sequences	
411/1/16	
Naturality of 5"	
Suppose (0 -> A+ -> B+ -> C+ -> 0)	
and (0 -> A' -> B' -> C' -> C)	
are both short exact sequences of	
chain complexes.	
Suppose we also have chain maps	
α: A → A ; B: B * → B ; ; C + → C *	
in such a way that for each n the following	
diagram commutes:	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0 -> An in Bi Pi Cn -> O	
·	
Hn+1(B) P+ Hn+1(C) -5->Hn(A) + Hn(B) P+ Hn(C) -5 > Hn-1(A) + Hn-1(B) -	
Is It Law Law Is Is I was I say	
Hn+1(B') P* Hn+1(C') 5' > Hn(A') + Hn(B') P' + Hn(C') 5' > Hn-1(A') + Hn-1(B') ->	
11/1-10/ - HN+11C / HN / / / / / / / / / /	
All this commutes "Naturality" says that when we add in the connecting homomorphisms then everything	
add in the connecting homomorphisms then everything	
commutes.	
In particular Hn(c) & Hn- (A) commutes	
1 7 x 1 x x	
Hn (c') S', Hn, (A')	
$Im(C) \longrightarrow Im_{-1}(A)$	
9	

MATH3203	
21-03-18	01/21/53/11
	Rossible problem class: room 500, lob wed of Term 3, 11-1
	Trivial case 0 -> A (i) A (0.1) C -> 0
?	eract sequence of chain complexes Def ⁿ of $A_* \oplus C_*$ $A_n \oplus C_n$ $(\partial_n \cap O)$ $(O \partial_n \cap O)$
	Prop In the brivial case
0	S: Hn (Co) -> Hn-, (A+) is zero.
	Proof If $z \in \mathcal{Z}_n(C)$ then $\binom{\circ}{z}$ is already a choice for z , because $(0,1)\binom{\circ}{z} = z$ and $\partial\binom{\circ}{z} = (\widehat{x}_z)$ and $\partial z = 0$ so $\partial[\overline{z}] = 0$
	Corollary In a brigal exact sequence of chain complexes, the long exact sequence becomes $0 \to H_n(A) \to H_n(A_* \oplus C_*) \to H_n(C_*) \to 0$
	Proof Hnr.(C) & Hn (A) -> Hn (A & C C) -> Hn (C) & Hn (A) S Hn (A) -> Hn (A & C) -> Hn (A)
	$O \rightarrow H_n(A) \rightarrow H_n(A_* \oplus C_*) \rightarrow H_n(C_*) \rightarrow O$ Split exact sequences
	$E = (0 \rightarrow A \stackrel{?}{\rightarrow} B \stackrel{?}{\rightarrow} C \rightarrow 0)$ exact sequence of abelian groups Say that E splits when \exists commutative diagram $0 \rightarrow A \stackrel{?}{\rightarrow} B \stackrel{?}{\rightarrow} C \rightarrow 0 \qquad (0)(a) = (0) , (0,1)(a) = C$ $\downarrow \downarrow $

MATH 3203	
21-03-18	
	Proof
	The LES looks like
	0 -> Hn (A) is Hn (A+ OCx) Po Hn (Cx) -> 0 exact
	This sequence splits on the left.
	Define r: A* DG -> A* , r(2)=a, roi= ldA.
	Hn(r) . Hn(i) = 1d Hn(A)
	Tok o in = ld
	Ŋ
	Geometric MV Thm
0	X = X+ v X-, X+, X- subcomplexes of X
	For each n get an exact sequence of vector spaces:
	$0 \to C_n(X_+ \cap X) \to C_n(X_+) \oplus C_n(X) \to C_n(X) \to C_n(X) \to 0$
	For each n get an exact sequence of vector spaces: $0 \rightarrow C_n(X_{+}, X_{-}) \rightarrow C_n(X_{+}) \oplus C_n(X_{-}) \rightarrow C_n(X_{+}) \rightarrow C_n(X$
	i.e. for the middle term, we get a trivial exact
	sequence of chain complexes
	$0 \to C_*(X_+) \to C_*(X_+) \oplus C_*(X) \to C_*(X) \to 0$
6	$56 H_n \left(C_* (X_+) \oplus C_* (X) \right) \cong H_n \left(C_* (X_+) \right) \oplus H_n \left(C_* (X) \right)$
0	$=H_{n}(X_{+})\oplus H_{n}(X_{-})$
	0-2((V V) 2((V) 0((V) 2 (V) 20
	$0 \to C_*(X_{+n}X_{-}) \to C_*(X_{+}) \oplus C_*(X_{-}) \to C_*(X) \to 0$
	Hn+1(X) -> Hn (X+n X-) -> Hn(C+(X+) + C+(X-)) -> Hn(X) -> Hn-1(X+n X-)
	$H_{n}(X_{+}) \oplus H_{n}(X_{-})$
	Finally we get
	Hn+1 (X) & Hn (X+ n X-) -> Hn (X+) & Hn (X) & Hn (X) -> Hn (X) & Hn (X+ n X-) ->
	14 C 14 L (69) 14 C 1/4
	Hn+1 (Y) \$ Hn (Y+ n Y-) - Hn (Y+) @ Hn (Y-) - Hn (Y) & Hn-1 (Y+ n Y-) - 1
	Supposing Y= Y+v Y-, f: X -> 7, f(X+) = Y+, f(X-) = Y-
	Commutes by naturality.
	Course him I al

