3508 Financial Mathematics
Notes

Based on the 2015 springdectures by DrjJWalton

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s)
accepts no responsibility whatsoever for mistakes on the notes nor changes to the syllabus for the current year.

The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this
document as a reference only.



Q3 /10 /14

M3508: Mathematics of Finance

Dr Jamie Walton

Morgan Stanley and
University College London

Autumn 2014

walton@math.ucl.ac.uk

https://www.facebook.com/DrJamieWalton

Thurs Gom  Hw dead (rie



1 Introduction

1.1 What is financial mathematics?

Mathematical finance as a discipline covers the broad area of all mathematics
applicable to finance and banking. For example:

e Stock prediction

Portfolio theory (Capital Asset Pricing Model)

Utility theory (of investors)

Game theory (for trading, eg. 4G licence auction, Nash equilibria)

Valuation theory (for valuing companies/assets; Corporate Finance)

Real option theory (for valuing decision-making)
e VaR - Value at Risk (for risk-management)
e Derivative pricing

This course will look at the most mathematically precise, wide-ranging
and, in my opinion, interesting of these topics: derivative pricing (not least
because that is my job).

Derivative pricing dates back to 1900 (Bachelier) though in reality took-
off with the Nobel-prize winning theories of Black-Scholes-Merton and the
advent of derivative trading on exchanges in 1973. Derivatives are now the
largest assets traded globally and drive the world’s capital economies. The
mathematics underlying the pricing of derivatives is the fastest growing and
probably the largest area of mathematical research currently although the
bulk of research is proprietary and unpublished.

1.2 What is a derivative?

First, we need to define the main asset classes of finance. These are:
e Equities: Stocks/shares, stock indices (FTSE, S&P Nasdaq...)

Hoans asgevt debd UK eguvelent
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e Interest Rates: Bonds, swaps, treasuries, gilts. ..
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e Foreign Exchange (FX): EURUSD, GBPUSD, USDJPY...
e Commodities: Oil, gas, precious metals, porkbellies, weather. ..

e Credit: CDS, CDO...
credet depuy swap
Definition 1. A derivative is any product whose value is dependent on one
or more underlying assets.

Two common types of derivatives are forwards and options:

Definition 2. A forward allows you to buy or sell an underlying asset at a
future date at a level determined today. The level where you buy or sell is
often called the strike. ¥

Forwards are usually traded for zero value so that all cash-flows, which
can be either positive or negative, occur on the expiration date.

The value of a long forward at time T is given by:
'ioua
Fwd(T)=S(T)- K
where S is the underlying asset and K is the strike price agreed at the
start. This is called the payoff function.

Futures have the same payoff as a forward but are usually traded on
exchanges and have a different profile as margin needs to be posted over the
life of the option to cover the change in value of the position. This leads to
a difference in accounting for a forward and a future.

So the value of a forward can go positive or negative. What if we only
want to be exposed to positive payoffs?

Definition 3. An option is the Tight to buy/sell the underlying asset at a
fized strike on a given future date.

An option to buy the underlying is called a call option and the option to
sell the underlying is called a put option.

As the option is a right and not an obligation, it is only exercised if it
has positive value (we say it is in-the-money).
The payoff of call option struck at K is:

Call(T) = maz(S(T) — K, 0)

There are two common types of options:
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Definition 4. A European option is only ezercised on the ezpiration date.
An American option can be exercised at any point during the life of the option.

Since an option has positive value at a future date, a fee called a premium
has to be paid to buy options. Calculating the price of an option will be the

primary concern of this course.

1.3 What mathematical techniques will be useful?

e Linear algebra

v
e Probability theory: expectation, PDFs, normal distributions, central A/ (70” Le
limit theorem, variance/covariance
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e Probability measures: filtrations, change of measures

e Conditional expectation and martingales

e Brownian motion

e Stochastic calculus, Ito’s lemma

e PDEs, Feyman-Kac
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2 Introduction to Foreign Exchange

Foreign exchange is the largest market in the world with a reported $1.5
trillion traded every day. The vast majority is traded interbank and the
options market is primarily over-the-counter (OTC). All asset classes have
some FX dependency, for example, if you are a UK investor in US equities
you have exposure to the US dollar (USD) exchange rate against the GB
pound (GBP).

2.1 Notation

The underlying asset in FX is the exchange rate between 2 currencies which
are denoted by 3-letter abbreviations:

e GBP: GB pound (also known as Sterling)

e USD: US dollar

e JPY: Japanese yen

e EUR: Euro

e CHF: Swiss Franc (Swissie)

e AUD: Australian dollar (Aussie)

e NZD: New Zealand dollar (Kiwi, or the Bird)
e CAD: Canadian Dollar (Loonie)

So the Sterling-dollar exchange rate is written as GBPUSD = 1.7710
which means 1 GBP is worth 1.7710 USD.

Buying GBPUSD means buying GBP and selling USD.
A call option on GBPUSD is a call on GBP/put on USD.

In reality all transactions are an exchange of assets. When you buy
UK shares such as Vodafone you are exchanging VOD for GBP, ie. buying
VODGBP.
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2.2 Triangular arbitrage

There is a natural relationship between exchange rates:

Buying GBPUSD @ 1.7710
Selling EURUSD @ 1.2150

in the same amount of USD (same USD notional) is equivalent to:
selling EURGBP
So what is the exchange rate for EURGBP?

It had better be 1.2150/1.7710 = 0.6861 otherwise I can make free money!
This is known as triangular arbitrage and, normally, transaction costs such
as commission and bid/ask spread prevent this from occurring.

Arbitrage is the primary mechanism stabilising the markets and we will
talk more about different arbitrage opportunities next week.
(an have guadrople atwra 2
2.3 The carry trade

Suppose I am a JPY based investor earning 0% interest on my savings. I
may prefer to put all my cash in GBP and earn 5% interest. This is the
simplest example of a class of ”arbitrage trades” known as carry trades.

Note: I have put the word arbitrage in quotes because this trade does
not lead to guaranteed returns, the clear risk here is that you are exposed to
exchange rate moves.

2.4 Siegel’s paradox

Lets suppose GBPUSD falls from 2.00 to 1.5, ie 25%. For a USD based in-
vestor, USDGBP has risen from 0.5 to 0.6667, ie a gain of 33%.

Does this asymmetry matter?

We shall talk about this later in the course and see some of the consequences.




2.5 Covered interest rate arbitrage

FX forwards are normally traded for zero cost. How can we calculate the
strike value for an FX forward?

Example 5. Let us calculate the value of a 1 year USDJPY forward. We
know the values:

e Spot USDJPY = 120.00
e USD interest rate = 4%
e JPY interest rate = 1%
What else do we need to know?
e Expected return on USDJPY?
e Volatility of USDJPY?
o More generally, expected return distribution of USDJPY?
NO!

The price of a forward can be determined purely by arbitrage.
It is independent of where spot is in one year’s time.
It is independent of the expected distribution of returns on spot.

2.5.1 Graphical explanation of covered interest rate arbitrage

Timet=0: USD Sp;oi)i JPY

Z;% -  Tuspl l"'JPY"‘:/C/U

Timet=1y: USD Fwd JPY

To deliver a fwd in one year’s time, either,
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e Invest USD and earn USD interest rysp. Convert to JPY at fwd value
in 1 year’s time, or

e Convert to JPY today and earn JPY interest r;py for 1 year.

These must be equivalent or there is an arbitrage.

2.5.2 Arbitrage equation
an am ounF
Suppose we have a notional amount of USD denoted Nygsp. Then
Lm-e
® SpOt * NUSD * (1 + rypy * Tr—
e Nysp*x(L+rysp*T) x Forward

By arbitrage, these are equivalent so

(1 -+ ’I'prT)

Fwd = Spot *
p (1 +7'USDT)

This form of arbitrage is called covered interest rate arbitrage and causes the
relationship between spot and forward to be determined by covered interest
rate parity.
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3 Forward pricing

Using Foreign Exchange as our example we have showed how the price of
forwards can be determined using arbitrage (in that example, covered interest
rate arbitrage). The value of an FX forward can be determined from the
benefit of owning JPY (ie. the JPY interest) versus the loss from not owning
USD (the USD interest). From this we can define a general principle for
forward pricing as follows.

Proposition 1. The value of a forward is derived from the value of the
underlying asset together with the gains/losses associated with holding/not
holding the asset until expiry.

Fwd=S+(gains from holding currency)-(losses from not holding asset)

3.1 Equity futures

We will demonstrate this principle using equity futures. First, we need to
explain the concept of a dividend.

Definition 2. Owning a share gives the shareholder the right to a dividend
payment at certain intervals during the year. This payment is usually made
in cash. '

A dividend payment rewards long-term investors in a stock and enables
them to earn money from holding stocks without having to close their po-
sition. Large stable companies try to give regular divident payments to
stockholders. Growing companies often don’t give dividends but expect the
stockholders to benefit from the growth of the stock. Microsoft famously gave
no dividends in the 90’s although in recent years they have started paying
dividends.

Example 3. Suppose UCL shares are trading at 10GBP and interest rates
are at 5%. UCL pays a dividend of 0.50 GBP in 6 months time. What is the
value of the 1 year future on UCL?

UCL(1y) = UCL(0) * (14 5%) — 0.5 % (1 + 5%/2) = 9.9875

Hoidny  shae>~ gt cleviclengly
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4 Interest rates

4.1 Compound interest

Suppose you invest a sum P at an (annual) interest rate of r, compounded
m times a year. This means that simple interest of r/m is charged m times
per year, with the sums being compounded. So if you invest principal P, at

'S o4 Q
the end of one year you will have ot MAT

- 28]
g B Vi

P(1+r/m)" o1+ )

The total interest you receive is P(1 + r/m)™ — P, which is equivalent to an
effective interest rate of
14+r/m)™—1.

Example 4. A credit card company charges 12.9%, compounded monthly.
This is equivalent to an annual rate of

129\
(1 + %) —1=1.01075" - 1=0.1369- - - .

Thus the effective annual rate is almost 13.7%.

As we compound more frequently, the effective rate increases. Asm — oo,
we get
(I4+r/m)™—e.

If we invest V(0) = P at rate r compounded continuously, this means that
after t years we have
V(t) = Pe™.

(We do not need t to be an integer.) So, taking ¢t = 1, the effective rate is

total interest V(1) -V(0) Pe*—P

— = =e —1
initial investment V(0) P

10



4.2 Present value

Suppose that we are free to borrow and lend money at interest rate r, com-
pounded m times a year. What is the value to us today of a payment V(t)
that we will receive at time ¢t? We must discount the sum V' (¢) to allow for
the passage of time: it will be worth less at time ¢ > 0 than it is now.

A sum V/(0) invested today will be worth

V(0)(1+r/m)™
at time ¢. This equals V'(¢) when
V(0) = (L+r/m)"™V(1),

which is called the present value or discounted value at time 0 of the payment
V(t) at time ¢. Similarly, the present value of a payment V (t) at time ¢, with
interest rate 7 compounded continously, is

V(t)e .

The present value of a sequence of payments made over time is obtained
by adding up the discounted values of the separate payments.

—rt

The value e~ is known as the discount factor.

4.3 Bonds

A bondis a financial instrument that pays a regular sum, known as the coupon
for a specified period of time, and an additional final payment, known as the
principal. The final payment is made at the same time as the last coupon
payment. A zero-coupon bond has only a final payment.

The yield of a bogg ig igs Late of return. Typically, the yield of a bond
with given face value and coupon will vary with its time to maturity. We can

draw a graph of bond yield against maturity: this is know as a yield curve.

11
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5 Representing assets and claims

5.1 Contingent claims

What are the basic ingredients we need to construct an option?

o A set Q of “states of natures” or contingencies: these represent the
possible outcomes or “possible worlds”.

e A schedule of payments or claim X : Q — R. In other words, a function
that tells us the financial consequences of each possible outcome w € Q.

Example 5. Call option with strike price K and expiration date T'. Let us
take Q = RY, where w corresponds to the event “S(T) = w”. Then

X(w) = (w—K)*
= max{w — K, 0}

Example 6. Consider a stock that has value 1 today, and may go either up
or down tomorrow. Let us have 2 = {Heads, Tails}, with

XH) = 1.01
X(T) = 0.99.

(We could write w; =H and wy =T.)
What about if we just hold onto a sum in cash? Let B be the payoff from
doing this, so

B(H) =
B(T) = 1;

whatever we do, we end up with the same amount.

Suppose we buy M wunits of the stock. Let G be our overall position to-
morrow, so G is the value of M units of stock, minus the amount M that we
have spent. (In other words, G is the amount we have gained.) We have

g G(H) = M(1.01—1) =0.01M
G(T) = M(0.99 —1) = —0.01M.



We can write this example in vector notation: let
X =(X(H),X(T)) = (1.01,0.99)

and
B = (B(H),B(T)) = (1,1).
Then
G = (G(H),G(T))
= MX-MB
(0.01M,—0.01M).

We will either gain or lose. Should we expect each to happen with probability
1/27

Example 7. Suppose we have two assets X andY that behave independently
but identically. So

X(1)=1.01 Y(1)=1.01
X(0)=1 Y(0)=1

X(1)=0.99 Y(1)=0.99

We define Q = (HH,HT,TH,TT). In vector notation, we have
X = (1.01,1.01,0.99.0.99), Y = (1.01,0.99,1.01,0.99).

Suppose we invest M by dwersifying M/2 on X and M/2 on'Y. We end
up with gain
M

G = S (X+Y)-MB

= M(0.01,0,0, —0.01).

Should we expect each outcome to be equally likely? It looks as though diver-
sification has reduced the risk.

13




5.2 The portfolio space

The basic setup we have is as follows.

e A set Q = (wi,...,wn} of basic outcomes or states of nature. Q is
often known as the sample space.

e Probabilities on the states: P(w;) >0, >0, P(w;) = 1.

e Contingent claims (or, in probabilistic language, random variables) are
functions X : @ — R. We say that X has value X (w;) on contingency
Wi.

We will often use the vector space notation: X can be represented by the
vector

X = (X(w1), .., X(wm)) € R™.

The riskless asset is
1=(1,...,1),

as the value of the riskless asset does not depend on w (although it may
depend on time).

Often we will have more than one asset in play, so we can produce port-
folios of assets. For instance, suppose we have assets with names 1,...,N. -
These have prices S;(0),. .., Sy(0) now, and prices Si(T,w), ..., Sn(T,w) at
time 7' if we are in state w. Using the vector notation, we get prices

Si(T),...,Sn(T)

at time T, where these NV vectors are in R™.
The vectors S1(T),...,Sn(T) do not need to be independent. We define
the portfolio space to be

lin{S(T),...,Sn(T)}.

Why does this make sense? Suppose we have H; units of S;, Hs units of S,
and so on. We allow H; to be either positive or negative: if H; > 0 we say
that we are long in S;, while if H; < 0 we say that we are short in S;. We
can write our portfolio of assets as

H-—_—(Hl,...,HN).

14



[This is a vector in RY, while the prices S;(T),...,Sx(T) are in R™]
What is the value Vp(H) at time T of the resulting portfolio? For each
state w, we have

N
Vr(H,w) = > H;Si(T,w).
i=1
In vector notation,
N
Vr(H) =) HS(T).
i=1

The set of vectors that we can achieve in this way is given by the portfolio
space.

Question: What is the value of the portfolio H at time 0? Should it be
Soi HiSi(0)?

15
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5.3 Replicating an option: an important example

Let us return to the example of a call option X with strike price K and
underlying stock S. Suppose that the stock is worth S(0) today, and either
goes up to Sy or down to Sy tomorrow.

SH = S(T, ngh)

SL = S(T, LOW)

We assume that S; < K < Sg. Recall that the value of the option X
tomorrow is (S, — K)* = 0 if the stock goes down and (Sy — K)T > 0 if the
stock goes up. In vector notation, we have

X = (O,SH—K)

Now consider a portfolio composed of the stock S and the riskless asset. Does
the call option X lie in the portfolio space?
In vector notation, we have

S = (S, SH), 1=(1,1),
¥
and the question is whether X € lin{1, S}. In other words, we want to solve

the equation
ul +vS =X,

where we write H = (u, v) for our portfolio. This is equivalent to the simul-
taneous equations

u+vSy = 0
'U,+’USH SH—K,

which are solved by
Y Sy—K
- Sy -S;

16
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and
Sg— K

Sy —SL
It follows that we can replicate the option by a combination of the stock and
the riskless asset. This is very significant.

u = —’USL = —-SL

Example 8. Consider the following asset.

Su =2

Sy =1/2

A call option with strike price K = 1/2 will have value 1.5 if the stock
goes up and 0 if the stock goes down. How do we replicate this? We have

S=(1/2,2), 1=(1,1),

and 1
X =(0,3/2) = —51 + S.

So the call can be replicated at time 1 by a portfolio consisting of —1/2 unit
of the riskless asset and one unit of the stock.

17




6 Arbitrage

6.1 An arbitrage argument

Suppose we have assets S; and S,, and that S; is always worth the same as
Sy at time T'. In other words, we have

S1(T,w) = So(T,w)

for every state w € . Shouldn’t S; and S, have the same price today?
Let us suppose that S; and Sy have different prices, say

p(S1) < p(S2),

where we write p(S) for the price today (at time ¢ = 0) of asset S. We
can use this situation to make money in the following way: at time 0 we
buy a unit of S; and sell (or go short) a unit of S;. We receive the price
difference D = p(S2) — p(S1) in cash, which we place in a bank. We now
do nothing until time 7. At time T, we sell our unit of S;, and use it to
purchase one unit of Sy, leaving us with no holding in either asset. Since
we have S1(T,w) = So(T,w) for every state w, the sale of S; pays for the
purchase of S;. We are left with the money in the bank, which will by now
have increased to (1 + r)D, where 7D is the quantity of interest we have
earned.

So if p(S1) < p(S2) (or similarly if p(S;) > p(S2)) we are able to make a
profit without any risk at all: this process is known as arbitrage.

We can express the same argument in another way, by considering port-
folios. Suppose that S; and Sy are worth the same in all states at time T,
but that p(S;) < p(Ss). Let H be the portfolio consisting of 1 unit of S;, —1
units of Sy and D = p(S2) — p(S1) units of cash. The price of H at time 0 is

p(H) = p(51) — p(S2) + D =0,
while we have
Vr(H,w) = S1(T,w) — So(T,w) + (1 +7r)D =(1+7r)D > 0,
for every w € €. So we have a portfolio with cost 0 at time 0, but positive

value in every state at time 7". This is clearly a good way to make money!

18



6.2 Two types of arbitrage

In the example above, we saw a portfolio which guarantees a profit regardless
of the state at time 7.

Definition 9. We say that a portfolio H is a sure-thing arbitrage if
Vo(H) =0

and, for every w € Q, ‘
VT(H,w) > 0.

As we have seen above, a sure-thing arbitrage offers us a way to make a
guaranteed with no risk. It may also happen that we have a possibility of
profit without risk, as follows.

Definition 10. We say that a portfolio H is an arbitrage opportunity if

Vo(H) =0,
Vr(H)

v

0 for every w € Q
and

Vr(H,w) >0 for some w € Q.

It is clear that if there is no arbitrage opportunity (for a given set of
assets) then there is no sure-thing arbitrage. Both assumptions imply that
price is a linear functional.

Lemma 11. Suppose we have assets with claims X, Xy,...,X;. If X =
Zle A X; and there is no sure-thing arbitrage then the current price satisfies

p(X) = Zfzo Aip(X).

Proof. Consider the portfolio H consisting of p(X) — Zle Aip(X;) units of
the riskless asset, —1 units of X, and \; units of X; for each 7. If p(X) >
S°F  Aip(X;) then H is a sure-thing arbitrage. If p(X) < Zle Aip(X;) then
—H is a sure-thing arbitrage. O

19




6.3 Valuing a call option

Let us return to the two-state model of a call option X with strike price K
and underlying stock S. The stock is worth S(0) today, and either goes up
to Sy or down to Sy, tomorrow.

Sy = S(T, High)

5(0) <

Assuming Sp < K < S, we found that we could replicate the call option
by

St = S(T,Low)

X =ul +vS,

where
we g SE-K _ Su-K
TP, — 5, T Sy—S.

If the interest rate is 7 we get

)= 8(S) =S(0),
and so
p(X) =7 250
Sy —K Sy
:S:—SL <S(O)_1—|—r) W)

It is helpful to write this in terms of present value. We adopt the following
convention.

Definition 12. The present value of a payment R at a fized point in the
future is denoted R*.

In this case, S}; = Sg/(1+7), and so on. Using this notation, we rewrite
(1) as
 Sy-K*

p(X) = S =51 (5(0) - S7) =

5(0) - 53

20



6.4 Put-Call Parity

If we assume that there is no arbitrage opportunity, we can also derive a useful
(and quite general) relationship between prices of put and call options.

Theorem 13 (Put-Call Parity). Let C be a European call option and P a
FEuropean put option on a stock S, and suppose that both options have the
same strike price K and ezpiry date T. If there is no sure-thing arbitrage
then

P(0) — C(0) = K* — 5(0).

Proof. We define two portfolios as follows. Let H; consist of one unit of
stock and one put option, and let Hy consist of K* of the riskless asset and
one call option. Recall that, at time 7', the call option is worth

C(T) = max{S(T) — K,0}
and the put option is worth
P(T) = max{K — S(T),0}.
At time T, the value of H; is
S(T) + P(T) = S(T) + max{K — S(T),0} = max{S(T), K},
and the value of Hs is ‘
K + C(T) = K + max{S(T) — K, 0} = max{S(T), K}

Thus H; and H; have the same value at time 7' (in every state). The
assumption of no sure-thing arbitrage implies that at time 0 we have p(H;) =
p(Hy), and so S(0) + P(0) = K* + C(0). O

Put-Call Parity only applies to European options. With American op-
tions, we may choose to exercise the option before its expiry, so that we
would no longer be holding the option at time 7.
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7 Basic ideas from probability

7.1 Expected value

Recall that for a finite sample space Q = {ws,...,wn}, we say that P: Q —
[0, 1] is a probability on Q if Y, P(w;) = 1. The probability of A C Q is
then P(A) = > c4 P(w).

A random wvariable or contingent claim is a function X : Q@ — R. The
expected value of X is then

where P = (P(w), ..., P(wn))-
We have the following familiar examples.

Example 1 (Coin tossing). Suppose that Q = {H,T} and P(H) = P(T) =
1/2 (so we have a fair coin). If we make a bet that pays 2 on heads and 0 on
tails then the payoff is

X = (X(H), X(T)) = (2,0)

and 1 1
E[X]|==24+=-0=1.
[X]=52+30

Example 2 (Roll of a die). We have Q = {w1,...,ws}, and (assuming a
fair die) P(w;) = 1/6 for every i. Suppose the payoff is defined by X (w;) = 1
for every i. Then
1
IE[X]:E(1+2+---+6)
= 143)

A more interesting example arises when we consider the two-state model
of a call option.
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Example 3 (Valuation of a call). Recall our two-state model of a call option.
A stock is worth S(0) today, and either goes up to Sy or down to Sy, at time
T. We consider a call option X with strike price K, where S, < K < Sg,
and so claim (S(T)—K)T at time T. We used replication of the call to obtain
a no-arbitrage valuation of

S(0) - 5

Suppose that Si < S(0) < S§. (Why is this a reasonable assumption?) We
can describe the situation as follows.

Asset Call
qH SH Sy — K
S(0)
qr St 0

We can define ‘high’ and ‘low’ probabilities by f,ﬂ)e/}&

_5(0) - 5%
TR
and S5 5(0)
qgr=1—qg = %
Sk =5t
This gives a probability measure Q with

Eg[X*] = qu(Sy — K*) + 41 - 0, ane cald (SCT)- i)

which is equal to our valuation of the call option.
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The probability measure QQ in Example 3 is called the synthetic probability,
and has some important properties. The expected value of the stock S at
time T is

Eq[S(T)] = q1SL + quSH.

Since g1, and gy are written in terms of present value, it makes sense to do
the same for S(T). We get

Eo[S(T)*] = q1S7 + quSy

55 -S0)g , SO) =S,
T A T
— S(0).

This is important enough to put in a box:

EqlS(1)’] = 50| é

In other words, after discounting to today’s value, the expected price at
time T with respect to the synthetic probability is the same as the price
today.

Now consider a portfolio H composed from u units of the riskless asset

and v units of stock, so
H = ul + vS(T).

The expected value of H with respect to the synthetic probability is given
by

Eq[Vr(H)] = u + vEQ[S(T)]
=u+v(1+7)S5(0),

and so E

Eq[Vr(H)*] = % 4 v5(0).

1+7r

In other words, discounting to present value, the expected value of H
with respect to the synthetic probability measure at time ¢ = T is the same
as the price of the portfolio at time ¢ = 0.
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7.2 Risk-neutral probabilities

An investor will usually take account of the risk attached to any financial
investment. Some investors are risk-averse, and will seek to avoid risk, or
else expect to be paid for taking on a risk — in other words, if the risk is
greater then they will expect a larger expected return. Similarly, investors
may desire to gamble, in which case they may be willing to accept a lower
expected return in exchange for a higher risk. For instance, in Example 1, a
risk-averse player will not pay as much as 1 for a game with expected return
1, while a more speculative player might be willing to pay more than 1.

A player who is willing to enter the game in Example 1 for a fee equal
to the expected payoff is said to be risk-neutral. Such a player is willing to
exchange a payment of 1 with certainty for a payment that has expected
value 1.

In Example 3 above, the market behaves as a risk-neutral agent with
respect to the synthetic probability. In other words, the market prices the call
option X as though it were a risk-neutral agent with the synthetic probability.
For this reason, the synthetic probability is also known as the risk-neutral
probability.

Note that the synthetic probability measure Q is a function of market
prices, and does not depend on our beliefs about the future. Usually, when
talking about probabilities of future events we have to justify our statements
with evidence of what is more or less likely to happen in the future. This
is not the case with the synthetic probability: if the synthetic probability
exists, it is simply a description of market prices.
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7.3 Probability distributions

If X is a random variable defined on Q = {wy,...,wn}, the sets
(X =2)={weQ: X(w) =z},

for z € R, partition w. In order to calculate the expectation Ep[X] it is
enough to know the probability of the event (X = z), which is equal to

PX=z)= Y Pw).

we(X=z)

The expectation is then

Ee[X] = 5, 2P(X = 1),

When calculating Ep(X), we don’t need to look at €: it is enough to know
just the probability that X takes a specific value.

When X can take infinitely many values, this approach needs some mod-
ification (we may have P(X = z) = 0 for every z). But it is enough to know
the probability that X lies in any given range.

Definition 4. The distribution function Fx of X is defined by cwomelanre

Fx(z) =P(X < z). byrery  purchan

We can recover P(X = z) from the distribution function, since P(X =
JI) = Fx(CL‘) — limt_,0+ Fx(.'IC — t)
If Fx is sufficiently nice, then we can write it as an integral.

Definition 5. We say that f : R — [0,00) is a probability density function
for X if

Fx(z) = / " R,
for all z € R.

In this case, the expectation of X is
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as long as the integral is defined. More generally, for any reasonable function
g:R—-R,

(e}

Elg(X)] = / o) (@)dz.

—0Q0

For instance E[X?| = [%_ z*f(z)dz.

[All of this can be set up more formally in the context of Measure Theory,
when the expectation can be defined as [ XdP. We could also give a defi-
nition of a “reasonable” function — for the moment, it is enough to say that
all functions in this course (and all functions that you are likely to meet) are

reasonable.]

Example 6 (Standard normal distribution). A random variable is said to
be standard normal, or to be N(0,1), if it has density function

—z2/2

¢(z) =

1
e

V2
Of course, to check that this is a density function, we need to check that

/_ Z b(x)dz = 1.

Example 7 (Warning about expectation). Consider the function

11
Corl422

f(z)

Since [*_ f(z)dzx = 1 (ezercisel), this is a distribution function (known as
the Cauchy distribution). But
/ zf(z)dx

o0

s not defined, so a random variable with the Cauchy distribution doesn’t have
an expectation.
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8 Risk-neutral measures and arbitrage

8.1 Introduction

Consider a one-period model of a market with Q = {w1,...,wn,} and assets
S1,...,Sn. The current price of the ith asset is S;(0), while the vector of
prices at time ¢t = 1 is S; = (S;(w1, 1), ..., Si(wm, 1)).

Definition 8. A probability measure Q@ on Q is risk-neutral if
AN

h Q(wz) >0 Vi

W o e
As we shall see, there is a close relationship between risk-neutral measures

, and the absence of arbitrage. An important role in our discussion will be

played by complete markets.

Definition 9. We say that a market with Q = {wy,...,wn} and assets
S1,...,SN is complete if

lin{Sy,...,Sx} = R™

Thus a complete market is one in which every possible contingent claim
can be replicated by a suitable portfolio. Note that we could have N > m,
in which case the replicating portfolio will not be unique.

It will be useful to define the following contingent claims.

Definition 10. We write e; for the asset with contingent claim
cPasx ¥
e, =(0,...,0,1,0,...,0),

where e;(w;) = 1 and e;(w;) = 0 for j # i. The assets e; are known as
Arrow-Debreu securities.  z)sn a  pasd _pet -

neomplek  Leads b ortbiray
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8.2 Complete markets with no arbitrage

Suppose that our model is complete and has no arbitrage opportunities. It
follows that the time ¢t = 0 price of each e; is positive (why?), i.e.

p(ei) > 0.

Now suppose the interest rate is 7, so

Let us define
¢ = (1+7)p(e;) > 0.

We can replicate the riskless asset by Arrow-Debreu securities:

m
1= Zei.
=1

So, by our assumption of no-arbitrage, we have

p(1) = Y ple).

Thus .
> =1
i=1
and
q >0 Vi.

In other words, Q@ = (qu, - - -, gm) gives a probability measure on 2. We shall
prove that Q is a risk-neutral measure.

Suppose that X = (z1,...,Zn) is any contingent claim. Then the port-
folio with z; units of the Arrow-Debreu security e; for each 7 has price

p(X)=p (Z Iz’ez)

z;p(e;)

Il
NE

1

k2
z;
147

Il
NgE

qi

)
1

1
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since ¢; = (1 + r)p(e;). It follows that
p(X) = Eq[X"].
In particular, for 1 <7 < N, we have
Sn(0) = Eq[Sn(1)"].

So Q is a risk-neutral measure. Thus a market without arbitrage opportu-
nities prices assets as though it is a risk-neutral agent using the probability
measure Q.

The risk-neutral probability measure was defined by the state-prices

¢ =p((1+r)e;).

In this case (the complete market), there is a unique risk-neutral proba-

bility: since the Arrow-Debreu securities can be replicated, we have
ple) = Bylei(1)"] = ——Egfes(1)] = 72—
? 1+r ¢ 147

Since (by no-arbitrage) p(e;) is determined by the time 0 prices of the Xj, it
follows that the g¢; are also determined by these prices.

Note that this argument doesn’t work when the Arrow-Debreu securities
are not replicable.
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8.3 Markets with a risk-neutral measure

We now drop the assumption that there is no arbitrage opportunity, and
instead assume that there is a risk-neutral measure. We will prove some
interesting consequences, beginning with the fact that any contingent claim
has a unique price. Note that we do not assume that the market is complete.

w0 alt banks Theorem 11 (Law of One Price). In a market with a risk-neutral measure
R ' Q, all portfolios that replicate a contingent claim X have the same time 0

(').,urc same ﬂ"a price.
Proof. Suppose that X is replicated by portfolios H = (Hy,...,Hy) and
H = (H},...,Hy). Then

Eo[X (1)*] = Eq[ Y HiS:(1)"]
7! i=1

. N

rsé  nara) *

meoce (@} - Z HEq[5:(1)"]
i=1

=Y H;Si(0).

So
Eq[X (1)*] = Vo(H)
and, similarly, . N
EqlX(1)] = Vo(H'). ~ Vabe ar 60971
Thus both replicating portfolios have the same time 0 value. O

The Law of One Price implies that there is no sure-thing arbitrage. But
we can prove something stronger.

Theorem 12. In a market with a risk-neutral measure Q, there is no arbi-
trage opportunity.

Proof. Suppose that the portfolio H = (Hy, ..., Hy) is an arbitrage oppor-
tunity, so for some j we have

Vo(H)=0  Vube /cdaj = oty
Vi(H,w;) 20 Vi
Vl(H,wj) > 0.
31
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We

Then .
Eq[Vi(H)] = Y Qwi)Vi(H,w;) > Q(wy)Vi(H,w;) > 0.
i=1
But, as Q is risk-neutral,

EqlV(H)] = Eo[ Y HiSi(1)]

which is a contradiction. O

In the argument above we used the fact that Q(w;) > 0 to show that an
arbitrage opportunity would have (strictly) positive expected value at time
1 but 0 value at time 0. The argument would not work if we were allowed to
have states j with probability 0 (as we could ‘hide’ an arbitrage opportunity
using those states).

In a complete market with no arbitrage opportunities, we know that there
is a unique risk-neutral probability measure. When the market is not com-
plete there may be multiple risk-neutral probability measures. However, the
measures must agree on certain claims.

Theorem 13. If Q and Q' are risk-neutral probability measures and X is
replicable then

Eo[X(1)"] = Eqg [X (1)*].
Proof. If X is replicated by H, i.e.

N
X =) HsS;,
=1
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then
N
Eo[X(1)7] = ZHiEQ[Si(l)*]

=Y H;Si(0)
~ Yp(H).

Similarly, we have
Eq [X(1)] = Vo(H),

and the theorem follows immediately. ' O

Notice that if we know that X is replicable, and there is a risk-neutral
measure Q, then

Eq[X(1)"] = p(X).
In other words, if we have a risk-neutral measure then we can value every

replicable asset by taking expectation. We don’t need to work with a repli-
cating portfolio.

We have drawn a number of conclusions from the existence of a risk-
neutral measure. So far we only know that a risk-neutral measure exists
when the market is complete. However, risk-neutral measures can also exist
in incomplete markets.

Our next target is to prove the following result.

Theorem 14 (No-Arbitrage Theorem). In any one-period model with a finite
Q, the following are equivalent:

1. There is a risk neutral measure. ﬂ\ {} and mg/ %
\4

2. There are no arbitrage opportunities.

n emﬁ Pao% paper
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9 The No-Arbitrage Theorem

9.1 Hyperplanes and convex sets

Recall that if @ = {wy,...,wk}, then our claims (or random variables) can

be written as vectors in R¥, or equivalently R®?. We want to prove a result

about risk-neutral measures and the absence of arbitrage opportunities, but w & pop- ©
first we will need a geometric fact. ;“]F"—"P/ s

Definition 15. The hyperplane Hy, in R* is the set of solutions to the
equation

<X, u) =D, f\ 5.2)052/1/'%

where u € R* and p € R. worlel @ @

b
The hyperplane H, , separates R* into two half-spaces, given by -

{x € R*: (x,u) > p}

and
{x e R*: (x,u) < p}.

Note that u is perpendicular to the hyperplane, since if x;, x5 € H,, then
(u,x;7 —x2) = (u,x;) — (U, x2) =p—p=0.
We will need to recall two more definitions.

Definition 16. Let W be a subspace of R*. The subspace orthogonal to W

is
Wt={xeRF:(x,y)=0 VyeW}.

Definition 17. A subset C of R* is convex if for every x,y € C and 0 <
A <1, we have
Xx+ (1-NyeC.




9.2 The Separating Hyperplane Theorem

Our main tool will be the following.

Theorem 18 (Separating Hyperplane Theorem). Let W be a subspace of R
and let C be a bounded, closed convex set. If

CNW =10
then there is a vector u € W+ such that

(u,y) >0 VyeC.

Why is this called the Separating Hyperplane Theorem? Note that in the
proof above we have
(u,w) =0 YweW

and
(u,x) >d*> vxeC.

It follows that the hyperplane H, 42/, divides R* into two half-spaces, each
of which contains one of W and X.
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9.3 Gain vectors
Definition 19. The gain vector G*(H) of a portfolio H is

G(H)* =) HAS;,
where AS7 is the vector with coordinates
AS,'(LUJ‘)* = Si(l,wj)* - SZ(O)

Note that AS; is the change between time 0 and time 1 of the (discounted)
price of the ith asset. We have

GH,w))* = ZHi (Si(1,w;)* — S;(0))

=Y HSi(1,w)" = > H;Si(0)
= %(H,CUJ')* - %(H)

So the gain vector G(H)* is the claim corresponding to the gains (or losses)

of portfolio H in the various states.

Example 20. Suppose we have N assets Si,...,Sny. If H consists of 1 unit
of asset 1 then '
GH)" = (AS;(w1)", ..., AS(wn)").

Example 21. If H is a portfolio consisting only of the riskless asset then
G(H)* = 0. Likewise, if H and H' differ only by the riskless asset then
GH)* = GH)*.

By allowing H to vary over the collection of all possible portfolios, we get
a corresponding collection of gain vectors.

Lemma 22. Suppose we have N assets Sy,...Sy. The set
W ={GH)":H c R}
is a subspace of RY.

Proof. This follows immediately from the fact that the mapping H — G(H)*
is linear. O
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Note that the gain vector G(H)*, which is a vector in R, can also be
thought of as the vector representation of a random variable, which we write
as G(H)*

We can rewrite the definition of an arbitrage opportunity in terms of the
gain vector.

Lemma 23. There is an opportunity for arbitrage if and only if there is a
portfolio H with

GH,w)*>0 VYw

GH,w)" >0 for somew
Proof. If H is an arbitrage opportunity then G(H)* satisfies the conditions.

On the other hand, if G(H)* satisfies the conditions, then adding —V,(H)
cash to the portfolio creates an arbitrage opportunity. O

We are finally ready to prove the No-Arbitrage Theorem.

Theorem 24 (No-Arbitrage Theorem). In any one-period model with a finite
Q, the following are equivalent:

1. There is a Tisk neutral measure.
2. There are no arbitrage opportunities.

Proof. Suppose that Q = {wy,...,wx}, we have assets Sy,..., Sy, and there
is no arbitrage opportunity. We show that there is a risk-neutral measure.
Let
W = {GH)": H e RV}

be the subspace of R¥ given by gain vectors of portfolios. Let X* be the
subset of R¥ given by

Po'gﬂt&t soiox’ K

Xt ={xeR":x; >0Vix+#0},
and let P be the subset of R¥ defined by

P={xeRF:izy+ - - +z,=1,z; > 0 Vi}. @m/ocmis add,“]’ @ 1

[Note that P can be thought of as the set of all probability measures on Q.]
We have
Wnx+t =40,
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since any vector in W N X% is an arbitrage opportunity. [Any such vector
would be the gain vector of some portfolio, with every coordinate positive
and some coordinate strictly positive.] Since P C X*, we have

WnNnP=40.

Since P is closed and convex, it follows from the Separating Hyperplane
Theorem that there is a vector u such that

uewt

and
(u,x) >0Vx € P.

As e; € P for every i, we have u; = (u,e;) > 0 for every i. So, defining

%= U1+...+’U,k’
we see that i
>a=1
i=1
. and
q; > 0 Vi.

We claim that Q = (qi, . . ., gx) is a risk-neutral probability measure. All that
remains is to check that

Eq[Si(1)"] = 5i(0) Vi,

or equivalently
Eg[AS]] =0 Vi.

But this is immediate, as if H is the portfolio consisting of one unit of S;,
then
Eq[AS] = Eo[G(H)'] = (Q,G(H)") =0,

since Q = u/(u1+- - -+ux) and u € W+. We conclude that Q is a risk-neutral
measure.

For the converse, suppose that Q is a risk-neutral measure. [Actually, we
have proved the converse already, but here it is again in the language of gain
vectors. |
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If H is an arbitrage opportunity, then there is j such that

So, summing over states w;,

GH,w)" >0 Vw
G(H,w]')* > 0.

EqlG(H)") = 3 aG(H,w) > ¢,G(H,u) > 0.

But, summing over assets,

which gives a contradiction.

Eq[G(H)"] = Eq[ Y H.AS;]

— 0,

]

In general, a given market may have infinitely many risk-neutral mea-
sures. In fact, any vector belonging to W+ N P in the proof above is risk-

neutral.

Example 25. Consider the following market with Q = {w1,ws,ws,ws}, as-

sets S; and Sy, and interest rate r = 0.

W asses [shaes

[n ][ Sa0) [ Su(1,w1) | Sa(1,ws) | Sn(1,ws) [ Sn(1,wy) |

8

4

e

W ()

(>
CL(/‘\

O"L (,/l)

1 3 2 2 4 4 Y]
2 5 2 4 6 8 S,
What are the risk-neutral measures for this model? We have the following
values for AS,.
O 6 Nl
[n [ ASa(1,w1) | ASa(1,wa) | ASn(1,ws) | AS,(1,wy) |
1 -1 -1 1 1
2 -3 -1 1 5]

N @ ¢ G)
/ 6 ()
§ L i D
x@
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So we must satisfy the equations

—1—¢2+g3+q =0 Sma s 4
—3q1 — g2 + g3+ 3g4 = 0. L/ piob = /]

Solutions to this are of form (A, p, u, A). Since we must also have q; + qo +
3+ qs =1 and ¢; > 0 for every i, we get the solution set ondwuwsh _ -
g3 + 4 % >0 f Ty 9 ; ;MM g.= Ju g
{(#/2,(1=p)/2,(1=p)/2,p/2) : 0<p <1} crsated 4, =75~ #*
r risé %”db,z
So risk-neutral probability measures exist for this model, and we can conclude 4
that there are no arbitrage opportunities.
Note that this model determines a unique risk-neutral value for an asset
with claim (x1, T2, T3,24) if and only if T1 + x4 = T + T3.

Example 26. Consider the following model, and assume the interest rate is

r=1/9.
[ [ 5a(0) [ Sa(L,w))" [ Su(l,wa)" |
1 5 ) 4
2 1 1 1

Clearly Q = (1/2,1/2) is a risk-neutral measure. Since the two assets
are linearly independent, and there are two states, the market is complete. It
follows that Q is the unique risk-neutral probabiltiy measure.

Now consider an asset X with claim

' X(wl) l X(LL)Q) ]
L7 1 2 |

How can we value X 2 We have

. 1 1 9 9 81

Since Q is risk-neutral, we have X (0)* = 4.05.
We could also value X by replication: looking at each w; in turn, we have

6H, +Hy =7/(1+r)
4H1 + H2 - 2/(1 + 'f‘),

40
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and solving this gwes H; = 2.25, Hy = —7.2. We can construct a portfolio
replicating X by borrowing 7.2 (i.e. selling the riskless asset) and buying
2.25 units of asset 1, which cost 2.25 -5 = 11.25. The total cost to us is
11.25 — 7.2 = 4.05.

At time 1, in state wy, our 2.25 units of asset 1 are worth 2.25-6-(10/9) =
15, while our bank debt has become 7.2 - (10/9) = 8. The portfolio therefore
has value 15 — 8 = 7 (which discounts to present value of 7-(9/10) = 6.3).
A similar calculation can be performed for ws.
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10 The binomial model

10.1 Single period

An important model for changes in the price of an asset is given by a binomial
scaling process. If the current price is S, then after one time period the price
will be either US or DS, where we shall always assume

D < U.

So the change in price at each step is proportional to the current price. (Is
this a reasonable assumption?)
We have the following situation.

US |
DS

The risk-neutral probabilities are given by

_ S—(SD)* _ 1-D*
W =SU)y - (8D)* _ U - D

_(SUy -8 Ur-1
b= 5U)—(SD) _ U*-D~

Note that the probabilities depend only on the factors U and D: they do not
depend on the current price.

Suppose that the interest rate is r > 0 per time unit, compounded con-
tinuously. We will work with continuously compounded interest as we shall
be interested taking ever shorter time intervals, and this fits better with con-
tinuous compounding. [Interest compounded at fixed intervals is the same
as continuously compounded interest (at a different rate), if we are only
interested in the price at the end of each time interval.|
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Then U = e"U* and D = e"D*, so

e —D
YTU-D
_U-¢
dp = U—-D
We will be considering assets that evolve over a number of time steps. 4SU

Let us assume for the moment that 5 <
| vp=1, | A -

so that if the stock goes up in one period and down in the next, it ends up
at its original price. For instance, if DU = 1, we have the following situation
after two steps.

U2s
Uus
S UDS=DUS =S
DS
D28

How should we choose U and D so as to get a reasonable model of asset
price?
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10.2 Choosing U and D

Let’s consider a small time-step of length At. If the interest rate is 7, then
discounting over time At involves a factor e™¢, so

Eq(S(At)) = e"245(0).

. T y 9 s
Since Eq(S(At)) = qUS + (1 — ¢) DS, where ¢ = gy, we have é""’/’mb 7 Fe J

qU + (1 — q)D = ™. (1)

Since we are also assuming

D=1,

we can write U = e* and D = e, for some A > 0. What should this \ be?

Here is a rough justification for one choice of A. The variance of the £\
term is proportional to \2. Now suppose that we want the price at time 1 to
be of the form SeX, where X is a random variable with variance o2. Since
we are taking steps of length At, we have taken 1/At steps; if we assume
that the steps are independent, then X will be the sum of 1/At terms with
variance A%, and so X will have variance X\2/At. It follows that A\ = ov/At,

and so
U= em/A_t D= e"”‘/A_t.

Substituting these values into (1), we get

qea\/E + (1 . q)e—am — e'rAt

)

which implies

erdt _ e—a\/E
7= eoVAL _ o—oVAL’
Since \ ‘
eerl+zx y Jav inelvele Aﬂkef
for small z, we get orolor JermS all caned

i,

~N —— = +—
179, JAt 2 20

which tends to 1/2 as At — 0.
Taking these approximations needs a little justification (are we sure that
the errors in our approximation are smaller than the values we end up with?),

; S R
remd a,&vﬂﬁé Jz/w/ U)O 451»/” sk reut /an:b =
TARIS s wotg

NTAt+O'VAt—1 T\/E

Fo (S(aCTD) = o777 ¢




so let’s do that last calculation more rigorously. We fix r and o, and consider
what happens as At — 0. For |z| < 1, we have the approximation

exp(z) = 1+ + 2%/2 + O(z®).

If At is small, then
| A =1+rAt+0 ((At)?)

and
e VB Z 1 — ov/AL+ 0?At)2 + O (A1)¥?),

w0 et — e=VA = 5 V/AL + (1 — 0/2)At + O ((At)*?) |

(Note that, as At is small, (At)? is much smaller than (At)%/2.) We also have

VA — 14 ovVAL+ = At+0((At)3/2)

and
e VA = 1 — oVAL + %At +0 ((Ar)*?)
and so
i eVBE _ gmoVAt _ 95 /AT t+ 0O ((At)3/2)
So
(r — o?/2)At + o/ At + O ((At)*/?)
B 20vV/At + O((At)3/2)
(r —a?/2)VAt + o + O ((At))
B 20+ O (At)
_ (14 0(A1)) (r —02/2)\/A‘t+a
11
=S4 (r- )\/_+O(At)

It turns out that we were right to be more careful, as our value for q is
slightly different! : . : Ju feom oD //‘é
4 [ ' or + o :
o v a4 ol pon oame Tos o gt 0
Let’s check that the variance estimate is OK with this ¢: after one step,

g 70 chaosc
we have a price

qleuies
Seﬂ:a\/& ¢
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The exponent Xy = +0+/At has mean
q(oVAL) + (1 — q)(—oVAL) = (2¢ — 1)oVAL = O(At).
So the variance is
var[Xo] = E[X¢] — E[Xo)* = 0°At + O ((At)?),
which means that at time 1 the exponent X in SeX has variance
(1/At) - var(Xo) = 0 + O(At)
which tends to o2 as At — 0.

Why do we get a 2 in the formula for ¢? Calculating the mean of X,
more carefully gives

EXo = (2¢ — 1)oVAt = (r — 0?/2)At + O ((At)*?),
and so we have a drift of (r — 02/2)At per time step. At time 1, we have
EX =1 —0?/2+ O(VAt)

and
varX = o2 + O(At).

| we choox Auge w@be o Uy ppanch
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10.3 Multiperiod binomial model

Consider a T-period model. An asset with initial price Sy will have subse-
quent prices Sy, . . ., St, where each S; is a random variable. We can represent
the possible sequences of asset prices by binary sequences

w:(wl,...,wT),

where a digit 0 corresponds to D and a digit 1 corresponds to U.
For instance, if T = 2 there are four paths that the asset price can follow.

U2s
Us

S UDS
DS

D%S

Let us write -
N(w) = Zwi
i=1

for the number of increases in price. Since there are N(w) increases and
T — N(w) decreases, the probability of the path w is

N(w)ql’.'l)’—N(w) )

Qw) = gy

Q is the risk-neutral measure for the T-period process (more about this later).
Since there are (Z:) paths with exactly n increases, we have

T
QS = SoU"D™ ") = (7 ) ai™
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Now, for 0 <t < T, let us write

t
Nt(LU) = Zwi,
i=1
so Ni(w) is the number of increases in the first ¢ time periods. We get
Sy(w) = SeUNeW) pt—Ne()
and, if UD = 1, this becomes

St(CU) _ SOUNt(w)UNg(w)—t
_ SoUth(w)-t.
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10.4 Cox-Ross-Rubinstein valuation

Our aim is to value an option (Sr — K)* in a multiperiod binomial model
with T periods of length At. We shall let T'— oo and At — 0 in such a way
that T'At remains constant and vary U and D so that the variance of log St
converges to o2.

Let us note first that, for any state w,

S(T,w) = S(0)UNr«) pT-Nr(w),

It follows that
S(T,w) > K

if and only if
UNr(w) pT-Nr(w) > K/5(0),

which is equivalent to
Nr(w)logU + (T — Nr(w)) log D > log(K/S5(0)),

or in other words

log(K/S(0)) — T'log D

Nr(w) > log(U/ D)

Let
log(K/S(0)) — T'log D

log(U/ D)

n=

(Note that 7 need not be an integer.)
- The fair price at time 0 of a call with strike price K and expiry time T'At
is

Veanl = e "TAR [(S — K)*],

where 7 is the (continuously compounded) interest rate. Using our model for
St, we get

Vean = e77TA Z(SOU"DT'" - K)-Q(Nr =n)

n>n
T
_ —rTAt nnT-n _ n T-n
=e ;(SOU D K)(n)quD )
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Now if (qu, gp) is risk-neutral, we have
quU +qpD = €™,

and so defining

and
4p = e "qpD

gives a new probability measure (§y, §p). We can then rewrite our call val-
uation as

—r n —n T —r T n T-n
Ve = S0 ™ S () aoD) (1) = ke ™5 (7 ) ap

n>n n>n
T T
= S ( )(j”(jT_"—K* ( )qan—n'
0; n) ; n) G 185AN0 V
So N(ﬁj}v&l‘/]
> P

Veal = SO@[NT > n| — K*Q[Nr > 1,

where we write Eg for expectation with respect to the measure on Ny coming
from the one-step probabilities (¢qu, ¢p), and Es for the measure coming from
the one-step probabilities (G, §p).

We shall determine the limiting value of this expression for V. shortly,
but first we will need to recall the Central Limit Theorem.
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10.5 Independence and the Central Limit Theorem
If Q is finite, we say that random variables X1, ..., X,, are independent if, for
every Ty,...,Tn,

P(Xy=21,..., Xn =25) = [[P(X; = m).

i=1
If 2 is infinite, we may not be able to use this definition, so we work instead
with the following.
Definition 1. Random variables X, ..., X, are independent if, for every
Zy,...,Ty, we have

P(X; <zy,...,Xn < 2p) = H]P’(X,- < ).

i=1

An infinite sequence of random variables X1, Xo, . .. is said to be independent
if every finite subset of the random wvariables is independent.

In other words, we work with the distribution functions. (Exercise: Check
that the two definitions are equivalent when  is finite.)

Independent random variables are particularly nicely behaved. For in-
stance, the following is true.

Theorem 2. If X;,...,X, are independent then
E[X; - X, = [ EIX)).
i=1
When the random variables have the same distribution, even stronger

statements hold.

Definition 3. A sequence of random variables X1, Xo, ... is said to be iid
(or independent and identically distributed) if the sequence is independent
and all the X; have the same distribution function F(z).

If (X;)i2; is an iid sequence, where the random variables all have mean
and variance o2, then we can consider the sum

i=1
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We have

n

i=1
and, by independence,

var(S,) = Zvar(Si) = no’.
i=1

It follows that the random variable

_ Sp—np

Vo=
ay/n

has mean 0 and variance 1.

Theorem 4 (Central Limit Theorem). Let (X;)2, be an #id sequence of
random variables with mean p and variance o2, and define
L > iy Xi —np

Ya
o\/n

Then, for any real number y,
P(Ya <y) — 2(y)
as n — 0.

Here we have written

1 v —t2/2

for the probability that a standard normal random variable is less than or
equal to y.

The Central Limit Theorem is one of the most important theorems in
probability theory, and it has many extensions and generalizations. (We
won’t prove the theorem here.)

A very simple corollary to the Central Limit Theorem is the special case
of Bernoulli random veriables. A random variable is Bernoulls if it takes only
values 0 and 1. If X is Bernoulli with

PX=1)=p, P(X=0=1-p

52
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then
EX]=p

and
var(X) = E[(X —p)®| =p(1 —p)*+ (1 —p)p® = p(1 - p).

If we add up n Bernoulli random variables X; with mean p, we get

P (z:l: X, = t) - (Z)pt(l —p)t,

This is a binomial distribution, and has mean np and variance np(1l — p).
The following theorem follows directly from the Central Limit Theorem,
but was known much earlier.

Theorem 5 (De Moivre-Laplace). Let X, X,, ... be iid Bernoulli random
variables with mean p. Then for any real number vy,

Die1 Xi —mp
P (m < y) — ®(y) (2)

as n — o0.

It is sometimes useful to know how quickly the probability converges to
®(y) in the De Moivre-Laplace Theorem. In fact, it can be shown that

r X - 1
(==t <) —ew)< ®)
where we have written p = np and 0 = 1/np(1 — p).
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10.6 Cox-Ross-Rubinstein continued

Recall that we had reached the valuation
Vean = SoQ[Nr > A] — K*Q[Nr > 7, (4)

where Q is the measure on the T-period binomial model corresponding to
the one-step risk-neutral measure (qy, ¢p), and Q corresponds to the one-step
measure defined by

—rAt

du = e ™quU, Gp=e "™gpD,

and
log(K/S(0)) — T'log D
log(U/D)
Let us fix the expiry date at time £ = 1, and subdivide the interval from
time ¢ = 0 to t = 1 into T equal steps of size At = 1/T, so that

n =

TAt = 1.

As before, we choose U and D to be

U=eV2 D=¢oVot

) )

and, since the risk-neutral probability g = gy satisfies
qU+(1—-q)D =€,

we get

eTAt o 6—0’\/ At

1= oVat _ ooVt

Recall that -
Nr(w) = Zwi,
i=1

SO
]EQ[NT] = TIEQ[wl] = Tq

and
E@[NT] = TE@[wl] =Tq,

where we have written ¢ = §,.
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Similarly, we can calculate the variance. By independence, we get
varg[Ny| = Tvarqw; = Tq(1 — q)

and
varg[N;] = Tvarglw,] = TG(1 — §).

We can now evaluate our expression for the price at time 0 of a call option
with strike price K.

Theorem 6. With the assumptions above, and writing

d, — log(S(0)/K) + (r £ 02/2)
we have
im0 Vear = S(0)8(d.) — K*®(d_). |
BLACK SCHOLES
Proof. Let us start with the first term of (4). FORMUVLY
o log(K/S(0)) — T'log D ably n €€
Q(Nr > 1) —Q(NTZ log(U/ D) ) éorob ﬁ & )

B log(K/S(0)) + Tov/At

= Q| Ar= 20V At )

B log(K/S(0)) + T(1 — 29)ovVAL

=Q|Nr—Tq> SoV/AL )

_of Nr=Ta_ log(K/S(0) +T(1 - 2q)a\/A—t>

VTq(l=q) ~ 20/TAtq(1-q)
Let
4. — log(K/S(0) + T(1 — 2q)oV/At
T 204/TAtq(1 —q) '
Aasvming ) A
; 55 )
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Since TAt = 1, we get
~ log(K/S(0)) N (1—29)oVT

" 20/g(l—q)  20v/a(1—9)

_ log(K/5(0)) N (1-29)0
204/q(1—¢q) 20+/Atq(l-q)

Now
erAt _ o—oVAL
1= oVt _ g-ovat
(1+7rAt) — (1 — oVAt + 02At/2) + O((At)%/?)
T (1+ oVAL + 02At/2) — (1 — ov/AL + 02At/2) + O((At)32)
rAt + oV/At — 02At/2 + O((At)%?)
N 20v/At + O((At)*?)
_ o+ (r—a2/2)VAt + O(At)
20 + O(At) ’

which tends to 1/2 as At — 0.
Also,

o+ (r — a®/2)V/At + O(At)
1—2‘1:1_2( 20 + O(At) )

_ —(2r — a?)VAt + O(AY)
B 20 + O(At) '

So
1-29 —(2r —o?) + O(VAt)
VAt 20 + O(At)

1 o?
—_ —_ | r - —
o 2

dp — 108K/5(0) — (r — ?/2) _ 4

ag

as At — 0. So
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as T — oo (and so At — 0).
We have reached

Q(NTZﬁ):Q<’\/T—_q‘_dT

Nr—Ng_ )

- N
=1- Q ﬂ—q < dT ,
VTq(1-q)
where dr — —d_ as T — oo. Since Nr is binomial with mean T'q and

variance 1/7T'q(1 — ¢), we would like to use De Moivre-Laplace or the Central
Limit Theorem to conclude that

NT—Nq
Q (m < dT) — q’(—d_)

The one problem is that g isn’t quite constant. But this doesn’t stop us: we
just apply De Moivre-Laplace with the error bound (note that the error is
1/4/Tq(1 —q) — 0 as T — o0) to reach the same conclusion. Then since,
for y € R,
1 [¥ 1 [
ﬂw:—:/e”mwzii/e”mm:l—ﬂﬂ&
—00

2T T J_y

we get
Q(Nr 2 7) » 1—&(—d-) = ®(d-)
as T — oo.
Arguing similarly for the other term, we get

q:qea Ate—rAt_)

N —

as At — 0, while
. o« ~f Np—Tg .
Q(NTZW)=Q<deT ;
VT4(1-4q)
where
_log(K/S(0) . (1-2)o

T 20G1-0)  20+/Atq(1=9)

o7



The first term behaves as before. For the second term, note that

eo'\/At _ e—rAt
qA _ qecr Ate—'rAt —
ea'\/At _ e—a'\/At ’

Expanding as before, we get

.0+ (r+0%/2)VAt+ O(At)
1= 20 + O(At) ’
and so
1-2§ —2r—o%+ O(VAY) 1 +a_2
VAL 20 + O(At) s\ 2
So
. _ 2
- B D,

as T' — oo. The argument is completed as before: we get

~

Q(Nr 2 7) = 1—&(~d;) = &(d,)

as T — oo.

cy”
¥ pe=t ) beon oxame"®d
roF v e
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11 Two-period replication (and beyond)

11.1 Two-period example
Consider a two-period binomial model with U = 2, D = 1/2, r = 0 and

S(0) = 4:
16
8
S(0) =4 < 4
2
1

Let us consider an option with strike price 3 that expires at time 2, so
the payoff is X = (S(2) — 3)*. How can we price the option at time 0?7 If we
assume that at each step, the market has no arbitrage opportunity, we can
use replication to work backwards through the tree.

At the moment, we have the following information about X:

13
?

?< 1
?

0
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We start at time 1, and examine each of the two possible cases. If S(1) =
8, then we have the following one-period model:

S(2)=16 X(2) =13
S(1) =8

S@) =4  X(@2) =1

Consider a portfolio (z,y), consisting of z units of stock and y units of
the riskless asset. This replicates the option if

16z +y =13
dr +y =1,
and so z = 1, y = —3. The replicating portfolio has cost at time 1 equal to

8 +y=>5.
On the other hand, if S(1) = 2, then we have a different one-period model:

A replicating portfolio (z,y) has

dr+y=1
z+y=0,
and so z = 1/3, y = —1/3. The portfolio has cost at time 1 equal to

20 +y=1/3.

Thus the cost at time 1 of a portfolio that replicates the claim over the
period from ¢t =1 to ¢t =2 is 5 if S(1) = 8 and 1/3 if S(1) = 2. Since we are
assuming the absence of arbitrage in each period, these must be the prices
for the option at time ¢ = 1.

We have the following information about X:
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13

1/3

But we can now examine the period from ¢t = 0 to ¢t = 1. Regarding the
price of X at time 1 as a contingent claim, we have the following one-period
model:

SQ) =2  X(2)=1/3

A replicating portfolio (z,y) for X over this period has

8r+y=2>5
2z +y=1/3,
and so z = 7/9, y = —11/9. The portfolio has cost at time 0 equal to

4z +y = 4(7/9) — (11/9) = 17/9. So we have the following prices for X:

13
5
17/ 1
1/3
0
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11.1.1 Self-financing portfolios

How does our two-period example work in terms of portfolios? An initial fund
of 17/9 is used to create a portfolio (z1,y1) = (7/9,—11/9). At time 1, the
value of the portfolio is equal to the the cost of a portfolio (z2,y2) replicating
X over the second period. The required portfolio (z3,y2) depends on whether
S(1) = 8 or S(1) = 2, but so does the value at time 1 of (x1,%1): in either
case the value of (z1,y;) is equal to the cost of (z3,ys).

We can describe this dynamical replication with a time-dependent nota-
tion Hy, where in the example above we have:

Hy = (7/9, —11/9)

and
) (1,-3) if S(1) =8
27 ) (1/3,-1/3) if S(1) = 2.
Here H; describes a portfolio constructed at time ¢ — 1 for the purpose of
replicating a claim at time . We have

Vo(Hy) =17/9
Vi(Hy) = Vi(Ha)
Va(Ha) = X.

The fact that Vi(H;) = Vi(Hz) says the the portfolio is self-financing: in
other words, no money is added or removed after the initial investment.
11.1.2 Risk-neutrality

At each stage in the example above we have a one-period risk-neutral prob-
ability. For instance at time ¢ = 1, we have a risk-neutral probability
Qs(), which is one of the two possible risk-neutral probabilities depending
on whether S(1) =8 or S(1) = 2.

If S(1) = 8, we have

Qe — (E24 16-8) (12
W=7 \16-416-4) \33)"

If S(1) = 2, we have
2—-14-2 12
Qstw=2 = (m 4_—i) - (5’5) |
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In either case, we have
X(l) - EQs(n [X(Z)*]

Similarly, at time 0, we have a risk-neutral probability
Qs = 4-2 8-4\ (12
SO~ \8-28-2) \3'3)’

X(O) = EQS(I) [X(l)*]
Note that the risk-neutral probabilities are the same at each step. But

we should have expected this, as they depend only on the factors U and D.
Thus we have the following picture:

and

16
1/3
8
1/3
2/3
S(0) =4 4
1/3
2/3
2
2/3
1

So we can determine the probability of each path w = (wq,ws), where
wy € {0,1}.

Note that Qg is the conditional probability under Q of the prices S(2).
For example

Q(5(2) = 16]5(1) = 8)

Qs(1)=8(5(2) = 16)
1) =Q(S(2) = 1]5(1) = 4).

)
Qs)=4(5(2) =
We also have

X(O) = EQS(O) [X(l)] - ]EQS(O) ]EQS(I) [X(2)]
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11.1.3 Sample paths

The simplest description of the stock price over time involves writing down

the possible histories, which we label wy, ..., ws:
S(0) s(1) S(2)

w 4 8 16

Wao 4 8 4

wg 4 2 4

Wy 4 2 1

These histories describe four possible states of nature. We can also think
of them as four sample paths through the binary tree:

16 w1

<

How should we label the nodes in the tree? The prices do not give good
labels for the nodes, as several paths may end up with the same price. For
instance, wy and w3 both end up with price 4. A better approach is to label
each node with the set of paths that passes through it. For instance the node
with price 8 corresponds to the label {w;,ws}.

We have the following labels in our example:
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{wi}

{wla w2}

{ws}
{ws}

{wl, ws, ws, W4}
{wg,w4}

{wa}

Note that, for each t, the nodes at time ¢ give a partition of Q =
{wi, ..., wy}.

Definition 1. Let P and P’ be partitions of Q. We say that P’ is a re-
finement of P if every set in P’ is contained in some set of P. We write
P<P.

For instance, in the case of our binomial tree, let us writ<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>