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Chapter 1

General information and reading list.

1.1 Topics to be covered in lectures

1. Using scaling arguments

2. Oxygen transport and Insect respiration

3. bird flight

4. Simple cell electrophysiology and gene expression
5. Strength of bones

6. Chemotaxis

7. Brain/Memory

8. Blood flood

1.2 Reading list

Warning. This course is not (much) about learning methods and theorems and applying them to
standard problems. As such, there is no single book that you can read to cover the course. There
are books that you might find helpful, or enjoy reading to supplement the lectures. A list of books that
go with the course is the following:

1. Scaling Laws.




CHAPTER 1. GENERAL INFORMATION AND READING LIST.

(a) Andrew A Biewener. Animal Locomotion. Oxford Animal Biology Series. CUP, 2003.
[Good general reading, but particularly pages 10-14. Chapter 7 has an interesting section
on jump perfprmance].

(b) Knut Schmidt-Nielsen. Scaling: why is animal size so important? CUP, 1984. [Does not
build models, but is good background information on scaling in biology].

(c) D’arcy Wentworth Thomson. On growth and form. CUP. First published 1961. [Again, no
model building, but excellent background and a real classic].

(d) Ludwig von Bertalanffy. General Systems Theory. 1969. george Braziller Inc. New York.
[He discusses his growth model in pages 171-184].

(e) http://online.itp.ucsb.edu/online/pattern_i03/west/ [Forgeneralinterest,
and also von Bertalanffy’s model].
2. Diffusion/Insect Respiration.
(a) Ove Sten-Knudson. Biological Membranes: Theory of transport, potentials and electric
impulses. Cambridge University Press, 2002.

(b) G.R. Grimmet and D.R. Stirzaker. Probability and random processes. Clarendon Press,
Oxford. 1992.

(c) http://www.livescience.com/animals/061011.giant_insects.html. [Read-
able article on oxygen and insect size limitations].

(d) http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/T/Tracheal Breathing.
html

3. Bone.
(@) I.P. Herman, "Physics of the human body”, Springer, ISBN-10: 3540296034, (2007).
4. Bird flight.

(a) Rayner.J.M.V. (2001). Mathematical modelling of the avian flight power curve, math. Meth.
App.Sci., 24:1485-1514.

(b) Loghthill, M.J. (1974). Aerodynamics aspects of animal flight. Bulletin of the Institute of
mathematics and its applications, 10:369 393.

(c) from 1(a) - see above. Chapter 5. Sections 4.1.4.3 may also be useful background reading
on fluids.

5. Electrophysiology.



1.2. READING LIST

(a) see 2(a) above.

(b) J. Keener and J. Sneyd. Mathematical Physiology. Interdisciplinary Applied Mathematics
8. Springer-Verlag, New York 1998. [Parts of Chapters 2,3 might be usefull].

6. Chemotaxis.

(a) J.D. Murray, Mathematical biology. I. Chapter 11, Springer 2001.
(b) J.D. Murray, Mathematical biology. Il. Chapter 5.

7. Brain.
(a) J.D. Murray, Mathematical biology. I. Chapter 7, Springer 2001.
8. Blood.

(a) S.l. Rubinow, Introduction to Mathematical Biology, A Wiley-Interscience publication, New
York. Chapter 4.




Chapter 2

Using scaling arguments

2.1 First steps: Building a simple mathematical model
Warning: In this part of the course we make very simplistic assumptions about the biology. (Never-

theless, our efforts are rewarded with answers that make broad sense.)

2.1.1 Example. Falling flea.

Why would a flea survive a fall from 30-storey building, whereas a human would probably not?
Isit:

1. because the human is much heavier?

2. because the flea has a stronger (exo)skeleton and hence can survive the impact?
3. because the fleas legs can absorb the impact (good shock-absorbers)?

4. some other (sensible) reason?

Galileo (or later Newton) tells us two cannon balls of different sizes reach the ground at the same
time - (by experience) this is not what we expect from fleas and humans, so whats missing?

Answer is friction - the drag on bodies due to air friction acts to decelerate a falling body. Over
long distances, bodies reach terminal velocity, which occurs where the frictional drag force balances
weight. So we need to understand how frictional drag depends on the size and shape of a body.
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CHAPTER 2. USING SCALING ARGUMENTS

Body weight = Frictional drag

weight

Figure 2.1:

N

What is Drag?

- It is a force due to friction (air/water/soil)

We know:

Force = change momentum / time, F =dp/dt RS

so we can find the drag force from \ Q> )
1. the bodys area in contact with the air //
2. how much air is moved from standstill to (terminal) @ !. /

speed v in a given time ¢ (which gives the momentum
change in time 1) / |
J

YN
I

volume hin time t, force x time = change of
still air Speed = v momentum (of still air)
met in t force x t = air mass x speed
= hS volume of still air = (density) x volume x v
= vits ge:ur?achexarsea) =P (Sxch)xv
=p xX(Sxvxt)xv
=pS»’t

1y

\

hence drag force o S v2

G‘)Guzj! g mom. ue/oa/j



2.2. SCALING ARGUMENTS

Assuming terminal velocity is reached by the flea and human:

weight = drag  force = Mg o< Sv? = v o< 4 / % f”P"‘(nd7 4 (2.1)
50 Loouw1r g ovd
So how does A

( connia
mass/area = M/S \7

differ for the flea and human?
Approximately:
Flea = 3mm long
Human = 2000mm long
Make the simplest assumption that there is a linear scale L such that

M«L3 — SelL? (2.2)

Then for each body
M/SL (2.3)

Thus the terminal velocity varies with the bodys linear scale L as
vec VL e v e (2.4)

We say that the velocity scales as the square root of the body linear scale
For a flea and human we have (very approximately!)

Lfea/Lhuman =~ 3mm/2000mm = 0.0015 (2.5)

and the terminal velocity of a human is approx 100mph, so

VAiea = Vhuman X \/ Lfiea / Iihuman ~ 4mph (2.6)

This, combined with the strong exoskeleton of the flea, gives it a much better chance of survival!
BTW: Lelepham /Lhuman = 4/2 =2, Velephant = 100\/5 = 141mPh
2.2 Scaling arguments

The previous example is an example of a scaling argument -by making very simple assumptions we
were able to model how terminal velocity scales with linear scale L.




CHAPTER 2. USING SCALING ARGUMENTS

The scaling argument summarizes:

weight = Mgoc L (2.7)
drag o projected area xv? o< L2v?
weight = drag = L* =<2 = v VL (2.9)

| |
Notice that we dropped all boring constants to reach the essential point: v scales as square root

of L.
Inherent in our assumptions were that for the linear scale L that distinguishes bodies in the simi-
larity class:

e length o< L!
e area o L? (so projected area o L?)
e volume o L? (so mass o L3)

In applying our model, we were also assuming that the model is being applied to two bodies of
the same shape (not exactly the case for the flea and human, but this is a first approximation model!).

In the following models, we will assume that we are comparing between families of animals of
similar shape, i.e. are isometric, parameterised by linear scale L.

We will be interested in how the size of the animal effects its functions. If L is a length scale,
then area scales as L? and volume scales as L. Since many of life's processes depend on trans-
port of substances across a surface area (e.g. lung surface), and that transport supplies a volume
(e.g. blood), it is intriguing to ask how the fact that volume increases faster than area effects (limits)
function.

2.2.1 Some basic physics

(M=mass, L=length, T=time)
1. force = mass x accn : force = MLT 2 = _l‘%‘:
2. work done = force x distance = ML*T 2, kinetic energy = M(LT !)?
3. power = work done/time = ML*T 3

4. flux = amount/area/time
e.g. mass flux = mass/area/time = ML~2T"!
heat flux = heat energy/area/time = MT 3



2.2. SCALING ARGUMENTS

5. heat is energy transferred down a temperature gradient

2.2.2 Example 2

How high can an animal jump? Or more precisely: How does the height that an animal from the same
similarity class vary with linear scale L?

Assumptions:

1. work done by leg muscles = gain in potential energy

2. muscle force o cross-sectional area of muscle o L?
(this is not obvious, but there are models that justify
this experimentally demonstrated fact).

3. height jumped = height gained h by centre of mass
(good approx)

Potential energy gained = Mgh o< L3 x h
Work done by muscles =

muscle force x vertical distance, centre of mass (C.O.M.) displaced
o< (L2) x (L) = L3,
L% L e LN

Hence, equating PE gained to Wk. Done by muscle he LF

hL? < L3

Thus h o L°. That is, the simple model predicts that, for animals in the same isometric class, the
height they can jump is independent of their size.

Is this a good model? How high can a flea jump? How high can you jump?
2 v
5m . Im
2.2.3 Example: How fast can we walk before breaking into a run?

Consider this (very) simplified picture of the human gait (figure 2.2). The human walks with straight
legs, so the the COM moves in a series of circular arcs. The front foot leaves the ground if the

9




CHAPTER 2. USING SCALING ARGUMENTS

component of weight is not strong enough to provide the ¢tentripetal acceleration which increases as
v2. This gives us a limit on the walking speed.

centripetal
acceleration

v

To keep foot on ground
friction for grip during arc :

2

mgcos@ > m x%, SO Vi =ﬂgR

10/7/10

17

Figure 2.2: Maximal speed: v < 1/10m/s? x 1m = 3m/s = 0.003km/0.0003h = 10km/h
1\ ]
0 10 R



2.2. SCALING ARGUMENTS

2.2.4 Example
Minimum nerve speed required to make it possible for a animal to balance (e.g. flamingo )

toppling of animal scales like free fall (md*x/dt* = mg, dx/dt =
\l A gt+C1,x=gt2/2+C1t+C2t): i 2=0c(6)=0 =2 G “—‘('&GO

~ 2

m X

o<t = 2—h o< \/Z
8
« h nerve speed required = distance from brain to muscle / time
taken
0 o< L/t
v Thus
< nerve speed scales as £ = VL

Vm‘;" YT
2.2.5 Models that involve Metabolic Rate

Homeostasis is the property of a system that regulates its internal state to maintain a stable condition
of properties, e.g., temperature.

Metabolism is the set of chemical reactions that occur in living organisms in order to maintain
life. Animals use Adenosine triphosphate (ATP) to fuel their metabolic demands, e.g. in growth,
locomotion, maintenance, immunological defence, etc. The cells power plants” are organelles called
mitochondria which generate most of the cell's supply of ATP.

food + oxygen = ATP = ADP + Phosphate + ENERGY = muscle force.

The metabolic rate (rate of energy metabolism) of an organism (using aerobic respiration) can be
assumed to be equated with the rate of oxygen consumption.

A simple (isometric) scaling argument for variation of metabolic rate (assuming a resting state and
after a period of fasting) with size is as follows:

Metabolic rate B = rate of oxygen consumption o area of lungs supplying oxygen to mitochondria

o< L2
Body Mass M o L3
Thus B o< L2 = (L3)?/3 o M2/3 (Rubners Law). & gumnbu.'

Another argument, at least for warm-blooded animals, put forward by Rubner, is that a warm-
blooded animal maintains a constant body temperature, and so their metabolism runs at a rate such

11
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CHAPTER 2. USING SCALING ARGUMENTS

that this temperature is maintained. Since the body loses heat energy at a rate proportional to their
body surface area, which scales as L%, the metabolic rate ought to scale as L2

Whatever the argument we (might) accept for the L? law, we take the law as fact for now. (However,
we will see later that it can be improved upon with the experimentally determined B o< M3/4.)
Thus until stated otherwise, we assume that

Bo< [? o« M?/3,

2.2.6 Class Exercise (10mins): How long can a diving mammal stay under water on
one breath?

A diving mammal (e.g. whale) stores oxygen in it blood before diving. When that oxygen is exhausted
it must surface for more air.
amount of stored oxygen o lung volume o blood volume o L3
" Metabolic Rate - rate at which mammal uses stored oxygen is o L2
Thus duration of a dive scales as L*/L* = L.
Thus the larger you are, the longer you can dive.

NB: We have ignored any specialisation that makes it more efficient for the animal to dive. Thus
for example, whales slow their heart beat and blood flow to their muscles is reduced; these factors
enable whales to dive for longer. When we build our simple models, we keep them simple by ignoring
such specialisations. We are interested in broad statements about how things typically vary with
scale.

2.2.7 Example: Why do large birds find it harder to fly?

ﬁ lift

Facts/assumptions:
1. Drag = L2v? (see flea/lhuman model) \ thrust

2. (Not obvious!) Maximum lift during gliding and wing <: power :>
flapping = Ay v? where A,, = wing area o< L2 drag

—

@ weight

3. Metabolic rate « L? = rate at which energy is available.

12




2.2. SCALING ARGUMENTS

2.2.8 How to obtain lift law
Bernoulli’'s Theorem (Sketch)

For steady flow of inviscid incompressible fluid

2

pv
5 + p+pgx = const
along streamline. Here p = pressure, z = fluid depth, v = fluid speed, p = density.
Proof.
dv
m—— = ZF,
N - Tt
I M¢
pAde = —Adp—pAdxg — werg ¥

dv_dvdx_dv d v?

di ~dxdi  dx  dx2
d v2+ +pgx) =0 v2+ + = const
dx \P5 TPTP8x ) =0, P~ TP+ pgx = cons

Lift av2
— streamline
asymmetric wing profile \»\
——— >
L e P
,v'//
/,/

N '///’
Figure 2.3:

Back to wing lift now. Air particles moving around the wing profile start and end at same time, so
top particle must move faster. By Bernoulli, this generates a lift < A,1?, where v is the wind speed,
that is the speed of the air relative to the wing.

Max lift must just overcome gravity, so minimum flying speed v is given by
AP o Mg < L3,

13




CHAPTER 2. USING SCALING ARGUMENTS

so that since A,, < L2, v < L1/2,

The required power (for flapping wings to get lift) is Power (work done /time = force x distance
/time)
Flying power = drag x v o< L23 oc [273/2 = [7/2

Metabolic power « L?, so that required power exceeds supplied power for larger L (L7/2 > L2 for L
large enough), and hence there is an upper limit on bird size.

2.2.9 Kleibers Law

But experimentally B «< M?/3 is not observed!

homeo

therms
o {warm biooded
— " 1 organisms)
X
s
W
®
< W0t -
-
=
<
¥ paikitotherms
£ 6 {cald blooded organisms)
8 107 —
L4
£
HEK .
gradient = 3/4
10—17

| ;
10} 1Y Tol 10% 10°
mass (g, log scale)

1 kealh = 1,162 watts

Figure 2.4:
Instead one finds experimentally (by measuring oxygen consumption of animals in a resting state
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2.2. SCALING ARGUMENTS |

and after they have fasted for sufficient period) that
metabolic rate B < m3/4. |

Figure 4.12 illustrates the remarkable range of scales over which the 3/4 law holds.
Aside: An new argument for 3/4 power law was recently published by West (1997) under the
following assumptions:

e mammalian energy distribution networks (circulatory system, lungs) are fractal-like in structure;

¢ systems have evolved to maximise their metabolic capacity by maintaining networks that occupy
a fixed percentage of the volume of the body.

So from now on we will acknowledge experimental data and assume the allometric scaling (as
—
opposed to isometric scaling) law for metabolic rate with mass:

B=Bym’*. (Kliebers Law).

2.2.10 Example. How does heart-rate scale with mass?

Assume that the heart beats fast enough to supply enough oxygen for the organism’s metabolism.
Facts:

1. Metabolic rate o« m3/4.

2. Blood volume « L3? < m.

The rate of oxygen is transport around body is o r x L o< r x m where r = heart rate (assume pump
volume o body volume). Thus r x m o< m3/* giving r «« m~1/4. Smaller bodies have faster heart rates:

e.g. masked shrew (0.003kg) has r = 600, whereas elephant (4000kg) has r = 30. A human
(80kg) has r = 80.

2.2.11 Example: Thickness of fur

Consider a class of similar animals in a cold environment. How does their fur thickness scale with
mass?

Recall: Heat is energy transferred down a temperature gradient AT /Ax. heat flux = heat en-
ergy/areal/time = k(AT /Ax), k = thermal conductivity of material (independent of scale).

To maintain body temperature (in surrounding of constant temperature, so that AT is constant) we
thus need metabolic rate o heat flux « surface area x (temp difference / fur thickness k)

m3/* oc 12 [k oc m?/3 Jh,

15



CHAPTER 2. USING SCALING ARGUMENTS

so that fur thickness h o« m?/3-3/4 = m~1/12_ Hence larger animals tend to have thinner fur.

2.2.12 Class excercise: How long does it take to starve to death?

Using Kliebers law, power o m3/4

And energy reserves « mass m, energy used up to starvation « power x time to starve = m3/4 x 1.
Thus ¢ o< m x m=3/4 = m!/4,

2.2.13 Example: Swimming speed of a filter-feeder

rate of gain of stored energy « food energy input rate - metabolism of stores

v, food input rate = FyU,
' '". ' ) metabolism = basal rate + power to overcome (speed-
ol dependent) drag
....'“ =Py+ drag xU
oo = Py+(PlU%) x U = Py+ PU3.
Thus need to look at the function
G— G(U) = RU — Py — PU>.

G (U)=Fy—3PU? =0 where U = \/Fy/3P; .

Not viable if Gmax < 0, i.€. (after some algebra) Py > 22, /3%.

\\ — \\ — U
|/ R\

\ G6W) = FU - P, - PU?

Need G,,,,>0, else more energy used
up than gained by feeding

Figure 2.5:
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2.3. EXAMPLE: LUDWIG VON BERTALANFFYS GROWTH MODEL (1957)

2.3 Example: Ludwig von Bertalanffys Growth Model (1957)

von Bertalanfy was one of the founders of "General Systems Theory” (http://en.wikipedia.
org/wiki/Ludwig_von_Bertalanffy)Hereis a (very) simple model he developed to study growth
of an organism.

He assumed that all an organism’s available energy is channeled into :

1. Growth of the organism - building new cells, all taking the same energy to generate

2. Maintenance of the existing cells - keeping existing cells alive by supplying resources and re-
moving waste products.

We have:

incoming power (metabolic rate [B]) = number of cells in body N.(z) x metabolic rate of one cell [= B,]
+ energy required to create new cell [= E.]x rate of increase in number of cells N.(z)

dN,
=B= NB, +E.—
N~~~ dt
maintenance "
growth

Now:
body mass m = N.m., where m. =mass of 1 cell (assumed identical for all cells). Take B = Bym?/? |
(isometric scaling, i.e. o« L? [see exercise sheet 1 for the m3/* case]). Thus |
/3 _ Bem  Ec dm

d
+-c— - rearange = I — om?3 — Bm,

Bom?
0 me  me dt dt

where oo = m:By/E., p = B./E..
Solve:
C_iﬂ o 2/3 - . . . I
2o Bm, m(0)=mgy (small, since organism starts small!).
Write as

d_m_ 2/3(r Rn1/3
i (—Pm/?)

and substitute u = m'/3. Then 3du/dt = m~2/3dm/dt which gives

du 1 13
=3P, u0)=m.
This has general solution u(f) = %+Aexp_5’/3. To find A, use initial data:

o
m(l)/3 = ‘B +A.

17



CHAPTER 2. USING SCALING ARGUMENTS

Hence we obtain:

ll(t) = (1 _exp_BI/a) +m(1)/3exp‘ﬁt/3,

o
p
and finally in terms of m:

3
m(t) = (%(1 —exp P1/3) +m(1)/3expB’/3) .

(Sketch similar in Q2, sheet 1).

2.3.1 Case Study: Incubating Eggs

e An egg is a self-contained unit. It has all the nutrients it needs for the embryo to develop -
except for oxygen. Oxygen is needed from outside. It diffuses through the shell through small
pores

e But must also be rid of waste products, such as carbon dioxide and water. The shell is mainly
calcium carbonate with pores that allow influx and outflux of nutrients and waste products
(gases and water).

e The shell must be strong enough to withstand roosting, but weak enough to allow chick to break
out when hatching.

Consider a spherical Egg!
Questions:

1. How does the egg incubation time scale with the mass of the egg?
2. How does the shell thickness vary with egg size?

Assumptions/Notes

1. Loss of water is the limiting effect - must not be too rapid else the embryo dehydrates. Oxy-
gen and CO, diffuse across embryo and egg shell faster than water (so can be considered
instantaneous on the time scale of water movement).

2. Rate of water production « metabolic rate

3. Would expect shell thickness to increase with shell size, since shell has to contain and protect
yolk.

4. Total water loss « size of egg

5. Water is lost via pores length = shell thickness d and with total area A ., over the shell.

18



2.3. EXAMPLE: LUDWIG VON BERTALANFFYS GROWTH MODEL (1957)

water, CO,

|

oxygen
/ ¥
| | N ™
\ f iL

———

— calcium carbonate
shell thickness d

Figure 2.6:

Total water lost in T;,. = daily water loss x T,

Me&’g
daily water loss

Tinc <

and daily water loss o metabolic rate o Mgg . Hence
M, 1/4
Tinc o< ;ii = Meg{g )

€gs

which agrees quite well with the experimentally observed m0217,
But how might the shell thickness d change with egg size?

concentration gradient

water flux < pore ar
te pore area x pore length

(see later lectures on diffusion).

density of pores in shell x area
oc = X
shell thickness

AC

19



CHAPTER 2. USING SCALING ARGUMENTS

Since the area of the shell is proportional to R?, and AC is constant,

Y- density pores x R? . density pores x Mfg;’
88 d d
density pores 3/4-2/3 1/12
SNl BOMSS 3t — g

Hence if pore density is a constant, independent of egg size,

d«xMe_g;/lz

which would mean that eggs get thinner with increasing egg size!
So the density of pores must be size dependent. In fact, experimentally it is observed pore density

o« M*/ and the shell thickness scales as d o< M3, .

20
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Chapter 3

Oxygen transport and Insect respiration

Motivation: Gas transport in animals

Oxygen is needed to fuel aerobic metabolism. How is transport from the
lungs to the energy dissipating body structures - the organs - manage
by the animal? '

For very small organisms, the oxygen need only travel small distances,
but as the animal size increases the oxygen needs to be transported
significant distances.

We start by examining simple diffusion of oxygen. We first look at some
toy mathematical problems to get a handle on how distance diffused
depends on time.

10/22/10 MATH3307 Biomathematics 2010. 1
Oxygen Transport
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

Diffusion of particle in 1 dimension

Particle moves & to left or right with (independent) probability 1/2
at each step.

Let X, € {-0,68} be the random variable for ith step

and consider

S, =X +X,+..+X, (= r.v. for position after n steps).

ONE approach for those familar with probability is :

Since the X, are independently and identically distributed (i.i.d.) mean 0
and variance 8° by the central limit theorem (sums of iid rv's) - OR SEE
NEXT SLIDE - asn — =, S, — N(0,nd?)

[the normal distribution with mean O, variance = n &%)

So

root mean square of distance moved =< \(r;

1022110 MATH3307 Biomathematics 2010. 2
Oxygen Transport

Notice fhlaf we have

EIX] = p(x = ~8)(8) + plx = 85 = %(.5) + ;5 -0,

so that E[S,] = E[D, X 1= Y E[X,]= 0.

Similarly, if i # j, } ‘

EXX,] = plx = -6)p(x = -6)-0)* + plx = -O)p(x = S}-O)B) +

plx = 6)plx = -6)(6)-0) + plx = 8)p(x = 8)6)* (= E[X E[X,])
=0
whereas if i = j,

ElX] = éaz ¥ -;:52 =5t = Y X = s

This gives for the variance
c? = E[(S, - E[S,))%] = E[X X? +2), X, X, ) = E[X?) + 2 E[X,X,] =n&"
J i<) i =)

10422410 MATH3307 Biomathematics 2010. 3
Osxygen Transport

22



i.e. as n — «, the pdf f  has

1 2y 52
f(x) = e
vVenn

If 7is time between collisions, t time elapsed,
then nt = t.

1 2 52
f(x,1) = e withD = —
V4nDt 2t

Now take limit as 7,8 — O such that D is finite :

Fx, 1) = ——
¢4nof

— distance moved o Vvariance a \{;

So good for small distances, e.g. across a cell wall, or the
shell of an egg, but too slow for transport between organs.

e ¥ pdf for particle position

10/22/10 MATH3307 Biomathematics 2010.

Oxygen Transport

Time taken to reach 99% diffusion equilibrium as a

function of distance from a plane (Jacobs 1935)

Distance from boundary time

10 cm 53 days

1em 12.75 hours

1 mm 7.6 minutes

100 um 4.56 seconds

10 ym 0.0456 seconds

1 um 0.000456 seconds

0.1 pm 0.00000456 seconds
10/22/10 MATH3307 Biomathematics 2010,
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

1 2
Now for f(x,#) = e ™,
V4 rDt
af -2x ot | =X
—_—  —————me TS e f
X 4Dty4nDt 2Dt

I -l x of -, x?

ox? 2Dt  2Dtox 2Dt 4D
Whereas
ﬂ= 1 (j} 32, x4} + 1 (1 X2/ 4Dt
dt  J4np |2 N4nDt \ 4D
_ 2
el Xk
2t 4Dt?

Thus f satisfies the Diffusion equation:

of I | . of aJ of
CopZlliel L=, 7-0% = flux
at ox| El ot o x
1022/10 MATH3307 Biomathematics 2010, 6

Oxygen Transport

From this " fundamental solution” for a single
particle, we may construct solutions on (~e, ) of
diffusion equation for initial concentrations

C(x, 0) by convolution :

C(X, 1.) = ]‘(\/Z—'l_‘;‘e (x-y ¥ /Dt ]C()/, O) dy
m

For example if we start with C(y, 0) = &(y,0), the Kronecker
delta function at the origin we get

Cx,t) = ——e x4t

10/22/10 MATH3307 Biomathematics 2010.
Oxygen Transport
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1 1 - 2,"‘“4"
flx,t) = e
A Vért
C‘ L3 8 “
046 | Symmetric curves spread
P with t increasing; mean
o, A= E remains at x=0.
¢
L *;\_
Ab.2 »,
-4 -2 2 4 X
10/22/10 MATH3307 Biomathematics 2010. 8
Oxygen Transport

More generally in 3D we have

g—f- _ DVC = div(DVC) = ~divT, T = -DVC = flux

Example : Diffusion and absorption within a fissue

Now consider levels of oxygen concentration

in a spherical tissue radius a immersed in water.

Assume :

* oxygen diffuses with same constant D in both tissue and water

* oxygen is absorbed by tissue (for aerobic metabolism) at rate pu

%€ _ pvic - uc

(9" passive diffusion absorption

10722710 MATH3307 Biomathematics 2010. ]
Oxygen Transport
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

J

Diffusion and absorption in tissue bathed in water

a—C=szc
at
r=a r—>oo,'
clr)5 ¢

Solve in each domain
and match across the
water tissue boundary

10/22/10 MATH33)7 Biomathematies 2010. 10
Oxygen Transport

Suppose body is in water and that D for water is
same as for tissue and let ¢ = Dv%: p =0 in the water
(since no absorption there)

Spherical symmetry: C = C(r, t) where

D & ;
P F(r(,‘) - HC r<a (tissue)
o . .
ot %g—l(m) r>a (water).

r

Let us find the steady state solution C_(r) = limC(r, ).

Thus solve :

D d°

;—;;(rC)—pC:O r<a
D d*
72’-—2(1"6):0 r>a

subject to C(0) finite, C(a-) = C(a+) [continuity across
interface], - D C’(a-) = -D C'{a+) [continuity of flux)
and C{e) = C fixed.

1022110 MATH3307 Biomathematies 2010, 11
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For r > a, we have rC is linearinr :

(C.(r)= Ar +B = C.(1) = A +§ (A).

Forr <a,

c.(r) = L(A’ sinh(vr) + 8'cosh(vr)).
vr

For finiteness at r = 0 we require B'= 0. For C_(=) = C
A = C. For continuities at a :

x

conc. : LA’sinh(va) =C+— (B)
va a
flux : - 1 A’sinh(va) + icosh(vq) - - B ©)
va’ a at

10:22/10 MATH3307 Biomathematics 2010,
Oxygen Transport

Add (C) +(1/a) x (B) :
ﬁ:cosh(va) _¢ = A = ¢ .
a a cosh(va)

So from (B)

B = ﬁ—sinh(va) —aC = ¢ tanh(va) - aC
v v

Hence we obtain :

C sinh(vr) r<a
C.(r) = vr cosh(va)
ca-9y+ E['mnh(va) r>a
r vr
Note that C_(0) = Csech(va).
10/22/10 MATH3307 Biomathematics 2010.
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

Diffusion with drift included

We also need to be able to model the situation where oxygen is
transported around a body using constant speed advection through
“pipes” (for larger bodies where diffusion is not rapid enough, the
lungs push the oxygen to where it is needed.)

In the Brownian motion model, the particle now moves with a bias u,
i.e. the mean speed is not zero, but there is a drift u:

X € {0 +ur,d +urt}

So that our asymptotics now read

F,,(X) - 1 Me’("”“‘f)z 2n8°
ov2an

10/22/10 MATH3307 Biomathematics 2010. 14
Osxygen Transport

Flx, 1) = g teerF o
4mDt
This pdf also satsfies a diffusion - like equation. Let

1

X = x - ut. Then F(X,1) = ————e X" = f(x,1)
47Dt
satisfies the standard diffusion equation
2
F _pdf
at ox?

By the chain rule,
dof F FaX _oF 3F

o A Mot X
OF _OF X _OF dx-uf) _ o

¢

ox X ax C0X ox axX

?’f _ OF
and similarly - .
o ox?
10/22/10 MATH3307 Biomathematics 2010. 15
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Hence f(x, t) satisfies
oF _J°F of of o

0-% p2f ot iy p?l,

ot dx* It ox ox?
that is

2
I _ % p%F  Diffusion with drift .

at ox ox?

10/22/10

10722/10

MATH3207 Biomathematics 2010. 16
Oxygen Transport

As for standard diffusion, if the initial
concentration on (-, +o<) is C(x, 0) then

4nDt

cx,1) = T(% e*“’-“"""”*}C(y,O)dy
Hence same as standard diffusion, except
also moving fo the right with speed u as

it decays.

NB : The substitution X = x - ut enables us
to move with the oxygen with speed u so
that it appears just like normal diffusion.

MATH3307 Biomathematics 2010, 17
Oxygen Transport
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

J

Problem: Insects have no lungs, so how do they breathe?

They have a complex network of air-filled tubes that carry
oxygen around the body. Oxygen diffuses round network,
sometimes assisted by advection. All cells are closed to a
tracheal branch and they utilize the oxygen for metabolism. So
we have passive diffusion with advection in thin pipes, and with
absorption.

HN22/10 MATH3307 Biomathematics 2010, 13
Oxygen Transport

Inside the tracheal system
Tracheoles Air sacs Tracheae trachea

/\ .

0
\. Spiracles N {

\ ~ ‘

Images of spiracles, muscles and trachea h
Gated
General information on insect biology: spiracle
General figures
{(and search for insect trachea)
1062210 MATH3307 Biomathematics 2010 1y
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Diffusion with advection along a thin tube

Assumptions:

* normalise so that passive diffusion constant D=1/2, and w=v?2

* constant advection speed u along tube
¢ tube constant cross section

¢ tube thin relative to length; oxygen concentration is uniform
C(s,t) in a cross section at s along the tube (also this allows us
to connect tubes together and not worry about effects at the
join)

¢ both tube ends are open (for now).

s U _
c(0) = x c(d) =
f* = flux density intoend s = 0 f = flux density into end s = d

1 dC 1dC
c--= c-- %
(u 2(;510 ‘( zrk]s.d

(flux density = rate of molecule transport per unit cross-sectional area)

10/22/10 MATH3307 Biomathematics 2010. 21
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

Simplest case: no ¥ =vi2,0=12.4=0 f
advection: u=0. x ___y_§ closed end
open __, -
£ £ -o b (no flux)
—
d
32 2 2
Steady state (?C -1 rfc—l C=0= dc vic
at 248 2 ds’
with boundary conditions C(0) = x, C{d) =y, and atd : flux = - ; if (d)=0
Se
Cls) = Ae ™ + Be”

gives x =A+B, y=Ae"™ +Be"”
and - Ae " +8e” =0
Hence

W W
y=28, A=8e™ wg=-T = X 5. %

1+e®  2cosh(vd) 2 cosh(vd)
and hence
C(s) = Ae " = Be” = - X " +e - x cosh(v(s - d))
2 cosh{vd) cosh{vd)
and y = €(d) = x / cosh{vd).
102210 MATH330T Biomathematics 2010, 22
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Diffusion with non-zero advection u

The equation for the evolution of the concentration
C(s, t) of the oxygen is

gc _19°C_ iC _ ﬁC Diffusion with (mean) drift u

at 2 s’ s 2 and absorption rate u=v?

The advection speed is u, and s distance along the pipe with s = 0
at the left end. Suppose the concentration is fixed at the ends:
cl0,t)=x, cdt)=y Vt=z0.

Then the steady state oxygen concentration is

Sy

C.(x) = 7—E—~—{x sinh(o(d - s)) + ye™ sinh(so)} o = Vu? +v?
sinh(od)

32



The flux density into the end s = 0, is given by

£t = %u + 2 coth(od) K — %-e“’“‘cosech(od)
2

and the flux density into the end s = d is
f~ = —Z—e"“cosech(od) + —%u + gz-—cofh(od)

where o2 = u? + v2.

You should memorise these equations.

10/22/10 MATH3307 Biomathematics 2010, 24
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The flux density into the end s = 0, is given by
fr=a'x-by

"

a'=-u+ %co?h(od), b = %e “cosech(od)

™ |

and the flux density into theends =dis

fr=ay-bx
a =~ i u+ %cofh(ad), b" = %e"“cosech(od)

These expressions will enable us to study oxygen transport in networks by
working out how the fluxes divide at branches. Thus we only need to know
the fluxes at the ends of the pipes where they join. There is an electrical
circuit analogy with fluxes the currents and concentrations the voltages.
Note that here the fluxes (=currents) are not constant along each pipe.

10/22/10 MATH3307 Biomathematics 2010, 25
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

Example: single tube, one end

H=vi2,0=12,u=0 ?

/

open x 4 Ve
e et

F* fF=0l"

f=ay-b'x=0=y=bxla

F*za’x—by:{a’—bé}x
a

So total flux density

£ = Y| cothvd
2 coth(vd)

10/22/10
Oxygen Transport

en, other closed

closed

If pipe cross-sectional is A, then
flux into pipe is Af*

Since right end is closed, there
is no flux into that end: f-= 0.

21,
_ cosech (‘d)}( . \;x tanh(vd)

MATH3307 Biomathematics 2010, 26

Consider now a simple 2 tube nefwofk: (assume both pipes have same

constant cross-section here.)

U U,

X y z
—_— < P ——

f! f, £ f,

definiti Conservation of flux

By definition (= Kirchhoff's current law) at join :
fl=a/x-byy O=f +f, =ay-h'x+a;y bz
f,=a,y-bx

f, =a,y-b,z So the concentration at the join is
f, =a,z- by _ bix +b,z

a, +a,
0/22/10 MATH3307 Biomathematics 2010, 27
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So we can find the effective flux density through the single joined tube
in terms of the start and end concentrations x, z:

M, My
X z
—el U
f F.
ff=ax-by=|ax- besz]
a; +a;

e

) _ ' b'x + b z
f, =a,z-b)y =|a,z - b} ——
a +a,
Ay
= ai —_
a + aZ a + aZ
10/22/10 MATH3307 Biomathematics 2010 28

Oxygen Transport

Examples of branching networks

3 pipes all joined at one end. Two ends closed, one open. Different
cross-sectional areas A, A,, A;.

closed ends

w
Fz‘ = O; Fa_ = O
+ -
fi fy
10/22/10 MATH3307 Biomathematics 2010. 29
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At the closed ends :
f, =a,y-bx=0
f,=a,z-bx=0
Hence yzb;x'z___b,’x’
a, a,
At the centre node, sum of all fluxes is zero : Af, + Af, + Afy =0

Hence

Ala x - b'w) + Ala;x - b,y) + Aj{a;x - b;z) = 0O

= (A +Aa, +Aa X -Abw-Aby-Abz=0
= (Ag +Aa; +Aa}x -Abw-Aby-Abz=0

b, x b, x
= (Aa +Aa; +Aaj)x = Abw + Ab, 2= + Alb, =
a, a,
= X = Abw
s by ay - by
Aa  +Aa; +Aa - Ab, - Ab; b
a, a;
10/22/10 MATH3307 Biomathematics 2010. 0
Oxygen Transport

Using symmetry in branching networks.

Identical pipes joined into tetrahedron. No advection. All
corners but closed, but one connected to oxygen source.

q) oxygen flow closed
o into network

Z
By symmetry zero flux at closed
midpoints of bottom triangle
10/22/10 MATH3307 Biomathematics 2010, 3
Oxygen Transport
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

b‘?‘
£ O=f, =a,y-bjx > y=-"2yx
d Vy : ‘ ‘ 9
-— +
LN 1 - + bZ —
p X 5 f, =a;x - by =(a] - b, az)x-Azx
R f, f.r ,
3

where A, = (a, - b, -%)
a,

By symmetry y = z, £ = f; \

Caution: In A,, d is
Atx, f+F +F =0=f +28x=0 replaced by d/2

i +2Ax =(a,x-b'¢.) + 2Ax

10/22/10 MATH3307 Biomathematics 2010, 32
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0=(a'x-b'0.)+24,x

= X = _be.
a +2A,

Now in pipe 1, lengthd, b~ = gcos ech(vd) = b, o/ = gcofh(vd) = q,

For pipes 2, 3 the lengths are d/2 :

» [; cos ech(‘;d)]
A, =a; - beb _ Kco’rh(Ld)—
a 2 2y vd
coth( ")
2 2
2 2
Y cos ech( Vd) co’rh(Vd) — | cos ech( Vd)
v vd 2 2 v 2 2
= Ecofh(—z—%—%——» i
Y] coth(*9) coth(*%)
2 2 2
1022410 MATH3307 Biomathematics 2010, 33

Oxygen Transport

38




2

{c:o'rh(va')]Z - [cosech( Vd)]
2 2

= 12,- - = % funh(yzi)
(cofh( "d)]
2
Hence
v cosech(vd)¢
__be¢ _ 2 “ _ cosech(vd)g,
G H2R VY othivd) +2 ¥ tanh("?)  coth(vd) + 2 tanh(*9)
2 2 2 2
10/22/10 MATH3307 Biomathematics 2010. 34
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So, how do insects breathe without lunqs?

* exchange oxygen, carbon dioxide, water vapour between their tissues
and outside environment by a network of air-filled tubes know as
trachae. Each cell is close to a trachae.

e trachae open to the outside via small holes called spiracles

¢ spiracles are gated via muscle-controlled valves and have hairs that
filter out dust

o for small insects, gas transport is passive diffusion (no advection)

® larger insects, such as grasshoppers, forcibly ventilate their trachae by
confracting their abdominal muscles and compressing their internal
organs

e grasshoppers can control this ventilation to the extent that air flow is
unidirectional through their body

10:22010 MATH3307 Biomathematics 2010. 35
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

Inside the tracheal system

Tracheoles

Airsacs  Tracheae trachea

\\ \\.

il

% spiracles \ m“" 1

¢ % . \\ 5
<k \ L3 \\ “‘
images of spiracles, muscles and trachea- \\

N
Gated
General information on insect biology: spiracle
General figures:
(and search for insect trachea)
1022410 MATH3307 Biomathematics 2010, 36

Oxygen Transport

Simple mathematical models of the insect tracheal system

* We will model the insect tracheal system with a network of thin
hollow tubes through which oxygen will diffuse and possibly advect.

* When we are considering larger insects, we will add uniform
advection of (constant) speed u to model the ventilation

* We will also include absorption of oxygen for metabolism by the
surrounding tissue

102210 MATH3307 Biomathematies 2010, 37
Oxygen Transport
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Tracheal System as a semi-infinite network of pipes

(use capital F for fluxes

in the side branches)

X, Xy X2 X3
f‘+ L B )
1 £ £ l
open end l 2 1 3
+ - +
Fl FZ F3
closed closed closed
end end end
10122110 MATH3307 Biomathematics 2010.
Oxygen Transport
Left end: | Closed spiracle
+ ——
Xo X, A= Ax,
(simple pipe
£ f,” f, closed end, A
4 easy to find)
R Yy
Exact form of A depends on
; £+ the branch pipe lengths. We
Also, define 4 by A= f; /XD' also keep the a’ and b’ for
Then by symmetry, generality here.
l:izgzgz So now we have
Xo X X, to find the ratio |
10/22/10 MATH3307 Biomathematics 2010.
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

Using conservation of flux at first node :

2F' +f +f =0

= 2Ax, + Ax, +(a'x, —-b'x,) =0

Rearranging,

b'x,
X, =—o
2A+A+a
Now,
fir=a'x, - b x, = Ax,,

so that we obtain  Ax, = a'x,- b —— 0

102210 MATH3307 Biomathematics 2010. M
Oxygen Transport

Hence we must solve the quadratic
K +(2A+a -a)l+bb -a'(2A+a)=0.
(RA+a -a) |
- +
2 2
(A+a -2a')
2

A V(2A+a —a Y +4a@A+a)-4bb

;V(ZA‘a -a'Y +8a'A+4{aa -bb)

Now,
v?

a'a -bb =
s0

7-(2A+u —a)i1

2 2

We expect the ratio A to be pasitive, so we
must take 4.

[
WeA +a -a’) +8aA+ v

This gives, for the flux into the left end :

(28 +a -a’) 1 }‘

£ +-RA+a -a') +8a'A +V
2 2

A similar model is introduced in Q1 of Coursework Sheet 3

10/22/10 MATH3307 Biomathematics 2010. 4]
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How do fish breathe without lungs?

e whales and dolphins (not fish!) use lungs to store air (see earlier
tectures on duration of dive), but fish do not have lungs.

* oxygen conc. in water low compared to air: 210,000 ppm of oxygen in
air, but just Sppm in water

e gills have a large surface areq, with high blood flow
e diffusion distance from water to blood is small

e efficiency is increased by a counter current flow (the focus of the
model now to be developed) where blood and water flow across the gill
lamellae in opposite directions.

1022/10 MATH3307 Biomathematics 2010, 42
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Some fish actively
pump water through
their gills (so-called
“qill irrigation”)
Others (e.g. sharks)
use swimming to push
the water through (so-
called “ram ventilation”)

Figure 13.1 The Gills of a Fish

Orgoto

and search for fish gills

10:22/10 MATH3307 Biomathematics 2010, 43
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CHAPTER 3. OXYGEN TRANSPORT AND INSECT RESPIRATION

Simple model for countercurrent diffusion across membrane
b/'aodl Wsp /Lyi\ 1] 07}'«

=0 o _
from heart % . x=L
blood in Gy, | diffusion of plood out
gill membrane oxygen Bout
]

{73 | waterspeed v, < <

water out of N water into

gills Cy ot LOW HIGH mouth Cy,,
Cs (L) = Csoour

Colx) 9 ?
CW(L) = Cw,m

Cy (0) = Cs,.'n /
C.(x)

Cw ) = Covout v

10/22/10 MATH3307 Biomathematics 2010. 44
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PDE's for membrane diffusion of oxygen

o c‘&//e/t/;a 9
2 CONGASEAHEr)
- dﬁza&+vaa_c.ﬁ_=p(cw_ca) A
s () Jf/-uﬂq/i dt ot Ix
y =
oy ¥y, K e o som = 0 . B
= TV T = ALy Ty ; /). :
dt Jt ax 50 déé‘)m@j ne ¢ Qs
= mynbmfui
Boundary conditions : "
C,(0) = Com CylL) = Coron
Cw(o) = Cw,auu CW(L) = Cv/m
Here :
C, = bloed oxygen conc., C,, = water oxygen conc.
v, = blood flow speed > 0, v,, = water flow speed > 0
10/22/10 MATH3307 Biomathematics 2010, 45
~ Oxygen Transport
44
Cw

. o c&cg,‘yru,m

a 3



/1,&0—007‘&6/ ” Jml@ QYrax lins Jo al 2’;7 -0

10/22/10

1072210

It

& /) ) h“" T
At steady state : €

dc, dc D
Vs dFZD(Cw'Cs) = d’: (€ - Cs)
x X Vg
dc, dc, D [Yag~2 4 c
v, T = _D(C, - C;) = —% = —-(C,, - C,) 66//1 n
dx dx v

v Jecrease

Hence C,, C,, either both increasing or both decreasing
Boundary conditions :
C,(0) = Cains CB(L) =Coon

Cw(o) = Coyurs Cw(L) =Cuyn

MATH3307 Biomathematics 2010, 46
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dc, dc,
Vg 2 =¥, —% =0 = v,C(x) - v,C,(x) = constant = a
dx dx

where & = v,C, ., ~V,,Cy .-

vs dCB = D(Cw N CB) - D[Vg CB - a - C‘s J
v,

dx w Vi
Hence
) Cp
dcﬂ = GCH -, ¢ =D 1 1 9= aD = D(VBCE ot " Vi w_m)
dx Vy Vg VgV, VaViy

So oxygen concentration will vary exponentially along lamellae

MATH3307 Biomathematics 2010. 47
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CHAPTER 3.

OXYGEN TRANSPORT AND INSECT RESPIRATION

= Colx) = G, (0)e™ + L (1 - &> =2y - e
s(x) = C,(0) 0( )9 B T g

= C,(x) = v_,[g +(C,, — g)e""} <.

Vi Y

Hence

G0 =24(c,, - e = YeCoar ~Vulus) | C, , - VeCoar = ¥uC) VWCW"")}:“L
e Vg —Vy Vg -V,

ie. ¢ = YsComs ~¥uCyin) Co - (VsComr = ViCivin) L

@ CrRUPLC i L

Gpreeney &
JAVTSF

o

B.ouf
Vs — Vi Vg =V
c c 4 (Cw,m ~Cy Vs — Vyy)
8.ouf w,in 1]
v ARSI v
w€ B
10/22)10 MATH3307 Biomathematics 2010, 48
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do O a//{afn?e.

. J
@0/0{ be o €€,
This gives the ratio :

1
¢ Cun/ Con = Vg — ) . o
Coar  Covm +( L2l """,’l)(v" V“’)? (counter - current) /Ju]/‘v"éf fahc
v/
.

CB,m CE.in BV.{ \‘: l Mere

%
v,e

</ et

Compare with flow in opposite direction : interchange C,, and C, .

and change v, to - V5. Now look at C, ., = C,(0) ‘ .
e 9 ‘fa 8 Bout — Cg {’” AM/ p.zgx(
caledarsns 5

DL
he va e )
)
C Ve #(Cin / Co Wiy +v(L=Cy . /1 C, . e N ‘hes
Bout _ VB ( W, in 8inl'w w( W, in B,m) (same direchon) &é@ (,}’\L .
Cs,m Vg +V, i
cold be @ econ
10/22/10 MATH3307 Biomathematics 2010. 4w
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Take L — o limit and suppose v,, > v,

Comr - Cun (counter - current),

CB a B.n )

whereas if v, <v,, Coenkit W
two jilotes

C C C. :

Bty M [l e V—W] {counter - current) /

CB,m Ca,m B.in Vg L

Now compare with flows in same direction

C vy +(C Co Vi NG

mg'“' Ve i Coulty (same direction) Seune (lLrTerd)

Let 8§ = C,, /C,, = fixed const. Then the difference
| -
c - ué-1 if v, > v,
A =22 (counter) - 2= (same) = V:(; V‘;)
v, )
Buin B v if v, < v,
&/ vs{vs +v,)

Hence A>0if ¢, >C, , ie. if O, conc. in water exceeds that of
blood returning to heart, counter - current is more efficient.

MATH3307 Biomathematics 2010.
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Chapter 4

Bird flight

e has /ounc/
Lyra veloy
4.1 Basics of bird flight.

utt &
Havust 7

: ~ — JMa
Wweishd . H%
Figure 4.1:
In planes: wings produce lift. Propeller or jet engine produces thrust. In birds: wings must produce

both thrust and lift.
Birds have evolved so that they

e have light weight skeleton - have smaller porous bones, hollow bones with strengthening struts,
skull =~ 1% body weight

o efficient respiratory system to provide for high metabolic rate required for flight. Anterior air
sacs lungs, posterior air sacs.

e eat beries and other high energy foods
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CHAPTER 4. BIRD FLIGHT

4.2 Basics of lift

The lift force is always perpendicular to the forward motion and the drag is along the line of forward
motion.

’IG'@S Ls Vop >l T <8

N Since M dian
ove o
/\V—:/—

Figure 4.2: V,, >V, = pressure difference by Bernoulli = lift force.

\ weish b
Figure 4.3: Angle of attack.

Why evolve an airfoil shape? Why not just use the angle of attack for lift?
Asymmetry of wing

1. produces lift at zero angle of attack
2. produces more lift than any symmetric wing at any angle of attack

3. produces less (pressure) drag.

(e ARsANLY) G
J

verAce)




4.2. BASICS OF LIFT

Stalling: large angle of attack leads to large drag.

NN

rj\\\ -,L “u rLu/(w @

7\ M I
/ N \ Q:is@(i

( C N WMove émj
O

<S hllmé)

Figure 4.4: Turbulent flow =- less lift, more drag.

The Kutta-Joukowski theorem is a fundamental theorem of aerodynamics. It states that the lift per
unit of the wing length is a product of density of the fluid, velocity at some distance, and the circulation

around the wing.

Il

>

Figure 4.5: Calculation of the velocity circulation.

. by
L=—paxT ‘C‘ Zﬁﬂj (4.1)

where I is a velocity circulation, i.e.

I'= fVcosGde
Y
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I it
@‘ Z——>

flow giving no lift circulation around wing combined flow pattern
(bound vortex)

Figure 4.6: Actual flow around wing is the mathematical sum of flow yielding no lift and a flow of pure
circulation

As the wing starts from rest in stationary air, a vortex with circulation —I" appears behind the wing
and is matched by a circulation I" around the wing itself (conservation of vorticity). The circulation
comes off the tips of the wings and leaves as vortices that trail behind the wings. The circulation
around the wings, in the form a bound vortex, gives rise to lift given by equation (4.1). However, the
energy used to create the trailing vortices manifests as “induced” drag on the wing. If there is no lift
then there is no induced drag.

4.3 Energy is required to counter:

e weight

e parasitic drag = frictional drag (body surface drag) + pressure drag (low pressure "suck” behind
wing)

e induced drag « L2, where L? =lift generated. This is from the energy in the trailing vortices or
disturbances in a large region of air in the wake of the wing
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4.3. ENERGY IS REQUIRED TO COUNTER:

Vof—}-(x wa kg
Figure 4.7: Vortex wake leads to a trailling vortex behind the wing. The vortices dissipate eventually,

but may persist for some time.

4.3.1 Parasitic drag D,.

We assume that the pressure drag is small in comparison to the frictional drag . D, = rate of transfer
of momentum from the surfac<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>