
























































































Nonlinear differential equations - phase plane analysis

We consider the general first order differential equation for y(x)

dy

dx
= f(x, y) =

Q(x, y)

P (x, y)
. (1)

1 Revision

Curves in the (x, y)-plane which satisfy this equation are called integral curves or trajectories. There is a family
of such curves, paremterised by the constant of integration associated with solving the equation. The slope of an
integral curve that passes through the point (x0, y0) is f(x0, y0) = P (x0, y0)/Q(x0, y0) and hence is a unique slope,
except perhaps where f(x0, y0) is undetermined, i.e. P (x0, y0) = Q(x0, y0) = 0. Hence the only place that the
trajectories can intersect is at points where P = Q = 0. These are called singular points, or equilibrium points.
We will investigate the trajectories in the vicinity of such points below.

Example
dy

dx
=

y

2x
⇒
∫

2dy

y
=

∫
dx

x
⇒ ln y2 = lnx+ C ′ ⇒ y2 = Cx.

All trajectories cross at (0, 0) where f(x, y) = y/2x is undetermined.

VectorPlot[{2x,y},{x,-2,2},{y,-2,2},StreamScale->None,

StreamPoints->Fine,StreamStyle->Red,VectorStyle->Arrowheads[0]] -2 -1 0 1 2
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Example

dy

dx
=
x

y
⇒
∫
y dy =

∫
x dx⇒ y2/2 = x2/2 + C ′ ⇒ y2 − x2 = C.

Only two trajectories cross at (0, 0) where f(x, y) = x/y is undetermined. These are given
by C = 0.

VectorPlot[{y,x},{x,-2,2},{y,-2,2},StreamScale->None,

StreamPoints->Fine,StreamStyle->Red,VectorStyle->Arrowheads[0]] -2 -1 0 1 2

-2

-1

0

1

2

2 Second-order equations

The most general form is for a second order equation for x(t) is d2x
dt2 = Q(x, dxdt , t). However such an equation is called

autonomous if the coefficients do not depend explicitly on t so that

d2x

dt2
= Q

(
x,

dx

dt

)
. (2)

For these equations we may introduce

y =
dx

dt
⇒ dy

dt
=

d2x

dt2
= Q

(
x,

dx

dt

)
= Q(x, y) and

dx

dt
= y = P (x, y) giving

dy

dx
=

dy/dt

dx/dt
=
Q(x, y)

P (x, y)
=
Q

y
.

So (2) can be written as a special case of (1). In this case the (x, y)-plane is an (x, ẋ)-plane, known as a phase-plane
and the integral curve/trajectory may also be called a phase-trajectory . The trajectories are solutions of the
equations ẋ = y, ẋ = Q(x, y), with t as an effective parameter taking us along a trajectory. The trajectories are
therefore traversed in a particular direction as t increases. This direction is easy to identify as it is in the direction of
increasing x (ẋ > 0) in the upper-half plane y = ẋ > 0. Singular points are more often called equilibrium points in
this context since at such a point, x = x0, y = 0,say, P = Q = ẋ = ẏ = ẍ = 0 and, if x represents the displacement
of a particle, for example, in some physical system, a particle placed exactly at x = x0 so that y = 0 will stay there,
in equilibrium.

1



Example

d2x

dt2
= −x, so ẏ = −x, Q = −x, ẋ = y, P = y.

dy

dx
=
−x
y
⇒
∫
y dy = −

∫
x dx⇒ y2/2 = −x2/2 + C ′ ⇒ y2 + x2 = C.

Here no trajectories cross at (0, 0) where f(x, y) = −x/y is undetermined.

VectorPlot[{y,-x},{x,-2,2},{y,-2,2},StreamScale->{Full, All, 0.03},

StreamPoints->Fine,StreamStyle->Directive[Red],VectorStyle->Arrowheads[0]] -2 -1 0 1 2
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We have seen that the time-dependent system (2) can be rewritten as (1). Similarly (1) can be written as a pair of
first order equations for x(t) and y(t), with t as a parameter in describing the solution trajectories. If

dx

dt
= P (x(t), y(t)),

dy

dt
= Q(x(t), y(t)),

dy

dx
=
ẏ

ẋ
=
Q(x, y)

P (x, y)
. (3)

A direction of travel along the trajectories can then be assigned, moving to the right, in the direction of increasing
x in regions of the (x, y)-plane where P > 0 and up, in the direction of increasing y in regions where Q > 0.

3 Solution near singular points

We examine the solutions to (1) in the vicinity of critical points (x0, y0) where P (x0, y0) = Q(x0, y0) = 0. We have
seen above that there are several different forms for the trajectories. Expanding about these points we find

P (x, y) ≈ P (x0, y0) +
∂P

∂x
|(x0,y0)

(x− x0) +
∂P

∂y
|(x0,y0)

(y − y0) = PxX + PyY

Q(x, y) ≈ Q(x0, y0) +
∂Q

∂x
|(x0,y0)

(x− x0) +
∂Q

∂y
|(x0,y0)

(y − y0) = QxX +QyY,

where X = (x− x0), Y = (y − y0), giving

dY

dX
=
CX +DY

AX +BY
,

(
A B
C D

)
=

(
Px Py
Qx Qy

)∣∣∣∣
(x0,y0)

= J, (4)

where J is called the Jacobian of the equilibrium point.

Equation (4) is straightforward enough to solve in individual cases, by putting Y (X) = XZ(X).
( see http://www.ucl.ac.uk/Mathematics/geomath/level2/deqn/MHde.html and
http://en.wikipedia.org/wiki/Homogeneous_differential_equation.)
However it is difficult to undertake a general analysis of the solutions this way. Instead we introduce a time t and
use (3) to write

dX

dt
= AX +BY,

dY

dt
= CX +DY,

d

dt

(
X
Y

)
=

(
A B
C D

)(
X
Y

)
, u̇ = Ju (5)

with u = (X,Y )T . We will present two analyses of this system.

As a single second order equation, using brute force

Eliminating X(t) from (5) in favour of Y (t) gives

Ÿ = CẊ +DẎ = C(AX +BY ) +DẎ = A(Ẏ −DY ) + CBY +DẎ

⇒ Ÿ − (A+D)Ẏ + (AD −BC)Y = 0. (6)

The same equation is derived for X upon eliminating Y in a similar fashion. Note that A+D = tr J = −p, say and
AD −BC = det J = q, the trace and determinant of J. The auxiliary equation for (6) is

λ2 + pλ+ q = 0, p = −(A+D), q = AD −BC ⇒ λ = λ1,2 = (−p±
√
p2 − 4q)/2. (7)
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This gives
Y (t) = αeλ1t + βeλ2t.

This contains two arbitrary constants, which is all we would expect as our original system is a pair of first-order
equations. The solution for X(t) can be found corresponding to this Y (t). From (5)

Ẋ −AX = BY ⇒ X(t) = B

(
αeλ1t

λ1 −A
+

βeλ2t

λ2 −A

)
+ γeAt,

but this solution must be consistent with

Ẏ −DY = α(λ1 −D)eλ1t + β(λ2 −D)eλ2t = CX = CB

(
αeλ1t

λ1 −A
+

βeλ2t

λ2 −A

)
+ CγeAt,

which requires, firstly,
γ = 0,

and also
(λ1,2 −A)(λ1,2 −D) = CB i.e. λ21,2 − (A+D)λ1,2 + (AD − CB) = 0,

which we know is true. Hence we have expressions for X(t), Y (t) which we can use the arbitrainess in α and β to
write as

X(t) = r1eλ1t + r2eλ2t, Y (t) = s1eλ1t + s2eλ2t,
s1
r1

=
λ1 −A
B

=
C

λ1 −D
,

s2
r2

=
λ2 −A
B

=
C

λ2 −D
. (8)

There are two arbitrary constants since, for example choosing r1 and r2 fixes s1 and s2. These constants determine
which trajectory the solution (8) describes in the vicinity of the critical point - we can pick a particular point that
the trajectory passes through by, for example evaluating (8) at t = 0. We also have an expression for dY

dX ,

dY

dX
=
Ẏ

Ẋ
=
λ1s1eλ1t + λ2s2eλ2t

λ1r1eλ1t + λ2r2eλ2t
. (9)

The behaviour of the solution depends on the values of λ1,2 and hence on p and q.

1. If q > 0, so that, if real,
√
p2 − 4q < p

(a) q > 0, p2 > 4q. Here λ1 and λ2 are both real. Since λ1 > λ2, as t→∞ eλ1t >> eλ2t, whereas as
t→ −∞, eλ1t << eλ2t.

i. q > 0, p2 > 4q, p > 0. Here λ2 < λ1 < 0

As t→∞, X → 0, Y → 0, Y ≈ (s1/r1)X.

As t→ −∞, X →∞, Y →∞, Y ≈ (s2/r2)X.

There are special trajectories that are straight lines in the vicinity of the critical point. These are
generated by the choices

r1 = s1 = 0, Y = (s2/r2)X, r2 = s2 = 0, Y = (s1/r1)X
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X
 

Y
 

=

=

2. X +Y

Y

p:

q:

p2
-4q:

-3

2

1

Eigenvalues:

82.00, 1.00<

Eigenvectors:

81.00, 0.00<

8-1.00, 1.00<
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All the trajectories pass through (0, 0) and such a point is called a stable node. Note that the
straight lines (not shown) Y = −2X and Y = 0 delineate regions of increasing/decreasing X and
increasing/decreasing Y respectively. The straight lines shown are the special trajectories which are
exactly straight lines.

ii. q > 0, p2 > 4q, p < 0. Here 0 < λ2 < λ1. The qualitative solution is as above, but with the effects of
the limits t→∞ and t→ −∞ interchanged as the values of λ have changed sign.
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Y - 2. X

X - 1. Y

p:

q:

p2
-4q:

3

1

5

Eigenvalues:

8-2.62, -0.38<

Eigenvectors:

8-1.62, 1.00<

80.62, 1.00<

This is known as an unstable node . Again look for the change of direction of the trajectories along
Y = 2X and Y = X, again not shown.

(b) q > 0, p2 < 4q, p > 0. In this case the roots are complex, with negative real part. If we write
λ1,2 = −µ1 ± iµ2, µ1,2 > 0. Instead of the exponential solutions given in (8) we have the solutions

X(t) = k1e−µ1t cos(µ2t+ ε1), Y (t) = k2e−µ1t cos(µ2t+ ε2).

As before, only two of the constants k1,2 and ε1,2 can be independently chosen. It is clear that the
trajectories are spiral, spiraling in towards the origin (0, 0) - as t is increased by a value 2π/µ2, both X
and Y are multiplied by the same factor e−2πµ1/µ2 .
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-1. X

p:

q:
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1
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-7

Eigenvalues:

8-0.50+ 1.32 ä, -0.50- 1.32 ä<

Eigenvectors:

80.50- 1.32 ä, 1.00<

80.50+ 1.32 ä, 1.00<

All trajectories approach the origin. The singular point is known as a stable spiral point or focus.

(c) q > 0, p2 < 4q, p < 0. This case again has imaginary roots, but with a positive real part.
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-1. X
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p2
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-1

1
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Eigenvalues:

80.50+ 0.87 ä, 0.50- 0.87 ä<

Eigenvectors:

8-0.50- 0.87 ä, 1.00<

8-0.50+ 0.87 ä, 1.00<

All trajectories depart from the origin. The singular point is known as a unstable spiral point or
focus.

(d) q > 0, p = 0. This case again has purely imaginary roots, µ1 = 0 and the trajectories are circles/ellipses.
No trajectories pass through (0, 0) except for the trajectory consisting of a single point at (0, 0)
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0
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-8

Eigenvalues:

81.41 ä, -1.41 ä<

Eigenvectors:

8-0.33- 0.47 ä, 1.00<

8-0.33+ 0.47 ä, 1.00<

The critical point is called a centre . Again it is illustrative to pick out the lines Y = −3X and Y = −X
and note that the individual trajectories have turning points on these lines.

(e) q > 0, p2 = 4q, p > 0. This corresponds to two equal negative roots for λ. The trajectories still form an
stable node. However this can be of two types known as a firstly a star and secondly an improper
node . They are indistinguishable simply using the values of p and q
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p:

q:
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-4q:
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Eigenvalues:

81.00, 1.00<

Eigenvectors:

81.00, 0.00<

80.00, 0.00<

(f) q > 0, p2 = 4q, p < 0. This corresponds to two equal positive roots for λ. The trajectories form an
unstable node, which may be of star type.

2. q < 0 so that
√
p2 − 4q is real but

√
p2 − 4q > p and the roots differ in sign. Here λ2 < 0 < λ1

As t→ −∞, X ≈ r2eλ2t →∞ (in modulus), Y ≈ s2eλ2t →∞ (in modulus), Y ≈ (s2/r2)X.
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As t→∞, X ≈ r1eλ1t →∞ (in modulus), Y ≈ s1eλ1t →∞ (in modulus), Y ≈ (s1/r1)X.
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q:
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Eigenvalues:

82.00, -1.00<

Eigenvectors:

8-2.00, 1.00<

81.00, 1.00<

Only the two special straight line trajectories pass through (0, 0). The others approach the critical point, from
the direction of one of these straight lines and leave the critical point in the direction of the other. The critical
point is known as a saddle point . A change in the sign of p interchanges the roles of λ1 and λ2 as before.

The figures above have all been generated with the following Mathematica commands, varying the coefficients of
the matrix m.

m = {{1,1},{0,1}};{{a,b},{c,d}}=m;p=-(a+d);q=ad-bc;disc=p^2-4q;
Show[VectorPlot[m.{x,y},{x,-10,10},{y,-10,10},StreamPoints->Fine,StreamStyle->{Red,Thick},
ImageSize->{460,310}],Graphics[{Thick,Orange,Map[Line[{-100 #, 100 #}]&,
Select[Eigenvectors[m],(Im[#[[1]]]==0&&Im[#[[2]]]==0)&]]}],
PlotLabel->Row[{Column[{Row[{Column[{Style["\!\(\*OverscriptBox[\"X\",\".\"]\)",Italic],
Style["\!\(\*OverscriptBox[\"Y\", \".\"]\)", Italic]}],Column[{" = ", " = "}],
TableForm[m.{Style["X", Italic], Style["Y", Italic]}]//N}]}]," ",
Column[{Style["p:",Italic],Style["q:",Italic],Style["\!\(\*SuperscriptBox[\"p\", \"2\"]\)-4q:", Italic]}], " ",Column[{p, q, disc}], " ",
Column[{"Eigenvalues:",NumberForm[Chop@N@Eigenvalues[m],{4, 2}]}]," ", ,
Column[{"Eigenvectors:",NumberForm[Chop@N@Eigenvectors[m][[1]],{4, 2}], NumberForm[Chop@N@Eigenvectors[m][[2]], {4, 2}] }]}]]

We can summarise what we have found with this diagram

d

NODES

STABLE SPIRALS

UNSTABLE SPIRALS

UNSTABLE 

NODES

SADDLE 

POINTS

SADDLE

POINTS

CENTRES

STABLE

p = −(A+D)

q = AD −BC

As a first order matrix/vector equation

Equation (5) is u̇ = Ju for u(t) with J a constant matrix. Comparison with a differential equation of the form
ẋ = ax, with solution x(t) = Aeat, with A and a constant, suggests we try the solution u = veλt. Direct
substitution leads to λveλt = Jveλt or λv = Jv so that λ is an eigenvalue of J and v the corresponding
eigenvector. The general solution is a sum over the possible eigenvalue/eigenvector pairs. The matrix J is 2× 2 so
there are a maximum of two and, if they are real, distinct and non-zero, λ1,2 say,

u(t) = A1v1eλ1t +A2v2eλ2t.

As above we have two degrees of freedom in this solution and A1,2 can be found to specify a particular trajectory
uniquely. As the eigenvalues are real, distinct and non-zero, then we know the eigenvectors are independent. If we
form the matrix P = (v1,v2) with the eigenvectors as columns then the transformation to the new variables (X̄, Ȳ )
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rather than (X,Y ) through the definition u = Pū, ū = P−1u, with ū = (X̄, Ȳ )T . Also, as P has columns made of
the eigenvectors of J, JP = (λ1v1, λ2v2) = Λ(v1,v2) = ΛP, where Λ is a diagonal matrix diag(λ1, λ2) with the
eigenvalues of J along its diagonal. We therefore have J = PΛP−1, or Λ = P−1JP. (These are standard results on
the diagonalisation of matrices.) Therefore

u̇ = Ju = PΛP−1u, ⇒ P−1u̇ = ΛP−1u, ⇒ ˙̄u = Λū, ⇒ ˙̄X = λ1X̄,
˙̄Y = λ2Ȳ ⇒

X̄(t) = X̄0eλ1t, Ȳ (t) = Ȳ0eλ2t and, eliminating t, Ȳ = CX̄a, a = λ2/λ1 (10)

1. Real, positive eigenvalues. Here, a in (10) is positive. All trajectories pass through (X̄, Ȳ ) = (0, 0) (and so the
critical point (X,Y ) = (0, 0). We have an unstable node as λ1,2 are positive so X̄ and Ȳ (and so (X,Y ))
tend to infinity as t→∞. If a > 1, i.e. λ2 > λ1, then the trajectories have the character of Ȳ = ±X̄2, but if
a < 1, λ2 < λ1, the roles of X̄ and Ȳ are interchanged with the trajectories looking more like ±Ȳ =

√
|X̄|.

This is in terms of the new coordinates. The trajectories in the original (X,Y ) coordinates are similar in
character but ”skewed” so that the X̄ and Ȳ axes correspond to lines in the (X,Y ) plane that point along the
eigenvectors of J.

Choose λ1,2 = 2, 1, a =
1

2
, Λ =

(
2 0
0 1

)
. Choose v1,2 =

(
2
1

)
,

(
1
2

)
, giving P =

(
2 1
1 2

)
,P−1 =

(
2
3 − 1

3
− 1

3
2
3

)
J = PΛP−1 =

(
7
3 − 2

3
2
3

2
3

)
(11)
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2. Real, negative eigenvalues. This is the same situation as above, but with the direction of t reversed - a stable
node.

3. Real eigenvalues, one positive and one negative. Here a is negative and the trajectories generally do not pass
through (X,Y ) = (0, 0). Also as t→∞ only one of X̄ or Ȳ approaches zero. The other approaches ∞. As
t− → −∞ the roles are reversed. We have a saddle point .
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