MATH0029 Graph Theory and Combinatorics Notes

Based on the 2019 spring lectures by Dr J Talbot

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

MATH 0029	
08-01-19	Graph Theory and Combinatorics
	G = (V, E)
	Q: Crives a graph G with n vertices and m edges, must G contain a triangle? (n > 3)
	Q: h_{nn} large can mbe? A: $\binom{n}{2} = \frac{n(n-1)}{2}$
	Q: In a complete graph, how many triangles are there? A: # triangles = (3)
	Cycle G : n vertices, n edges g :
0	- 2n edges blue green
	$n = 2k$ $m = a(n-a)$ $m = \frac{n}{2}$ $m = \frac{n}{2}$ $m = \frac{n}{2}$
	Criver a graph to with n>,3 vertices and > \frac{n^2}{4} edges, G must contain a briangle.
	"Turán Problem"

Ramsey problems In any set of 6 people there are always 33 mutual friends or 33 mutual strangers. Colour edges of K6 red and blue.
There is always a red K3 or a blue K3

Complete, 3 vertices Proof
Consider a vertex of the K.

WLOG >3 blue edges from v.

In the three target

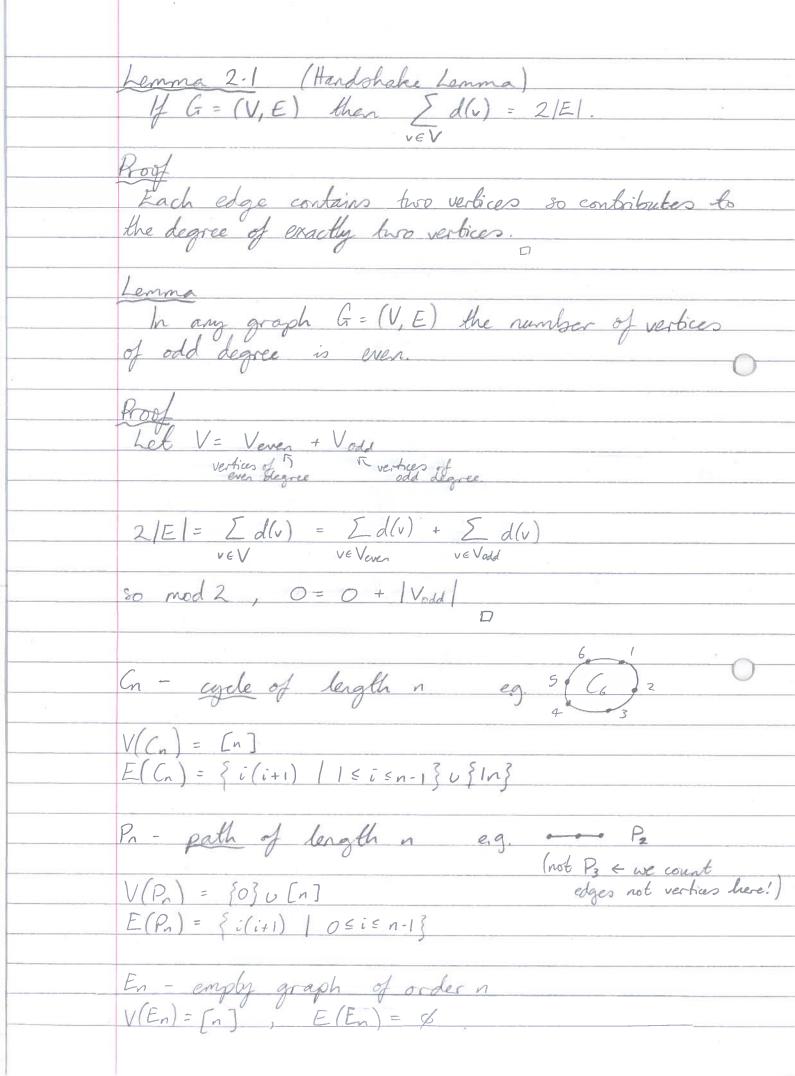
vertices either there is a

vertices edge = blue triangle

or the three edges are red = red triangle. R(3, 3) = 6 (Ramsey number) Green-Tac (200?) < link to Ramsey theory, VKEN 3 an arithmetic progression in the primes of length k. Set Systems X = [n] = {1, 2, ..., n} P(X) = {A: A = X}

MATH0029	
08-01-19	1/ A = P(X) we say I is intersecting
	If $A \in \mathcal{P}(X)$ we say A is interacting iff $\forall A, B \in A$, $A \cap B \neq \emptyset$.
	How large can an intersecting family et = P(X) be?
	$ P(X) = 2^n$ $ \{1\} ^{\{1,2\}} = \{1,2\}$ etc. $ \{1\} ^{\{1,2\}} = \{1,12,13,\} = \{A = X : 1 \in A\}$
	$ X = \{1, 12, 13,\} = \{A \in X : \in A \}$ $ X = 2^{n-1} = \frac{1}{2} P(X) $
0	3, [3 \(\alpha \) = B \(\alpha \) = 13/\(\alpha \)
11-01-19	
	Chapter 1 - Basics
	If X is a set, X = · size of X For keN, k! = 1 × 2 × × k, O! = 1
0	Jef If X is a set and h EN then a k-tuple from X is a sequence of k elements from X.
	from X is a sequence of k elements from X.
	Lamma 1.1
	Jemma 1.1 If X = n and ≤ k ≤ n then 1). There are nk k - tuples from X 2). There are n(n-1)(n-k+1) k-tuples with distinct elements from X
	2). there are n(n-1)(n-k+1) k-tuples with distinct elements from X
	Post
	1). In choices for each entry in a h-tryle & n' 2). In choices for 1st element, n-1 for 2nd, etc.

If X is a set, |X|=n, $0 \le k \le n$, then denote $\binom{X}{k} = \binom{X}{k} = \binom{X}{k} + \binom{X}{k} + \binom{X}{k} = \binom{X}{k} + \binom{X}{k} + \binom{X}{k} + \binom{X}{k} = \binom{X}{k} + \binom{X$ |emma| 1.2If |X| = n, $0 \le k \le n$, then $|(x)| = {n \choose k} = {n(n-1) \cdots (n-k+1) \choose k!}$ = n! k!(n-k)!Proof


Since a k-set contains k distinct elements,

each k-set can be ordered in k! different ways

to give a k-buple.

Hence $|(X)| = \# \{k-buples of distinct elements of X\} \Rightarrow result.$ P(X) = {A | A = X} = Power set. Lemma 1.3 (i) If |X| = n, then $|P(X)| = 2^n$ (ii) If $0 \le k \le n$, then $\binom{n}{k} = \binom{n}{n-k}$ (iii) If $1 \le k \le n$, then $\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$ (i) Induction on n. n=1, P(818) = { Ø.813} Suppose true for n=t >1 and let 1x1=t+1. WLOG X = {1, 2, ..., t, t+1}. U = disjoint $D(X) = \mathcal{D}([t]) \cup [A \cup [t+1] : A \in \mathcal{D}([t])]$ disjoint union $S_{0} |\mathcal{D}(X)| = 2|\mathcal{D}([t])| = 2 \times 2^{t} = 2^{t+1}$ [t]={1,...,t} (ii) $\binom{n}{k} = \binom{X}{k}$ since |X| = n= |(x) | since the mapping A -> X \ A is a bijection

MATH0029	
11-01-19	
0	Example $2^{n} = \sum_{k=0}^{n} \binom{n}{k}$ $ P((n)) = \binom{(n)}{0} + \binom{(n)}{1} + \dots + \binom{(n)}{n} $
	Chapter 2 - Graphs A graph is a pair $G = (V, E)$ V is a set of vertices and $E = \begin{pmatrix} V \\ 2 \end{pmatrix}$ are edges
0	(ie. edges are unordered pairs of vertices) Sometimes write V(G) and E(G) to denote the vertices and edges reop. of the graph G.
	The order of a graph $G = (V, E)$ is $ V $ The give is $ E $. If G is a graph, $v \in V(G)$, the reighbourhood (abhd) is $\Gamma(v) = \{w \mid vw \in E(G)\}$ [here vw means $\{v, w\}$].
	If $v \in V(G)$ then the degree of v is $d(v) = \Gamma(v) $

MATH 0029	
11-01-19	
	Kn - complete graph of order n
	K ₄
	K_n - complete graph of order n $V(K_n) = [n]$ $E(K_n) = {n \choose 2}$ K_s
	$E(K_n) = {\binom{Cn}{2}}$ K_s
	Let $a, b \in \mathbb{N}$, $K_{a,b}$ is the complete bipartite graph $V(K_{a,b}) = [a]_{U} [a+1, a+b]$ $\{a+1, a+2,, a+b\}$
	E/K.) = 8 = 11 = 12
-0	$E(K_{a,b}) = \{ij \mid 1 \leq i \leq a, a+1 \leq j \leq a+b\}$
	0 1. 1. 1
	Qn - discrete hypercube V(Qn) = {0,13n}
	$\frac{V(x_n)}{V(x_n)} = \frac{V(x_n)}{V(x_n)} = V($
	$E(Q_n) = \{u \vee \mid u, v \in \{0,1\}^n \mid u \text{ and } v \text{ differ in a single }\}$
	$ag. n=2$, $V(Q_2) = \{00, 10, 01, 11\}$
	sim. to \$\$, 1, 2, 123
	000 5 123 100 000 001 12 13 23 100 000 5 1 2 3 as sets Sequences.
0	Q3 110 011 123 123
	000 K 3 as sets
	sequences.
	Subgraphs
	of G, H are graphs with V(H) & V(G) and
	y G, H are graphs with V(H) ∈ V(G) and E(H) ∈ E(G), then H is a subgraph of G.
	6.9.
	$G = K_4 = $
	Hz = Doz subgraph Hz = C4 = 1 4 subgraph of G

We say H is an induced subgraph of G if V(H) = V(G) and $E(H) = E(G) \cap (V(H))$. In the previous examples, H., Hz are induced, but Ca is not. Graphs G, H are isomorphic iff $\exists f: V(G) \rightarrow V(H)$ a bijection s.t. $\forall w \in E(G) \Leftrightarrow f(v)f(w) \in E(H)$. We say G contains a copy of H iff G has a Subgraph isomorphic to H We say G is H-free iff G does not contain a copy of H. Q: Does Qn ever contain a copy of Kt? $Q = 1 = K_2 \qquad x \xrightarrow{\chi} \chi_{,y}, \ \neq \in [0,1]^2$ $\chi_{,y} \text{ differ in one place}$ $Same for \chi_{,z}, y_{,z}.$ Define w(v) = # 1's in v (weight of v) $xy \in E(Q_n)$, $w\log w(x) = t$, w(y) = t+1 xz, w(z) = t+1 or $t-1 \Rightarrow no \text{ edge } yz$. \$2.3 - Components and connectedness A path in a graph G is a copy of Pt for some t 20. An (x-y)-path is a path that start at x and ends at y. If v, vz. ve is an x-y-path, x=v, y=vr, v; v:+; EE(G) for 1 ≤ i ≤ r-1, and the vertices v, w, ve are distinct.

MATH 0029	
11-01-19	
	A walk in G is a sequence of (not recessarily distinct) vertices vov, ve such that vivin EE(G) for $0 \le i \le t-1$. The such that vivin EE(G) and recessarily distinct and edges of the such that vivin EE(G)
	for $0 \le i \le t-1$. $z = y$ (not recessarily distinct, edges)
	A walk is closed iff vo = ve.
	A walk in which no edge occurs more than once is called a bour.
0	Lemma 2:3
	Lemma 2.3 There is an x-y-path in G iff there is a walk from x to y in G.
V/62,115.2	Proof
	(⇒) trivial since a path is a walk. (€) Consider the shortest walk from a to y. Either this is an x-y-path, or there is a
	Either this is an x-y-path, or there is a
	reference vertex, say W-1, v. vi Ve and Vi-Vi, ic
	then W' = V, V2 V: V; +1 V+ is a shorter walk from
0	a to y. * F
	Lemma 2.4
	Define a equivalence relation ~ on V(G) by $v \sim \omega \iff \text{there is a walk from } v \text{ to } \omega.$
	V~ w (=> there is a walk from v to w.
	This is an equivalence relation.
	Proof
	VveV(G). v~v. (Reflexive)
	If vow then reverse the walk to get a walk
	from w to v, w~v. (Symmetric)
	If scry, ynz, then concatenate walks from x tog
	and y to z to give a walk from x to z, x ~ z.
	(Transitive).

Let $V(G) = V. i V_2 i ... i V_n$ as a disjoint union of equivalence classes induced by ∞ . Then the V_i are called components. We say G is connected iff it has a single component i.e. k=1. A. 1. = 3 components Cn, Kn, Ka, b, Qn, Pn are all connected. Let $P = x_1 x_2 \dots x_i \dots x_i$ be a path, if P is a shortest $x_i - x_i - path$ then $x_i \dots x_i$ and $x_i \dots x_i$ are shortest $x_i - x_i$ and $x_i - x_i$ paths respectively $\forall i \leq i \leq t$ Proof

If there were a shorter x, - xi: -path for some

i, ther use this in place of x, xz...x: in P

to produce a shorter x, - xi - path. 15-01-19 Lemma 2.5 (correct statement) If P = x, x 2 ··· x & is a shortest x-x puth then x, ··· x is and x i··· x a paths resp. for leict.

MATH 0029 15-01-19 Euler circits Walk x, ... xx, xixi+1 E 15ist-1, vertices allowed to repeat. Tour x, ... x, xixiti E | Eist-1, vertices can be repeated but edges are distinct. An Euler circuit in a graph br is a closed tour.

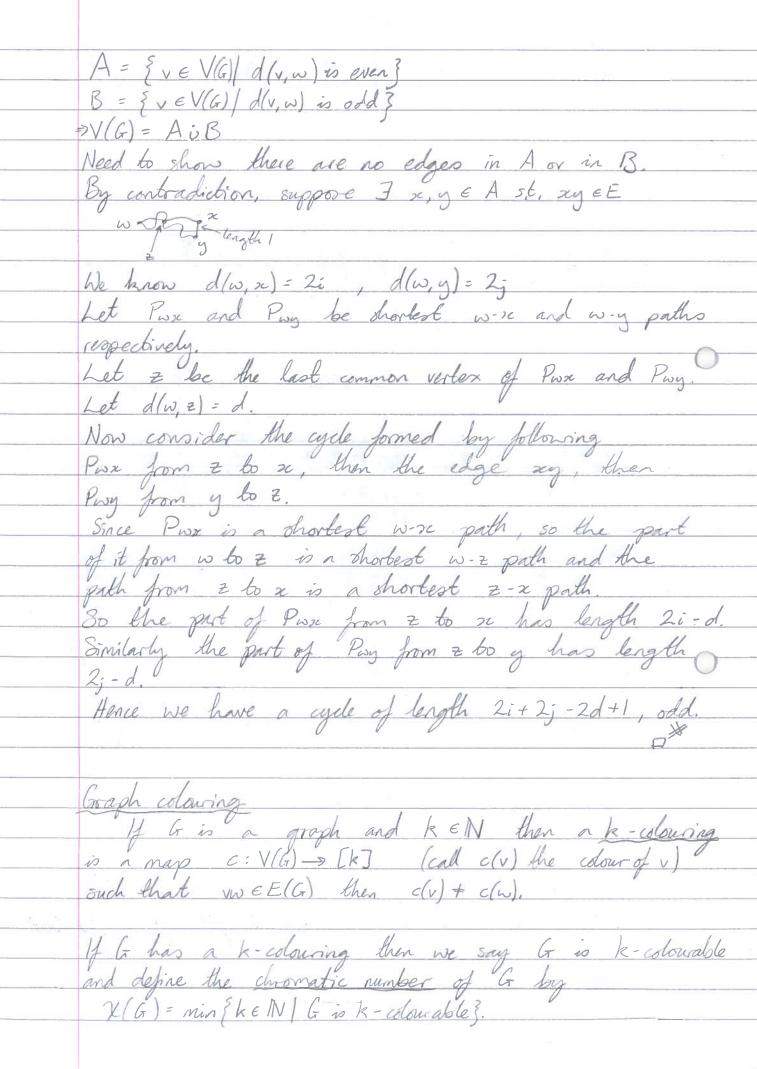
T = Vov. ... Vavo containing all vertices and edges of Gr. Theorem (Euler 1735)

A graph G has an Euler circuit iff G is connected and every vertex has even degree. (=) Suppose G contains an Euler circuit T. Since T is a walk containing all vertices of G, G must be connected. Now let T = Vo V, ... Va Vo . We walk along the Euler circuit T starting from Vo and we keep brack of the number of edges we have used adjacent to each vertex. adjacent to each vertex. Whenever we enter a vertex we also leave it Thus we have a contribution of 2 to the degree of each vertex. Since we start and end at vo, this also has even degree. So all vertex degrees are ever. (E) Suppose & is connected and all vertex degrees

Start by taking T= Vo Vi ... Vn to be a longest tour in G. Claim: T is closed, i.e. Vo = Vk.

Suppose Vo ≠ Vn.

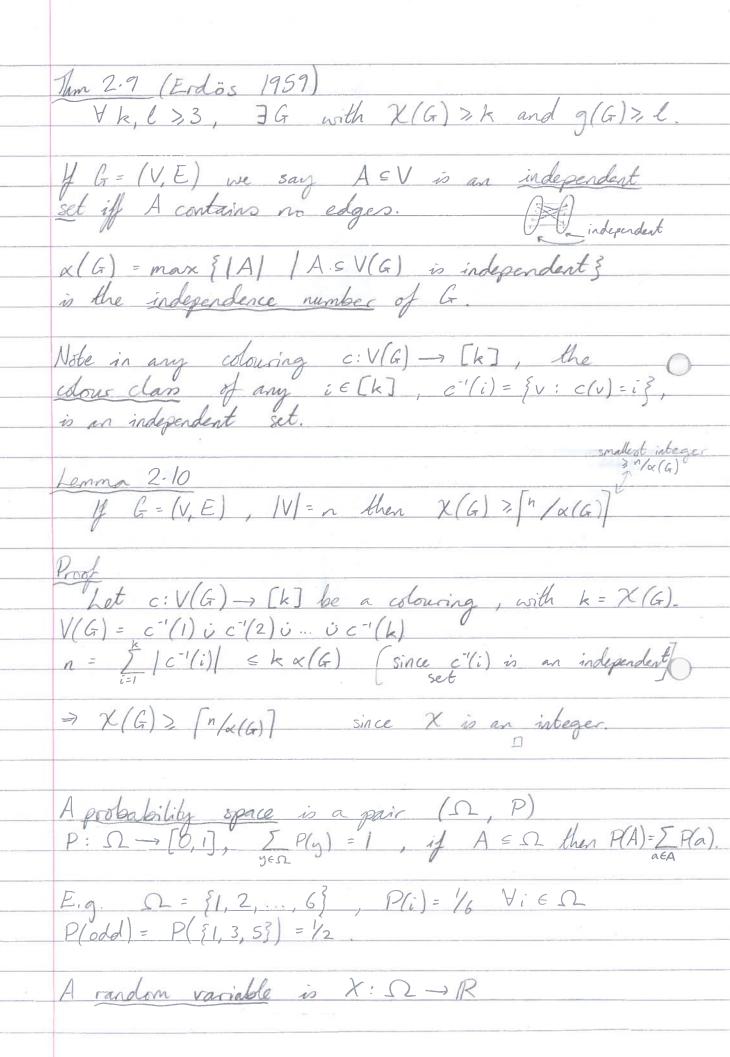
Let j= {i: Vi = Vk, 1 ≤ i ≤ k-1}, so have used


Lj+1 edges adjacent to Vk, d(Vk) = even

=) I unused edge Vn V' st, T'= Vo Vi ... VkV' is a

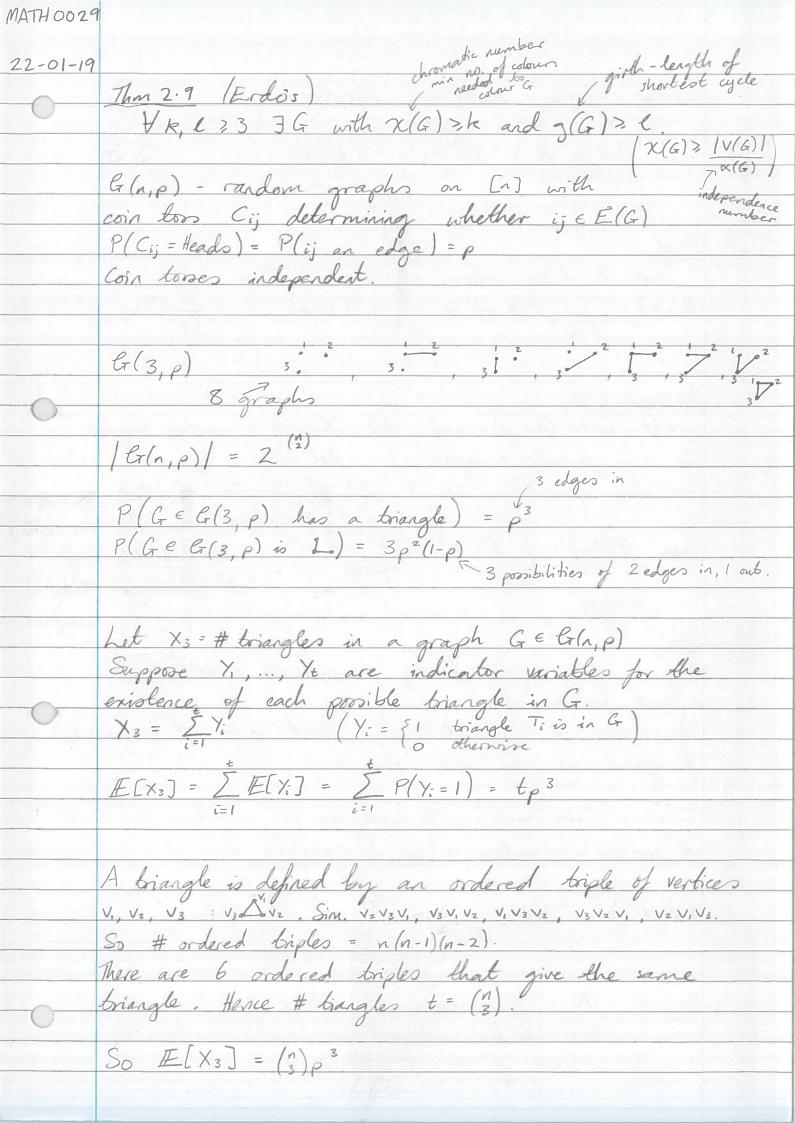
longer tour *

Hence V = Vk Hence Vo = Vk. To show G is an Euler circuit, need to show it contains all edges (then G connected = it contains all vertices). Suppose there is an unused edge un EE(G). Either one of n or vis in T, or if not then take a path from vo to u, then this path must leave the tour so there is in fact an edge xy that is unused and contains a vertex from T. So who can suppose there is an unused edge ar, with u=vi eT. But this is a longer tour T" = vuvi+, ... vu=vov, ... vi. Bipartite Graphs A graph is bipartite if G = (V, E) and there is a partition $V = A \cup B$ s.t. $E = \{ab : a \in A, b \in B\}$. We sometimes write G = (A, B; E) to denote the bipartition $V = A \cup B$. We've seen Ka,b. K2,3


MATT100 29	
15-01-19	
	Note: if n=2t+1 then Cn is not bipartite.
	3 B B A B A eben
	B B A B A
	Thm 2.7 A graph G is bipartite if it contains no odd cycle.
	odd curle.
0	Proof (=) Suppose G is bipartite and G contains
	(=) Suppose to is loipartite and to contains
	Let V= AiB be a bipartition.
	Then wlog $v_1 \in A \Rightarrow v_3, v_5,, v_{2+1} \in A$
	\times since $V_1V_{2+1} \in E$,
	(=) Suppose G = (V, E) contains no odd cycles.
18-01-19	
0	Bipartite graphs
	Bipartite graphs A, & C26+1 are not bipartite.
	Thm 2.7 G is bipartite iff G contains no odd cycles.
	G is bipartite iff G contains no odd cycles.
	Proof (⇒) last time
	(€) Suppose G is a graph with no odd cycles. Can assume G is connected. Pick w∈V, put w∈A.
	Can assume G is connected. Pick wEV, put wEA.
	For any pair of vertices $x, y \in V(G)$ define $d(x, y) = \text{length of a shortest path from } x \text{ to } y$.

MATH 0029 18-01-19 If \V(G) = n then X(G) < n $\chi(C_t) = \{2, t \text{ even } \}$ $\chi(K_t) = t$ = 2 (Each vertex is a binary string of length n, two vertices connected if they differ in one place. Consider even / odd number of 1's). $\chi(Q) = 2$ If H is a subgraph of G then X(H) < X(G). △(G) = max d(v) for v ∈ V (max degree of any vertex in G) Thm 2.8

If G is a graph then $\chi(G) \leq \Delta(G) + 1$ Let $k = \Delta(G) + 1$, and $V(G) = \{v_1, ..., v_n\}$ Define $c: V(G) \rightarrow [k]$ as follows: If v_1, \dots, v_{i-1} have all been coloured, consider v_i . $F(v_i) = \{ l \in \mathbb{C}[k] \mid \exists v_i \in \Gamma(v_i) \ (j \in i-1) \ st. \ c(v_i) = \ell \}.$ |F(v:)| = d(v:) = A(G) = k-1 So G(vi) = [k] \ F(vi) + & => c(vi) = min G(vi) is well defined. The girth of a graph G is the length of a shortest cycle in G, denoted g(G).


(If G has no cycles, set $g(G) = \infty$.)

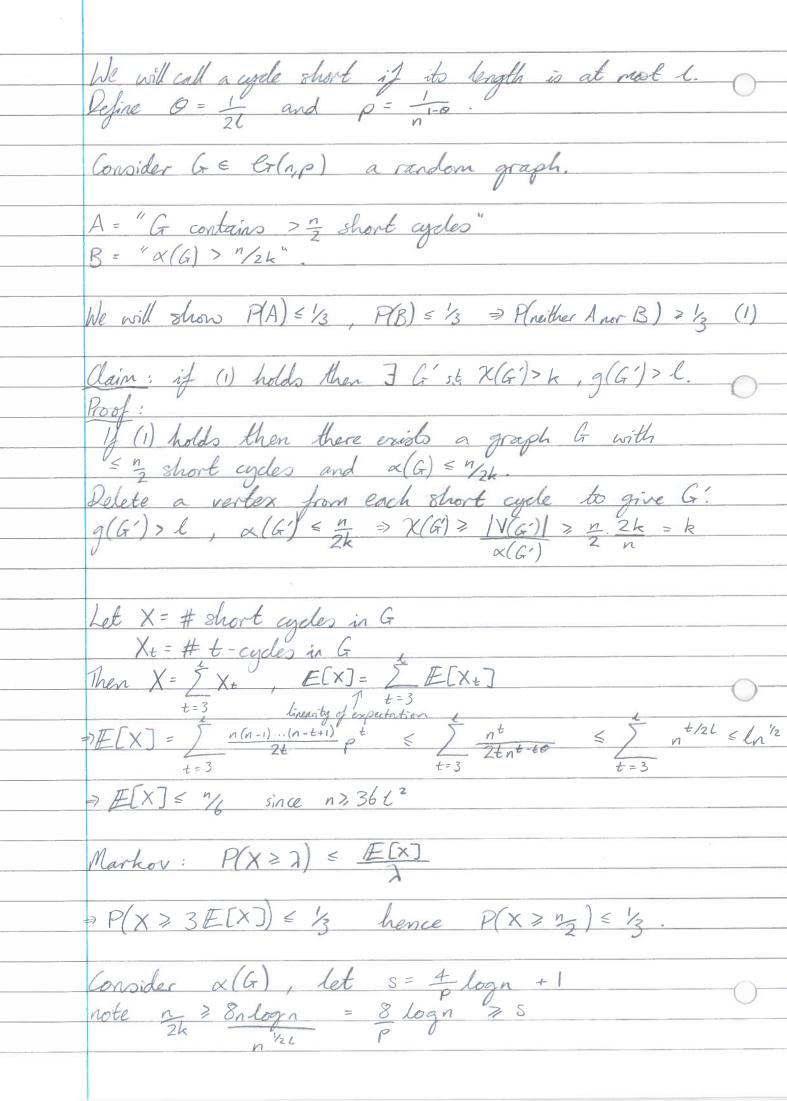
MATH 00 29 18-01-19 e.g. $\frac{1}{\{1,3,5\}} = \{1, y \in \{1,3,5\}\}$ e.g. $X_{uin} = \begin{cases} 100, i=6 \\ -20, i \neq 6 \end{cases}$ The expectation of a random variable is its average value. If $0x = \{X(y) \mid y \in \Omega\}$ is the set of values taken by X, then $E[X] = \int_{z \in O_X} P(X = z)$ Lemma 2.11 (Linearity of expectation)

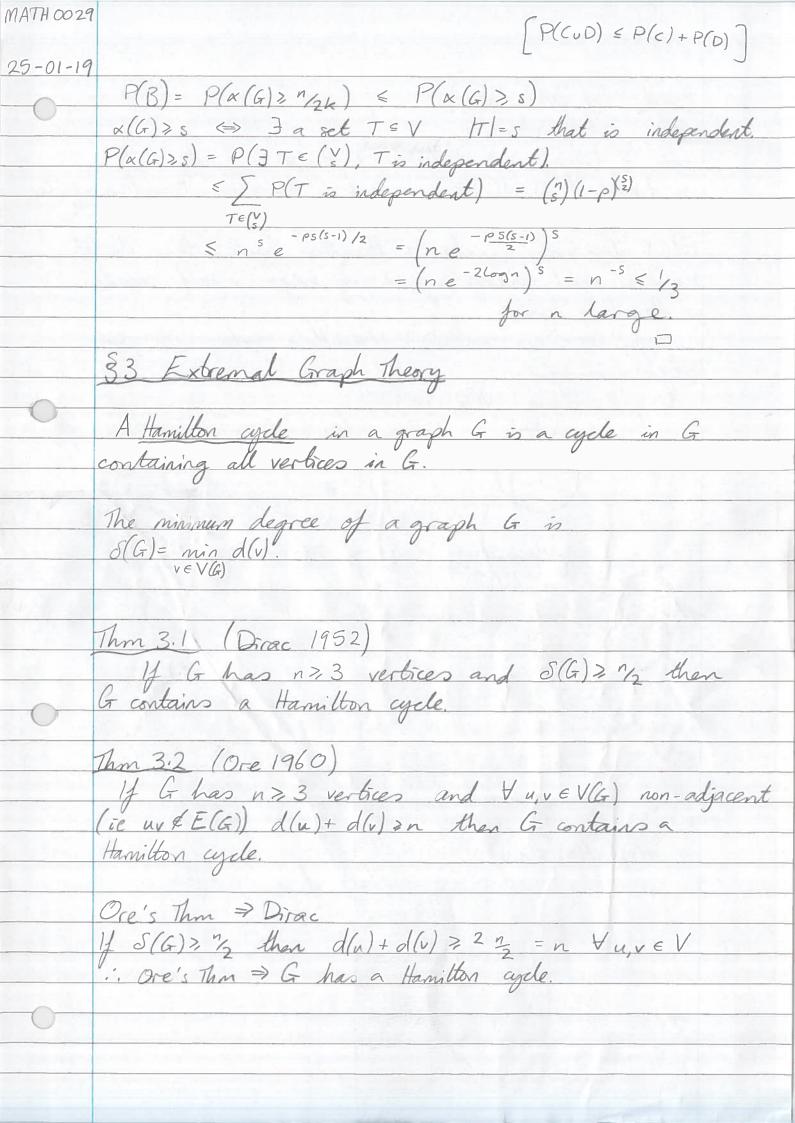
If $X_1, ..., X_n$ are random variables on the same space, then $\mathbb{E}\left[\frac{1}{n-1}X\right] = \frac{n}{n-1} \mathbb{E}\left[X_i\right]$. Note: this lemma has nothing to do with independence of variables] If G = (V, E) has e edges then G contains a bipartite subgraph with > [e/2] edges. Form a bipartition of V = AiB as follows. For each vertex v ton a fair coin. If heads, put v in A, if tails put vin B. All coin topes are independent. For each edge w & E(G) define Xuv = { 1 , u, v in different dames Take It to be a bipartite subgraph with bipartition AiB by deleting edges inside either dan.

IE(H) = E Xuv So $E[E(H)] = \sum_{\substack{uv \in E(G)\\ linearity of exp.}} E[Xuv]$ E[Xuv] = 1 × P(Xuv = 1) = 1/2 (by independence and fairness of coin toos). : expected # edges in H is e. =) I a bipartite subgraph with ? e. edges. Erdös-Renyi vardom graph model $\Omega = \left\{ G \mid V(G) = [n], E(G) \leq {\binom{[n]}{2}} \right\} \left\{ G(n, p) \right\}$ $\left\{ n \in \mathbb{N}^{2} \mid E \neq E[0, i] \right\}$ $\left\{ p \in [0, i] \mid P \neq E[0, i] \right\}$ $\left\{ p \in [0, i] \mid P \neq E[0, i] \right\}$ For any $H \in \Omega$, P(H) is the probability that the following random process generates H. Start with E_n , for each $ij \in \binom{Cn}{2}$ this a coin Cij, P(Cij = Heads) = p, P(Cij = Tails) = 1-p. If Cij = Heads the insert edge ij, otherwise ij & E. All coin losses are independent. e.g. G(3, 2/3) C12 = T C13 = H C23 = H

Lemma 2:13 (Markov's inequality)

If X is a non-negative random variable and $\lambda > 0$ then $P(x > \lambda) \leq E[x]$ Proof


Let X take values in the set O_X . $E[X] = \sum_{y \in O_X} y P(X=y) \ge \sum_{y \ge 2} y P(X=y) \ge \lambda \sum_{y \ge 2} P(X=y) = \lambda P(X=y)$ Lerma 2.14 Let GE G(n,p) and let X+=#t-cycles in G. For any possible t-cycle C, let Yc be its indicator variable, i.e. 1 = 51 if $C \subseteq G$ Then $E[X_t] = \sum E[Y_c] = \sum P(Y_c = 1) = p^t \# possible t - cycles$ $\int c possible c possible t - cycle = p^t n(n-1) \cdots (n-t+1)$ linearity fE fEAny t-cycle is defined by an ordered t-tuple of distinct vertices V, V2 ... Ve. There are 2t such t-buples that give the same t-cycle: V, V2 ... Ve and VtV6-1 ... V, 80 # possible t-cycles = $n(n-1)\cdots(n-t+1)$ 2t $P(Y_c = 1) = p^t$. Suppose A= "G contains more than " short cycles" B = "G has independence number a(G) > 1/2k A cycle is short if its length is & l.

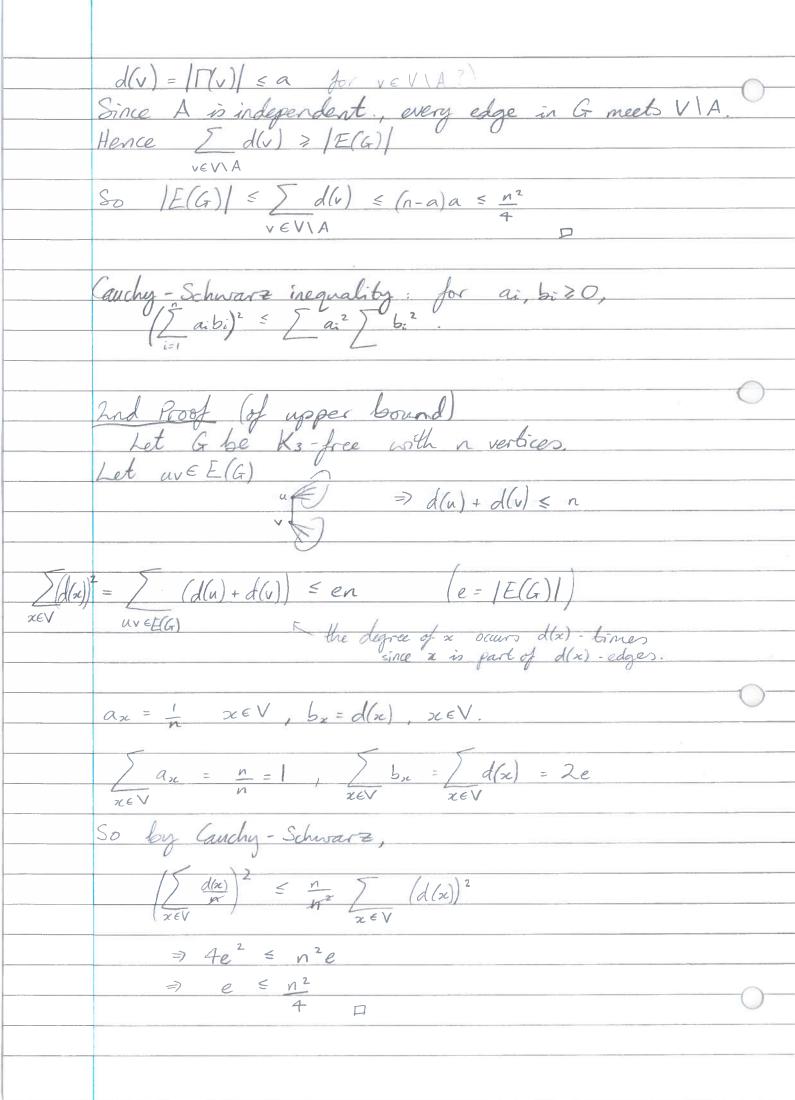

MATH 0029 Suppose P(A) = 13 and P(B) = 13

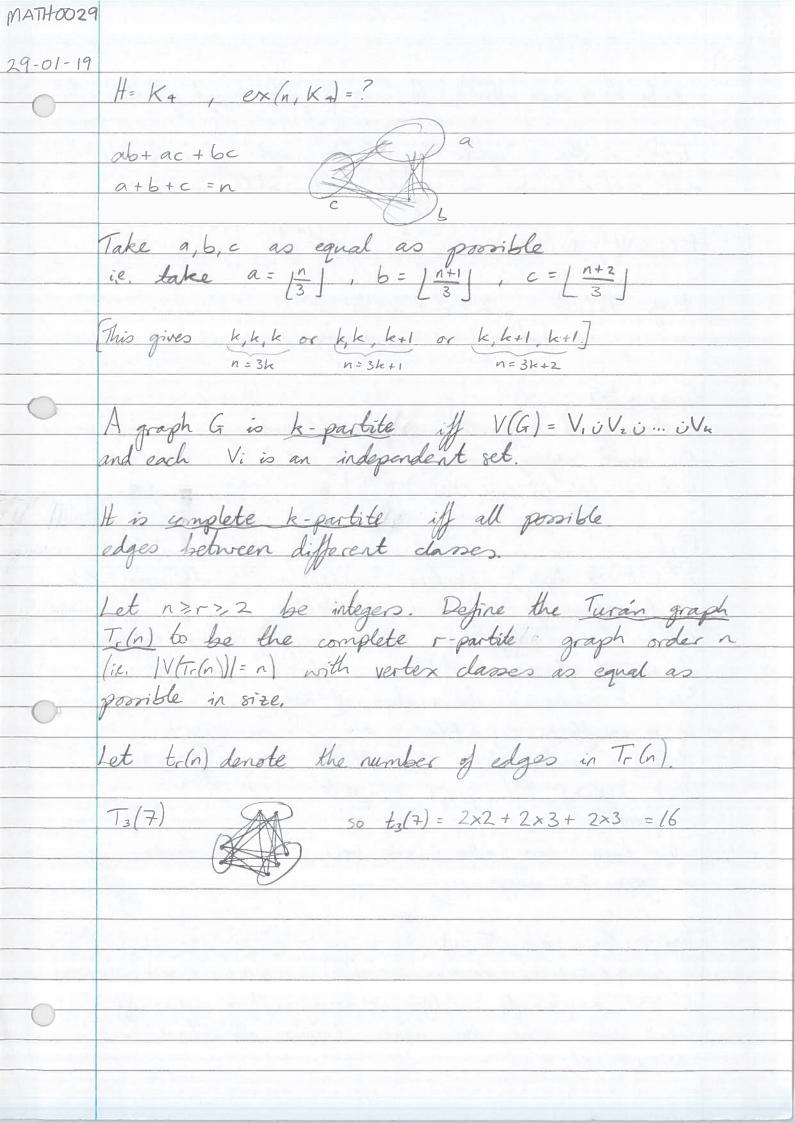
P(neither Anor B happens) > 13 Suppore G is a graph with ≤ 1/2 short cycles and $\alpha(G) \leq n/2k$. Form a new graph G' from G long removing a single vertex from each short cycle.

So $|V(G')| \ge n/2$, $g(G') > \ell$, $\chi(G') \ge |V(G')| \ge n/2 = k$ $\chi(G') \le \chi(G)$ $\chi(G') \le \chi(G)$ So to prove Thm 2.9 need to prove P(A) = 1/3 and P(B) = 1/3. 25-01-19 m ∀k, l>3 3 G with x(G)≥k, g(G)≥1. Let G & G(n,p) and t > 3 If X = # t-cycles in G then $E[X_t] = \frac{n(n-1)\cdots(n-t+1)}{2t}p^t.$ Proof of Thon

Let k, l be given. Let n be sufficiently large so that n > 36 12 and n'121 > 2k.

Proof (of Ore's Than) By contradiction. Let G have n ? 3 vertices st. Y u, v non-adjacent we have d(u)+d(v) > n, but G has no Hamilton cycle. If there is a pair uv & E(G) and adding in to E(G) does not create a Hamilton cycle, then do it. Repeat until adding any missing edge would create a Hamiltion cycle.


Hence G now contains a Hamilton cycle with one wlog assume V(G)=[n] notified whose $i(i+1) \in E(G)$ i=1,...,n-1 and $In \notin E(G)$. G has no Hamilton cycle > i(i+1) missing from E(G). Possible edges involving vertices I and n:


2 not = 1 of these 20 edges

1 d n 3 & 1 ... So there are < n-1 edges. # of edges present in 1st column is d(1)
of edges present in 2nd column is d(n)

) d(1) + ol(n) & n-1.

MATHOO Z	
29-01-19	Peterson graph:
0	Teterson graph:
	§ 3.2 - Forbidden subgrapho
	§ 3.2 - Forbidden subgraphs ("extremal number of H" Given a graph H, we define $ex(n, H) = max\{ E(G) : V(G) =n\}$ i.e. $ex(n, H) = max\{ E(G) : G has n vertices and is H-free\}$. $ex(n, H) \leq \binom{n}{2}$
	i.e. $ex(n, H) = max\{ E(G) : G has n vertices and is H-free \}.$ $ex(n, H) = (n)$
	/
0	Lenma 3.3 If G and H are graphs and X(H) > X(G) then G is H-free.
	Proof If H is a subgraph of G then any colouring of G gives a colouring of H => X(H) < X(G).
	Thm 3.4 (Martel 1903) If $n \ge 1$ then $ex(n, K_3) = \lfloor \frac{n^2}{4} \rfloor$.
0	Proof Example $K_{\lfloor \frac{n}{2}\rfloor}$, $\lceil \frac{n}{2} \rceil$ this is K_3 -free $ \frac{n}{2} \rceil = \frac{n}{2} \rceil$ (by lemma 3.3) $ \frac{n}{2} \rceil = \frac{n}{2} \rceil$.
	Now to show $ex(n, K_3) \leq \lfloor \frac{n^2}{4} \rfloor$
	Let G be K3-free with n vertices. Need $ E(G) \le \lfloor \frac{n^2}{4} \rfloor$.
	Let G be K3-free with n vertices. Need $ E(G) \le \lfloor \frac{n^2}{4} \rfloor$. Let $A = V(G)$ be a largest independent set Consider $A \lor VA$ with $ A = a$.
0	
	F(v), K3 = F(v) is independent.

01-02-19	
	er(n, H) = max { E(G) : G is a H-free graph of order n}
	Tr(n) is the complete r-partite graph of order n with vertex classes as equal as possible in site (Turán graph). $a \lfloor \frac{n}{r} \rfloor + (r-a) \lceil \frac{n}{r} \rceil = n$. $ E(T_r(n)) = t_r(n)$
	with vertex classes as equal as possible in site
	(Turns graph). $a n + (r-a)[n] = n$.
- William to associate	$ E(T_c(n)) = t_c(n)$
	Eig. T4(10) 2+2+3+3
	ta(10)= 4+9+4×6
	Lemma 3.5
	a Among all r-partite graphs of order n, Tr(n) has
	the most edges, and
	a) Among all r-partite graphs of order n, $T_r(n)$ has the most edges, and (B) $t_r(n) = t_r(n-r) + (r-1)(n-r) + (\frac{r}{2})$.
	a Let G be r-partite, order n, and have the
	a Let to be r-partite, order n, and have the
	most edges of any such graph. Either G is Tr(n) or there exist vertex classes
	Vi and V2 of G s.t. V, = a, V2 = b and b < a-2.
	Since G maximises the number of edges we can suppose G is complete r-partite. Move a vertex from V, to Vz, while keeping the graph complete
	G is complete r-partite,
\$ \$40 p. hours did \$1.000.00	Move a vertex from V, to Vz,
	r-partite.
	We love n-a edges and gain n-(b+1) odges
	We love n-a edges and gain n-(b+1) edges => gain > 1 edge.
	<i>→</i>
	Hence Gras Tr(n).
	Choose a single vertex in each vertex dans of
J. W (1) - (1)	Tr(n) and colour this blue. Colour all other
	vertices red.

MATA0029 Edges in Tr(n) are of 3-types: red-red, red-blue, blue-blue. Red-ced edges give a copy of (x)

Tr(n-r), so have tr(n-r) edges (i)

red-ced edges.

Blue-blue form Kr: (2) such edges.

Each red verter in the MIII is in the edges. Each red vertex is joined to all blue vertices except the one in its class. Since we have n-r red edges, we must have (n-r)(n-1) red-blue edges. Hence $t_r(n) = t_r(n-r) + (n-r)(r-1) + {r \choose 2}$. Thm 3.6 (Turán 1941).

If $2 \le r \le n$ and G is a K_{r+1} -free graph with a vertices and $ex(n, K_{r+1})$ edges, then G is Tr(n). True for n=r, Tr(r) = Kr. Suppose n>r+1. Let G be Kr+1 - free, n vertices and ex(n, Kr+1) edges. Then G must contain a copy K of Kr consider G-K. This is a Kr+1-free graph of order n-r so by our hypothesis |E(G-K)| = tr(n-r). If $v \in V(G) \setminus \{v_1, ..., v_r\}$ then v has $\leq r-1$ neighbours in K (because G is K_{r+1} -free).

Finally K contains $(\frac{r}{2})$ edges. # edges between K and G-K. |E(G)| = |E(G-K)| + |E(K, G-K)| + |E(K)| $\leq t_r(n-r) + (2) + (n-r)(r-1) = t_r(n).$ But $|E(G)| = \exp(n, K_{(+)}) \ge t_r(n)$ (since $T_r(n)$ is K_{r+1} -free) Hence $|E(G)| = t_r(n)$ and all earlier inequalities are equalities.

Any complete graph is called a clique. Hence every $v \in V(G) \setminus \{v_1, ..., v_r\}$ has exactly r-1 neighbours in K. For I = i = r let W = {v \(V(G) : v \(\neq E(G) \)} Claim: W. i W2 i ... i is a partition of V(G).

This follows, since if veV(G)\{v,..., v} then v has
exactly c-1 neighbours in K.

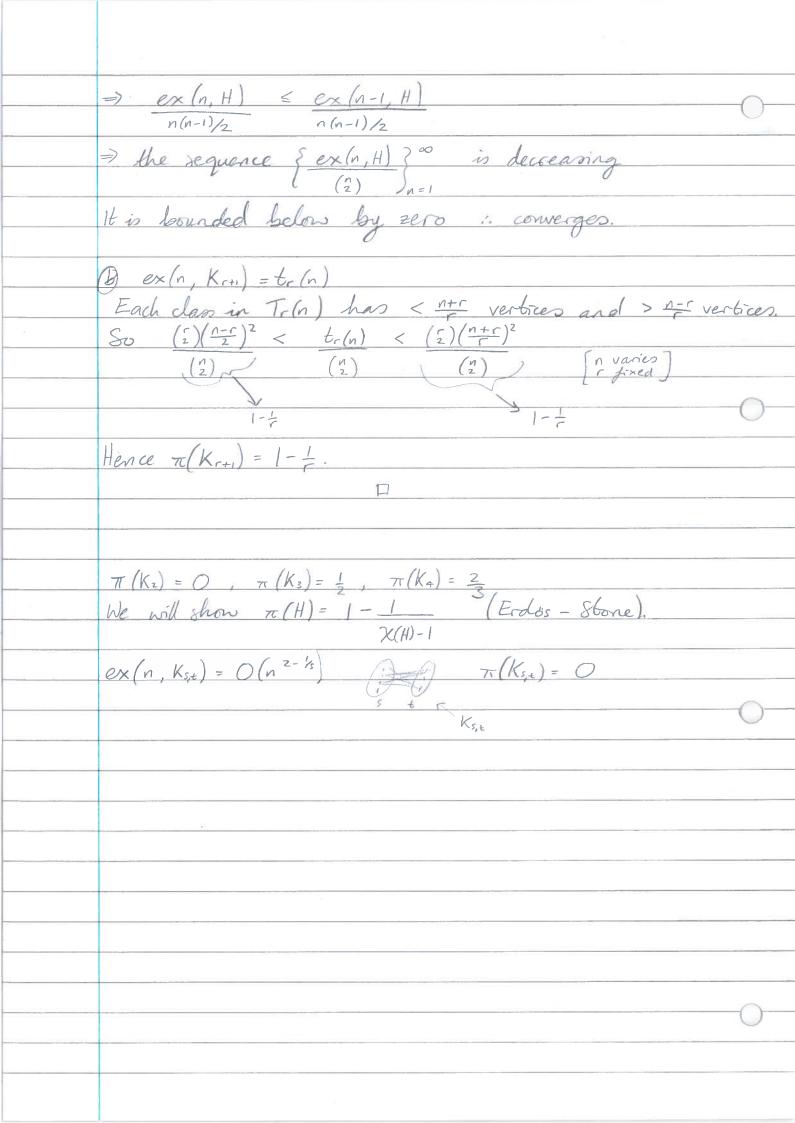
: These is a unique 15 is c such that veWi,
moreover veWi \ \ 1 \le i \in c. Claim: Wi is an independent set.

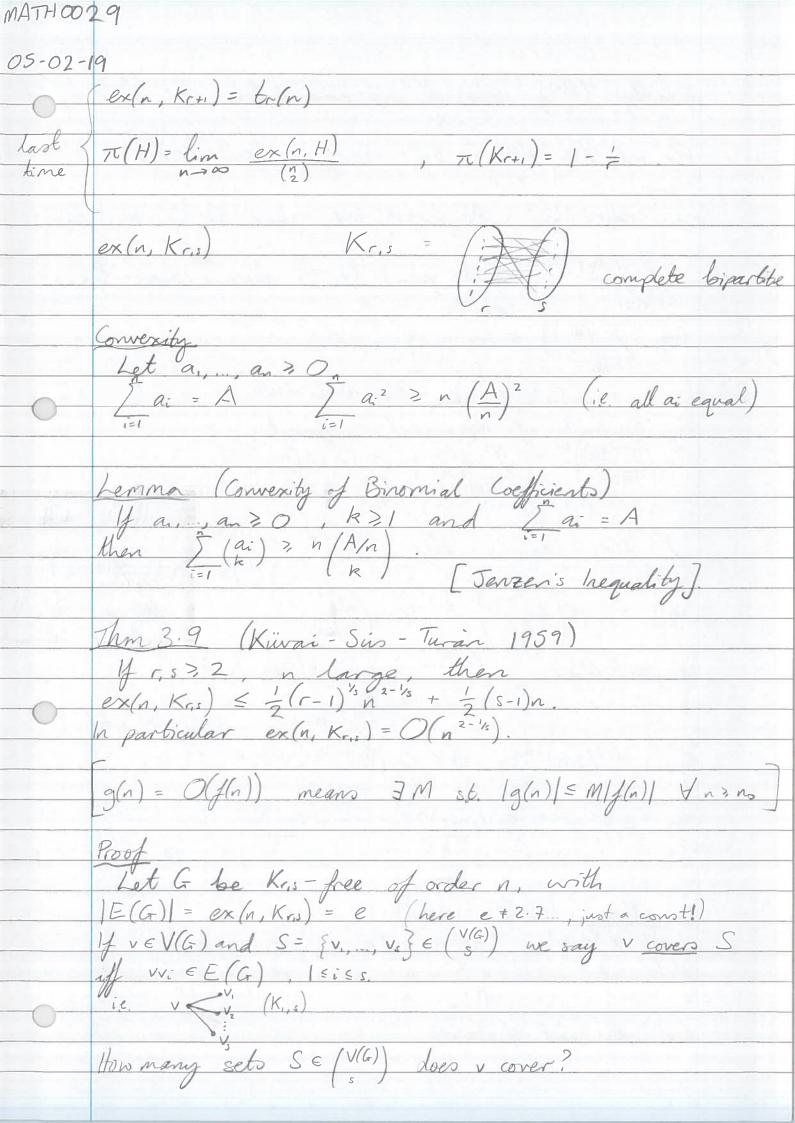
If $v, w \in W$; and $vw \in E(G)$ then consider $\{v, w, v, v_2, ..., v_{i-1}, v_{i+1}, ..., v_r\}$ this is a copy of K_{r+1} . $X \Rightarrow claim holds$. Hence G is an c-partite graph of order n but then Lemma @ => G is Tr(n). Im (aro-Wei 1979)

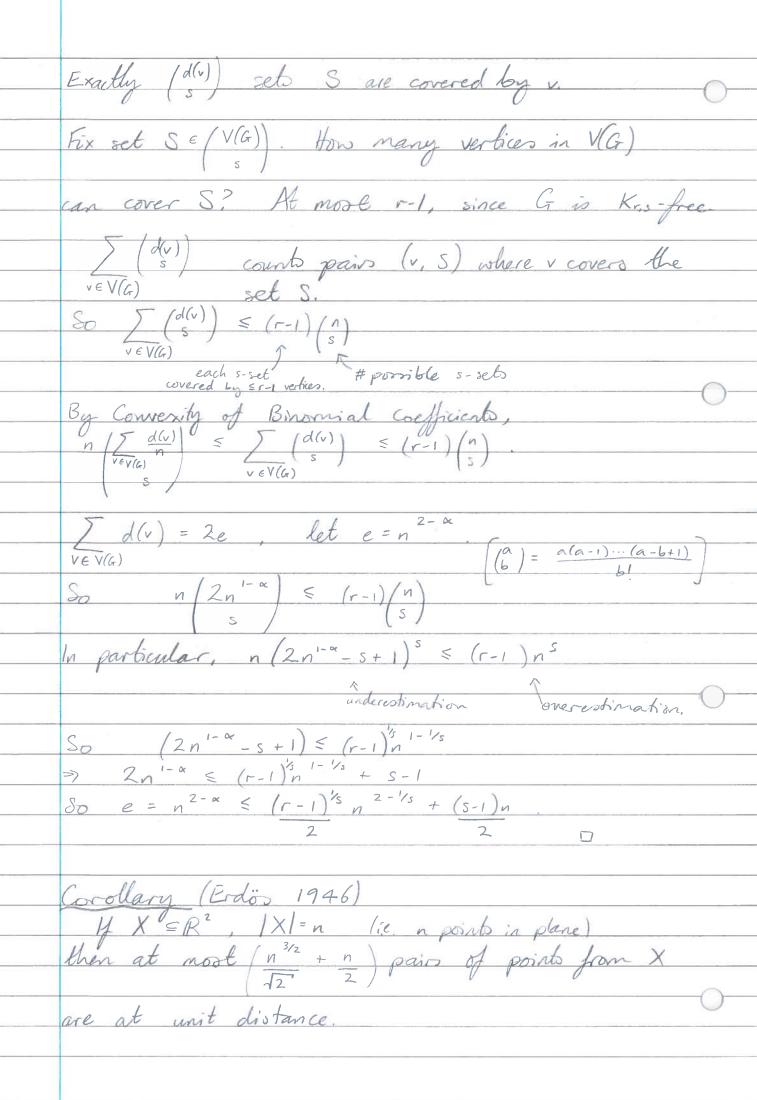
If G is a graph of order n then $\alpha(G) \ge \int_{V \in V(G)} \frac{1}{d(v)+1}$ [Recoll 5 d(1) 20] Recall [d(v) = 2e) Prof Let V(G) = [n] and let π ∈ Sn be chosen uniformly at random.

For $i \in [n]$ let $A_i = "\pi(i) > \pi(i) \ \forall j \in \Gamma(i)"$.

(i.e. vertex i comes before all of it reighbours after the permutation eg. \cdot \cdot \times \cdot \times \cdot \cdot).


Let $U = \{i \in [n] : A_i \text{ holds}\}$ Claim: U is an independent set.


If u,v ∈ U and uv ∈ E then we have a contradiction


Since $A_u \Rightarrow \pi(u) < \pi(v)$ but $A_v \Rightarrow \pi_v < \pi_u$. $x(G) \ge E[IUI] = \sum_{i \in [n]} P(A_i holds) \qquad |U| = \sum_{i \in [n]} X_i \text{ where } X_i = 1, A_i holds$ For A: consider d(i)+1 vertices, since Ai is the event that one particular vertex (namely i) comes first in a set of d(i)+1 vertices under the permutation π . Since each vertex is equally likely to come first we have $P(Ai) = \frac{1}{d(i)+1}$ $ex(n, K_{r+1}) = t_r(n)$ For $H \neq K_c$ (any r) ex(n, H) = ? [E(G)] edge (n) density? H is a graph then the Turan density of H is $\pi(H) = \lim_{n \to \infty} \frac{\exp(n, H)}{\binom{n}{2}}.$ Lemma 3.8 O If H is a graph, then $\pi(H)$ is well defined. D $\pi(K_{r+1}) = 1 - \frac{1}{r}$ Poof

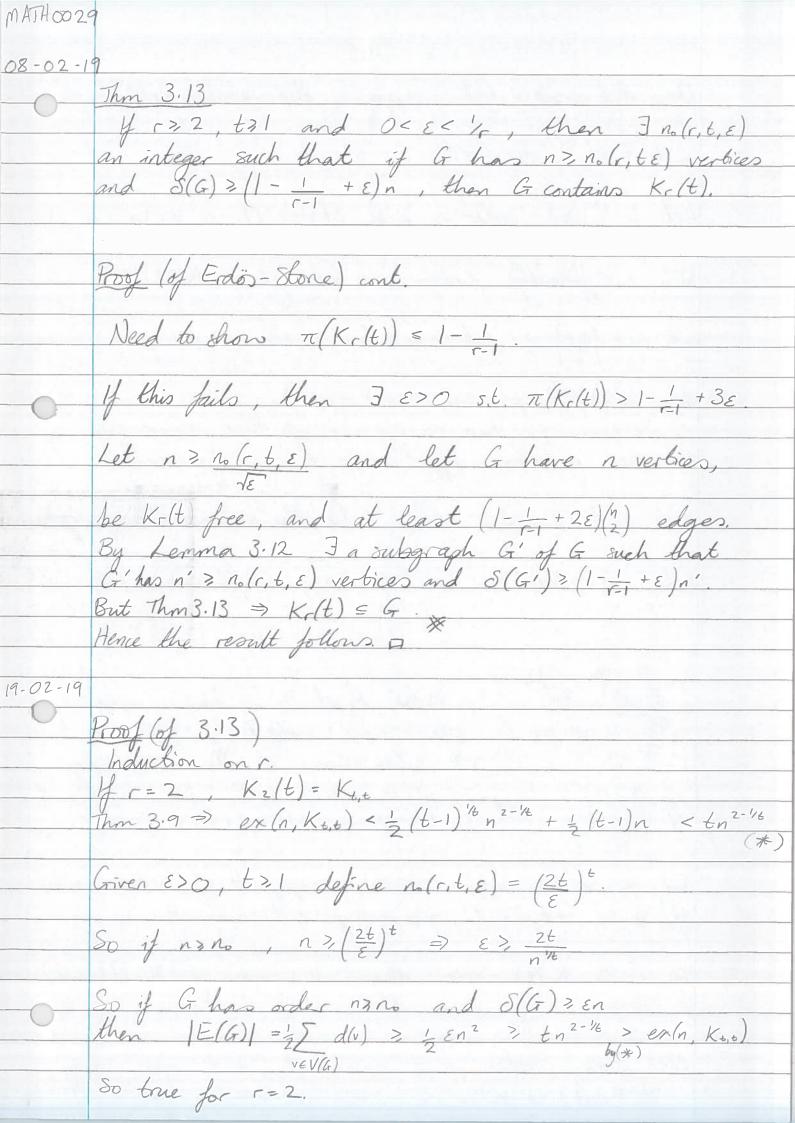
a Let G have order n and ex(n, H) edges st. G

is H-free. $\int |E(G-v)| \leq n \exp(n-1, H)$ = (n-2)|E(G)| = (n-2)ex(n, H)So $(n-2)ex(n, H) \leq n \exp(n-1, H)$

MATH 0029 05-02-19 Proof

Construct a graph with V(G) = X and $xy \in E(G)$ iff |x-y|=1. Since any two circles

meet in \le 2 points, we have no copy of K3,2 in G. Hence $|E(G)| \le ex(n, K_{3,2}) \le \sqrt{2} n^{3/2} + n$ r=3, s=2 2 2 D

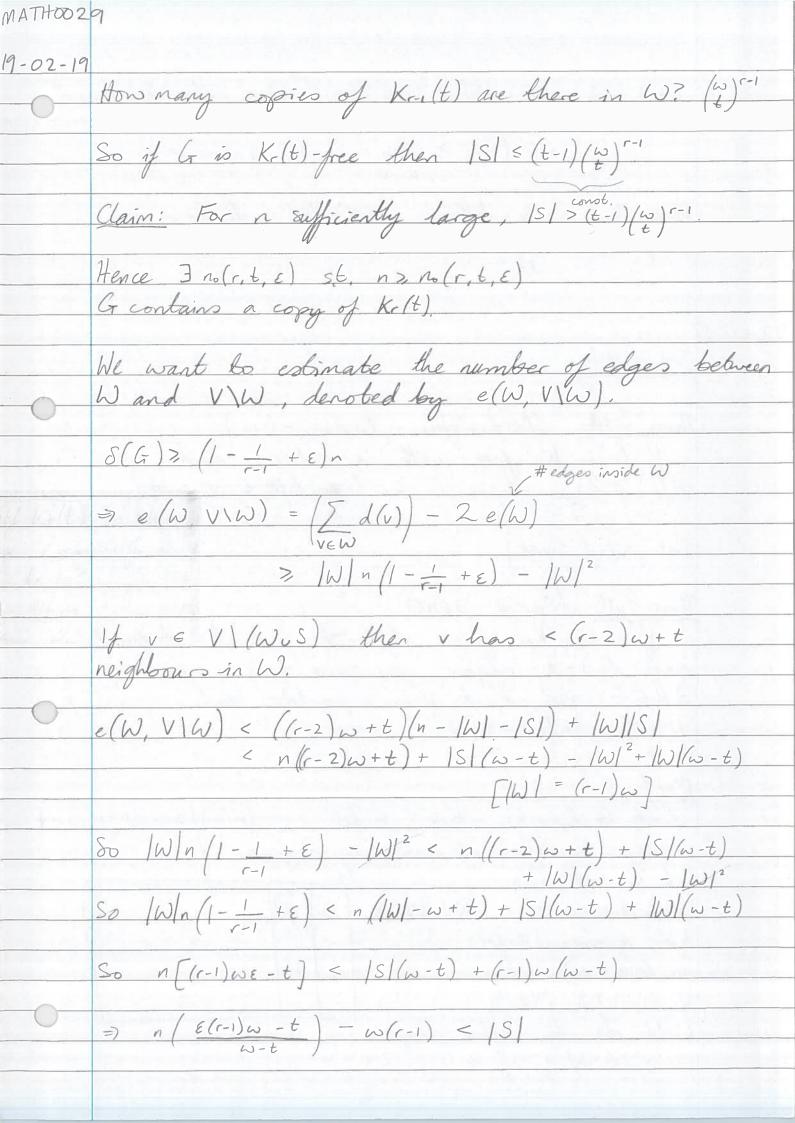

in bound from thm. Thm 3.11 (Erdös - 86one 1946)

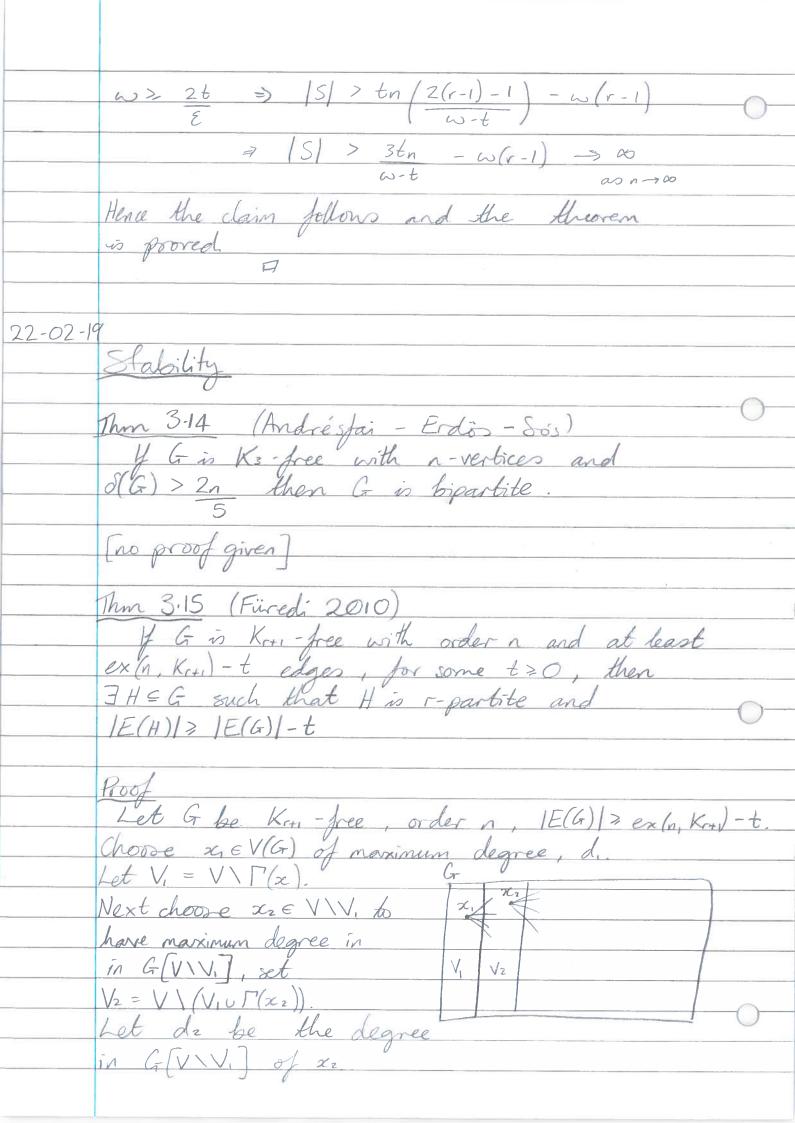
If $\chi(H) = r \ge 2$ then $\pi(H) = 1 - \frac{1}{r-1} = \pi(K_c)$. Proof

If X(H)=r, then $T_{r,r}(n)$ is H-free. $\Rightarrow \pi(H) \geq \pi(K_r) = 1 - \frac{1}{r-1}$. 08-02-19 Need to prove T(H) = 1 - 1. If $t \ge |V(H)|$ then there is a copy of H in $K_r(t)$, so $\pi(K_r(t)) \ge \pi(H)$ \Rightarrow it is sufficient to prove $\pi(K_r(t)) \le 1 - \frac{1}{r-1}$. Let $0 \le c$, $\varepsilon < 1$ and $n > 2(1 + \frac{1}{\epsilon})$ If G is a graph order n with $(c + \varepsilon)(\frac{n}{2})$ edges then $\exists G' \in G$ a subgraph of order $n' \ge \sqrt{\varepsilon}$ n and mindegree $S(G') \ge cn'$.

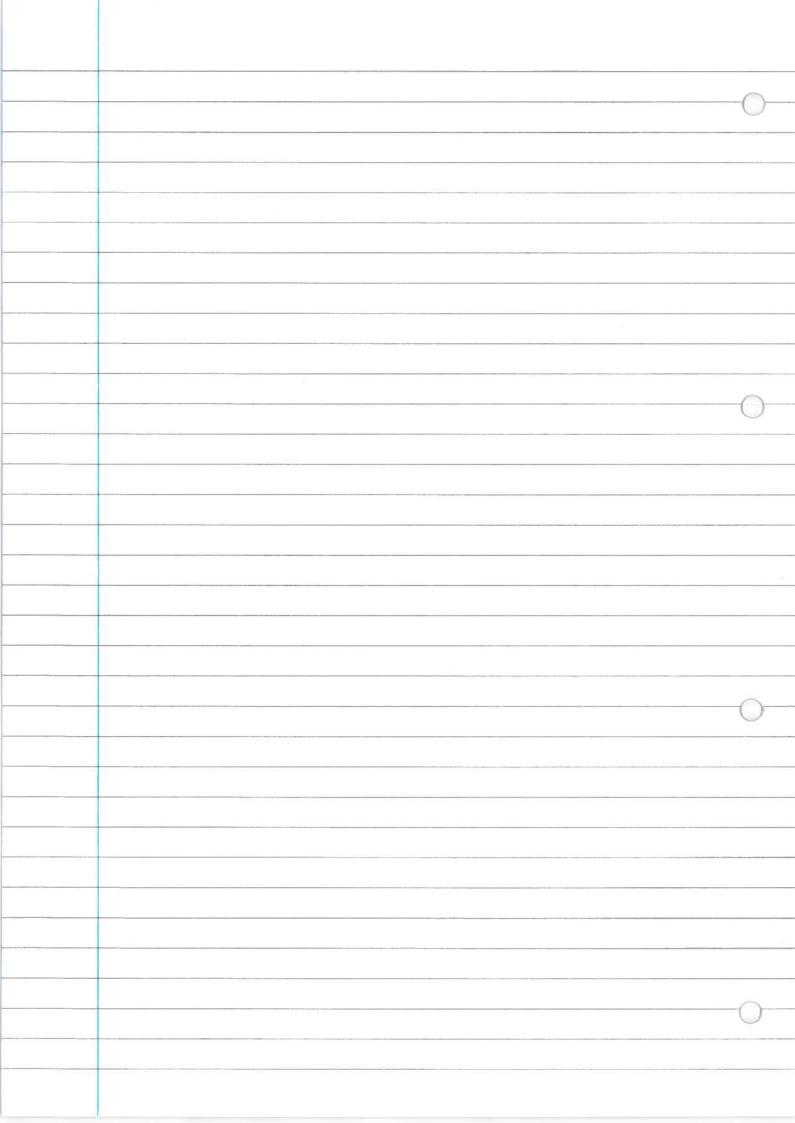
Note if n= |V(G)|, S(G)= cn then e(G)>, cn2. Let $G_n = G$. If S(G) > cn, set G' = G.

Otherwise remove a vertex of degree < cn, call this graph G_{n-1} . graph Gn. If S(Gn-1) > c(n-1) then set G'= Gn-1, othernise repeat. Continue in this way to give Grund has k vertices and Grun is obtained from Grundy removing a vertex of We claim this process stops at some $k \ge \sqrt{\epsilon'} n$. Suppose we reach G_s . Then $|E(G_s)| > |E(G_t)| - \sum_{b=s+1}^{s} c_b > (c+\epsilon) \binom{n}{2} - c \binom{n+1}{2} - \binom{s+1}{2}$ $\int_{-2\pi}^{2\pi} \frac{1}{z} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$ $S_0 |E(G_s)| > \varepsilon(\frac{n}{2}) - c_n + c(s+1) > \varepsilon(\frac{n}{2}) - c_n + (c+1)_n$ ie, $|E(G_s)| > \varepsilon(n) + n$ and $\binom{S}{2} \in \binom{\sqrt{E'}n+1}{2} = \sqrt{E'n}(\sqrt{E'n+1}) = E(n^2+n) < E\binom{n}{2} + n$ $=) \quad \mathcal{E}\binom{n}{2} + n < \left| \mathcal{E} \left(\mathcal{G}_{S} \right) \right| < \mathcal{E}\binom{n}{2} + n$


Now let 123 and suppose the result holds
for 1-1.
Let t 21, 0 < E < \frac{1}{7}. Let G have order n and S(G) 2 (1- 1/2 + E)n. NTS: n sufficiently large => G contains Kr(t). Let $\omega = \lceil 2t \rceil$, let $n > n_0(r-1, \omega, \varepsilon)$ Then $\delta(G) \ge (1-\frac{1}{r-1} + \varepsilon)n > (1-\frac{1}{r-1} + \varepsilon)n$ i. we can use the r-1 case of the theorem. So our inductive hypothesis $\Rightarrow G$ contains $K_{r-1}(\omega)$. Let W = W, i Wzi .. i Wr. be the vertex classes of Kr. (w) Let S= {v ∈ V/W: v has ≥ (r-2) w+t reighbours in W} Note that S contains vertices


which could potentially form an

the vertex class to smild a copy


of Kr(t). In particular, every ves has at least

t neighbours in each class W: 1 \le i \le r-1. Say a vertex vES covers a copy H of Krilt) in W if v is adjacent to every vertex in H. If G is Kr(t) - free then no copy of Kr1(t) in W is covered by more than t-1 vertices. Also every vertex in S covers at least one copy of Kr. (t) in W.

MATH 00 2	
22-02-19	If $x_1,, x_5$ have been chosen, let x_{j+1} have maximum degree in $G\left(V \setminus (V_1 \cup \cup V_5)\right)$ and define $V_{j+1} = V \setminus (V_1 \cup \cup V_5 \cup \Gamma(x_{j+1}))$. Let d_{j+1} be the degree of x_{j+1}
	Hey form a complete subgraph of G, we have $p \leq r$. Let $G_R = G(V_i \cup V_{i+1} \cup \cup V_p)$. Let $i(G) = \# edges of G that$
	Let $i(G)$ = # edges of G that are in a single vertex class. Then $ E(G) + i(G) = \int_{G_2} \int_{G_2} dG_2(y)$ $G = \int_{G_2} \int_{G_2} dG_2(y)$
	$= \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})} = \frac{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i=1}^{n} V_{i} (V_{i+1} + V_{i+2} + + V_{p})}{\sum_{i$
	$ E(G) \ge ex(n, K_{r+1}) - t$ $\Rightarrow ex(n, K_{r+1}) - t + i(G) \le ex(n, K_{r+1})$ $\Rightarrow i(G) \le t.$
	Hence by removing all internal edges from G we obtain a p-partite graph H with > [E(G)]-t edges.
0	

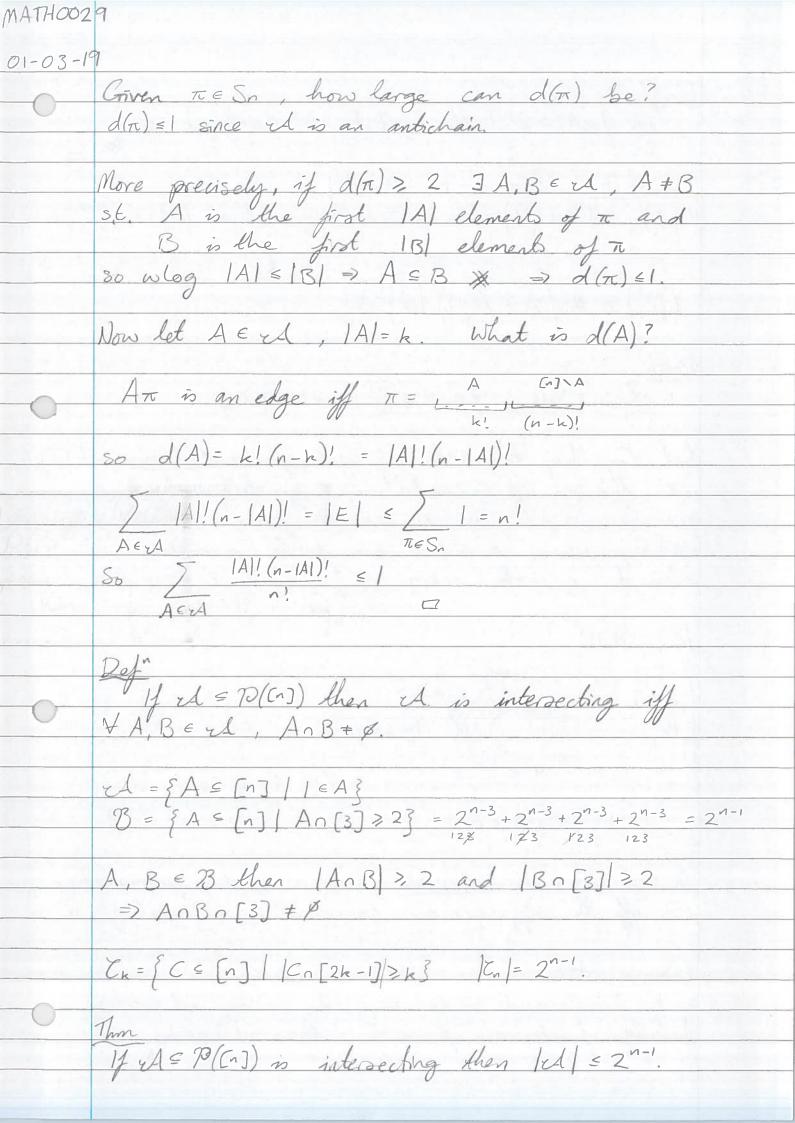
MATH0029 26-02-19 Chapter 4 - Set Systems Let $n \in \mathbb{N}$, $[n] = \{1, 2, ..., n\}$ $P([n]) = \{A \mid A \subseteq [n]\} = power set$ $y \in k \leq n$, $[n] = \{A \mid A \leq [n], |A| = k\}$ uniform "k-sets" §4.1 - Chains and Antichains A family of sets $A \subseteq \mathcal{P}([n])$ is an artichain if $\forall A, B \in \mathcal{A}$, $A \subseteq B \Rightarrow A = B$. [Equivalently, I is an artichain if A, B \(\text{2} \) and \(A \neq B \Rightarrow A \neq B \Rightarrow A \) e.g. $\mathcal{A} = \{ \emptyset \}$, $\mathcal{B} = \{ 1, 2, 3, ..., n \}$ singleton sets $\begin{bmatrix} n \end{bmatrix}$ is an antichain. A family of sets C = P(n) is a chain iff $V A, B \in \mathcal{E}$, $A \subseteq B$ or $B \subseteq A$. e.g. $C = \{ \emptyset, 1, 12, 123, ..., [n] \}$ |C| = n+1. (Ø, 1, 2) is not an antichain or chain

Lemma 4.1

If the the property and the is an antichain,
to a chain, then | the the tel. Proof
(by contradiction)

4 $|A \cap C| \ge 2$, let $A, B \in A \cap C$ st. $A \ne B$.

We know $A, B \in C \Rightarrow A \in B$ or $B \in A$ but $A, B \in A \Rightarrow A = B$. hemma 4.2


If $C \subseteq P([n])$ is a chain then $|C| \le n+1$. Partition P([n]) = ([n]) i ([n]) i ... i ([n])Partition $P([n]) = \binom{\lfloor r \rfloor}{0} \binom{\lfloor r \rfloor}{$ Theorem 4.3 (Sperner 1928)

If $A = \mathcal{P}([n])$ is an antichain, then $|A| \le \binom{n}{\lfloor \frac{n}{2} \rfloor}$. A chain $\mathcal{E} = \{C_1, \dots, C_k\} \subseteq \mathcal{P}([n])$ is symmetric iff $|C_{i+1}| = |C_i| + |(1 \le i \le k-1), C_i = C_2 \in \dots \in C_k$ and $|C_i| + |C_k| = n$. If we partition P((n)) into symmetric chairs then we will have exactly $\binom{n}{\lfloor n/2\rfloor}$ such chairs. MATH 0029 Lemma 4.4 $\forall n \in \mathbb{N}$, $\mathcal{P}(G)$ can be partitioned into symmetric chairs. Froof (of Thm 4.3 assuming Lemma 4.4)

Every symmetric chain in our partition neets

[[n]] exactly once and so we have [[n]] chams Criven an artichain et = P([n]), we know it meets
any chain at most once, so | rt | = ([n]). Proof (of Lem 4.4) (Induction on n) P((n)) = {8,1} is a symmetric chair. Suppose n > 2 and the result holds for n-1. Let P((n-1)) = C, i... it be a partition into symmetric chains. P([n]) = P([n-1]) i {Av{n}} | A ∈ P((n-1])}. Let C: = { Ci, Ci, ..., Ck. }. Let Ci = { C, v{n}, C2v{n}, ..., Ck-1v{n}} This is a symmetric chair in P([n])
since | C; v {n} } = | C; v {n} + 1 and $|C_{i}^{i} \cup \{n\}| + |C_{k_{i}-1} \cup \{n\}| = |C_{i}^{i}| + |C_{k_{i}-1}| + 2$ = n-1-1+2Let $C_i'' = \{C_i^i, C_2^i, ..., C_k^i, C_{ki} \cup \{n\}\}$ This is a symmetric chain in P(n)Since $|C_{i+1}| = |C_i'| + 1$ for $1 \le j \le k_{i-1}$, $|C_{ki} \cup \{n\}| = |C_{ki}| + 1$ and $|C_{i}| + |C_{ki} \cup \{n\}| = |C_{i}| + |C_{ki}| + 1$ Result follows by induction.

5. e	We are working with things were similar to poset
1-03-19	
	Thm 4.5 (LYM 1954)
, s	Thm 4.5 (LYM 1954) If A is an antichain then $\sum_{A \in \mathcal{A}} \frac{1}{(A)} \le 1$.
	$\mathcal{U} = \mathcal{P}([n])$, $0 \le k \le n$ $\mathcal{U}_k = \mathcal{U}_n([n])$ Let $a_k = \mathcal{U}_n = \mathcal{U}_n([n]) $
	$ \frac{1}{A \in \mathcal{A}} = \sum_{k=0}^{n} \frac{a_k}{\binom{n}{k}} $
	sets of size in the proportion of k-sets in the
	sets of site n , $n \in n$ $k \in n$, $n \in n$ $\lfloor n \rfloor$
u .	sets of size of
	Proof
	Let $xl \in \mathcal{P}(n)$ be an antichain.
	Form a bipartite graph $G = (rA, S_n; E)$.
	Here $S_n = set$ of all permutations of $[n]$. There is an edge $A\pi$, where $A \in \mathcal{A}$ and $\pi \in S_n$ iff the first $ A $ elements of is the set A .
1.	e.g. A = 246, $n = 6\pi_1 = 412356, \pi_2 = 642135$
	then $A\pi_2 \in E$ but $A\pi_1 \notin E$.
	Since G is longertite $\int d(A) = E = \int d(\pi)$
	Since G is loignotite, $\sum_{A \in \gamma A} d(A) = E = \sum_{\pi \in S_n} d(\pi)$
	A Sn

Proof

If $|\mathcal{A}| > 2^{n-1}$ then $\exists A$, A^c both in \mathcal{A} .

Then 4.7 (Erdős - Ko-Rado)

If $k \leq \frac{n}{2}$, $\mathcal{A} = \binom{n-1}{k}$ is intersecting, then $|\mathcal{A}| \leq \binom{n-1}{k-1}$ $\binom{n-1}{k-1} = \# \left\{ A \in \left(Cn \right) \mid 1 \in A \right\}.$ Proof
Let 122k, el = ([n]) intersecting. Let \mathcal{E}_n be the set of cyclic permutations of [n], \overline{ce} . the set of permutations of [n], where we consider $\pi = \sigma$ if we can get from π to σ by rotating where π and σ are both written around a circle. e.g. $\frac{7}{6}$ $\frac{2}{6}$ $\frac{7}{6}$ $\frac{3}{6}$ $\frac{4}{7}$ $\frac{7}{6}$ $\frac{1}{6}$ $\frac{1}{7}$ $\frac{k(n)}{2}(k-1) = k$ $\frac{k(n)}{n(k)} = \frac{(n-1)}{(k-1)}$ A set A is an interval in a cyclic permutation C iff A appears as consecutive elements of C. y C∈ C and n72k and I is an intersecting of intervals from C then |I|≤k.

Wring this lemma construct a bipartite graph $G = (C_n, A, E)$ $C \in C_n$ is joined to all by an edge iff A is an interval in C. $\frac{\int d(c) = |E| = \int d(A).}{A \in A}$ Take $C \in C_n$. $d(C) \le ?$ $\Gamma(C) \text{ is an intersecting family of intervals in } C.$ So Lemma $4.8 \Rightarrow |\Gamma(C)| \le k$, $d(C) \le k$. If $A \in \mathcal{A}$, d(A) = k!(n-k)! $\sum_{k!(n-k)!} |E| \leq \sum_{k} k$ $A^{c} : A^{c} : A^{c}$ Proof (if Lemma 4.8)

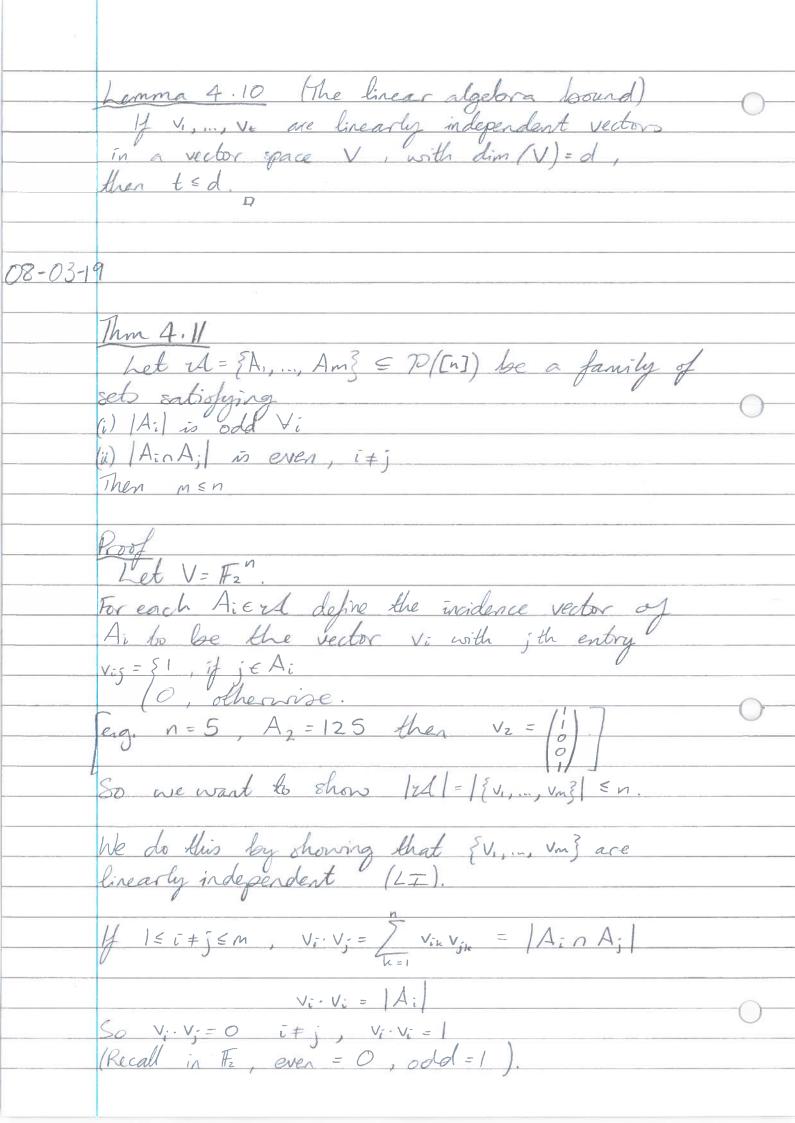
Let $C = C_n C_1$, suppose \mathcal{I} is an intersecting $n \ge 2k$ () family of intervals from CSuppose $I = \{C_1, C_{i+1}, ..., C_{i+k-1}\} \in \mathcal{I}$ For $j \in \mathbb{Z}$, define $I + j = \{c_{i+j}, ..., c_{i+j+k-i}\}$ where we interpret subscripts mod n. i.e. I + j is I rotated j positions clockwise. The only other intervals in C that meet T are T+1, T+2, ..., T+(k-1) T-(k-1), T-(k-2), ..., T-1. Note I+; and I-(k-;) are disjoint. So I contains at most \(\frac{1}{2} \cdot 2(k-1) \) of these intervals Hence III = k. D.

Compression Compression

For $A \subseteq [n]$, $1 \le i < j \le n$ define the ijth compression of A to be Cij $(A) = \sum_{i \in A} (A \setminus \{j\}) \cup \{i\}$, $j \in A$, $i \notin A$ e.g. C,3(234) = 124, C,3(123) = 123, C,3(456) = 456 Let rs = P((n)) Cij(rA) = { Cij(A): A & rA} o { A & rA : Cij(A) & rA} eig. A= {146,235,124,236} (C12(2d) = \$146, 135, 124, 1363 = 2d-C34(VA) = {146, 136, 135, 123} = vA" C23(24") = {146, 126, 125, 123} = 24, Cz((2Az) = {134, 126, 123, 125} = 2Aq C46 (244) = {134, 124, 123, 125} = {123, 124, 125, 134}

Compressions For $A \subseteq [n]$ and $|\leq i < j \leq n$ define $C_{ij}(A) = \{A \setminus \{j\}\} \cup \{i\} \}$ if $j \in A$, $i \notin A$ A otherwise

"Left) i,j compression" If el = P([n]) then Cij(rd) = {Cij(A): Acrd}ujAcrd: Cij(A)crd} zd={125,134, 235,135,245} C25(2d) = {125, 134, 235, 123, 245} =: 2d, C45(xA,)= \$124, 134, 234, 123, 245} =: xA, C34(2A2) = {124, 134, 234, 123, 235} =: 23 C13 (2/3) = {124, 134, 234, 123, 125} =: 2/4 So rd4 = {123, 124, 125, 134, 234} We say a family the P((n)) is left-comprened if Cij(rA) = rA \ \ \ | \ \ i \ \ i \ \ j \ \ \ n. Lemma 4.4 $\begin{array}{lll}
|f| & \forall A \in (Cn) \\
(i) & Cij(A) \in (Cn)
\end{array}$ (ii) $Cij(A) \in (Cn)$ (ii) | Ci; (vA) | = | vA|. iii) If it is intersecting then so is Co, (rd). iv) By repeatedly applying i, compressions (for appropriate i,) to id, we will eventually (ie, in finite time) obtain a left compressed family. (i) and (ii) follow from the definition.
(iii). Suppose It is intersecting but Ci; (IA) is not. So JA, Be Cij (A) st. An B= 8.


If A, BE EA then An B & & If A, B & Cij(Id) \ Id then i & An B. So wlog A & Cij(Id) \ Id and B & Id. A = Cij(rd) rd = i = A, j \ A.

If An B = \ Shen 3 De rd st. Cij(D) = A Now $i \in D$, $j \in D$ so $D \cap B \neq \emptyset \Rightarrow D \cap B = \{j\}$. So $i \notin B$, $j \in B$. Hence E = B\fi3v[i] ext But now Dr E = \$ *
Hence Cij (rA) is intersecting. (iv) For use (Cn) define s(rs) = [[a EN AERS AERS $S(zA) \le nk|zA|$ Note if $C_{ij}(zA) \ne zA$ then $S(C_{ij}(zA)) \le S(zA) - 1$ (since this is a set $A \mapsto A \setminus \{j\} \cup \{i\}\}$)

Hence after at most S(zA) left comprensions we obtain a left compressed family. We compressions to prove EKR-thm (again):

If n > 2k and v1 = ([n]) is intersecting, then |v1| = ([n-1]) Proof (Induction on n)
n=2/ Note result is easy for n=2k. Since $A \in rA \Rightarrow [n] \setminus A \notin rA$ Hence for n=2k, $|rA| \leq \frac{1}{2} \binom{2k}{k} = \binom{2k-1}{k-1} \checkmark$ So suppose n = 2k + 1 and result holds for smaller n. Let $\mathcal{A} \subseteq \binom{n}{k}$ be intersecting and left-compressed (can assume this by previous Lemma) MATH0029 05-03-19 Let B= {BEZA: n &B} C={C\{n}}: CEZA nEC} Since A = Bif CEL: nEC} 1x1 = 13/+12/ B = ([n-1]) is intersecting Inductive hypothesis > 1B/ = (n-2) (note n > 2k+1 => n-1 > 2k) C = {C\{n}: C \ext{en}: C \ext{exd}, n \ext{ec} \ext{c} \ext{en-1]}}

Claim: E is intersecting If I is not intersecting, then I C, D & E s.t. COD = &. Now let E = Cufni Exa F = Dufnj Erd |CoD| = 2k-2 ≤ n-2 So 3 i ∈ [n-1] \ (CUD) Since It is left compressed, G=E\{n}v{i} Ext But FOG = COD = x This pooves the claim. So E = [Cn-1] is intersecting. Our inductive hypothesis $\Rightarrow |\mathcal{E}| \leq \binom{n-2}{k-2}$ S_0 $|A| = |B| + |C| \le {n-2 \choose k-1} + {n-2 \choose k-2} = {n-1 \choose k-1}$

MATH 002 91 08-03-19 So $\{V_1, ..., V_m\}$ is orthogonal : is LI. Hence $|YA| = |\{V_1, ..., V_m\}| \leq \dim V = \dim F_2^m = n$ Thm 4.12 (Fisher's Inequality 1940)

If $A = \{A_1, \dots, A_m\} \in \mathcal{P}(C_n)\}$ and $k \ge 1$ is an integer such that Proof

V=R", let vi be the incidence vector of

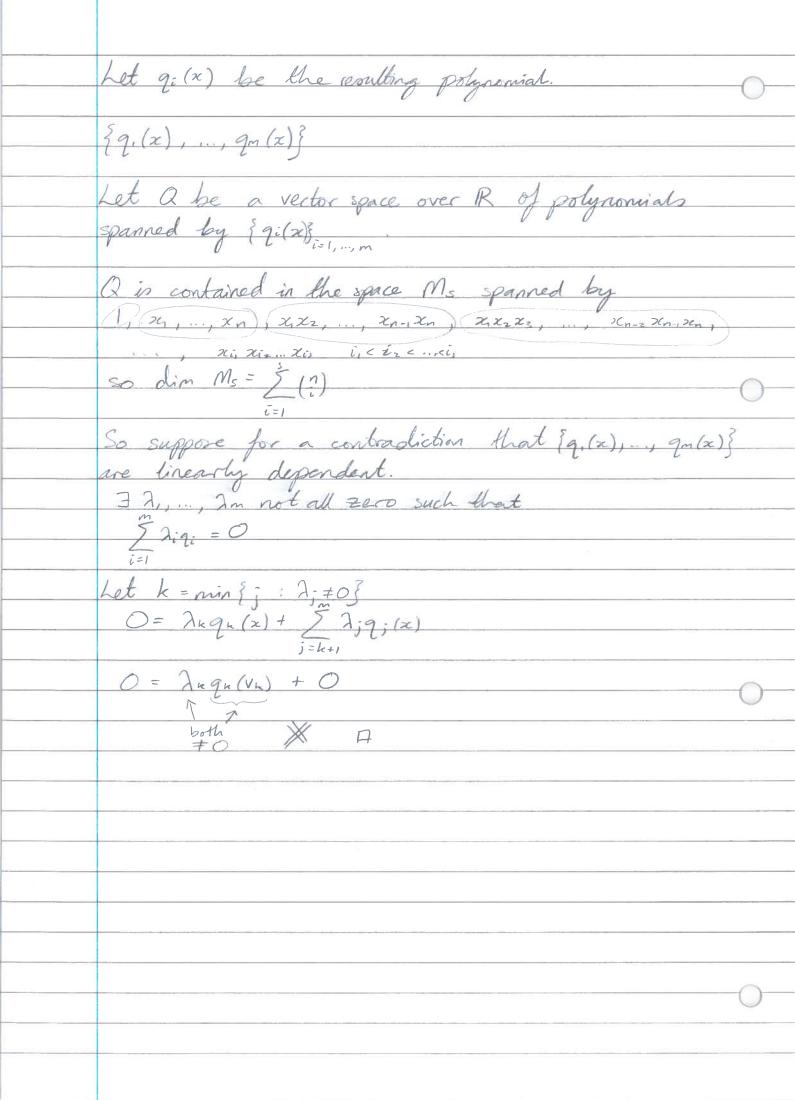
Ai. WTS: {vi,..., vm} is LI over R. If $1 \le i, j \le m$, $v_i \cdot v_j = |A_i \cap A_j|$ so $v_i \cdot v_j = |A_i|$, i = j (x)

[k, $i \ne j$ Suppose, for a contradiction that $\{v_i, ..., v_m\}$ are linearly dependent.

So $\exists A_i, ..., A_m \in \mathbb{R}$, not all zero, such that $\sum_{i=1}^m \lambda_i v_i = 0$. So $O = 0.0 = \left(\frac{m}{\sum_{i=1}^{m} \lambda_i v_i}\right) \cdot \left(\frac{m}{\sum_{j=1}^{m} \lambda_j v_j}\right)$ $= \sum_{i=1}^{\infty} \lambda_i^2 v_i \cdot v_i + \sum_{i=1}^{\infty} \lambda_i^2 \lambda_i^2 v_i \cdot v_i$ $= \sum_{i=1}^{m} \frac{1 \leq i \neq j \leq m}{1 \leq i \neq j \leq m}$ $= \sum_{i=1}^{m} \frac{\lambda_i^2 |A_i| + \sum_{i=1}^{m} \lambda_i |\lambda_i| k \quad \text{by } (\alpha)}{1 \leq i \neq j \leq m}$ Note: Y | = i = m, |Ai| > k with equality at most once. 0 = \(\frac{1}{2} \lambda_i^2 \lambda_i \left - k \right) + \(\frac{1}{2} \lambda_i^2 k + \(\frac{1}{2} \lambda_i \lambda_i k \) $O = \sum_{i=1}^{m} \lambda_i^2 \left(|A_i| - k \right) + k \left(\sum_{i=1}^{m} \lambda_i^2 \right)^2$ So $\sum_{i=1}^{m} \lambda_i^2 (|A_i| - k)$ and $\sum_{i=1}^{m} \lambda_i = 0$

Since the $\lambda_1, ..., \lambda_m$ are not all zero, (2) $\Rightarrow \exists a \neq b$ such that $\lambda_a \neq 0 \neq \lambda_b$. But (1) => $\lambda_i^2(|A_i|-k)=0$ | $\leq i \leq m$ so $\lambda_a \neq 0$, $\lambda_b \neq 0$ => $|A_a|=k=|A_b|$ Improvible since then $|A_a \cap A_b| < k$ A family L = P(n) is L-intersecting, $L = \{0,1,...,n\}$ iff $\forall A, B \in \mathcal{A}$, $A \neq B$, $|A \cap B| \in L$. e.g. L= {k} gives an L-intersecting family satisfying Fisher's Inequality. Thm 4.13 (Ray-Chaudhuri-Wilson 1975)

If $A \in P([n])$ is L-intersecting,

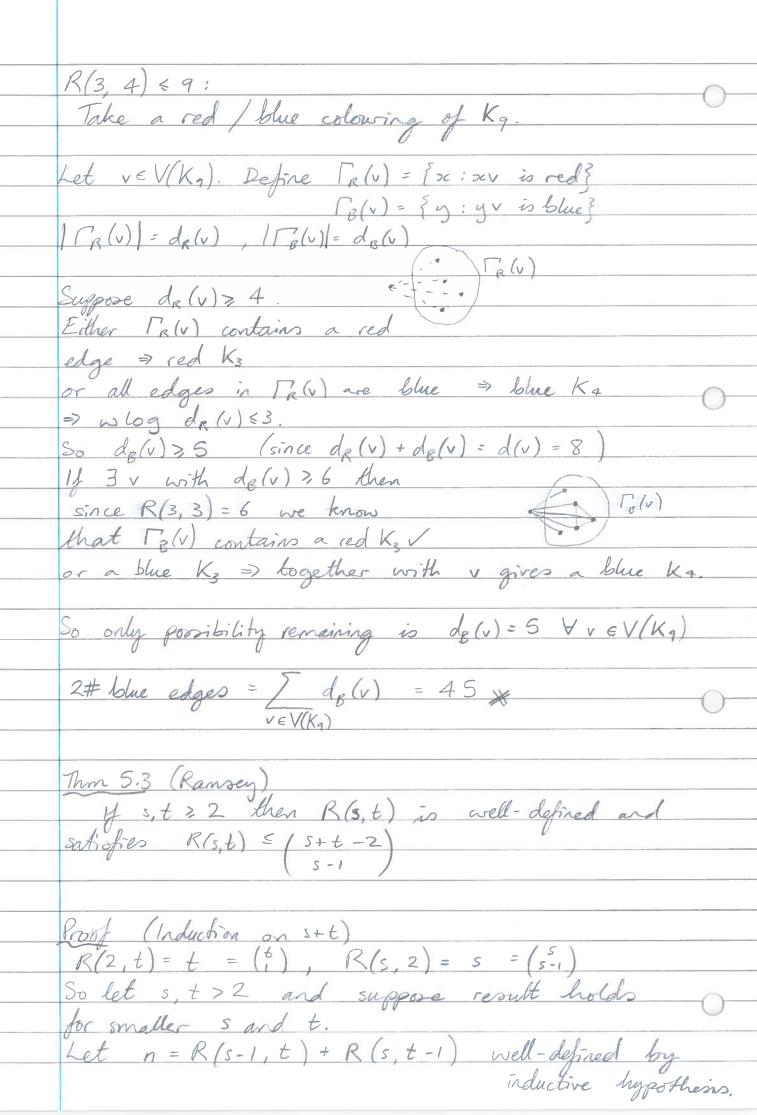

then $|A| \leq \sum_{i=0}^{|B|} \binom{n}{i}$. e.g. $L = \{0\}$, $A = \{\emptyset, 1, 2, ..., n\}$ and $|A| = {n \choose 0} + {n \choose 1}$. L= $\{0,1,s-1\}$ so |L|=s. Let $\mathcal{A} = \{A \subseteq [n] \mid |A| \le s\}$ \mathcal{A} is L-intersecting and $|\mathcal{A}| = \sum_{i=0}^{n} \binom{n}{i}$ This example I show that the theorem is "best possible". Proof lof thm 4-13)

Let $L = \{l_1, l_2, ..., l_5\}$ and $\{A = \{A_1, ..., A_m\}\}$ with $|A_1| \le |A_2| \le ... \le |A_m|$. Let vie R" be the incidence vector of Ai.

MATH0029 08-03-19 As before, v.·v; = |Ain A; |. For $1 \le i \le m$ define $\rho_i(x) \in R[x_1, ..., x_n]$ by $\rho_i(x) = T((v_i \cdot x) - l_k)$ where $x = |x_i|$ $k: l_k < |A_i|$ eig. $xL = \{1, 12, 123, 124\}$, $L = \{1, 2\}$, n = 4 $\rho_{1}(x) = 1$ $\rho_{2}(x) = (v_{2} \cdot x - 1) = \begin{pmatrix} 1 & \langle x_{1} \\ 1 & \langle x_{2} \\ 0 & \chi_{3} \end{pmatrix} = \chi_{1} + \chi_{2} - 1$ $\rho_{3}(x) = (v_{3} \cdot x - 1)(v_{3} \cdot x - 2)$ $= (x_{1} + x_{2} + x_{3} - 1)(x_{1} + x_{2} + x_{3} - 2).$ We have $p_i(v_j) = 0$, $1 \le j < i \le m$. Since $v_i \cdot v_j = |A_i \cap A_j| \in L$ and $v_i \cdot v_j = l_k < |A_i|$, we have that the term $(v_i \cdot v_j - l_k) = 0$. Note $p_i(v_i) \neq 0$, since $v_i \cdot v_i - l_n > 0$ for any h in the product.

($x_i^3 x_i^2$ has degree 5)

The degree of $p_i(x)$ is at most s, since it is the product of at most s linear terms. $x_1^3 x_2^4 x_3^5 = x_1 x_2 x_3$ if $x_1, x_2, x_3 \in \{0, 1\}$, $0^2 = 0$, $1^2 = 1$. Expand each $p_i(x)$ into terms of the form $C_{x_i}^{\alpha_1} x_2^{\alpha_2} \dots x_n^{\alpha_n}$. We can replace any a: > 2 by 1 without changing the value of this polynomial on {0,137.


MATH 0029 12-03-19 Chapter 5 - Ramsey Theory "There is no such thing as total disorder" For 3, t 3 2, let R(s,t) be the smallest nEN such that whenever the edges of Kn are coloured red and blue there is always a red copy of Ks or a blue copy of Ko. Prop n 5.1 R(3,3) = 6 Proof

R(3,3)>5 since = blue

no monochromatic Ks. $R(3,3) \le 6$: Suppose we have a red/blue - colouring of K_6 , let $v \in V(K_6)$. d(v) = 5 so $w \log 33$ blue edges containg v. V Now consider Tg(v). Either xy, xz, yz are all red => red K3, or one of these is blue => blue K3. So we always have a monochromatic K3. Pop 5,2 R(3,4)=9 Proof R(3, 4) > 8 Red edges drawn,

8 all other edges in the

7 kg are blue (not drawn
but still
there!) This has no red Ks or blue Ks.

MATH 0029 12-03-99 Take a red / blue colouring of the edges of K_n . For $v \in V(K_n)$, $\Gamma_R(v) = \{x : xv \text{ red}\}$, $d_R(v) = |\Gamma_R(v)|$, [B(v) = {y: yv blue}, dg(v) = [[B(v)]. dR(v) + dB(v) = d(v) = n-1 = R(s-1, t) + R(s, t-1) -1 Let $v \in V(K_n)$. V = (v) $\Gamma_B(v)$ $\Gamma_B(v)$ dR(v)+dB(v) = R(s-1,t)+R(s,t-1)-1 Either dR(v) > R(s-1,t) D or dB(v) > R(s, t-1) 3 since if \mathbb{D} and \mathbb{D} both fail then $d_R(v) + d_R(v) \leq R(s-1, t) - 1 + R(s, t-1) - 1$ In case O, TR(v) contains a red Ks-1 or a blue Kt, so with v we have a red K, or a blue Kt. In case 2, TB(v) contains a red Ks or a blue Kt-1, so with v we have a the Kt. Hence $R(s,t) \le n = R(s-1,t) + R(s,t-1)$.

helpful Also $R(s,t) \le (s-1+t-2) + (s+t-1-2) = (s+t-2)$ for hw? $R(s,s) \leq {2s-2 \choose s-1}$, $R(s,s) \geq ?$

15-03-19 R(s,t) = min { n ∈ N | Any red / blue colouring of Kn has a red Ks or a blue K+3 R(3,3)=6 R(3,4)=9 $R(s,t) \leq R(s-1,t) + R(s,t-1) \leq {s+t-2 \choose s-1}$ Propor S.4 R(4,4)=18 $R(4,4) \leq R(3,4) + R(4,3) = 18$ To see R(4,4)>17 take V(K,7)={0,±1,±2,...,±8} and let say be red iff |x-y| \ \{1, 2, 4, 8\} mod 17 otherwise xy is blue. This does not contain a red K4 or blue K4 (not proved) R(5,5) = ? $43 \le R(5,5) \le 48$ Show $R(5,5) \le 47 \rightarrow K_{47} - \binom{47}{2} = \frac{47-46}{2}$ Naively reed to check $2^{47\times23} \le V$. difficult to compute! $R(s,s) \leq (2s-2) \approx 4^{s}$

MATH 0029 15-03-19 Thm 5.6 (Erdös 1947)

If n > s > 1 satisfy $\binom{n}{5} 2^{1-\binom{s}{2}} < 1$ (%)

then R(s,s) > n. Let n>5>1 satisfy (*).

Consider a random red / blue colouring of the edges of Kn.

Each edge is coloured independently of all others and has P(edge is red) = P(edge is blue) = 1/2. For an s-set $S \in ([n])$ (where $V(K_n) = [n]$) define Xs = SI if S is monochomatic If X = # monochromatic copies of K_s then $X = \sum_{S \in (C_n)} X_s$ $E[X] = \sum_{S \in (X_s)} E[X_s]$ $\mathbb{E}[X_5] = P(X_5 = 1) = 2 \times \frac{1}{7^{\binom{5}{2}}}$ So $\mathbb{E}[X] = \binom{n}{s} 2^{1 - \binom{s}{2}} < 1$ Since X = 0 is integer valued, E[X] < 1 =) these exists a red/blue colouring of Kn with no monochromatic K.

Corollary 5.7 For 5>2, R(s,s) > 2 5/2 True for 5=2,3. Let 5 > 4, and let n = [25/2]. Need to check that $\binom{n}{s} 2^{1-\binom{s}{2}} < 1$ $\binom{n}{s} < n^s \le 2^{s^2/2} (s! > 2^s)$ $\binom{s}{s} = \frac{1}{s^2}$ $= \frac{n}{s} \frac{1 - \binom{s}{2}}{2} < \frac{2 \cdot \frac{s^2}{2} + 1}{2^{\frac{s^2}{2} - \frac{s}{2} + 5}} = \frac{2}{2^{\frac{s}{2}}} < 1$ In particular, (√2) < R(s,s) < 45 Thm (FLT) There are no non-trivial integer solutions to $x^n + y^n = z^n$ for $n \ge 3$ integer. Thm 5.9 For every n > 1, $\exists p_n$ such that for any prime $p > p_n$, the congruence $x^n + y^n \equiv z^n \mod p$ has a non-trivial solution. Thm S.10 (Schur's Thm) For any k >, 1, 3 S(k) > 3 such that for any k-colouring of the integers \$1, 2, ..., S(k)} I u, v, w ∈ [S(k)] that are the same colour and Entropy U+V+w.

MATH 0029 15-03-19 For $k \in \mathbb{N}$ and $s_1, \ldots, s_n \ge 2$, $\mathbb{R}_k(s_1, \ldots, s_n) = \min \{n \in \mathbb{N} \mid \text{Any } k \text{-colouring of edges of } K_n \text{ with colours } c_1, \ldots, c_n \text{ contains } a$ $C_i \text{-coloured } K_{s_i} \text{ for some } 1 \le i \le k \}.$ $\mathbb{R}_i = \mathbb{R}_i = \mathbb{R}_$ e.g. R3(2, 4, 6) Cashes for a ci-colowed K2 or c2-coloured K4 or c3-coloured K6. VKEIN, S., ..., Sm > 2, Rk(s., ..., Sh) is well-defined. * K=2 < Ramseys Thm. Let k≥3. n= Rx-1 (s1, ..., sk-2, R(sk-1, sk)). Colour the edges of Kn with colours c, ..., ck.
Pretend that colours ck., and ck are indistinguishable. So by def of Rk-1(3,,..., Sk-2, R(Sk-1, Sk)) we have a c, - coloured Ks, or a cz-coloused Ksz in or a cx-2-coloured Ksx-2 or a (ch., /ch)-coloured KR(sk., sk). In the last case, by defin of R(su-1, su),

Fack-1-coloured Ksk-, or a Ck-coloured Ksk. [Could also have argued with n = R (Rx-, (S,, ,, Sk-1), Sk)]

Proof of Schur's Thm)
Refine Ru(s) = Ru(s,s,...,s) Given k, let $n = R_K(3)$. Now suppose we have a k-colouring of the integers $\{1, ..., n\}$. We need $u, v, w \in [n]$ st, u+v=w and c(u) = c(v) = c(w). Refine a k-colouring of K_n , $V(K_n) = [n]$ by C'(ij) = C(1i-jl) [e.g., $\frac{1}{2}$] $\frac{1}{2}$ $\frac{1}{2}$ Now $n = 0 \times (s)$ - suppose of knSay $a = 0 \times (s)$ - suppose a > b > c $c = 0 \times (s)$ $c = 0 \times (s)$ So u + v = w, and c(u) = c(a-b) = c(|a-b|) = c'(ab) = +c(v) = c(b-c) = c(1b-c1) = c'(bc) = yc(w) = c(a-c) = c(la-cl) = c'(ac) = . Hence, we can take S(k) = Rk(3). Write Zp = non-zero integers mad p $= \{1, 2, ..., p-1\}$ $\neq p$ is cyclic primitive root.

i.e. $\exists g \text{ a generator of } \mathbb{Z}p^*$ i.e. $\mathbb{Z}p^* = \{g, g^2, ..., g^{p-1}\}$

MATT+0027 -03-19

Proof (of Thm 5.9) LAlways worms

Let n > 1 and let p be prime, p > S(n)

given by Schur's thin 15-03-19 Consider Zp* with generator g.

If x ∈ Zp* , I unique 1 ≤ m ≤ p-1 such that $x = g^{M} \mod p$ Define an n-colouring of E_p * as follows. Let $x = g^{nj+i}$, $0 \le i \le n-1$ Define c(x) = i (since we can always write m = nj+i, i is the remainder $0 \le i \le n-1$). By Schur's Thm, $\exists u, v, w \in E_p$ * such that u+v=w and c(u) = c(v) = c(w) = i. So $u = g^{nju+i}$, $v = g^{njv+i}$, $w = g^{njw+i}$ $gc = g^{jn}$, $g = g^{jv}$, $z = g^{jw}$ $x^{2} + y^{3} = g^{3} y + g^{3} y = g^{-i} \left(g^{3} y + i + g^{3} y + i\right)$ $= g^{-i} \left(u + v\right) = g^{-i} \omega = z^{2} \mod p$ \square 19-03-19 Arithmetic Progressions (AP) Thm (Green-Tao)
The primes contain A.P.s of all lengths An arithmetic progression is a, a+d, a+2d, ..., a+(t-1)d this has length t.

Then (Van der Waerden).

If k > 1, t > 1 then 3 W(t, k) s.t. any

k-colouring of [W(t, k)] contains a monochromatic
arithmetic progression (MAP) of length t. Suppose we have k-coloured N. Then P.,..., Pr MAPs each of length to are said to be colour focused it P.,..., Pr are all MAPs of different colours with a common possible next term. e.g. P. 1 6 11 (6)
P. 4 8 12 16
P. 13 14 15 16 In this case, if we only have 3 colours then Pi v {16} is a MAP for some 1 \le i \le 3. Poof (of VIW thm) (Induction on t) W(1,k)=1, W(2,k)=k+1Suppose $t \ge 3$ and W(t-1,k) is well-defined for any k. Claim: for any $1 \le r \le k$, $\exists n_r(t,k)$ such that any k-colowing of $[n_r(t,k)]$ contains either

(i) a MAP of length tor (ii) r colows focused MAPs of length t-1. Assume claim holds, now consider a k-colouring of $[n_k(t,k)],$ either (i) holds => this contains a MAP of length to or (ii) holds => we have Pi, ..., Ph colour poused MAPS of length t-1.

MATH 0029 19-03-19 Look at the common focus of P. ..., Pr., say f.

Since thex MAPs have colours I,..., k, one of them (say P.;

has the same colour as f, so Piv Eff is a

MAP of length t. \Rightarrow Can set $W(t,k) = n_k(t,k)$ Result will follow by induction on t. A Roof of claim.

For r=1, define n,(t,k) = W(t-1,k).

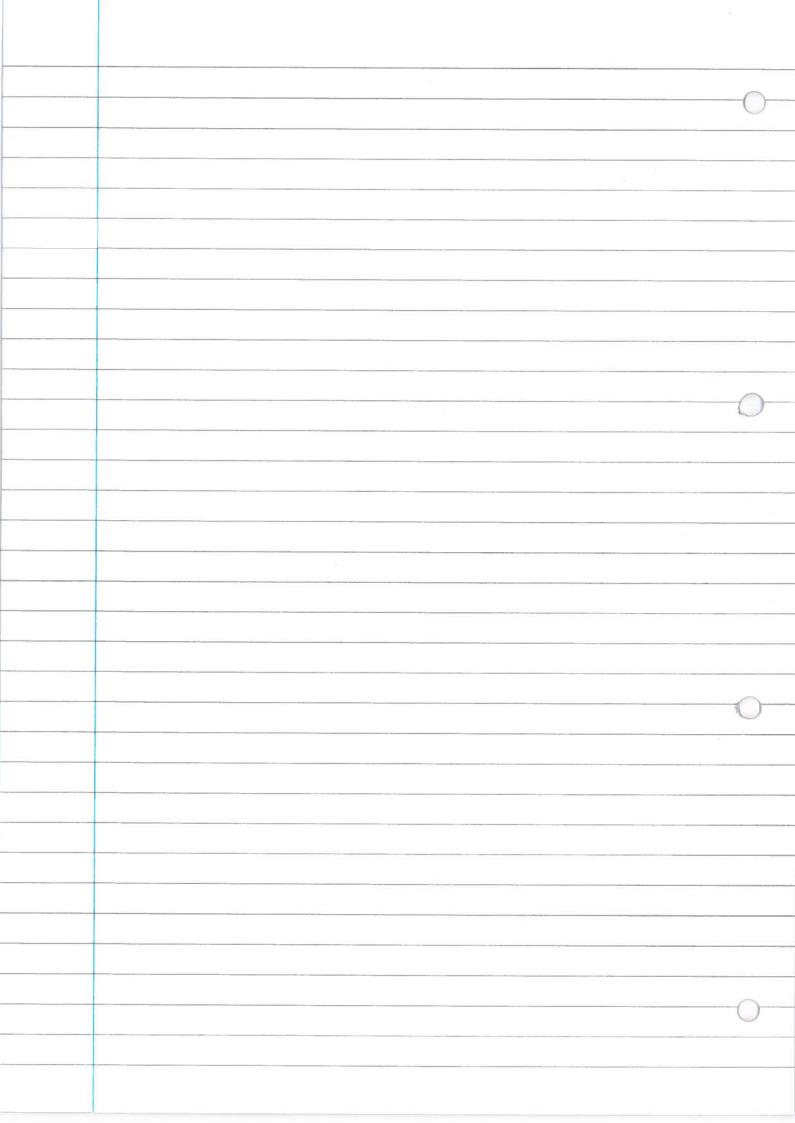
Now use induction on r.

Suppose r>2 and $n_r,(t,k)$ is well-defined.

Write $n = n_r,(t,k)$. We will show no (t, k) = W(t-1, k2n) 2n. Take a k-colouring of $[n_k(t,k)] = [W(t-1,k^2) 2n]$. Assume there is no MAP of length t. NTS (ii) holds. Consider this colouring as a colouring of blocks $B_1, B_2, ..., B_{W(t-1, k^2n)}$ each of length 2n, $B_{i} = \left[2n(i-1)+1, 2ni\right].$ There are ken ways to colour a block Bi Looking at our colouring as a k2n colouring of blocks, we see that since we have W(t-1, k²ⁿ) blocks then by definition of W(t-1, k²ⁿ).

I a MAP of blocks of length t-1.

Write this MAP as B_s, B_{s+v}, ..., B_{s+(t-2)v}.


Bs Each block Bs, ..., Bs+(4-2) Bs+v NO DE DE DE STORE the others. B_{s+(t-2)v} $[XQ \times Q \times Q \times Q]$ where $n = n_{t-1}(t, k)$ i. By contains r-1 colour focused MAPs of length t-1, say P1, ..., Pr-1 where Pi={ai, ai+di, ..., ai + (t-2)di}. Take $P_i' = \{a_i, a_i + (d_i + 2nv), \dots, a_i + (t-2)(d_i + 2nv)\}$, $1 \le i \le r-1$, all solid colour focused MAPs of length t-1 with focus f + (t-1)2nv. Define Pr'= {f, f+2nv, ..., f+(t-2)nv}
gives our run colour focused MAP. 22-03-19 Thm 5.13

Whenever $\binom{N}{2} = K_N$ is 2 coloured, $\exists A \subseteq N$ is finite such that $\binom{A}{2}$ is monochromatic Proof

Take a red / blue coloning of the edges

of (N). Set a.=1. Banga. Set az = min A., then 3 Az C A, \{az} infinite, with all edges from az to Az being the same colour, say cz.

MATH0029 22-03-19 Construct $\{a_n\}_{n=1}^{\infty} \subseteq \mathbb{N}$, $\{c_n\}_{n=1}^{\infty} \subseteq \{red, blue\}$ if i < j then a:a; has colour is (since a; EA; and all edges from a; to Ai have colour Ci). Take a subsequence of { ch} is that is constant, say { ch} is Then A = {a k } gives an infinite set for which (A) is monochromatic.

