MATH0056 Mathematical Methods 4 Notes Based on the 2019 spring lectures by Dr I Smears

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

8 01 18 19 Methods 4 Chopter 1 Separation of variables We will be interested in stung many partial differential equations (ppE) Several examples. Deaplaces equation Auton - Co-ordinate sustern-In 2D Cartesian coordinates Du- u x + uyy where the solution u = u(x,y) Notation partial derivatives can be DN written in several ways $u_x = \overline{\partial x}$ squares, cubes etc. Also $u_{2x} = \overline{v_{2y}} = \overline{v_{2y}}$ -In 3D Cartesian co-ordinates D Polar co-ordinate Du = Uxx+Uyy Uzz whee u-u(x,y,Z) 2) Heat equation UE = Du $T_n 2D, u = u(x,y,t), u_E = \partial t$ $T_{n} = 0, u = u(x, y, z, t)$ The heat equation models the flow of (2) (utindrical co-ordinates heat in a splid body. 3 The wave equation The = Du This motels the vibrations I waves in etastic bod es It also models 0 acoustic/electromagnetic waves

(3) Sphencal coordinates

In this course, we will use the following conversion

 $pc = rcbs g sin \phi$ y=rsingsing $z = r \cos \phi$

 $\Delta u = Urr + \frac{2}{r} Ur + \frac{2}{r} \sin \phi V \partial \phi + \frac{1}{r^2} d \phi \phi + \frac{1}{r^2} U \phi \phi$ Example 1 Separation of variable

The heat equation in 1D Consider the equation $U_{t} = U_{xx}$ in the following domain $\mathcal{L}(x,t)$ are [0,1], t >05 where 170 is a constant

The idea of separation of variables is to find the general solution of the problem in terms of the infinite series of simpler solutions called separated solutions.

Separated functions are functions that can be written as the product of functions of the different variables e.g. u(x,y) = F(x) G(y)for instance; ulocin) = ory is a separated function, but v(xiy)=x+y is not.

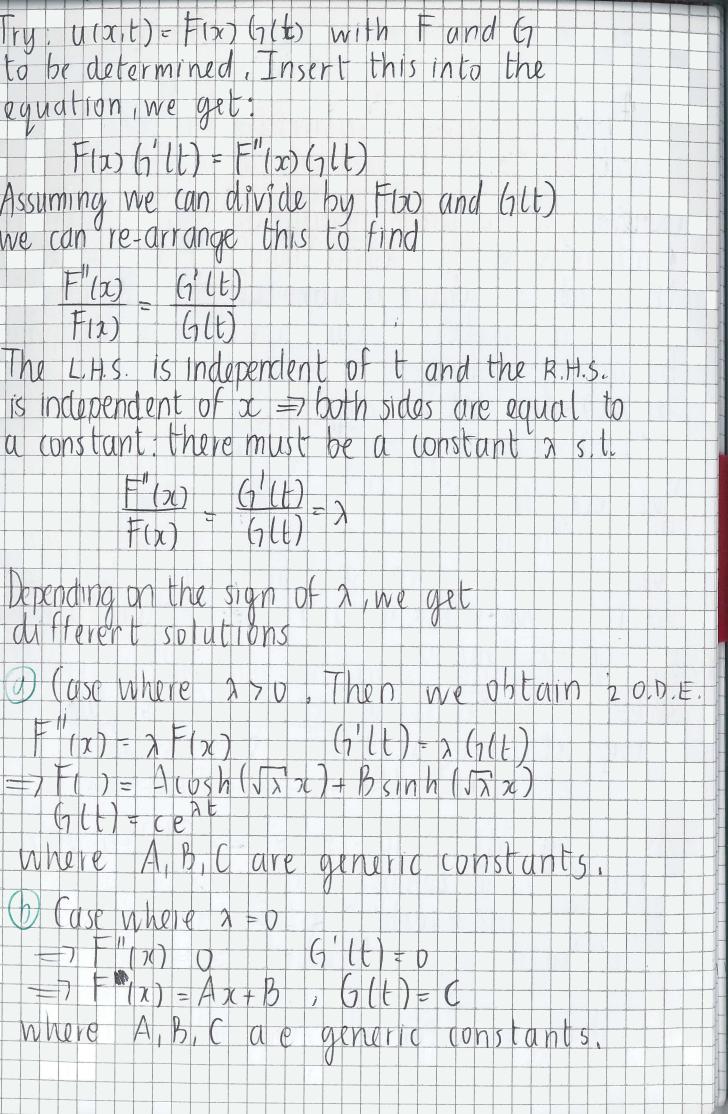
Let us seek all separated solutions of $V_F = V_{TZ}$

Try: u(x,t) = F(x) G(t) with F and G to be determined. Insert this into the equation, we get:

FP

-

(FT)


F(x) (f(t)) = F''(x) (f(t))Assuming we can divide by Floo and GLD we can re-arrange this to find

F(x) = G(t)F12) G(t)

F"(20) $G'(t) = \gamma$ F(x) = (glt)

different solutions

 $F''(x) = \lambda F(x) \qquad (h'lt) = \lambda (h(t))$ = 7F(7) = A(osh(Jx)z) + Bsinh(Jxz)GUEZZ CERE Case where a =0 = 7 F''(n) Q G'(t) = 0 $= 7 F^{(x)} = Ax + B$, G(t) = C

Las where 240 $F(x) \rightarrow F(x) \cup G(t) - \rightarrow G(t)$ $F(x) = A(OS(\sqrt{x}^2)) + BSin(\sqrt{x}^2)$ GILLE Cent

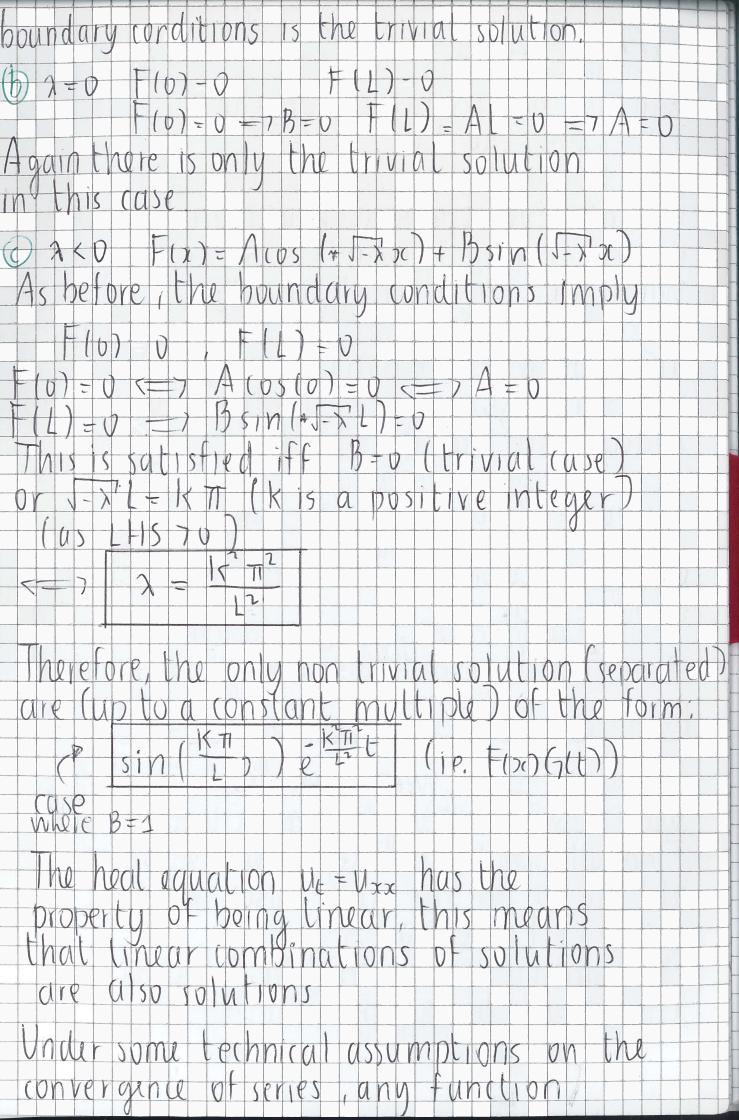
(penerally, P.D.E are supplemented by additional conditions, such as, conditions on the solution that hold on the boundary of the domain For example, let us consider the additional boundary conditions. U(U,L) TO VEYO U(LE) -0 7170

We seek separated solutions that satisfy these boundary conditions. We de primarily interested in non trivial (i.e. not of the stead in non trivial (i.e. not of the stead of th solutions. We check in each case if there are non trivial solutions.

a Case 270; Kerall als, th Fix GUL we get $T(0)(h(t)) \neq 0$ Vtso 10170 F(L)(h(t) = 0

Assuming Gitt) is non-trivial => (ill) =0 Vt70 \Rightarrow F(o) = 0, F(L) 0

F(6)=0=7 A cosh(0)=0 <=7 A=0 $F(L)=0 = 7Bsinh(J\overline{A}L) = 0 < = B=0$


This shows that for 170, the only solution (separated) is that solves the P.D.E + the

boundary conditions is the trivial solution. $(b) \lambda = 0 + F(0) = 0 + F(1) = 0$ Again there is only the trivial solution in this case Flord FILTED $F(0) = 0 \iff A(0s(0)) = 0 \iff A = 0$ F(L) = 0 = 3 B s m (+ J - T L) = 0(US LIS TO 15 112 KT 5

Case where B=1

The heat equation ut = Uxx has the are also solutions

convergence of series, and function

$u(x,t) = 2 a_{\kappa} \sin\left(\frac{k\pi x}{L}\right) e^{\frac{k\pi}{L}t}$

will also be a solution of the PDE and the BC.

Consider now the heat equation $U_{t} = U_{222}$, U(0, 1) 0 = U(1, t)with the orditional condition MICH THE MAAILTUNAT LUVIAILUUT M(pro) = F(pr) where f(pr) is a given function Try to Find coefficients (dr.) to the final coefficients (dr.) - to satisfy u(x, o) + f(x) - (iritial condition) evaluating the series at t=0

 $U(x,v) = \sum_{k=1}^{2} a_k \sin\left(\frac{k\pi}{L}x\right) = f(x)$

using result on Fourier series , it is Known that

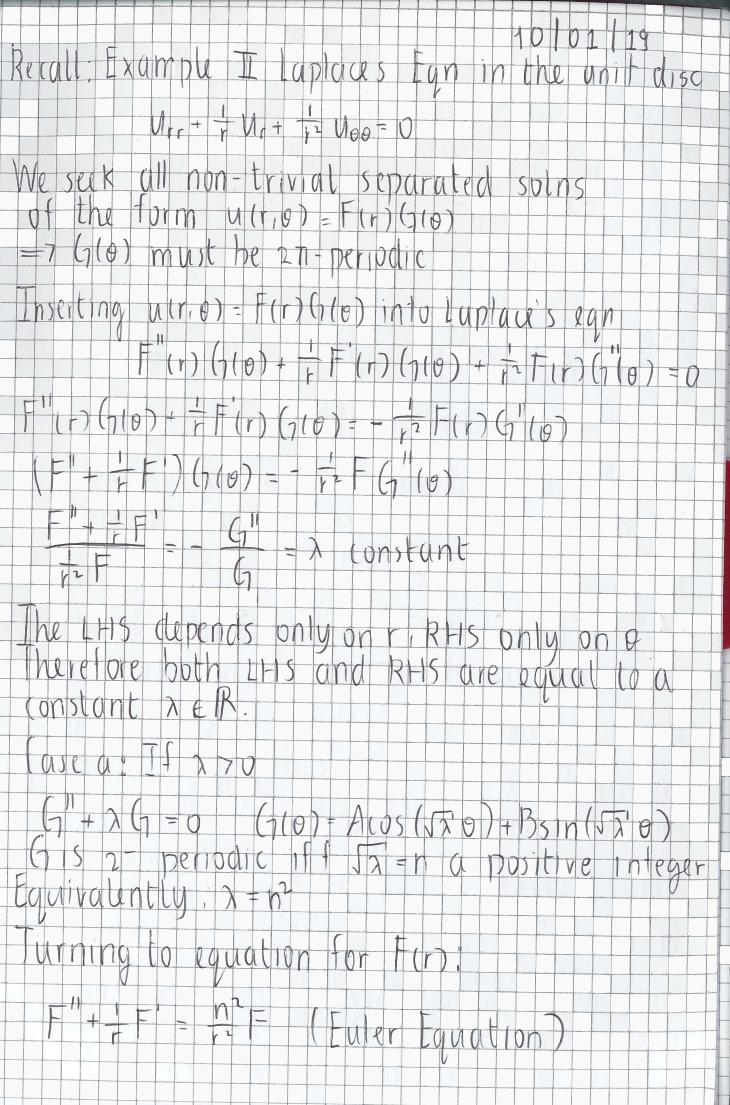
 $a_{K} = \frac{2}{L} \int_{0}^{L} f(t) \sin\left(\frac{kT}{L}\right) dpc$

Example 2 labtacis equalitor

In example 1, we were given the explicit B.C. Sometimes geometry gives implicit conditions Find all non-trivial separated solutions of sup in the unit disc in R2. $u(r, \theta) - F(r)(q)$ he implicit condition will be that

(110) must be 211 peribelie.

 $V_{rr} + \frac{1}{r} V_{r} + \frac{1}{r^2} V_{00} = 0$


of the form u(r,0) = F(r) G(0) **H** =7 G(0) must be 271-periodic

(F'' + FF)(n(0) = + FF(n(0)) $F'' = G'' = \lambda \text{ constant}$

constant $\lambda \in \mathbb{R}$.

ase as TF 2 70 Equivalently, $\lambda = h^2$

urning to equation for Fird

Try a solution Funter, ca constant

 $C((-1)r^{2} + rcr^{2} = r^{2}r^{2}r^{2} + nr^{2}r^{2}$ $c^2 = n^2 a r = 7 (= n o r c = n)$ The solution Firsts generally of the form

F(r) Arn+Brn

axb: 20

Equation for G. G' = 0 = 7 G(0) = A 0 + B(715271-benodic IFF A=0 => (710)=3 F'' + F' = 0 < = 7 + F'(rF') = 0

=7 FF-C constant F(r)= Elogr + D where C, D are generic constants

Lave C: 240

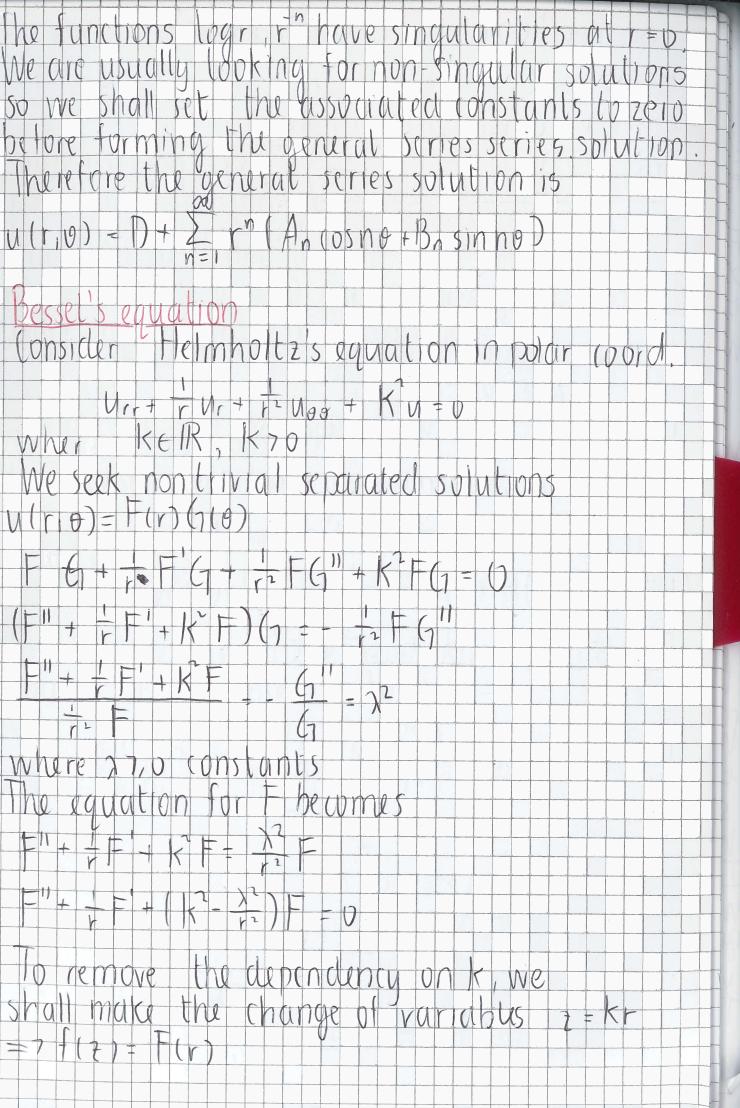
 $G'' + \lambda G = 0 = 7 (7(0) = A(0) + Bsinh(5-70) + Bsinh(5-70)$ 27 periodicity of GIO) is only satisfied if A=B= Therefore there is only the trivial soln in this case

Exercise: Prove that (10) o under 211 periodicity. FHINH

(110) = (1211) Viel

 $(h'(v) = (h'(2\pi))$

Jummary The non-trivial separated solutions are u(r, g) = (logr + D) $U(r, \theta) = (A(\theta s n \theta + B s n n \theta)(r + Dr n)$ for n7, 2 a positive integer


Therefore the general series solution is

Bessel's equation $U_{rr} + \frac{1}{r} U_{r} + \frac{1}{r^2} U_{\theta \sigma} + K U = 0$ When KER, K70 We seek nontrivial separated solutions $V(r, \theta) = F(r)(r, \theta)$ F G + F G + F G + F G = 0

 $(F'' + F' + K'F)(\gamma = -\tau_2 F G''$ F"+ F F + K F 6" 1 1where 27,0 constants the equation for F becomes

F'' + F + (K - K)F = 0to remove the dependency on k, we

=77(2) = F(r)

nserting Fin = fiz) = fikin into the equinariues $K^{2}f'(z) + \frac{K^{2}f'}{z} + (k^{2} + \frac{\lambda^{2}k^{2}}{z^{2}})f = 0$ since k = o, we can simplify to find $f'(z) = \frac{1}{2}f'(z) + (1 - \frac{1}{2})f(z) - 0$ equation

the parameter & is called the index of the ego

Legendre's tauation

 $\begin{array}{c} (cnsider \ laptace's equation is spherical coordinates \\ \Delta u \ 0 \\ U_{1r} + \frac{2}{r} U_{r} + \frac{3}{r} + \frac{1}{r} & 0 \\ U_{00} + \frac{2}{r} U_{r} + \frac{3}{r} + \frac{1}{r} & 0 \\ U_{00} + \frac{2}{r} U_{r} + \frac{3}{r} + \frac{1}{r} & 0 \\ U_{00} + \frac{2}{r} U_{r} + \frac{3}{r} + \frac{1}{r} & 0 \\ U_{00} + \frac{2}{r} + \frac{1}{r} + \frac{1}{r$ Unsider Laplace's equation is spherical coordinates

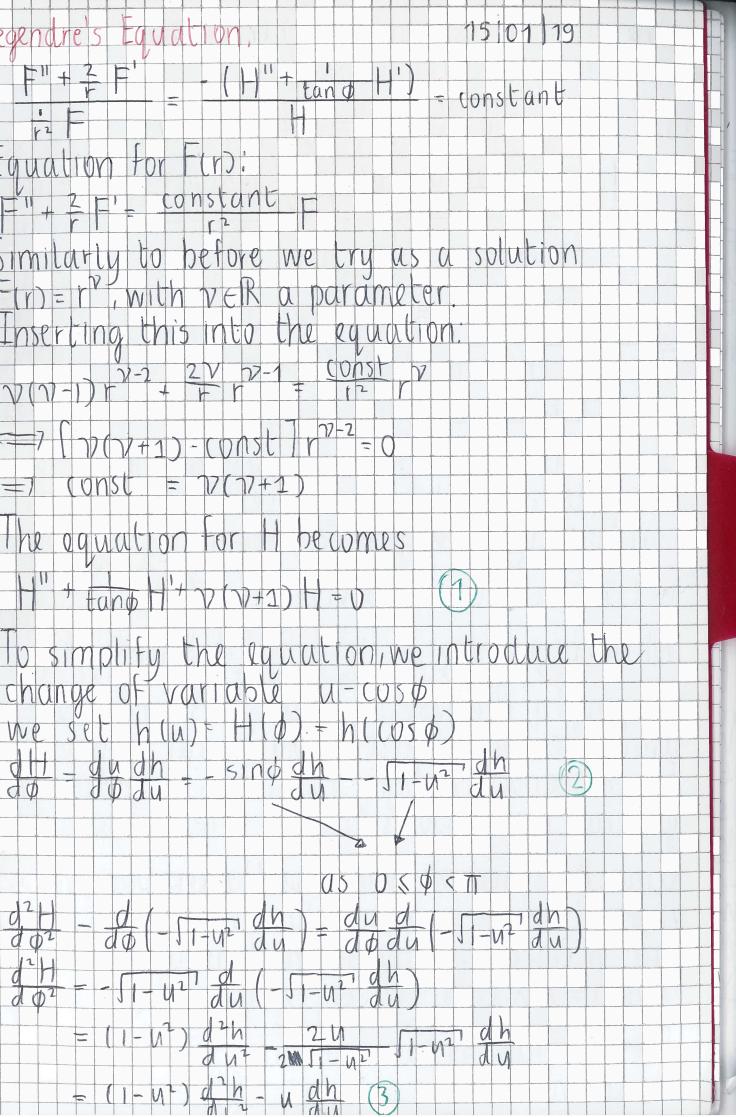
 $F'' + 2F' + H' + tar \phi H'$ TT F

The LHS depends only on r, RHS on o

Legendres Equation,

1 Equation For FCrJ:

F'' + F' = constant FSimilarly to before we try as a solution F(r) = r, with vER a parameter.


Inserting this into the equation. $\gamma(\gamma-1)r + r r = r^2 r^2$

 $= 7 \left(\frac{\gamma}{\gamma} + 1 \right) - \left(\frac{\gamma}{\gamma} + 2 \right) = 0$ = 7 (onst = 77(77+1))

The oquation for H becomes $H'' + tano H' + \gamma(\gamma+1) H = 0$

change of variable u-cusp we set $h(u) \in H(d) = h(cos \phi)$ $\frac{dH}{d\phi} = \frac{d\mu}{d\mu} \frac{dh}{d\mu} = \frac{sin\phi}{d\mu} \frac{dh}{d\mu} = \frac{J_{1}-\mu^{2}}{d\mu} \frac{dh}{d\mu}$

 $\frac{d^2H}{d\phi^2} - \frac{d}{d\phi} \left(-\int I - u^2 \frac{du}{du} \right) = \frac{du}{d\phi} \frac{du}{du} \left(-\int I - u^2 \frac{du}{du} \right)$ $\frac{d^2H}{d\phi^2} = -\int I - u^2 \frac{d}{du} \left(-\int I - u^2 \frac{dh}{du} \right)$ $= (1 - u^2) \frac{d^2 h}{d u^2} - \frac{2 u}{2m s - u^2} \frac{1 - u^2}{d u} \frac{d h}{d u}$

therefore, by putting together (D,D,D) we obtain

 $(1-u^2)\frac{d^2h}{du} - u\frac{dh}{du} + \frac{u}{1-u^2}(-J)-u^2\frac{dh}{du} + p(v+1)h = 0$

 $= 2 (1 - u^2) \frac{d^2h}{du^2} = 2 u \frac{dh}{du} + (10)(17 + 1)h = 0$

Elegendre's Equation

Chapter 2

The Frobenius method of series solutions to opes

In applying the method of separation of variables, we often encounter opts that can be put in the general form.

W''(z) + p(z) W(z) + q(z) W(z) = 0X

Where p(z) and atz) are some functions of z.

It p and q are just constants, this can be solved using the characteristic polynomial However, For B(z) and g(z) being tunctions, we need a more general method of splution.

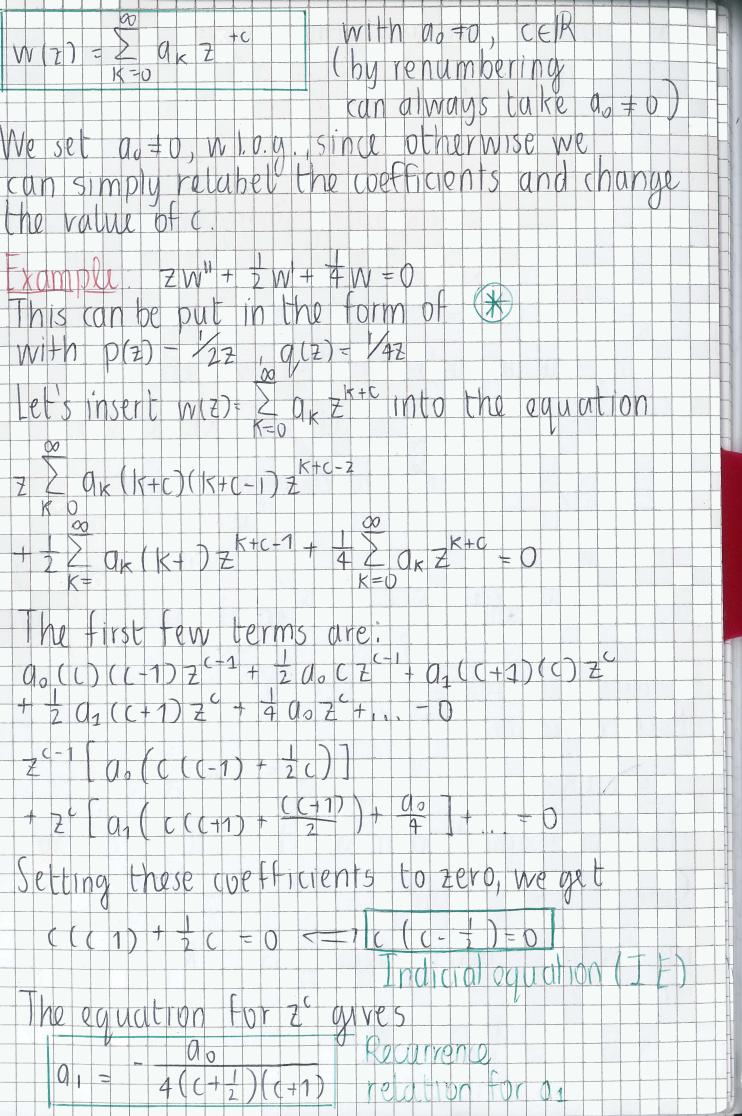
Remark, since D is a second order DDE we expect to find two linearly independent solutions, say M, (2) and W2 (2), so the general solution is W(Z) AW, (Z) + BWZ(Z) (A, B constants)

the main idea is to try a series solution of the form.

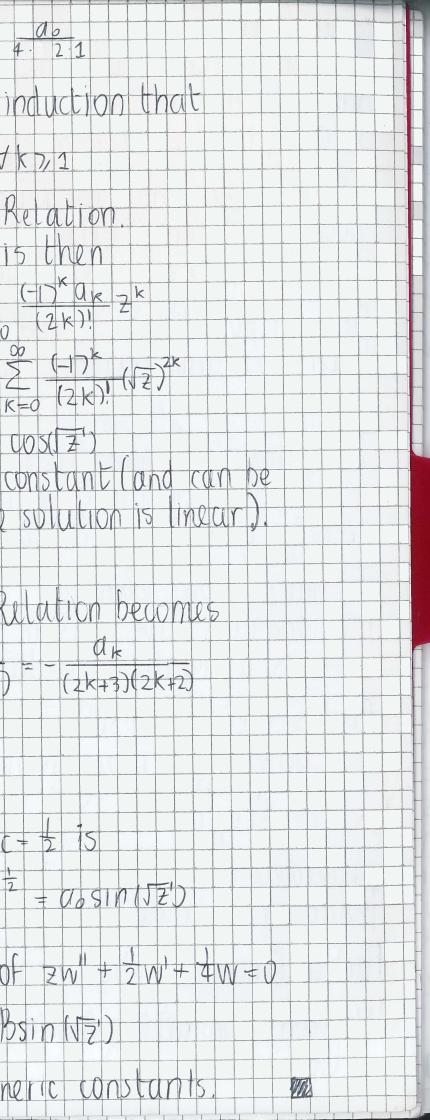
 $W(z) = \sum_{K=0}^{2} a_{K} z^{+c}$

We set a = 0, w 1. D. y. since otherwise we the value of c

 $\frac{1}{2}W^{\mu} + \frac{1}{2}W + \frac{1}{4}W = 0$ This can be put in the form of


 $\frac{1}{2} \sum_{k=0}^{\infty} \frac{(k+c)(k+c-1)}{(k+c-1)} \frac{(k+c-2)}{2}$ $\frac{1}{2} = 0 + (k+1) = 0 + (k$

The first terms are: $\begin{array}{c} (1)(1-1)z^{(+1)} + \frac{1}{2}(1-1)z^{(-1)} + \frac{1}{2}(1-1)z^{(-1)} + \frac{1}{2}(1-1)z^{(-1)}z^$


 $z^{-1}\left[0,\left(c(c-1)+\frac{1}{2}c\right)\right]$ $+ 2^{c} \left[\alpha_{1} \left(c \left(c + 1 \right) + \frac{c \left(c + 1 \right)}{2} \right) + \frac{\alpha_{0}}{4} \right]$

(((1) + 2) = 0 < = 1) ((0 - 2) = 0)

91=

Returning to Full equation	$a_{12} = 4 \cdot 3 \cdot \frac{3}{2} + 4 \cdot 3 = 4$
$\sum_{k=0}^{2} a_{k} \left((k+c)(k+c-1) + \frac{1}{2}(k+c) \right) \frac{k+c-1}{2} $	It is eary to check by in
$+ \sum_{k=0}^{\infty} \frac{1}{k + c} = 0$	$\frac{(-1)^{k} \mathcal{O}_{0}}{\mathcal{O}_{k}} \qquad \forall$
= 7 0 0 (1 - 2) = 1 (-2)	solves the Recurrence R The solution for C=0 is
$\frac{1}{k+c} = 0$	$W(Z) = \begin{cases} k+c \\ k = 0 \\ k = \end{cases} \\ k = 0 \\ k = 0 \\ k = 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
Detting the new index $K = K - 1$ we get (1) (-1) (1) (1) (1) (-1) (-1) (-1)	
$\frac{(1)(1)(1-1)(2)}{1(2-1)(2-1)(2-1)(2-1)(2-1)(2-1)(2-1)(2-1$	= 000
$\frac{2}{K} = 0$ $\frac{1}{K} = 0$ $\frac{1}{K} = 0$	Where ap is a generic of taken arbitrarily as the
herefoe:	$Cuse II: C = \frac{1}{2}$
$\frac{(1)(1)(1-\frac{1}{2})^{2}(-1)}{(K-2)^{2}} + \frac{(1)(1-\frac{1}{2})^{2}(-1)}{(K-2)^{2}(K-2)$	Then the Recurrence Re ak
• Indicial equation $(c)(c + \frac{1}{2}) = 0$	$a_{k+1} = \frac{1}{4(k+3/2)(k+1)}$
Recurrence relation	the solution is
$a_{k+1}(k+(+1)(k+(+1/2)) = -\frac{a_k}{4} \forall k = -\frac{a_k}{4} \forall k = -\frac{a_k}{4}$	$a_{k} = \frac{(-D^{k} a)}{(2k+1)!}$
The indical equation shows that either c=0 or c=2	So, the solution for c
(ase 1 : c = 0	$W(Z) = \frac{1}{k} \frac{1}{2} \frac{1}{$
RR becomes $a_{k+1} = \frac{a_k}{4(k+p(k+z))}$ $\forall k \neq 0$	The general solution of
	is $W(z) = A(os(\sqrt{z}) + B)$
	where A.B are gene

Fuch's Theprem

Under which conditions does method work on p(z) and q(z)

W'(z) + D(z)W(z) + Q(z)W(z) = D

It turns out that for rea ons of convergence of power series it is helpful to consider z possible being complex. need some definitions

Defn A point zoc as called an ordinary point if both p(z) and g(z) are complex analytic around Zo.

the point to is called a regular singular point ifit is not an ordinary point and if (2-20) p(2) and (2-20) glz) a e both andly the around zo.

In pur previous example, $p(z) - \overline{zz}$, $q(z) = \overline{4z}$ p(z) and g(z) have poles of order 1 at zo=0,50 Zo = 0 is a regular singular point.

Fuch's Theorem: A solution of D can be expressed as a generalized power series of the form: $V(Z) = A(Q(Z-ZO) + Z Q_{K}(Z-ZO))$ R+C

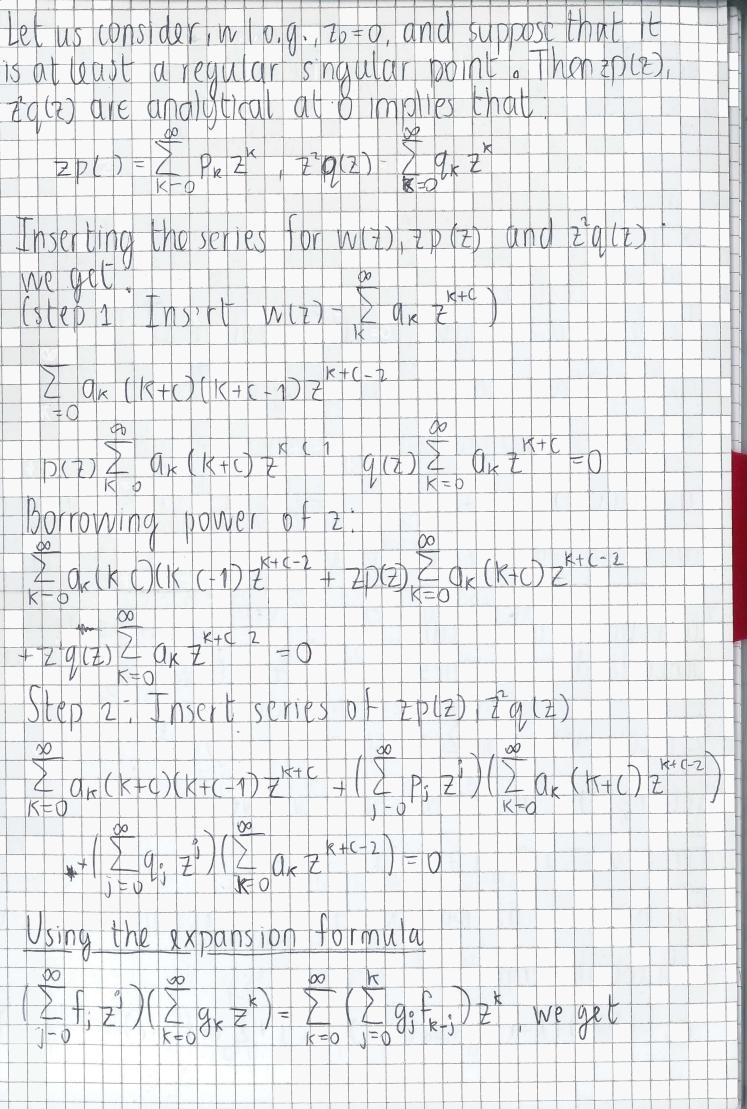
provided that zo is either an ordinary point or a regular point of D

Partial Proof of Fuch's Theorem

We won't consider issues of convergence of the Powerseries)

Eque analytical at 8 molies that

we get (step 1 Ins'rt W(z) - 2 ar z


 $\frac{2}{40} \frac{1}{10} \frac$

 $p(z) \neq q_k(k+c) \neq q(z) \neq (k-p)$ borrowing power of z:

 $+29(z) - a_k z$ --0 Step 2. Insert series of Eptz) Zalz)

 $\frac{2}{2} \frac{1}{1-2} \frac{1}{1$

Using the expansion formula 00 2f, j-0, $(Z g_{k} Z) = ($ $(K = 0 g_{k} Z) = ($

 $\sum_{j=0}^{n} \frac{1}{2} \frac{1}{2}$

herefore

 $\frac{1}{12}$ $\frac{1}{12}$

Setting the coefficients to zero gives

For k=0=7 I.E. (2 (po-1)(+9.=0)

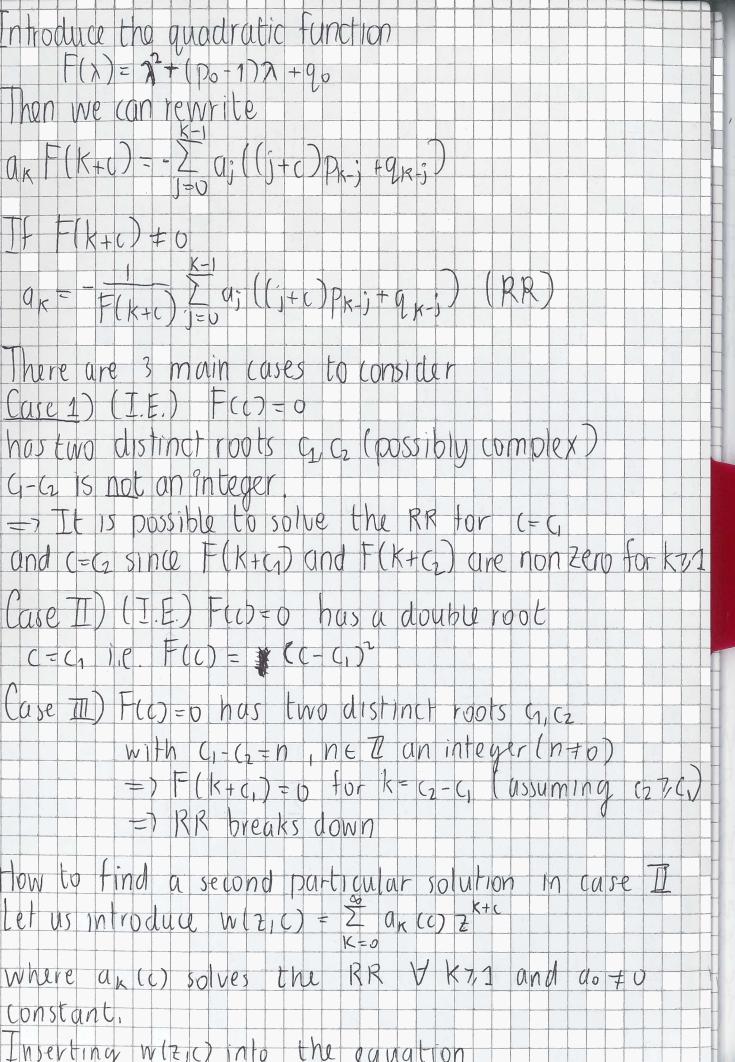
 $F_{0r} K_{7} = 7 a_{k} (k+c) (k+c-1) + \sum_{i=0}^{\infty} a_{i} (i+c) P_{k-i} + q_{k-i}) = 0$

Extracting terms in ak:

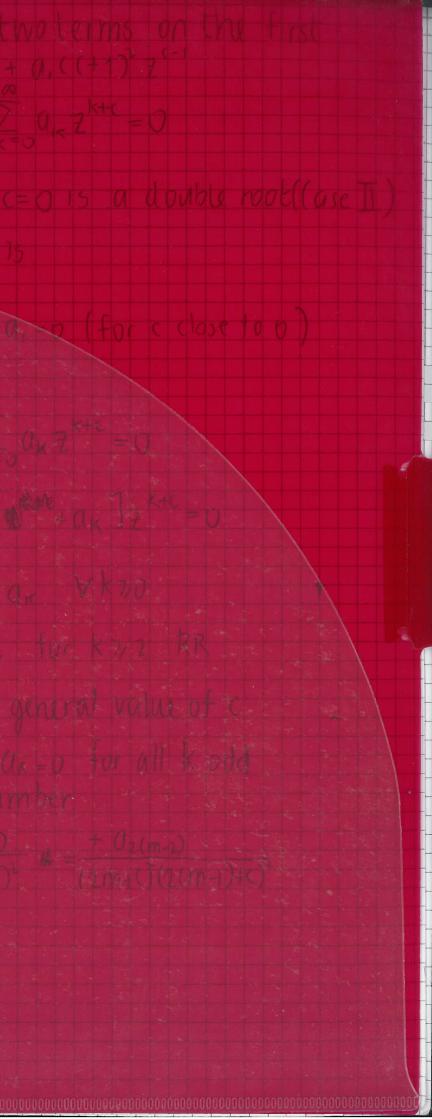
 $a_{k}[(k+c)(k+c-1)+p_{o}(k+c)+q_{o}]+\sum_{i}a_{i}((j+c)p_{k-i}+q_{k-i})$

Introduce the quadratic function $F(\lambda) = \lambda^2 + (p_0 + 1)\lambda + q_0$ Then we can rewrite $a_{k}F(k+c) = -2a_{j}((j+c)P_{k-j}+q_{k-j})$

 $TFF(k+c) \neq 0$ $q_{k} = -\frac{1}{F(k+c)} \sum_{i=0}^{k-1} ((j+c)P_{k-i} + q_{k-i}) (RR)$


There are 3 main cases to consider Case 1) (I.E.) F(c) = 0 has two distinct roots of a cossibly complex) G-G is not an integer => It is possible to solve the RR for C=C (ase II) (I.E.) Feb=0 has a double root $C = C_1 \quad i.e. \quad F(C) = *(C - C_1)^2$ (ase III) F(c) = 0 has two distinct roots (1, c2

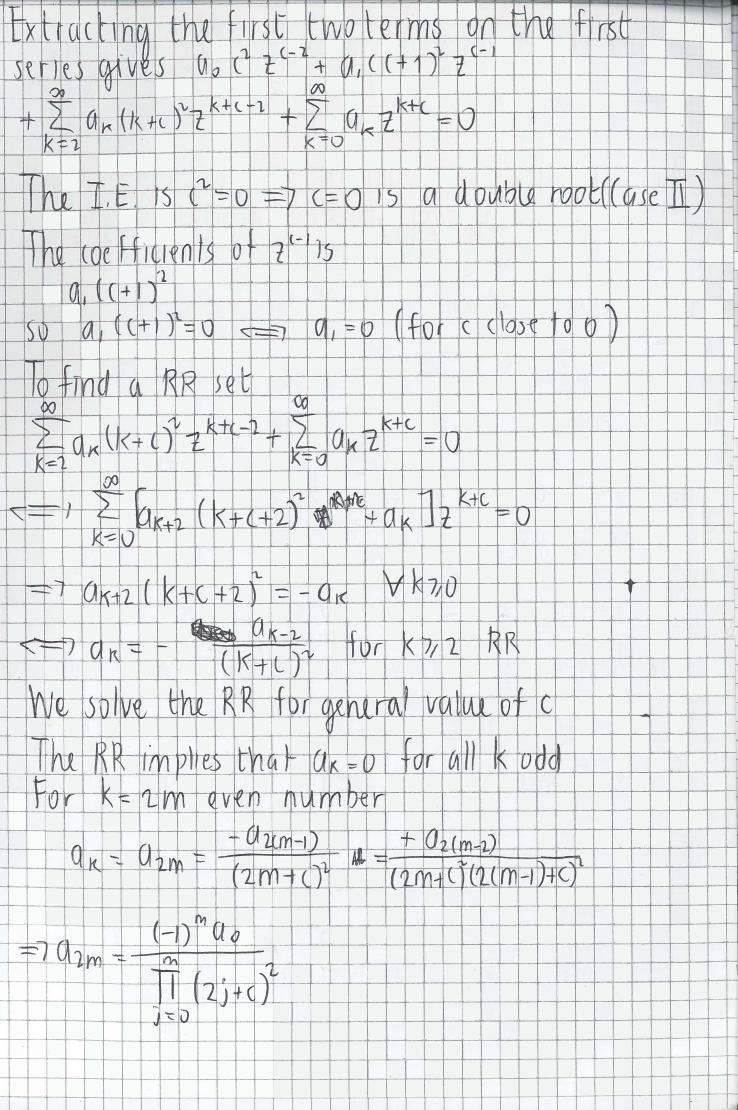
=> RR breaks down


Let us introduce $w(z,c) = \sum_{k=1}^{\infty} a_k(c) z^{k+c}$

constant.

Inserting with o the equation

d^2 d^2 d^2 d^2	
$(dz^{2} + p(z) dz + q(z)) W(z(c) = 0_{0}(c + c_{1}) z$	T
Differentiate this equation w.r.t. c, and then set c=c1	-
$\left(\frac{d^{2}}{dz^{2}} + p_{12}\right)\frac{d}{dz} + q_{12}\right)\frac{d^{2}}{dz}\left(z + q_{12}\right)\frac{d^{2}}{dz}\left(z + q_{12}\right)\frac{d^{2}}{dz}\right)$	-
$+00((-(1)^{2})n22)](c=0)$	-
Therefore	CF3
$\left(\frac{d^2}{dz^2} + p(z) \frac{d}{dz} + q(z)\right) \frac{\partial w}{\partial c} \left(c = c\right) = 0$	
So ac Ic=c, is also a solution of the equation.	-
$\partial N(2,c) \approx \partial \alpha_{K} + \alpha_{K+G}$	
$\frac{\partial c}{ c=q ^{\pm}} = \frac{d c}{ c=q ^{\pm}} + \frac{\partial k}{ c } = \frac{1}{ c } + \frac{\partial k}{ c } = \frac{1}{ c } = \frac{1}{ c } + \frac{1}{ c } = \frac{1}{ c } = \frac{1}{ c } + \frac{1}{ c } = \frac{1}{ c } = \frac{1}{ c } + \frac{1}{ c } = \frac{1}{ c } = \frac{1}{ c } + \frac{1}{ c } = \frac{1}{ c } = \frac{1}{ c } = \frac{1}{ c } = \frac{1}{ c } + \frac{1}{ c } = \frac{1}{ c $	
$= \sum_{k=1}^{\infty} \frac{da_{k}}{dc} = c_{k} \frac{k+c_{k}}{c_{k}} + \ln \frac{k+c_{k}}{2} \frac{da_{k}}{dc} = c_{k} \frac{k+c_{k}}{c_{k}} + \ln \frac{k+c_{k}}{2} \frac{da_{k}}{dc} + \ln k+c_{k$	
$= \frac{2}{16} \operatorname{dc} \operatorname{dc}$	
Example of case II Bessel's Eqn with index 0	
$\int e^{-1} w(z,c) = \sum_{k=0}^{\infty} q_k(c) z^{k+c}$	
$\frac{1}{2}$	
$+ 2 q_{k} z = 0$	
$\sum_{k=1}^{\infty} \frac{1}{(k+c)(k+c-1)+k+c+2} + \frac{4b}{2} + \frac{4c}{2} + 4$	
k=0 KL K=0	
- T K+C-2 T K+C	
$\sum_{k=0}^{k=1} \frac{2}{k} \frac{1}{k+1} \frac{2}{2} + \frac{2}{k-1} \frac{1}{k-1} = 0$	


$+ \sum_{k=2}^{\infty} \frac{\alpha_{k+1}}{\alpha_{k+1}} + \sum_{k=0}^{\infty} \frac{\alpha_{k+1}}{\alpha_{k+1}} + \sum_{k=0}^{\infty} \frac{\alpha_{k+1}}{\alpha_{k+1}} = 0$

The coefficients of 2'-1's -0, ((+1)²

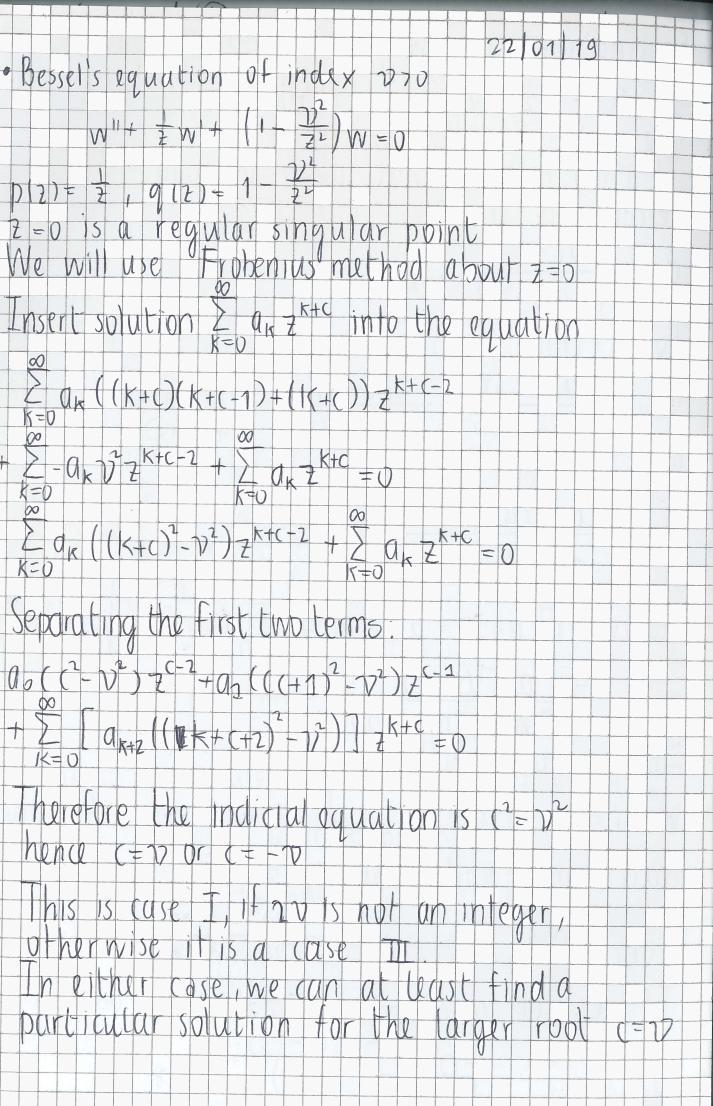
$= \frac{0}{2} \sum_{k=0}^{\infty} \frac{1}{k+2} (k+(+2)^{2} + 0) + 0 = 0$ $=7 Q_{K+2} (k+C+2)^{2} = -Q_{K} \forall k_{7} Q$ 6

 $= 7 q_{R} = - \frac{q_{K-2}}{(K+L)^2} \quad \text{for } K \pi 2 \quad RR$ We solve the RR for general value of c The RR implies that ak = 0 for all kodd For k=2m even number

 $(-1)^{m} a_{0}$ $=702m = \frac{m}{11}(2j+c)^{2}$

s find the first particular solution, we set $c = c_{1}$ $r(z) = w(z_{1}o) = \sum_{m=0}^{\infty} \frac{(-1)^{m}(a_{0})}{2^{m}(10)} 2^{m} = a_{0} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(m)^{3}} (\frac{z}{2})^{2m}$ he second particular solution $v_{2}(z) = \frac{2w}{2} |_{c=0} = w_{1}(z) |_{nz} + \sum_{m=0}^{\infty} \frac{1}{2} |_{c=0} (\frac{(-1)^{m}(a_{0})}{11} \frac{1}{(2)} \frac{1}{(2)})^{2m}$ xercise, show that $\frac{2}{2} |_{c=0} = \frac{1}{(2)^{m}(2)} |_{nz} = \frac{2}{2} \sum_{m=0}^{\infty} \frac{1}{2} |_{c=0} \sum_{m=0}^{\infty} \frac{1}{(2)} \sum_{m=0}^{\infty} \frac{1}{3}$ Thurefore $w_{2}(z) = w_{1}(z) |_{nz} = \frac{1}{2} \sum_{m=0}^{\infty} (m)^{2} \sum_{m=0}^{\infty} (\frac{z}{2})^{2m}$ For the choice $a_{0} = 1$, then we call $w_{1}(z) = J_{0}(z) = \sum_{m=0}^{\infty} \frac{1}{(m)^{2}} (\frac{z}{2})^{2m}$ the Bessel function of the first kind with index of $w_{2}(z) = J_{1}(z) |_{n}(z) = \sum_{m=0}^{\infty} \frac{1}{(m)^{2}} (\frac{z}{2})^{2m} \sum_{m=0}^{\infty} \frac{1}{(m)^{2}} (\frac{z}{2})^{2m} \sum_{m=0}^{\infty} \frac{1}{(m)^{2}} \sum_{m=0}^{\infty} \frac$

· Bessel's equation of index 270


 $W^{11} + \frac{1}{2}W + \left(1 - \frac{1}{2}\right)W = 0$

 $\sum_{k=0}^{\infty} ((k+c)(k+c-1)+(1(-c))z^{k+c-2})$

Separating the first two terms

 $\begin{array}{c} \infty \\ + \sum \left[a_{k+2} \left(\left(\frac{1}{k} + \frac{2}{k+2} - \frac{2}{k} \right) \right] \frac{1}{k} + c \\ - \frac{1}{k} = 0 \end{array} \right]$

hence (=> or (=-10 other mise it is a case III

Setting c 12, the RR becomes.

 $a_{k+2}\left(\left(k+p-2\right)^2 \sqrt{2}\right) = -a_k$ $\forall k \neq 0$ the coeff for $z = a_{k}$ $\forall k \neq 0$ It then follows that a_{k-p} $\forall k$ odd Reindexing the RR,

 $a_{k} = -\frac{a_{k-2}}{((k+n)^2 v^2)} V K v^2$

for k = 2m

 $Q_{2m} = -\frac{Q_2(m-2)}{Q_2(m-2)} - \frac{Q_2(m-1)}{Q_2(m-1)} - \frac{Q_2(m-1)}{Q_2(m-1)}$ $(2m+n)^{2}-1p^{2}$ (2m+2v)(2m) 4(m+v)m

By induction.

 $\frac{1}{2} \frac{1}{2} \frac{1}$

(m+v+1)Notice: T(a+1) = a T(a) = 7 TT(j+7)

 $(-)^{m}a_{p}T(v+1)$ $a_{2m} = \frac{1}{2m} m \frac{1}{1} (m + 1 + 1)$ first particular solution is then

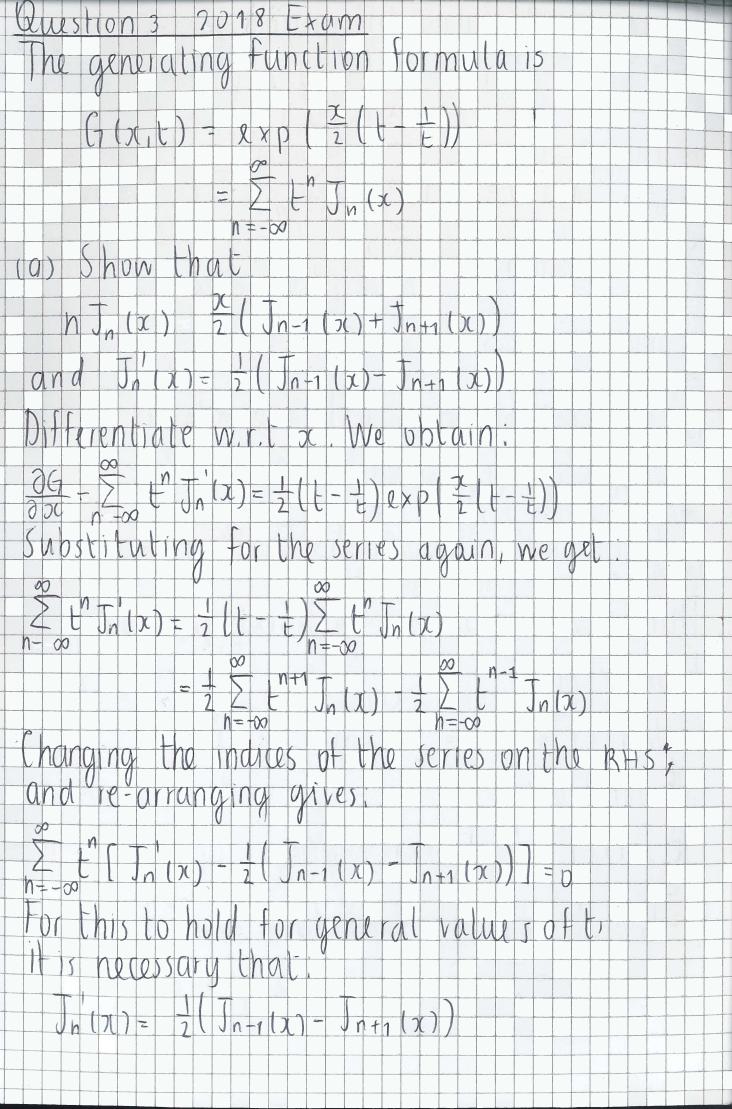
2m+12

multiplying and dividing by 2°

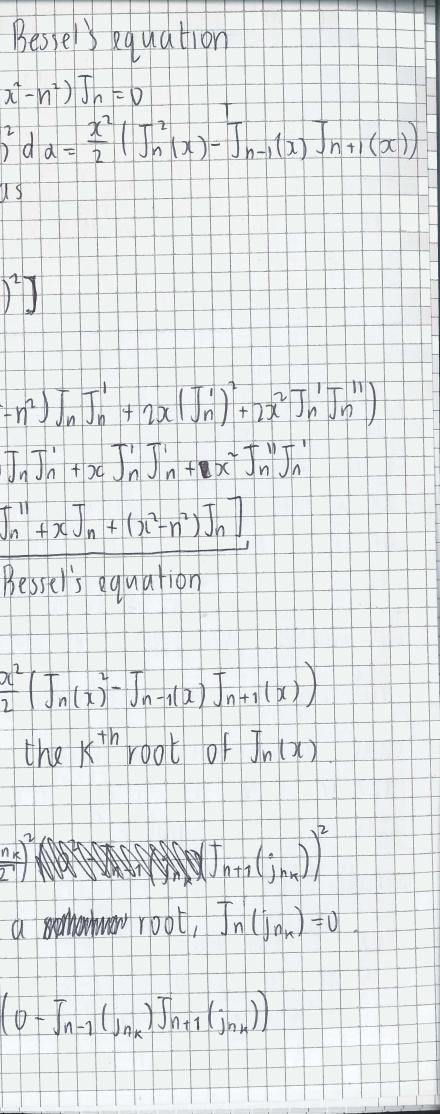
 $W(2) = 2^{2} G_{0} I(7+1) Z_{m=0}^{2} m! I(m+2+1) Z_{m=0}^{2}$

 $f_{We} = \frac{1}{2^{2}} \frac{1}{(v+2)} + \frac{1}{(v+2)} \frac{1}{(v+2)} \frac{1}{(v+2)} + \frac{1}{(v+2)} \frac{1}{(v+2)}$ $\int_{\mathcal{D}}(z) = \sum_{m=0}^{\infty}$

The generating function formula is $G(x,t) = x \times p\left(\frac{x}{2}\left(t - \frac{1}{2}\right)\right)$


(a) Show that

 $h J_n(x) = \frac{p(J_n - 1(x) + J_n + 1(x))}{2(J_n - 1(x) + J_n + 1(x))}$ and $J_{n}(x) = \frac{1}{2}(J_{n-1}(x) - J_{n+1}(x))$


17+1)

 $\frac{\partial G}{\partial 2} - \sum_{n=1}^{\infty} \frac{1}{2} \prod_{n=1}^{n} (x) = \frac{1}{2} \left(\left[\frac{1}{2} - \frac{1}{2} \right] e^{x} p \left[\frac{x}{2} \left[\frac{1}{2} - \frac{1}{2} \right] \right)$

 $\sum_{n=-\infty}^{\infty} \frac{n}{n} \left[\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} - 1 \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} - 1 \left(\frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} - 1 \left(\frac{1}{2} \right) \right) \right] = 0$

For the second identity differentiate w.r.t.t: $\frac{26}{25} = \frac{2}{5} + \frac{n-2}{5} = \frac{2}{5} + $	$\frac{1}{2} \frac{1}{2} \frac{1}$
$\sum_{n=-\infty}^{\infty} nt^{-1} \overline{J_n(x)} = \sum_{n=-\infty}^{\infty} (1 + \overline{E_n}) \sum_{n=-\infty}^{\infty} \overline{J_n(x)}$	Show that $\int_{0}^{\infty} d Jn (d)$ Re-write the RHS d $\frac{1}{2}(J^{2} - n^{2}J^{2} + (J^{2}))$ $\frac{1}{2}(J_{n} - x^{2}J_{n} + (J_{n}))$
Re-indexing the series on RHS gives $\frac{20}{2}$ $n-1$ $\frac{2}{2}$ $\frac{20}{2}$ $\frac{1}{2}$	$\frac{1}{2} \frac{1}{2} \frac{1}$
$\frac{2}{\sum_{n=1}^{\infty} n-1} = \frac{1}{\sum_{n=1}^{\infty} \left(\frac{1}{2} - \frac{1}{2} \right) - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} - \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} - $	$= \frac{1}{2} \int n + [\chi - n] \int \frac{1}{2} $
$\frac{(b) Show that}{J_{n-1}(x) J_{n+1}(x)} = \frac{n^2}{2c^2} J_n(x) - J_n(x)^2$	$= \frac{d}{d} RHS = \chi J_n^2$ $= \frac{d}{d} $
$\frac{n}{2} + \frac{1}{2} + \frac{1}$	(d) Let $\int_{n_k} \int_{n_k} \frac{dlnute}{hat}$ Show that $\int_{n_k} \frac{d}{dt} = \int_{12}^{n_k} \frac{d}{dt}$ Solution. Since $\int_{n_k} \frac{d}{dt}$
T T T T T T T T T T T T T T T T T T T	$= \frac{J_{nk}}{J_{nk}} \frac{J_{nk}$

Recall that

 $h J_n(x) = \frac{x}{2} (J_{n-1}(x) + J_{n+1}(x))$

Therefore 0 = 2 [In-1(jn) + In+1(jn))

 $= 7 J_{n-1} (J_{n_k}) = -J_{n+1} (J_{n_k}) (J_{n_k} \neq 0)$ Substituting for Jn+1 gives

 $\int \frac{\partial (J_n)}{\partial J_n} \frac{\partial (J_n)}{\partial d d t} \frac{\partial (J_n)}{\partial J_n} \frac{\partial (J_n)}{\partial d t} \frac{\partial (J_n)}{\partial t}$

Ordinary points

This is a special case of a case III, where G-G= integer, works because of ordinary points). In applying Frobenius method about an ordinary point zo, there are some simplical ons that occur (4) 1.0.9, assume zo = 0)

The series expansion for Zp(Z) = Z P; Z'

and $z'q(z) = 2q_1 z' satisfy <math>p_0 = 0$, $q_0 = q_1 = 0$

when zo = 0 is an ordinary point. This is because p(z) and q(z) are analytic at zo and therefore don't have any poles at 20.

Recall, that in general, the indicial equation is

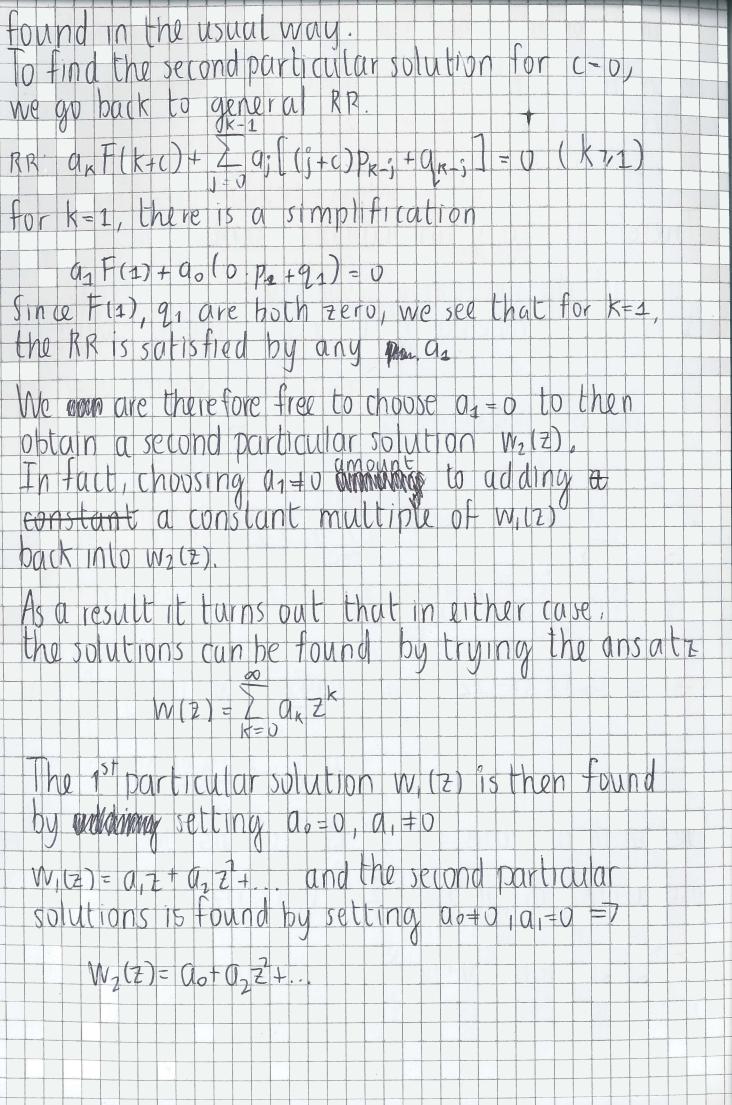
 $F(c) = c + (p_0 - 1)c + q_0 = 0$ this simplifies to c(c-1)=0 las po=go-0) the root are c=0 and c=1 The first particular solution for c=1 can be

tound in the usual way. we go back to general RP.

for k=1, there is a simplification

 $a_1F(1) + a_0(p_2 + q_1) = 0$ the RR is satisfied by any promas

C


24/01/19

obtain a second particular solution W2(2). constant a constant multiple of WIZ) back into W2(Z).

 $W(z) = Z q_k z^k$

by additional setting $a_0 = 0$, $a_1 \neq 0$

 $W_2(z) = Q_0 + Q_2 z + ...$

egentres equation and legendres polynomiat

Legendre's equation is (1-z2)w"=2zw"+v(n+1)w 0 where v is the index of the equation The functions: $p(z) = \frac{2z}{(1-z^2)}i q(z) = \frac{1}{(1-z^2)}i$

Therefore zo to is an ordinary point

to find the solution, we will try the simplified version of Frobenius method for ordinary points.

 $a_0 = 0$, $a_1 \neq 0$ Try $W(2) = \sum_{K=0}^{k} q_{K} 2^{K}$ where $a_0 \neq 0, a_1 = 0$

We then obtain $(1-2^{2}) = \frac{\alpha_{k}}{k=0} \frac{\alpha_{k}}{k=0} \frac{(k)(k-1)}{k=0} = \frac{\alpha_{k}}{k=0} \frac{\alpha_{k}}{k=$

 $+ \frac{v}{v}(v+1) \sum_{k=0}^{\infty} \frac{a_k z^k}{k} = 0$

 $T = 2 \frac{1}{2} \frac{1}{2$ K=J 2017+17+1K(K+17 =(V-k)(V+k+1)

We can then isolate the 1st two terms of 1st series

 $0_0(0)(-1)\overline{z}^2 + 0_1(1)(0)\overline{z}^1 + \sum_{k=2}^{-1} q_k(k)(k-1)\overline{z}^{k+2}$

 $\sum_{k=0}^{\infty} q_{k}(v-k)(k+v+1)z^{k}=0$

Re-indexing the first series gives $\sum_{k=0}^{2} \left[\frac{q_{k+2}(k+2)(k+1) + q_{k}(\nu+k)(\nu+k+1)}{2} \right] \frac{2}{2^{k}} = 0$ => the RR becomes $a_{k+2}(k+2)(k+1) = a_k(k+2)(2+k+1)$ $1e. \quad (k-v)(m+k+1) = (k+2)(k+n) = a_k$ then we get $a_k = 0$ for k even. $\int 0 W_1(z) = 0.72 + 0.3 z + 0.5 z + 1.$ $(1) W_2(2) = (1_0 + (1_2)^2 + (1_0$ the term (1K-v) in the RR $W_{2}(z) = 0_{0} + 0_{2} z + 0_{4} z^{4} + \dots + 0_{2} z^{4}$ Iterminates at anz because

and If misoda, then $W_2(z) = 0_1 z + 0_3 z^2 + . + 0_m z^2$

The polynomial solutions, are, up to a

The definition of Phile, the n th legendre polynomial, is then the polynomial solution of legendre's equation with index n an integer with the normalised condition Paul = 1

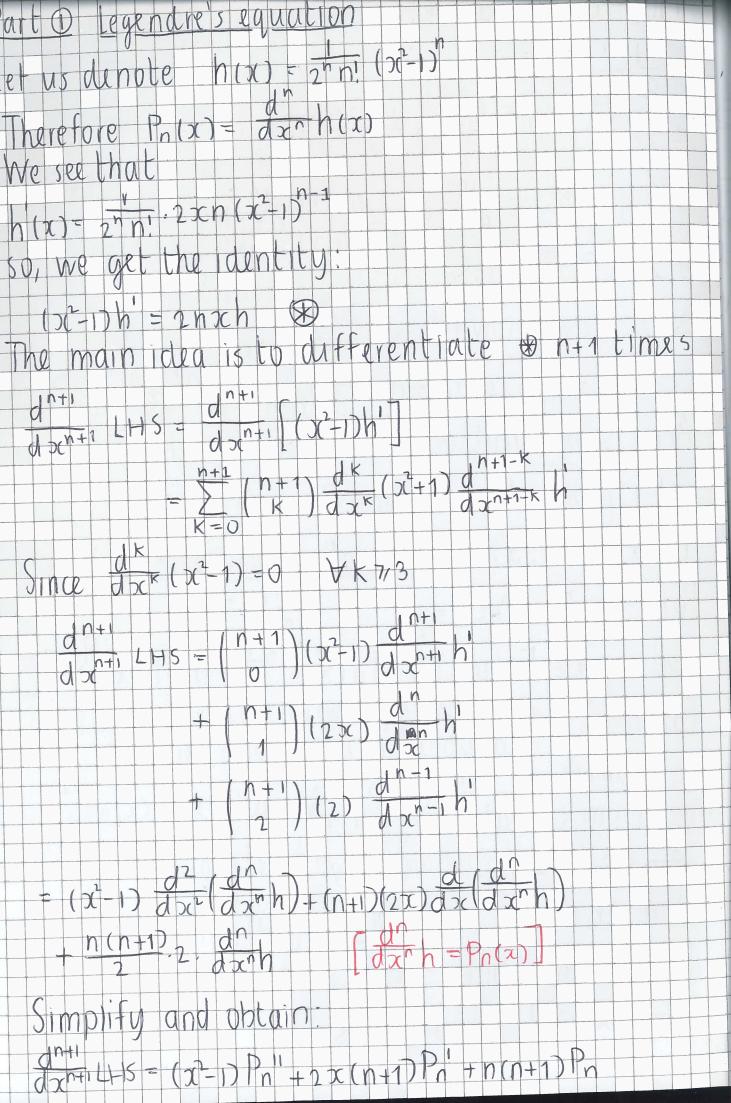
Next time, we will prove a simple formula for Priz)

Rodriguez Formula

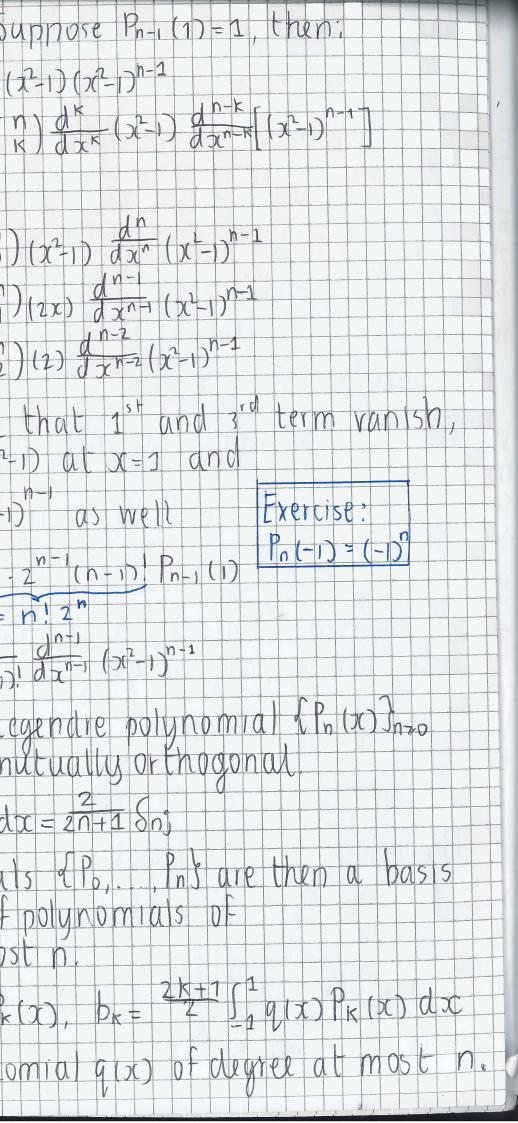
 $P_{n(2)} = \frac{1}{2} \frac{d^{n}}{n!} \frac{d^{n}}{dz^{n}} \frac{(z^{2} - 1)}{(z^{2} - 1)}$

We have found that there are polynomials solutions Prix) of Legendre's equation of index n where no is an integer, i.e.

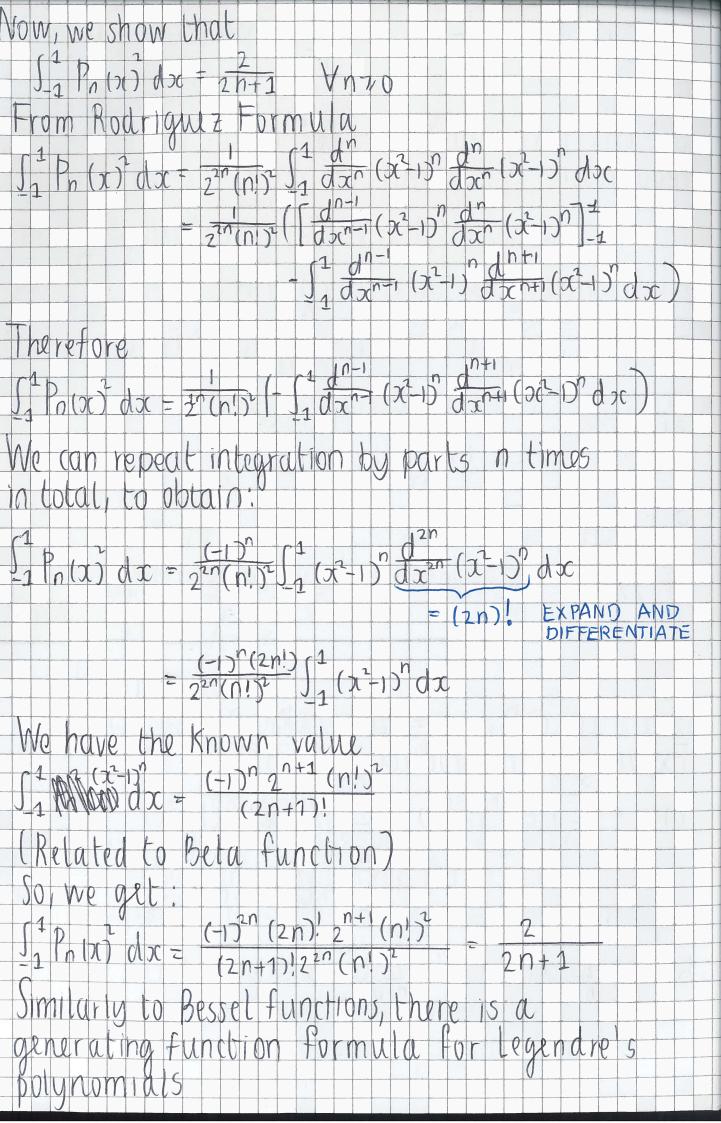
29/01/19


 $(1-x^{2})|n(x)-2xP_{n}()+n(n+1)P_{n}(x)=0$ Phip is defined further by the condition Phin=1 Vnzo

Theorem - Rodriguez Formula


An equivalent de inition of Phile) is $P_{n}(x) = \frac{1}{2^{n}n!} \frac{d^{n}}{dx^{n}} (x^{2}-1)^{n}$

Partial proof we will check that defining Prix by Rodriguez Formula give. a solution of legendre's equation. Also that Phil)=1 Vnzo


Part D Legendre's equation Let us denote h(x) = 2 mi (22-1) Therefore $P_n(x) = \frac{d}{dx} h(x)$ We see that $h(x) = \frac{1}{2^{n}n!} \cdot 2xn(x^2 - 1)^{-1}$ so, we get the identity $(2^2-1)h = 2n2h$ d^{n+1} $LHS = d^{n+1} \left[(\chi^2 - 1)h \right]$ Since $dx(x^2-1)=0$ $\forall k\pi^3$ $\frac{d^{n+1}}{d^{n+1}} \xrightarrow{LHS} = \begin{pmatrix} n+1 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} \begin{pmatrix} n+1 \\ 3 \end{pmatrix} \begin{pmatrix}$ $n(n+1) = \frac{d^{n}}{dx^{n}h} = \frac{d^{n}}{dx^{n}h} = \frac{d^{n}}{dx^{n}h}$ Simplify and obtain:

Now, differentiate RHS:	Inductive step: Su
$\frac{d^{n+1}}{dx^{n+1}}(2nxh(x))$	$P_n(x) = \frac{1}{2^n n!} \frac{1}{3^n n!} \frac{1}{5^n n!} \frac{1}{5^$
$= 2n \sum_{k=0}^{n+1} \frac{d^{k}}{dx^{k}} (x) \frac{d^{n+1-k}}{dx^{n+1-k}} $	$\frac{P_n(x)}{Therefore} = \frac{1}{1} \frac{P_n(x)}{1} = \frac{1}{1} \frac{P_n(x)}{1}$
$= 2n\left[\binom{n+1}{2} \times \frac{d^{n+1}}{dx^{n+1}} + \binom{n+1}{dx^{n}} \times \frac{d^n}{dx^n}\right]$	$\frac{1}{2} \frac{n!}{p_n(x)} = \begin{pmatrix} n \\ 0 \end{pmatrix}$
$= 2n x P_n^{1/2} P_n$	
So, we have shown that.	- (M - [2
$\frac{1}{(x^2-1)P_n^{''}+(n+1)2xP_n^{''}+n(n+1)P_n=2nxP_n^{''}+2n+1)P_n}{(x^2-1)P_n^{''}+(n+1)2xP_n^{''}+n(n+1)P_n}$	Eor X=1; we see
After simplification:	because OF 122-
$(\alpha^{2}-1)P_{n}''+2xP_{n}'=n(n+1)P_{n}$	$\frac{1}{dx^{n-2}}$
$(1-x^{2})P_{n}'' - 2xP_{n}' + n(n+1)P_{n} = 0$	2^{n} $n!$ $P_{n}(1) = n \cdot 2 \cdot \frac{1}{2}$
Part Q For $P_n(p) = 1$	$(1 S P_{p-1} = \frac{1}{2^{n-1}(n-1)})$
$\frac{1}{10000000000000000000000000000000000$	Theorem. The le
$f_{DT} = 0; P_{0}(x) = \overline{2^{0}(0)} (x^{2}-1)^{2} = 1$	die mi
$= 7 \operatorname{Ph}(n) = 1 \text{for } n = 0$ We remark that $(\forall j \le n - 1)$	$\int_{-1}^{1} P_n(x) P_j(x) dx$
We remark that $(\forall j \le n-1)$ $\frac{d^3}{dx^3}(x^2-t)^2 = (x^2-t)^2 Q_1(x)$	of the space of
Where Q; (x) is some polynomial.	degree at mos
his implies that	$q(x) = \sum_{k=0}^{\infty} b_k P_k$
$\frac{d}{dx^{j}}(x^{j}-1)^{n} _{x=1} = 0 \forall j \le n-1$	for any polyno

Proof. We start by showing that Now, we show that $\int_{-1}^{1} P_{n}(x) dx = \frac{2}{2h+1} \quad \forall n \neq 0$ $\int_{1} P_n(x) P_i(x) dx = 0 \quad \text{for } n \neq j$ From Rodriguez Formula w.log we may assume that isn From legendre's equation (2) Ph'+2xPn'=n(n+1)Ph $\int_{1} P_{1} P_{n} dx = n(n+1) \int_{1}^{1} P_{2} dx \left[(x-1) P_{n} \right] dx$ Incretore We see that $\frac{d}{dx}\left(x^2 DP_n\right) = (x^2 DP_n^{"+} 2xP_n^{"})$ We can then integrate by parts to obtain $\int_{1}^{2} P_{n} P_{j} dx = n(n+1) \left[\left[P_{j} \left(p \right) x^{2} + p \right] P_{n}(p_{j}) \right]_{-1}$ $= \int_{1}^{1} (x^{2} i) P_{n}' P_{j}' dx$ $= \frac{1}{n(r+1)} \int_{-1}^{1} (x^2 - 1) P_n P_n' dx$ Integate by parts again. $\frac{1}{p(n+1)} \left[\left(p^2 \right) P_p \right]_{1}^{2} - \int_{1}^{2} \frac{d}{dx} \left[\left(\chi^2 - 1 \right) P_j \right]_{p} d\chi$ We have the known value $\int \frac{1}{1} \frac{n}{n!} \frac{(n!)^{n}}{n!} \frac{(n!)^{n}}{(n!)^{n}} \frac{(n!)^{n}}{(n!)^{n}} \frac{(n!)^{n}}{(n!)^{n}} \frac{(n!)^{n}}{(n!)^{n}} \frac{(n!)^{n}}{(n!)^{n}}$ $\frac{1}{n(n+1)}\int_{-1}^{2}P_{n}\frac{d}{dx}\left[\left(32^{2}-1\right)P_{j}^{*}\right]dx$ (Related to Beta function) The polynomial P, solves $\frac{d}{dx}\left[\left(p^{2}-1\right)P_{j}\right] = j\left(j+1\right)P_{j}$ =7 $\int_{-1}^{1} P_{j} P_{n} dx = n + n \int_{-1}^{1} P_{n} P_{j} dx$ Since $j \neq n = 7 \int_{1} P_{n} P_{j} dc = 0$

bolunom

$G_1(p(t)) = \frac{1}{(1-2xt+t^2)^{1/2}} = \sum_{n=0}^{\infty} P_n(x)t^n$

Xercise Use the formula to any show that the recurrance relation

 $(n+1)P_{n+1}(x) = (2n+1) 3(P_n(x) - nP_{n-1}(x))$

Differentiate with rspet to met $\frac{\partial}{\partial E} RHS = \sum_{n \neq 0} nt^{n+1} P_n(x) = \sum_{n \neq 0} nt^{n-1} P_n(x)$

 $\frac{3}{3t}$ LHS = $(-\frac{1}{2})(2t 2x)(1-2xt+t^2)^{\frac{1}{2}}$ $= \frac{(3c+t)}{(1-2xt+t^2)} G(x,t)$

Reamanging, we get $(1-2xt+t^2) \sum_{n=1}^{\infty} nt^{n-1} P_n(x) = (x-t) \sum_{n=1}^{\infty} t^n P_n(x)$

31 01 119 $foul: (n+1)P_{n+1}(x) = (2n+1)p(P_n(x) - nP_{n-1}(x))$ Expanding the products

 $LHS = \sum_{n=1}^{n} ht^{-} P_{n}(p_{1}) - \sum_{n=0}^{n} (2n) m t^{n} c P_{n}(x)$ n=1

 $+\sum_{n=0}^{\infty}nt^{n+1}P_{n}(pc)$

 $RHS = \sum_{n=0}^{\infty} \alpha P_n(\alpha) t^n - \sum_{n=0}^{\infty} t^n P_n(\alpha)$

Re-arranging, we get

e (We use the convention that $p \cdot P_{1}(x) = 0$) -For all nob, we get

 $(n+1)P_{n+1}(x) = (2n+1)xP_{h}(x) - nP_{n-1}(x)$

IXam 2015

00

Consider Hermite's equation)Seek a power series solution of the form and show that $\frac{-2(\lambda-k)}{0k+2} = \frac{-2(\lambda-k)}{(k+2)(k+1)} 0k \quad \forall k = 0$ DExplain why for a = n70 an integer,

there are polynomial solutions of a (* Find the polynomial solution MHn (ac) that satisfies an = 2n

 $\sum_{n=1}^{\infty} p_n(x) = \sum_{n=0}^{\infty} (2n+1)x P_n(x) t^n - \sum_{n=0}^{\infty} (n+1)t^{n+1} P_n(x)$ $\frac{1}{2} (n+1)t^{n} P_{n+1}(x) = \frac{1}{2} (2n+1)xP_{n}(x)t^{n} - \sum_{n=0}^{\infty} nt^{n} P_{n-1}(x)$ $= \frac{1}{2} \sum_{n=0}^{\infty} \sum_{n+1}^{\infty} \frac{P_{n+1}(x)}{P_{n+1}(x)} - \frac{1}{2n+1} \frac{P_{n+1}(x)}{P_{n+1}(x)} + \frac{P_{n-1}(x)}{P_{n-1}(x)} \frac{P_{n+1}(x)}{P_{n+1}(x)} + \frac{P_{n+1}(x)}{P_{n+1}(x)} \frac{P_{n+1}(x)}{P_{n+1}(x)} \frac{P_{n+1}(x)}{P_{n+1}(x)} + \frac{P_{n+1}(x)}{P_{n+$ Answer a) Inserting the series into the equation $\sum_{k=0}^{\infty} q_{k}(k)(k-1) o x^{k-2} - 2 \sum_{k=0}^{\infty} q_{k} k x^{k} + \sum_{k=0}^{\infty} 2 \lambda q_{k} x^{k} = 0$

Isplate the first few terms.

 $a_{0} \circ (-1)x^{2} + a_{1}(1) \circ x^{2} + 2a_{k}(kxk-1)x^{k-2}$

 $+ \sum 2\alpha \kappa (\lambda - k) \alpha^{k} = 0$ hange the induces of the 1st series

 $\sum_{k=0}^{k} a_{k+2} \left(\frac{k+2}{k+2} \left(\frac{k+2}{k+2} \right) \frac{k}{k+2} + \sum_{k=0}^{k} \frac{2a_k}{k+2} \left(\frac{k+2}{k+2} \right) \frac{k}{k+2} = 0$

herefore, we see that the RR

00

 $Q_{k+2}(k+2)(k+1) \neq 2Q_{k}(\lambda+k) = 0 \quad \forall k \neq 0$

 $a_{k+2} = -2(\lambda - k) a_k \quad \forall k_{10}$ (k+2)(k+n)

Tf &= n70 (a non negative integer), then a_{n+2} 0, and by the RR $a_{n+2} = 0$ Vizi So, if n is even, we choose do=0, and a, =0, So the solution becomes

 $Y(x) = a_0 + a_2 x + \dots + a_n x^n$

Conversely, if n is odd, we set a = 0, a, = 0 $y(pc = Q, x + Q_3 x^2 + ... + Q_n x^n.$

H 120 is the polynomial solution defined by the condition an=2".

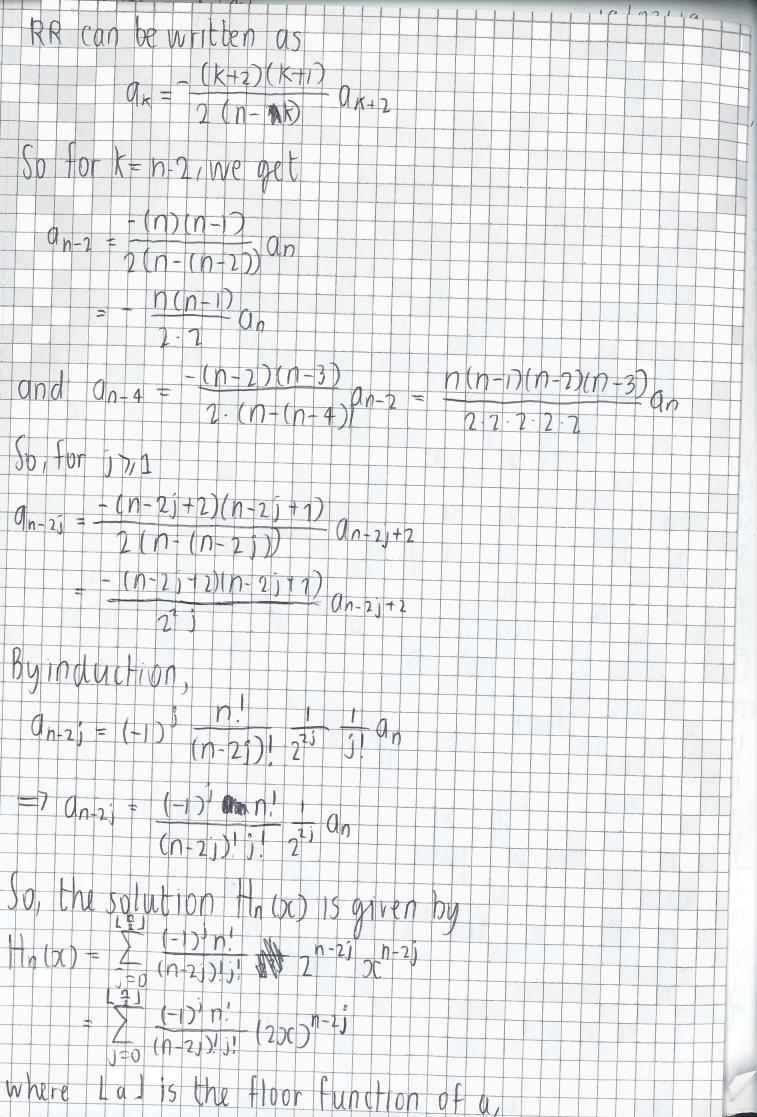
Remark. Since we possibly have a - 0 or a, =0, and we are given an it is advantageous to solve the RR "backwards' starting with an

RR can be written as $q_{k} = \frac{(k+2)(k+1)}{2(n-k)} q_{k+2}$

Sp for k= n-2, we get $a_{n-2} = \frac{-(n)(n-1)}{2(n-(n-2))}a_n$

 $= \frac{n(n-1)}{2 \cdot 2} \hat{u}_{n}$

Jo, for j 1,1


 $0_{n-2j} = \frac{-(n-2j+2)(n-2j+1)}{2(n-(n-2j))} = 0_{n-2j+2}$

= -(n-2j-2)(n-2j+1) - 0

Byinduction, $a_{n-2j} = (-1)^{j} \frac{n!}{(n-2j)!} \frac{1}{2^{2j}} \frac{1}{j!} a_{n}$

= $7 a_{n+2} = (-1)^{n} a_{n} n! = a_{n} a_{n} + a_{n} a_$

So, the solution $H_n(x)$ is given by $H_n(x) = \sum_{j=0}^{n-1} \frac{(-j)n!}{(n-2j)!j!} = 2 \frac{n-2j}{2} \frac{n-2j}{2}$ $= \sum_{j=0}^{n-1} \frac{(-j)n!}{(n-2j)!j!} = 2 \frac{n-2j}{2} \frac{n-2j}{2}$

te it is the largest integer less than pregual to a

5 02 19

6

GIT

Chapter 3: Orthogonality and Generalised tourier series

ourier series expansion

 $f(x) = \frac{1}{2} + \sum_{n=1}^{2} d_n \cos(r_n) b_n \sin(n_n)$

Where the coefficients

 $d_n = \frac{1}{T} \int_T f(x) \cos nx dc$

 $b_n = \frac{1}{\pi} \int_{\pi}^{\pi} f(x) \sin hx dx$

The expersion is derived from the orthogonality properties of: a 1, sinnox, cosx, sinzx, We have seen that legend e Polynomial {Pn(x) show a similar orthogonality properties (for the interval (-1,1))

Is the either a similar legendre series expansion tor rather general functions fixed

In this chapter, we see that the answer is positive. and we will see how many more examples of series expansions can be found collectively and these will be called generalised fourier series.

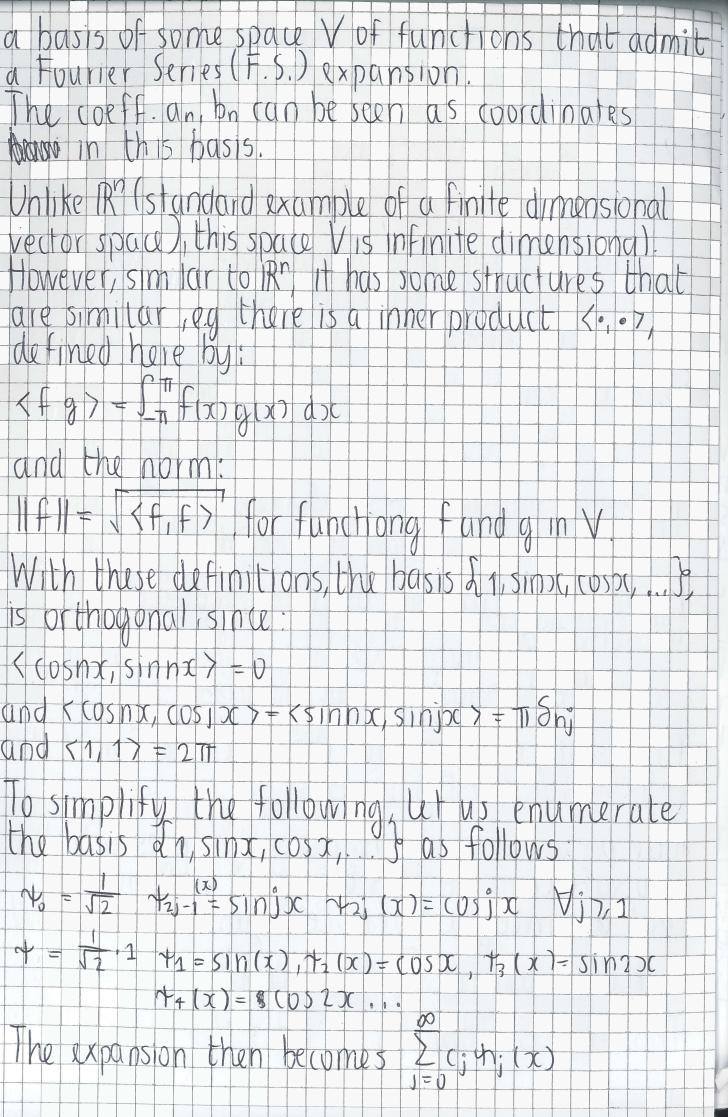
nner product spaces

There are links between fourier series expansions and linear Algebra: the functions 21, sinx, cost, ... 3 can be viewed as torming

a Fourier Series (F.S.) expansion Brann in this basis.

defined here by:

 $\langle f g \rangle = \int_{\pi} f(x) g(x) dx$ and the norm:


is orthogonal since

 $\langle cosnx, sinnx \rangle = 0$ and K(OSNX, COSJX) = KSINNX, SINJX) = TISNIand $\langle 1, 1 \rangle = 2\pi$

the basis en sinx, cosx, ... , as follows

 $f_{4}(x) =$ (0) 2) (, , ,

The expansion then becomes 2 (; h; (x)

Then, the norm can be found by $\|f\|_{1} = \langle f, f \rangle$ $\sum_{j=0}^{\infty} c_j c_k (t_j, t_k)$ $\sum_{j=0}^{\infty} c_j^2 (t_j, t_j)$ $\sum_{j=0}^{\infty} c_j^2 (t_j, t_j)$

Recall G are of the form $\int \int sin x_{1}^{2} dx, where j = 2 k J$

So, the coefficients clare of the form.

Therefore, $\|F\|^2 \ge \frac{1}{1} = \frac{1}{2} \frac{1}{1} =$

From the definition of inner product we also have

 $||f|| = \int_{a}^{a} |f(x)|^{2} dx$

A necessary condition for the functions fin V is that FILCO FOR the FS. to exist

A deeper analytic shows that this is essentially also sufficient i.e. V is the space of functions that are integrable (in lebesque sense)

and that satisfy Stifter da KDO

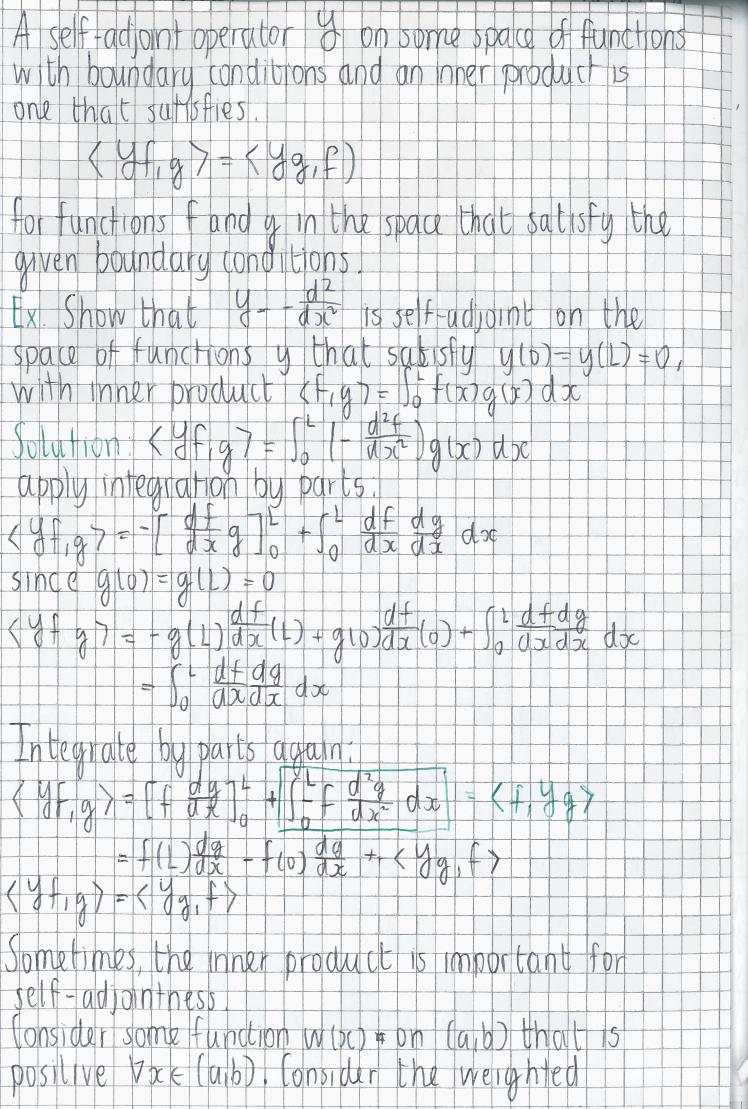
This space is known as 12(TI, T)

The space 12(-17 7) is an example of an infinite dimensional inner product space. It is furthermore a complete pace, i.e. it is a Hilbert complete space. were ally we define the space Lifab) = of (ab)-7R, fis integrable, Salfiz) doc 603 We will now see how functions from these spaces can be expressed by generalised F.S. that come from eigenvalue problems for differential operators. The allenation Eigenvalue problems for differential operators In Linear Algebra, complete orthogonal bases are related to eigenvalue poplerrs for symmetric matrices. Here, we look ut how complete complete orthogonal bases for functions in L'(a,b) are generated by eigenvalue problems for differential operators and boundary conditions Let $y_{1} = \frac{d^2}{dx^2}$ i.e. $y_{f} = \frac{d^2f}{dx^2}$ Consider the eigenvalue problem $dy = \lambda y$ with $y(0) = \lambda(L) = 0$ We saw that the solutions are $y(x) = y_k(x) \operatorname{csin}(L), k_{1/2}$ an integer, so the eigenvalues are $\lambda_{k} = \left(\begin{array}{c} k \\ 1 \end{array} \right)^{2}$

E		< .	2					1	5 5	4		d	12 71	ī	(21	n	d			DY	12	fi	d	21	P#			Ø	-(4		Y	ů.	-	1	9					
T	f		2	7	())	t	bh	l	n	0	1			227	Ch Ch	72		U		.1	0	0	5 5		a	re														
4 3 5 2			1							1.	1				4	1	1		£.				£						1			2										
Af	0	r		k	7	1	0		0	Y	1) (1	6	21	N	ev						A				7		(2	k-	-1)		2						
V	N		-1		Q	Í	Q	R		+	-1	J	n	C	F	Ì)/	14				x																				
l) g	+	h	0	14	,	0	V	1	A	N		51	0	C		M	10	,	-	pt n	st m			n le		011		tr	n O re	gg	01 e		2	U						
		n		51	r	n R	l	1 , r		A		IJ) s 2	h	n	CU	(0			s, t		0	n n		= 70		2	R	K	j RI	IV	e	cl		re	>	Y	6	50		t
		2	n re	ι / α		10		s			VES		2			0					5	2r h	n		2	st	() ()		m	r			m		Ho			ti	l	S fe		3Y
1	Z.	e (n			h 0	n	5	, 1	C	0	n	d	J		n iv))()(1	t	r	0	K		A	le	b	R	n× nc	n	1	jn Y	m	m	e c		n T	IC	a,	te	0	
0		4	j A	= A)	e fo	i		-	(7	4	j : y	1	n	r						A	4,5	C,	U) E		R	2													
		10		SE	20	Ŷ	n	d		h	D	t	ĨC	X)	(a	h		b	ę	g	e	nu	21	d	Ì	181	20		tr)										

differential operators

with boundary conditions and an oner product is one that suffies. $\mathcal{H}_{\mathcal{G}} = \langle \mathcal{H}_{\mathcal{G}}, \mathcal{F} \rangle$


given boundary conditions

Ex. Show that 1

apply integration $\left(\frac{g}{g}\right) = \frac{g}{g}\left(\frac{g}{g}\right) = \frac{g}{g}\left(\frac{g}{g}\right) = \frac{g}{g}\left(\frac{g}{g}\right) = 0$ dx g lo

 $\frac{\sqrt{4}}{\sqrt{4}} = -\frac{\sqrt{12}}{\sqrt{4}} \frac{d^{2}}{dx} (12) + \frac{\sqrt{4}}{\sqrt{4}} \frac{d^{2$ C ntegrate by parts again YF,g f(0) 99 $= f(L) \frac{\partial}{\partial x}$ = { 291+ Yfig)

Jometimes, the inner product self-adjointness Consider some function which # on posilive Vac (ub), lonsider

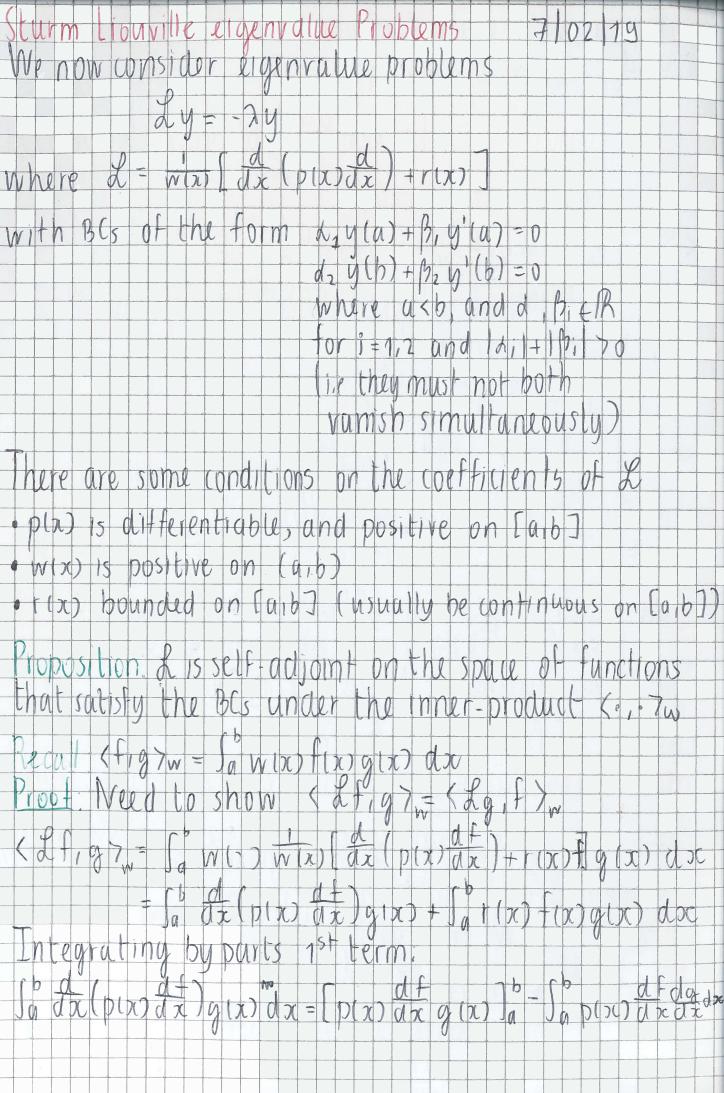
inner product (Fig) = Ja w(x) f(x) dx

Let's consider the weighted inner product (fight = 1) scfingin die for och. We show that a disself-adjoint wr.t.<, 2 on the space functions y that vanishes at x=b and that are finite at x=0

 $\left(\frac{y}{y}\right) = \int_{0}^{b} x - \frac{1}{x} \frac{d}{dx} \left(x \frac{d}{dx}\right) \frac{d}{y} dx$ = Jo - dx (re dx) g dx

-x df g + f x df dg dx $= -b \frac{df}{dx}(b) g(b) + 0 \frac{df}{dx}(b) g(0)$

 $\int_{U}^{b} \chi df dg d\chi d\chi$

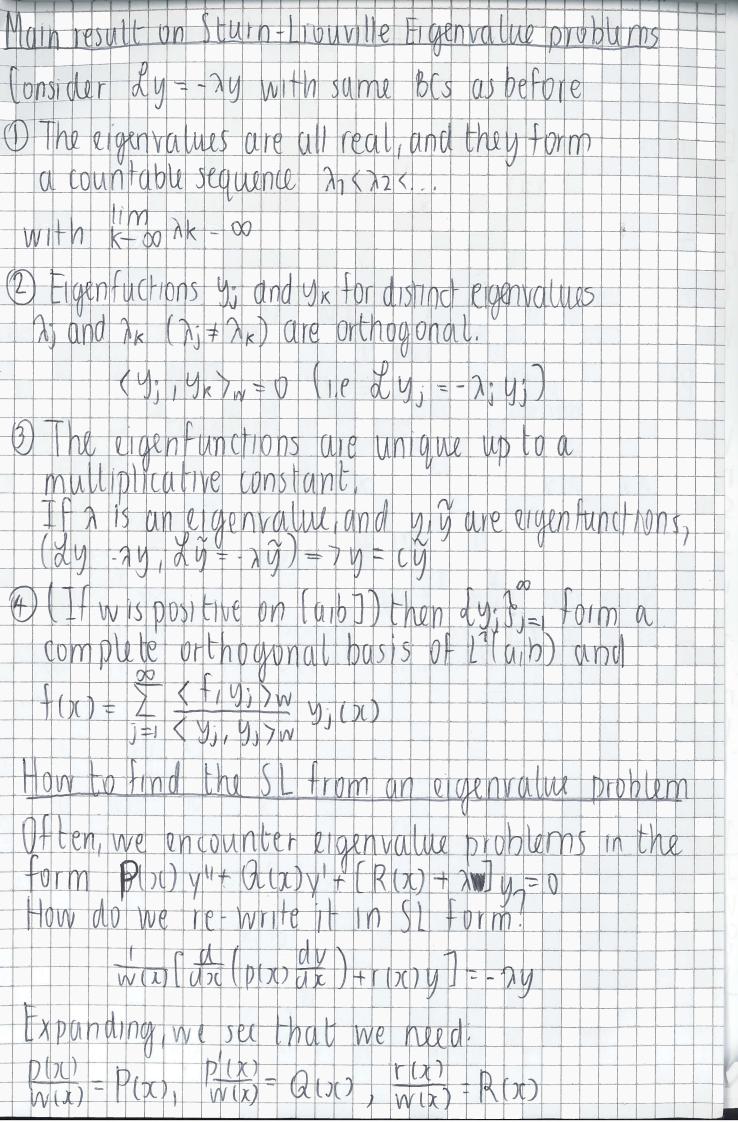

 $\langle \mathcal{Y}f_{ig} \rangle = \left[\chi f_{ig} \frac{dg}{dx} \right]_{D} - \int_{0}^{h} f \frac{d}{dx} \left(\chi \frac{dg}{dx} \right) dx = \langle \mathcal{Y}g, f \rangle$

We now consider eigenvalue problems

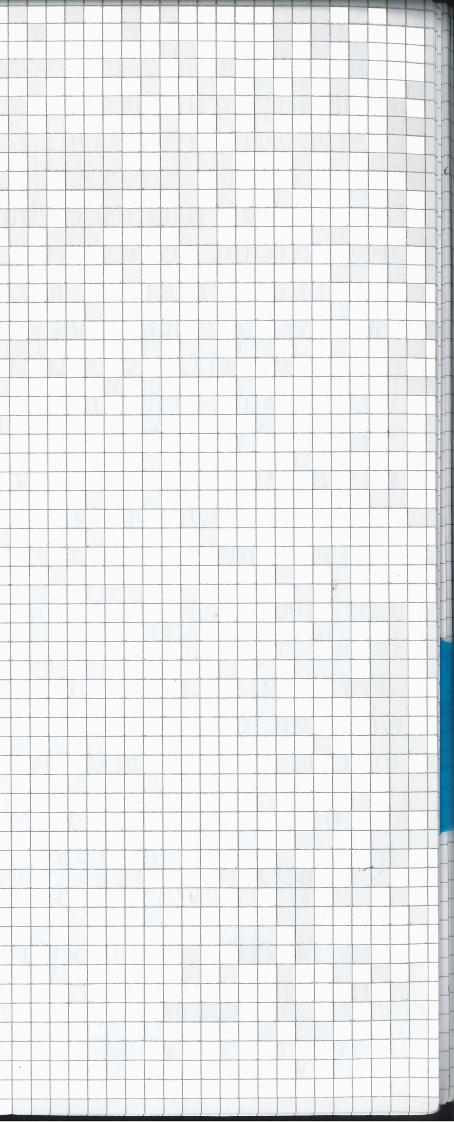
Ly=-24 where d = win dx (pix)dx) +rix

· wix) is positive on (a,b)

Proof Need to show Safig7= Sagif) Integrating by parts 1st term.



ntegrating by parts again $\int_{a}^{b} \frac{d}{dx} \left(p(p(x)) \frac{d}{dx} \right) \frac{d}{dx} \int_{a}^{b} \frac{d}{dx$ $-\left[p(x) + \frac{dg}{dx}\right]_{a} + \int_{a}^{b} f(x) \frac{dx}{dx} \left[p(x) \frac{dg}{dx}\right] dx$ So, we see from this that $\langle \lambda f g \rangle_{W} - \langle \lambda g , f \rangle_{W} + [p(\chi)] (d\chi g - f d\chi]]_{d}^{a}$ Then, we will have shown the self adjointness property if we show that $\left[p(x) \right] \left[\frac{d+}{dx} g + \frac{dy}{dx} g + \frac{dy}{dx} g + \frac{dy}{dx} \right] \left[\frac{d+}{dx} g + \frac{dy}{dx} g + \frac{dy$ $= 7 \left(b \right) \left(b \right) - 1 \left(b \right) \left(b \right) - 0$ and f'(a)g(n) - f(a)g'(a) = 0 $ax = 1 \quad \text{if } b_i = 0 \quad (eg. /2 \neq q)$ $(ase 2) \downarrow + (3i \neq 0) (eg / 7 \neq 0)$ $=7 y'(b) = -\frac{a_2}{b_2} y(b)$ $= \frac{1}{2} \frac{f'(b)g'(b) - f(b)g'(b)}{g'(b)} - \frac{d^2}{32} \frac{f(b)g(b) - f(b)g(b)}{g'(b)} = \frac{d^2}{32} \frac{f'(b)g(b)}{g'(b)} - \frac{f'(b)g(b)}{g'(b)} = \frac{d^2}{32} \frac{f'(b)g(b)}{g'(b)}$ A similar argument holds for bito In both cases we guarantee that $\left(p(b)\right)\left(\frac{df}{dx}g - f\frac{dg}{dx}\right)\left[a = 0\right]$


Consider Ly = - 24 with sume BCs as before The eigenvalues are all real, and they form a countable sequence the total. with k-oo k-oo 2 Eigenfuctions y; and yx for distinct eigenvalues λ_j and λ_k $(\lambda_j \neq \lambda_k)$ are orthogonal. 3 The eigenfunctions are unique up to a multiplicative constant. $f(x) = \sum_{j=1}^{\infty} \langle f_j y_j \rangle_W y_j(x)$ form P(x) y"+ Q(x) y + (R(x) + x) y=0 How do we re-write it in SL form? Expanding we see that we need $\frac{D(D)}{W(x)} =$

C

C

$= \frac{p'(x)}{p(x)} - \frac{Q(x)}{p(x)} = \frac{q}{dx} \ln p(x) = \frac{Q(x)}{p(x)}$ $\frac{p(x)}{p(x)} = \frac{p(x)}{p(x)} = \frac{p(x)}{p(x)$ Then root-Rootwice) Example: (onvert x'y'' - xy' + xy = 0into SL form P(x) = x' - A(x) = -x = -p(x) = 0 || exp(J - x) dx= xxp(-1mx) = +x $W(x) = \frac{p(x)}{p(x)} + \frac{1}{x} = \frac{1}{x} \cdot \frac{1}{x} + \frac$ So, the si form is then $\frac{1}{2} \frac{d}{dx} \int \frac{dy}{dx} \int \frac{dy}{dx$

Proofs of (2) and (4)
(3) Orthogonality of eigenfunctions
let
$$y_{k}$$
, y_{j} be eigenfunctions with respective eigenvalues λ_{k} , λ_{j} ,
 $\lambda_{k} \neq \lambda_{j} = 2 y_{k} + \lambda_{k} y_{k} = 0$, $2y_{j} + \lambda_{j} y_{j} = 0$
We want to show that $\langle Y_{k}, Y_{j} \rangle_{W} = 0$
i.e. $\int_{a}^{b} W(\Omega) Y_{k}(x) Y_{j}(x) dx = 0$
(onsider: $\langle x y_{k}, y_{j} \rangle_{W} = -\lambda_{k} \langle y_{k}, y_{j} \rangle_{W}$
since y_{k} is an eigenfunction
Also, since d is self-adjoint w.r.t $\langle \cdot, -\rangle_{W}$
 $\langle x y_{k}, y_{j} \rangle_{W} = \langle y_{k}, x y_{j} \rangle_{W}$
 $= -\lambda_{j} \langle y_{k}, y_{j} \rangle_{W} = 0$
Since $\lambda_{k} \neq \lambda_{j} = 7 \langle Y_{k}, y_{j} \rangle_{W} = 0$.
Me shall admit here that $d \vee_{k} Y_{k \vee 3}$ forms a complete basis
of $L^{2}(a_{1}b)$, i.e. every $f \in L^{2}(a_{1}b)$ admits an expansion of the
form:
 $f(x) = \sum_{k=1}^{\infty} (k_{k}(x))$
We show here that $C_{k} = \frac{\langle f_{1} Y_{k} \rangle_{W}}{\langle Y_{k}, Y_{k} \rangle_{W}}$
Take, inner product of f with y_{j} :
 $\langle f_{1} Y_{j} \gamma_{W} = \langle \sum_{k=1}^{\infty} (k_{k} \langle x_{k}, Y_{j} \rangle_{W})$
Since $\langle Y_{k}, Y_{j} \rangle_{W} = 0$ for $k \neq j$, we then obtain:

 $\langle f_{1} Y_{j} \gamma_{W} = C_{j} \langle Y_{j} \gamma_{j} \gamma_{W} \rangle$ $\langle = 7 C_{j} = \frac{\langle f_{1} Y_{j} \gamma_{W}}{\langle Y_{j} \gamma_{j} \gamma_{W}}$

Example: (onsider the interval $(1,e^{m})$ and the SL problem: $x^{2}y^{m}-xy'+\lambda y=0$, $y(1)=y(e^{m})=0$

Find the SL form and express a general function flow in terms of a generalised GFS (Generalised Fourier Series) involving the eigenfunctions of the problem.

We found pieviously that the SL form is:

 $\chi^3 \frac{d}{dx} \left(\frac{1}{x} \frac{dy}{dx} \right) + \lambda y = 0$

We can solve the differential equation with Frobenius method, however here it is in fact simpler to perform a substitution $x = e^{t}$ Set $y(t) = y(x) = y(\ln x)$ $y'(x) = \frac{y'(\ln x)}{x^2}, \quad y'' = -\frac{y'(\ln x)}{x^2} + \frac{1}{x^2}y''(\ln x)$ The equation then becomes Y''(t) - 2Y'(t) + 3Y(t) = 0We leave it as an exercise to check that for 251, the only solution x(t) of y"-2y'+7y=0 that also satisfy the BCs are trivial. We now only consider the case 2>1. In this case, the characteristic polynomial $u^2 - 2u + \lambda = 0$ which has roots of the form $1 \pm \sqrt{3} - 1$, we see that the general form of the solution is $y(t) = Aetcos(\sqrt{\lambda-1}t) + Betsin(\sqrt{\lambda-1}t)$ Transforming back to x we obtain; $y(x) = Ax \cos(\sqrt{n-1}\ln x) + Bx \sin(\sqrt{n-1}\ln x)$

Consider now the BCS
$$y(1)=0=y(e^{T})$$

 $y(1)=A\cos(0)=A=0$
 $y(e^{T})=Be^{T}\sin(\sqrt{\lambda-1}\pi)=0$
This has non-trivial solutions when $\sqrt{\lambda-1}=k7,1$
with k an integer (i.e. $\lambda = k^{2}+1$)
Therefore the eigenvalues are $\lambda_{k} = k^{2}+1$ for $k7,1$ integer
with associated eigenfunctions $y_{k} = B2csin(klnx)$
(W.1.0.9 we can take $B=1$)
We have the GFS for every $f \in L^{2}(1,e^{T})$
 $f(x) = \sum_{k=1}^{\infty} \frac{\langle f_{1}Y_{k}T_{W}}{\langle Y_{k}, Y_{k}T_{W}} Y_{k}(x)$
Here $\langle f_{1}Y_{k}T_{W} = \int_{1}^{e^{T}} \frac{1}{x^{3}}f(x) \cdot xsin(klnx) dx$
 $= \int_{1}^{e^{T}} \frac{f(x)sin(klnx)}{x^{2}} dx$.

Singular SL eigenvalue problems

So far we assumed that p(x) was positive on $[a_1b]$. This is what we call a regular SL eigenvalue problem. If instead p(x) vanishes at one or both end points x = a or /and $x = b_1$ then we call the SL eigenvalue problem singular. Example: SL eigenvalue problem for Bessel's equation. (onsider the SL problem: $y'' + \frac{1}{2c}y' + (n - \frac{n^2}{n^2})y = 0$ (x70) (Bessel's equation of index n, with n a parameter) To find the SL form: $p(x) = \int exp(\int \frac{(2cx)}{p(x)} dx) = x$ $w(x) = \frac{p(x)}{p(x)} = x$ $r(x) = R(x)w(x) = -\frac{n^2}{2c}$ So, the SL form 15: $\frac{1}{2x}\left(\frac{d}{dx}\left(x\frac{dy}{dx}\right)-\frac{n^{2}}{2c}y\right]+\lambda y=0$

Since p(x)=x vanishes at x=0, this sL problem will be singular on any interval of the form (0, R). (R70)For singular SL problems, it is not always possible to find non-trivial eigenfunctions when considering general BCs at the endpoints where p(x) vanishes.

Example: Consider Bessel's equation with index 0. $\frac{1}{2}dx(xdy) + \lambda y = 0$ (y(0) = y(1) = 0)

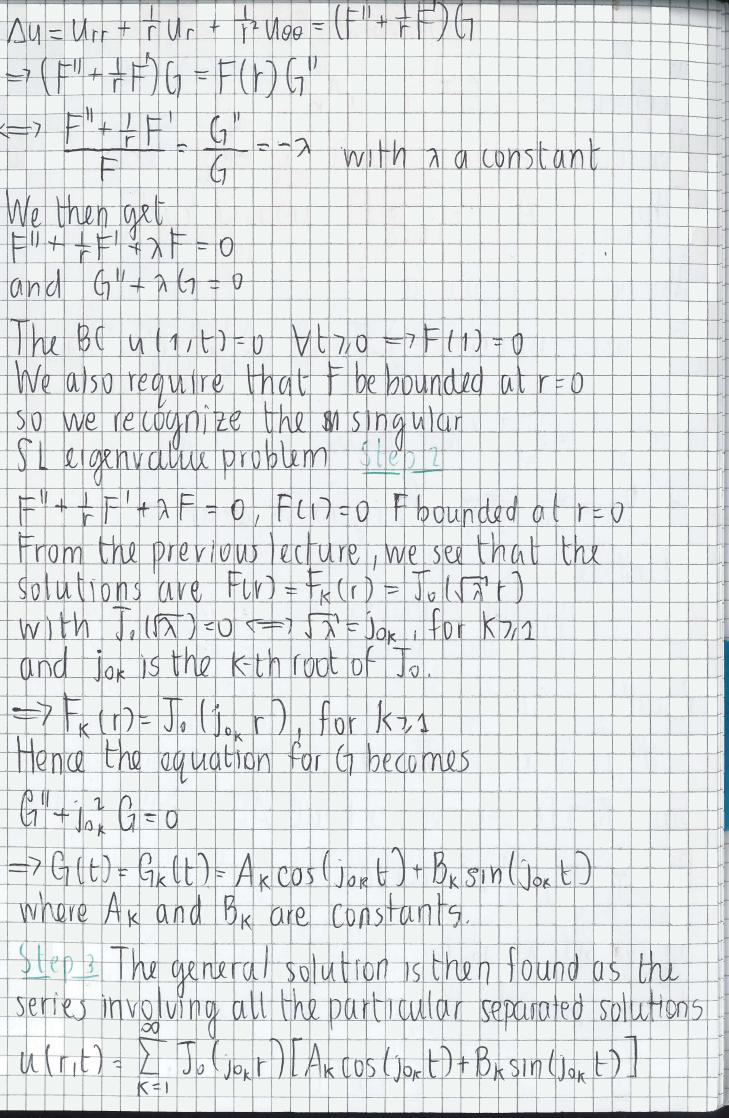
Then, the general solution is of the form

 $y(x) = A J_o(\ln x) + B Y_o(\ln x)$

Where Jo and Yo are Bessel's functions of first and second kind respectively. Then, the condition Y(0)=0implies that B=0 because $Y_0(x)$ is singular at x=0(as Yo contains log formaterm) and also A=0 because $J_0(0)=1$, so there is only the trivial soluto this problem.

For singular SL problems, it turns out that no boundary conditions is required for the self-adjointness of the associated operator & at endpoints where plx) vanishes (provided only that the solution and its first derivative are bounded at the endpoint). Therefore, for singular SL problems, we replace any BC by the condition that the solution must be bounded at the endpoints where p(x) vanishes,

Fourier Bessel series: Consider the SL problem: $\frac{1}{2}\left[\frac{dx}{dx} - \frac{dy}{dx} - \frac{dy}{dx} + \frac{1}{2}y = 0\right]$ on the interval (0,1) with the B.C. y(1)=0 and must be bounded at p. Then the general solution is of the form $y(x) = A J_n(\sqrt{\lambda}x) + B Y_n(\sqrt{\lambda}x)$ Where Jn and Yn are Bessel functions of the 1st and 2nd kind of index n. Under the conditions that y(x) must be bounded at x=0, We require B=0. Then, the BC $Y(1)=0 \iff A J_n(\sqrt{a^2})=0$ This has non-trivial solutions when JA'= Jnk, where d'ink 3 K71 denotes the roots of Jn(x). Therefore the eigenvalues $\lambda_k = 3n_k$, with eigenfunctions $Y_{K}(x) = J_{n}(j_{h_{K}}x)$ (Take A = 1) The completeness of the eigenfunctions still holds and a general function f satisfies: $f(\pi) = \sum_{k=1}^{\infty} \frac{\langle f_i Y_k \rangle_W}{\langle Y_k, Y_k \rangle_W} Y_k(\pi)$ Where <f, YK7w = for f(z) Jn (jnk 2) doc and $\langle y_{k}, y_{k} \rangle_{W} = \int_{0}^{1} x J_{n} (j_{nk} x)^{2} dx$ Exercise: Using the substitution s= ink oc and the identity: $\int_{0}^{x} SJ_{n}(s)^{2} ds = \frac{x^{2}}{2} \left[J_{n}(x)^{2} - J_{n-1}(x) J_{n+1}(x) \right]$ Show that $\langle y_{k}, y_{k}, 7_{W} = \int \frac{J_{n+1}(j_{nk})^{2}}{2}$, then $f(x) = \sum_{K=1}^{\infty} G_{k} J_{n}(j_{nk}x)$ where $Q_{k} = \frac{2}{J_{n+1}(j_{n,k})^{2}} \int_{0}^{1} c_{r}f(x) J_{n}(j_{n,k}x) d_{r}c$


Fourier Legendre Series The SL form of Legendre's equation is: $\frac{d}{dx}\left[\left(1-x^{2}\right)\frac{dy}{dx}\right] + v(v+1)y = 0$ Where $\lambda = \mathcal{V}(\mathcal{V}+1)$ is the eigenvalue. Vsually we consider this equation on the interval (-1, 1), so $p(\alpha) = 1 - \mathcal{X}^2$ vanishes at both endpoints. Therefore we consider this equation with the conditions that y(x) should be bounded at $x = \pm 1$ It can be shown that the only non-trivial solution eigenfunctions that satisfy these conditions are the Legendre polynomials & Pn(x) Snzo, with associated eigenvalues are for V=nzo with integer n (i.e. 2n=n(n+1)) Every fel2(-1,1) admits a Fourier Legendre Manumi series expansion $f(x) = \sum_{n=0}^{\infty} a_n P_n(x)$ where an = <f, Pn7w (Pn, Pn 7w Since w(x) = 1, we can simplify $\langle P_{n}, P_{n}, T_{w} = \int_{-1}^{1} P_{n}^{2}(x) dx = \frac{2}{2n+1}$ S_{0} , $a_{n} = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_{n}(x) dx$

21/02/19 Chapter Separation of variables revisited he now apply the methods of Ch2+3 to solve the PDE considered in Ch 1 12 We will consider a range of examples Example Wave equation on the unit disc Small vertical displacements on a circular membrane of radius 2 are modelled by the wave equation! Ute = AU where u=u(r,g,t) is the vertical displacement The memorane is held fixed at r=1, so u(1,0,t) = 0 $\forall 0 \in [0,2\pi], t = 0$ We are given the initial conditions H $u(r, \theta, p) = f(r), u_t(r, \theta, p) = g(r)$ for some given functions fin and gir) a) Assuming that u remains axisymmetric for all times show that wwwwww=u(r,t)=2 Jo(jor)[Arcos(Jort)+Brsin(jort)]where the coefficients Ak and Bk can be expressed in terms of integrals involving find and gard (b) tind u when t(r) = 0, and $g(r) = \begin{cases} 1 & 0 \le r \le \$ \\ 0 & 8 \le r \le 1 \end{cases}$ where or set parameter Step 1 We seek nontrivial separated solutions

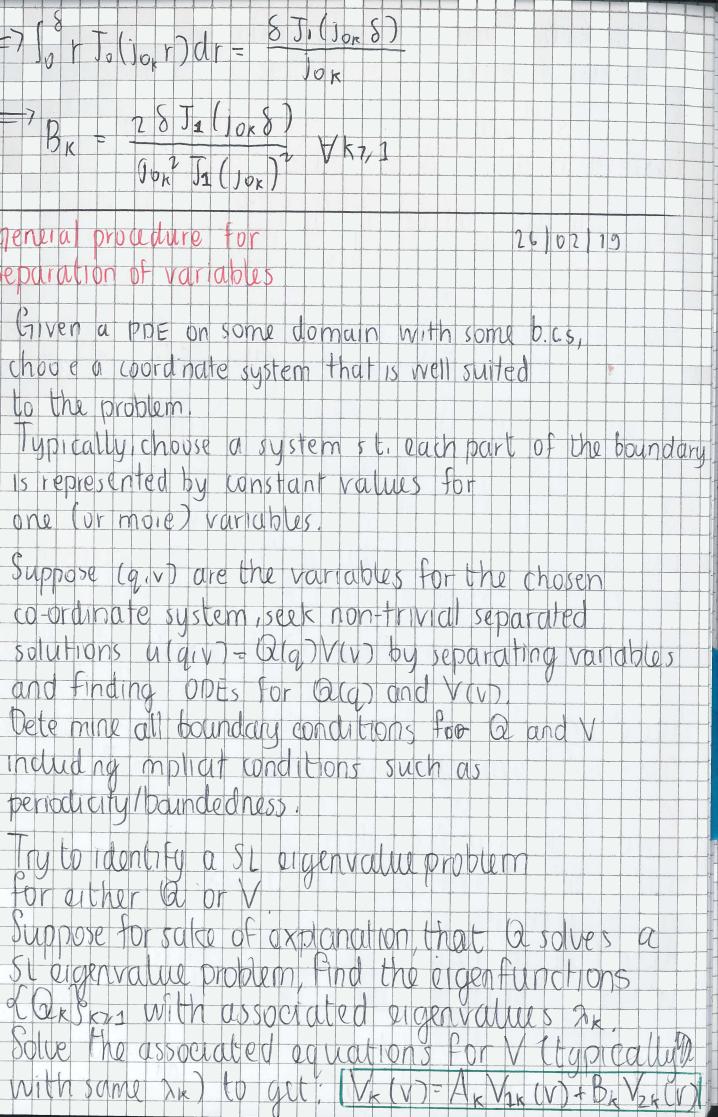
of the form u(rt) = F(r)G(t)

Inserting into the equation, we get $M_{tt} = F(r) G'(t)$

<=7 F"+ / F'_ 6" -7 G We then get E"+ FF' = XF = 0 and G"+2G=P The BC 411, t)=0 Vt7,0=7F(1)=0 so we recognize the misingular SI eigenvalue problem SI solutions are $F(r) = F_{N}(r) = J_{0}(J_{n}^{2} + J_{n})$ with J. (5)=0 => 5 = Jok , for K7,1 and jok is the K-th root of Jo. $= 7 F_{K}(r) = J_{0}(j_{0}, r), for k > 1$ Hence the equation for G becomes $G'' + j_{0} = 0$ => G(t) = GK(t) = AKCOS(jort) + BKSIN(jort) where Ak and Bk are constants.

For To Find the coefficients Ak and Bk we use the initial conditions $f(r) = u(r, \theta) = \sum_{k=1}^{\infty} J_{\theta}(j_{0k}, r) A_{k}$ Th We recognise here is the Fourier-Bessel series for for 1x+ VS Therefore AK=FJ(jox) or f(r) Jb(joxr) dr 50 We have Uttrio) = g(r) $= \frac{1}{2} g(r) = \frac{1}{2} (r, 0) = \sum_{k=1}^{\infty} \frac{1}{2} \int_{0} \frac{1}{10k} r \int_{0}^{\infty} \frac{1}{2} \frac{1}{2} \frac{1}{10k} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \frac{1}{2} \int_{0}^{\infty} \frac{1}{2} \frac{1}{2} \int_{0}^{\infty} \frac{1}$ => $q(r) = \sum_{k=1}^{\infty} \int_{0} (j_{0k} r) P_{k} j_{0k}$ =7 $B_{K} = \frac{1}{J_{0K}} \frac{2}{J_{1}(J_{0K})^{2}} \int_{0}^{1} rg(r) J_{0}(j_{0K}) dr$ b) MM. furd=0, $g(n) = \begin{cases} 1 & 0 \leq r \leq \delta \\ 0 & \delta \leq r \leq 1 \end{cases}$ Recall the RR $\frac{d}{dx} \left[x J(x) \right] = x J_0(x)$ Since mm fun=o, we see that Ar=0 VK7,1 $B_{K} = \frac{2}{J_{1}(j_{0K})^{2}}\int_{0}^{\delta} t J_{0}(j_{0K}t)dt$ Tf Wc set X = Jor t, $\int_{b} T J (jor t) dt = \frac{1}{Jor} \int_{b} X J (X) dX$ $= \int \frac{1}{J_{0k}} \left[\chi \int J_{1}(\chi) \right]_{0}^{\delta_{0k}}$

$=7\int_{0}^{0}r J_{0}(j_{0,r})dr = \frac{8}{7}J_{0}(j_{0,r}S)$


 $= 7 B_{K} = 28 J_{1} (J_{0K} 8)$ John J1 (Jok) VK7,1

General procedure for separation of variables

· Given a pre on some domain with some b.c.s. chooe a coordinate system that is well suited to the problem. is represented by constant values for one (ur more) variables

and Finding ODES For Olg, and Vev including implicit conditions such as periodicity/baundedness.

In to identify a SL eigenvalue problem For either & or V

with Ar, Br constants, Vir, V. Ineary independent particular solutions

Sometimes there are furthe B.C. on V that can help to simplify V& Further.

no general collution is then

 $u(q,v) = \sum_{k=1}^{n} Q_k(q) V_k(v)$

 $a_k(q)[A_kV_{1k}(V) + B_kV_{2k}(V)]$

finally, we remaining BES to determine 24ks, 5B-5 in terms of generalised tourier series with the boundary data.

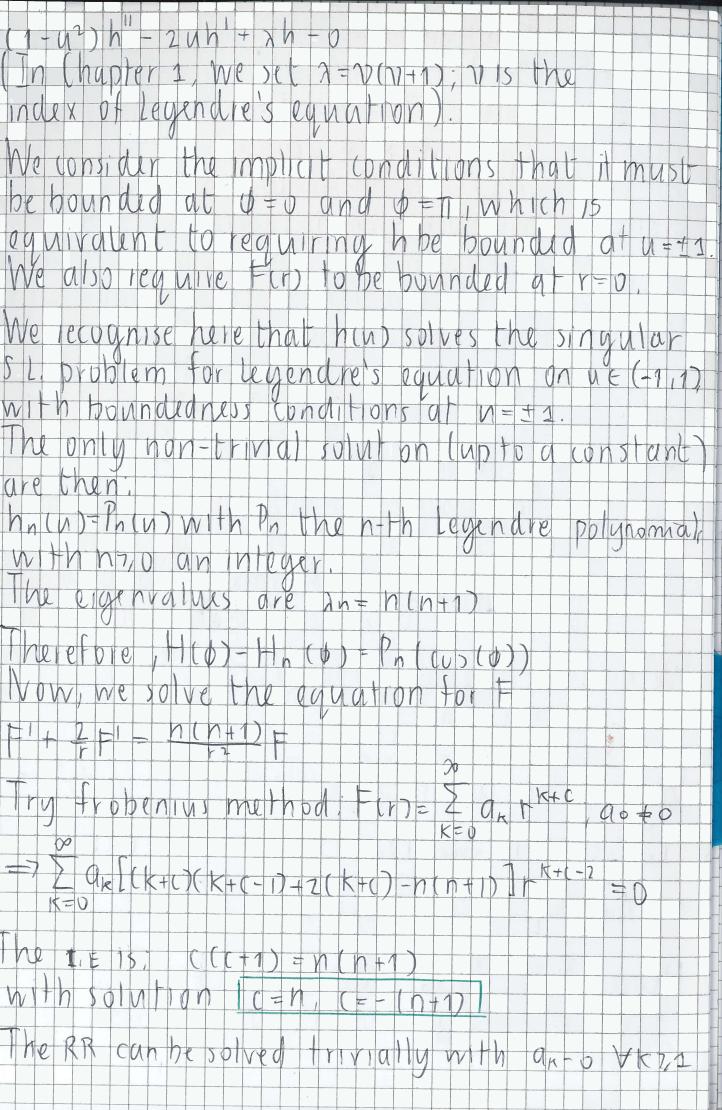
-xample. Find the steady state temperature a in the unit sphere with BCs at r=1 SI, OCLO, ED u(1,0,0) = f(0), where f(0). 0, 6E(F, T)

ulution the steady state temperature solves Auto (from heat equation up - Auto with ut = 0 due to the steady state condition) Since flo) is independent of of, we seek a solution $u(r, \theta, \phi) = u(r, \phi) = 1.0$

no o dependance

Recall From Chapter 1 that separated solutions utrol = F(n)H(d) solve the following ODES

12 F, and after setting u = coso, h(u) = H(o)

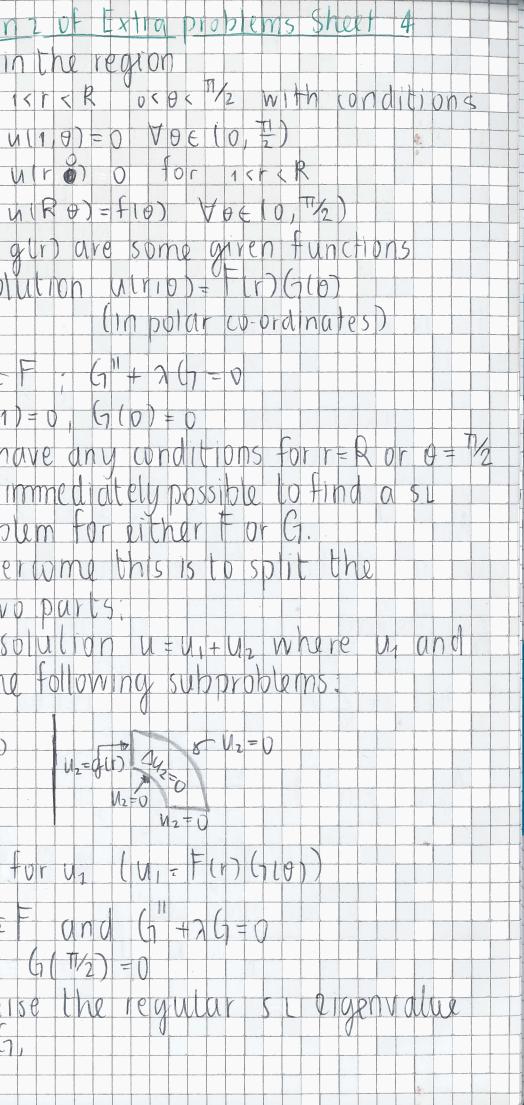

 $1 - u^2 h'' - 2uh' + xh = 0$ In Chapter 1, We set 7= v(n+1); vis the index of legendre's equation with boundedness conditions at N= +2. are then with how an intraer.

40

(III)

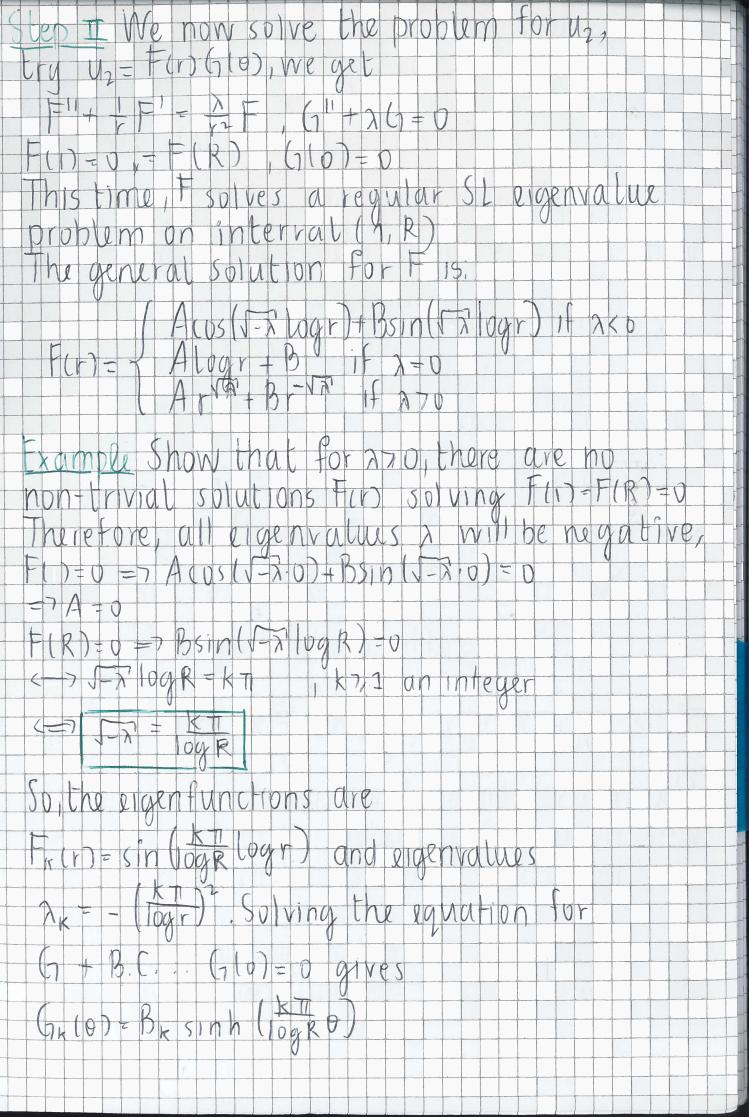
therefore, H(o)-Hn (o) = Pn(cus(o)) IVOW, we solve the equation for F $F' + \frac{2}{r}F' = h(n+1)F$

||he|||t|| = ||b|| = ||C||(C+1)| = n(n+1)With solution IC=n, (=-10+1)

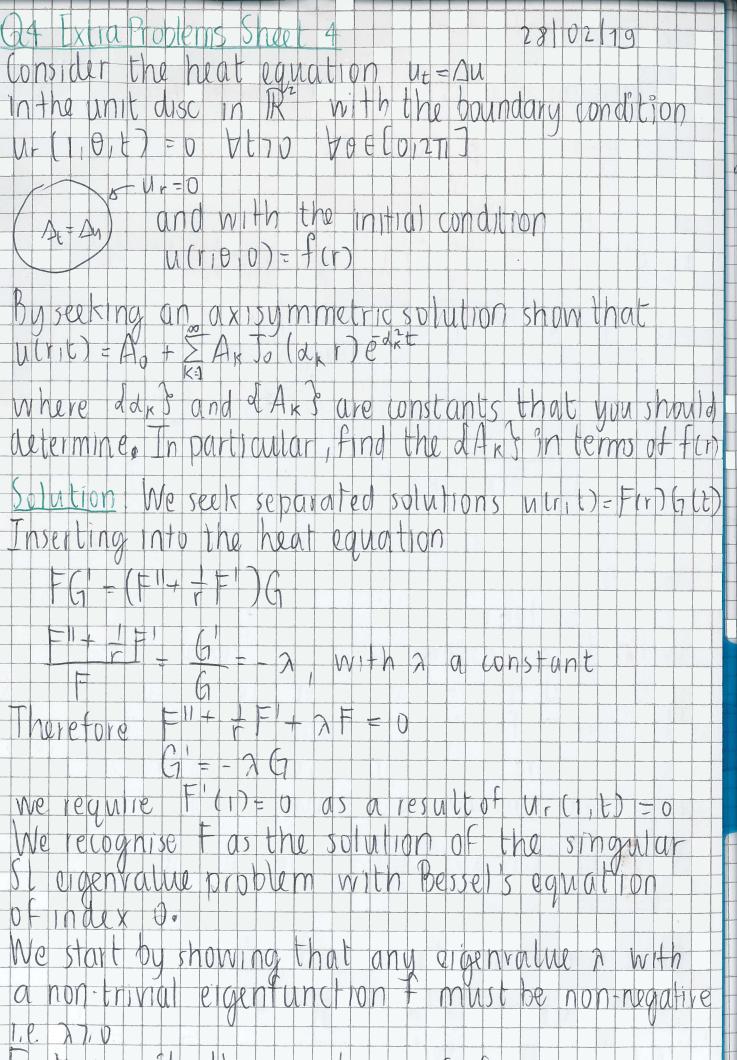

	This gives solution; the providence of the provi
	Since we require Fto be bounded at r=0
W	So Falm=0 MM MARANDE Vn.
k-	General solution is then
	Me now find the AB using the BCs
6	$u(1, \phi) = f(\phi) = \begin{cases} 1, & \phi \in (0, T/2) \\ 0, & \phi \in (T/2, T) \end{cases}$
	$= \frac{p}{10} \sum_{n=0}^{\infty} A_n P_n(cos \phi)$
	Changing back to u variable
	$\sum_{n=0}^{\infty} A_n P_n (n) = \begin{cases} 1, & n \in [0, 1] \\ 0, & n \in [1, -0] \end{cases}$
V-	We have the generalised founer seres wth
(An 2 Jo Poludu
	We use the identity: $\int_{x}^{1} P_{0}(u) du = 2n+2(P_{0}, (x) - P_{0}+(x)) \forall x \in \mathbb{C}$
	$= 7 \Lambda_{n} = 2n + 1 + 1 + p + (n) + ($
	2n+1!!!n-1!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
	An=o if n is odd.

2 DF allestion IXUM Consider su = in the region ru= F(8) Pho -u-mayne gtr where He) and gurd are some given Hunctions Try separated solution wirig) = [17](16) E F(1)=0WIT nh but we app't have any conditions for r=R It is then not immediately possible eigenvalue problem for either For The way to overcome this is to split problem in two purts We seek the solution Us appendive the following subproblems $u_{1}=0$ $u_{1}=0$ $u_{1}=0$ $u_{1}=0$ U1=0 U1=0 Diep I Dolve for U1 FF 12 and

We


T-1

 $G(\pi_2) = 0$ D=D. (10)=7 we recognise problem tor 17



u he	$G(T_{12}) = 0 =) J \overline{\lambda} T_{12} = k \overline{T}, k \overline{\lambda} \overline{J} an integer$
($c = \int \overline{x} = 2k$ Eigenfunctions are $(10) = G_{1k}(0) = sin(2k0)$
h	$F'' + F' = (2k)^{-1}$ $The menutum solution is^{-1}$
	$\frac{1}{1} \frac{1}{1} \frac{1}$
Le-	Us now $f(i) = 0$, we get: $F(r) = F_k(r) = A_k(r - r^2)$
	So the general solution is $M_1(r, \theta) = \sum_{k=1}^{\infty} A_k (r^2 + r^2) sin (2k\theta)$
	we must find dAks using using using using
	$A+k(M+M)(M) = \sum_{k=1}^{\infty} A_k(R^{2k} - R^{2k}) \sin(2k\theta)$
	$A_{k}\left(R^{2k} R^{-2k}\right) - \left(\frac{f}{sin(2k\theta)}\right) $
	$= \frac{4}{\pi} \int_{0}^{\pi} f(\theta) \sin(t2k\theta) d\theta$ $= \frac{4}{\pi} \int_{0}^{\pi} f(\theta) \sin(t2k\theta) d\theta$
	$=7A_{K}=\pi(R^{2K}-R^{-2K})_{0}+f(0)sin(2Kg)d\theta$

F(n=v=F(R) The general solution for Fis. Alogr + B if x=0 Arra Bria if x=0 F(r)= =7 A=0 $F(R)=0=PBsin(\sqrt{-\lambda}\log R)=0$ J=X10gR=KT J-7 = KT logR 4=7 So, the eigenfunctions are Fringer (ogr logr) and eigenvalues + B.C. Glo)=0 gives 5 Gilon Brsinh (10gRD)

The general solution for U2 15 then Cas Lixina mobilems Sheet 4 $U_2 = Z B_R SIN (\frac{k\pi}{\log R} \log r) SIN (\frac{k\pi}{\log R} \Theta)$ P To Find Bk, we fit the B.C. $U_2(r, T/2) = q(r)$ $g(v) = \sum_{k=1}^{\infty} B_k sinh(2\log R) sin(\log R \log v)$ St. Ur=0 Using the GF, S for eigenfunctions dF, S we have - $B_{k} \sinh \left(\frac{k\pi^{2}}{20gR}\right) = \left(\frac{g(r)}{F_{k}(r)}, \frac{F_{k}(r)}{F_{k}(r)}\right)$ **HO** We can show that the \$1 form of the equation for Fis. $r \frac{d}{dr} \left(r F' \right) - \lambda F = 0 = 7 \quad \forall (r) = r$ $\left(q, F_{k}\right)_{V} = \int_{R}^{R} \frac{1}{r} \frac{q}{q} \frac{1}{r} \frac{k}{q} \frac{k}{r} \frac{1}{q} \frac{k}{r} \frac{1}{q} \frac{k}{r} \frac{1}{q} \frac{1}{r} \frac{q}{q} \frac{k}{r} \frac{1}{q} \frac{1}{r} \frac{q}{r} \frac{1}{r} \frac{1}{r} \frac{1}{r} \frac{q}{r} \frac{1}{r} \frac{1}{r}$ FG = (F'' + F')G $(f_{\kappa})f_{\kappa}/w = \int_{1}^{R} F \sin^{2}\left(\frac{k\pi}{\log R}\log r\right) dr$ = LOOR (after substituting x=logr) 1 2 CR 1 gtr) sin (kr logr) dr sinh (2logR) logR 1 r gtr) sin (logR) ogr) dr Therefore FIFFFAFED => Br-The full solution is then u= U1+U2 with up and up as above OF Index 0. 1. P. 27.0

tist rewrite the equation in SI form

6

 $G' = -\lambda G$

1 A- (+ AE)+ 7 E=0 Foct

Th Multiply by wird Fird = n Fird and integrate over 10, 17

 $\int d \left(r dF \right) F r h F dr = 0$

Integrate by parts

 $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$

 $= \lambda \int_{0}^{1} r F(v)^{2} dr = \int_{0}^{1} r \left(\frac{dF}{dr} \right)^{2} dr$ 7/0 70

For non-trivial Ford we have that Sorturiar so =77; $\int_{0}^{1} F(F(r))^{2} dr$

GrFlrdr

TA 2=0, then F11+ = F1=0

which has general solution

Fin= (+Dlogr

with C, D constants. Since we require F be bounded at r=0, we must take D=0=77(r)=0

This solves F'(1) = o for any constant (We therefore can define Foto = 1 as the 1st

eigenfunction with eigenvalue 20 = 0.

Vory, consider a >p, the general solution of

FV++F+AF=0

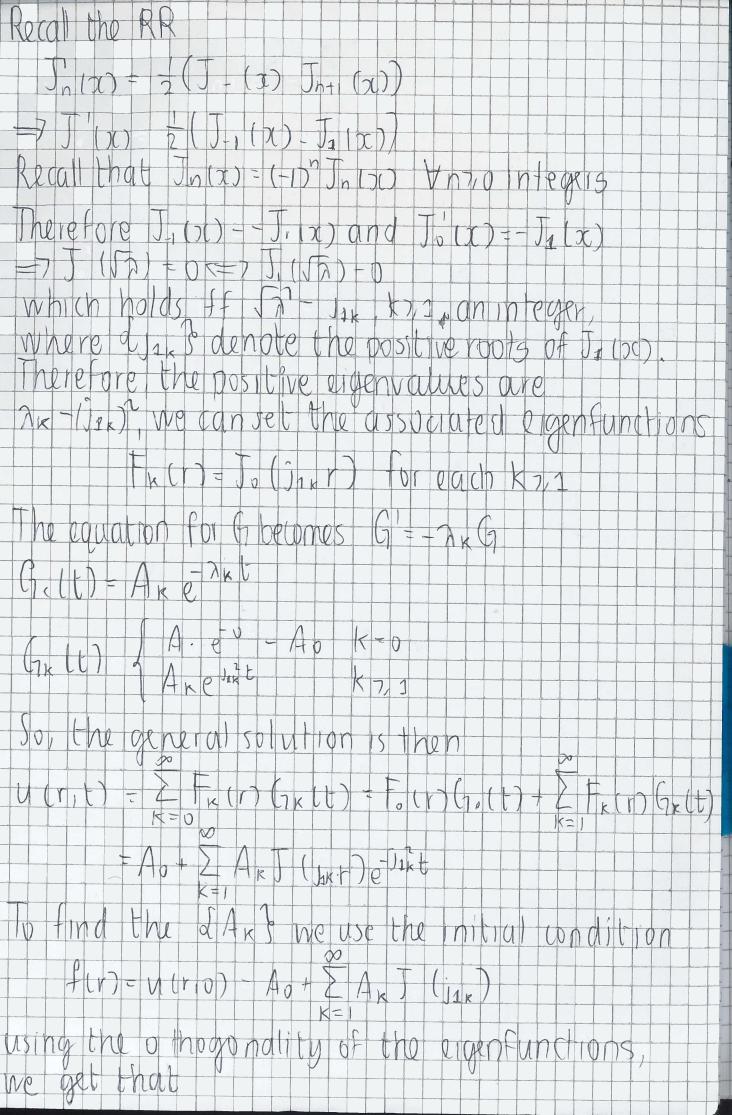
that is non-singular at r=0, is

Fir) = Chorom Jo (Jar), where C is a constant We determine a with F(1)=0 => Ja Jo (Ja) 0 T=7 Jo(JA)=0 (since we are considering 120

Recall the RR

 $J_{n}(x) = \frac{1}{2}(J_{+}(x)) J_{n+}(x))$ $= \overline{J'(\chi)} = \overline{Z(J_1(\chi)} - \overline{J_1(\chi)})$

 $= 7 T (T_{A}) = 0 = 7 T (T_{A}) = 0$ which holds IF Fi- 12k kriz an integer


Therefore the positive eigenvalues are

The equation for G becomes G'= - 7 G $G(t) = A = \lambda k t$

Gretti J. A. e. - Ap K=0 ANCJIZE

 $f(v) = V(v o) - Ao + \sum Ak J(J1k)$

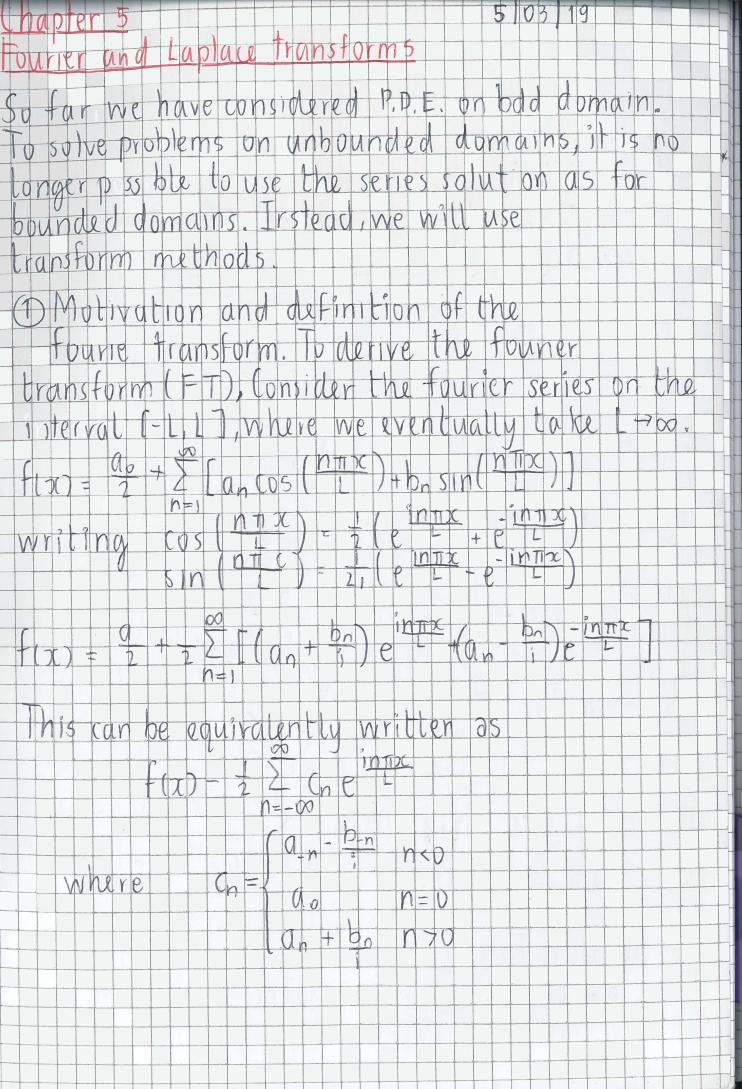
we get that

FOF	$A_{K} = \langle F_{K} \overline{F}_{K} \overline{F}_{N} \\ \overline{\langle F_{K} \overline{F}_{K} \overline{f}_{N} \rangle} \\ \overline{\langle F_{K} \overline{F}_{K} \overline{f}_{N} \rangle} \\ \overline{\langle F_{K} \overline{F}_{K} \overline{f}_{N} \rangle} $	
U-	For $k=0$, $\langle f, F_0 \rangle_{w} = \int_0^0 r f(r) \cdot 1 dr = \int_0^0 r f(r) dr$	
V:- 51- TE	$= 7 A_{p} = 2 \int_{0}^{p} r dr = \frac{1}{2}$	
t I el	For $k7, 2$ $kF, F, Tw = br F(r) T_0 (F_1 r) dr$	
2	$\xi T_{K}, T_{K} T_{N} = \int_{D} r \int_{D} (j_{1K}r)^{2} dr$	
E	$\frac{\chi^{2}}{\int_{0}^{x} \int_{0}^{x} \int_{0}$	
	$\int_{a}^{b} r J_{0}(J_{A}, r) dr = \int_{a}^{b} \int_{a}^{b} J_{0}(s) ds$	
V	$= \frac{1}{2} \left[\frac{1}{2} \left(\frac{1}{1} \right)^{2} - \frac{1}{2} \left(\frac{1}{1} \right)^{2} \right]$	
	$= \overline{J_{i}(j_{ik})}$	
	$\frac{1}{4} \frac{2}{1} \frac{1}{3} \frac{1}{3} \frac{1}{3} r f(r) J (j_{k} r) dr \forall k_{7/2}$	

Chapter 5 Fourier and Laplace Transforms

So far, we have considered P. P.E. on bold domain. To solve problems on unbounded domains, it is no anger possible to use the series solution as for bounded domains. Instead, we will use ransform methods. D Motivation and definition of the Fourier transform. To derive the founer transform (FT), Consider the fourier series on the interval (-L,L], where we eventually take L-200. $f(\pi) = \frac{a_b}{2} + \frac{1}{4} \left[\frac{a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)}{\frac{1}{4} \left[\frac{a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)}{\frac{1}{4} \left[\frac{n\pi x}{L} \right]} \right]$ n that n that nuc -innx writing COS INTIC sin

 $(x) = \frac{a_0}{2} + \frac{a_1}{2} + \frac{a_2}{2} + \frac{a_1}{2} + \frac{a_1}{2}$ b_n $e^{in\pi x}$ b_n $-in\pi x$ This can be equivalently written as $(D = \frac{1}{2} + C_n E$ $a_n - \frac{p_n}{s}$ no where ch= n = 0


an + 40 170

5 03 19

AKESF, FRTW VK70 For k=0, $\langle f, F_0 \rangle_{W} = \int_0^0 r f(r) \cdot 1 dr = \int_0^0 r f(r) dr$ $\langle F_p, F_o \rangle_W = \int_0^{\infty} r dr = \frac{1}{2}$ A = 2 Jorfundr For K7 $\{F, F_k\}_W = \int_0^{\infty} r f(r) \int_0^{\infty} (f_{1k}r) dr$ (FK, FK TW = Dr Jo (JAKP) dr Recall $\int_{a}^{b} s \overline{J}_{n}(s)^{2} ds = 2 \left[J_{n}(x)^{2} - \overline{J}_{n-1}(x) \overline{J}_{n+1}(x) \right]$ Take S=J1KK $\int_{0}^{1} r \int_{0}^{1} (j_{1}, r) dr = \int_{1}^{1} r^{-1} \int_{0}^{1} s \int_{0}^{1} (s) f ds$ $\frac{1}{2} \int_{\mathcal{F}} \left(\int_{\mathcal{F}} \left(\int_{\mathcal{F}} \right)^2 - \int_{\mathcal{F}} \left(\int_{\mathcal{F}} \left(\int_{\mathcal{F}} \right)^2 \right) \left(\int_{\mathcal{F}} \left(\int_{\mathcal{F}} \right)^2 \right)$ herefore $\frac{2}{k + J_0(J_1k)^2} \int_0^{\infty} rf(r) J_0(J_1k r) dr \forall k_7/1$

Ē

Chapter 5 Fourier and Laplace transforms bounded domains. Irstead, we will use transform methods. DMotivation and definition of the -----Fourie transform. To derive the founer ep 1 sterval C-LLJ, where we eventually take $f(x) = \frac{a_b}{2} + \frac{x}{4} \left[\frac{a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)}{4} + \frac{a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right)}{4} \right]$ s(n + 3c)writing COS nici sin 610 600 **639** This can be equivalently written as $\frac{1}{2}$ where $C_n =$ a.

Recall now:

Vs this allows us to simplify ch

 $\left(\frac{1}{1} + \frac{1}{1} + \frac{$

 $cos(\frac{n\pi x}{L}) + \frac{1}{s}sn(\frac{n\pi x}{L}) = cos(\frac{n\pi x}{L}) - sn(\frac{n\pi x}{L}) = e^{\frac{1}{L}}$

Therefore for n70 Q1-

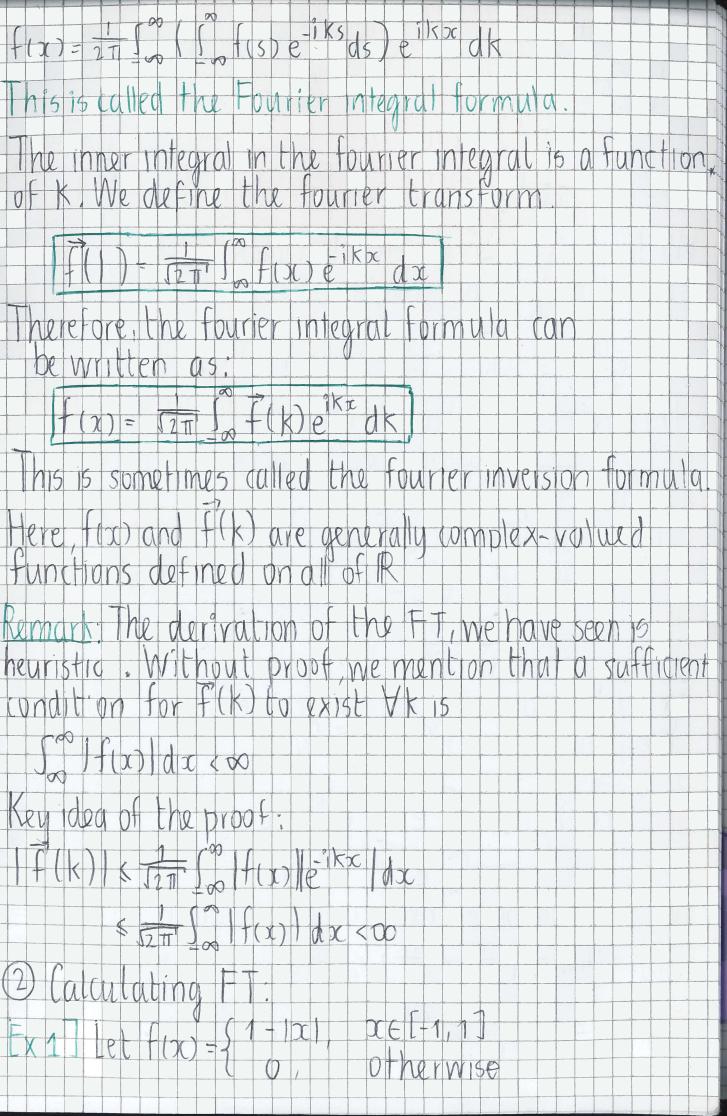
 $C_{n} = \frac{1}{2} \int_{-1}^{1} \frac{1$

Exercise check that for noo, the same to mula holds true i.c.

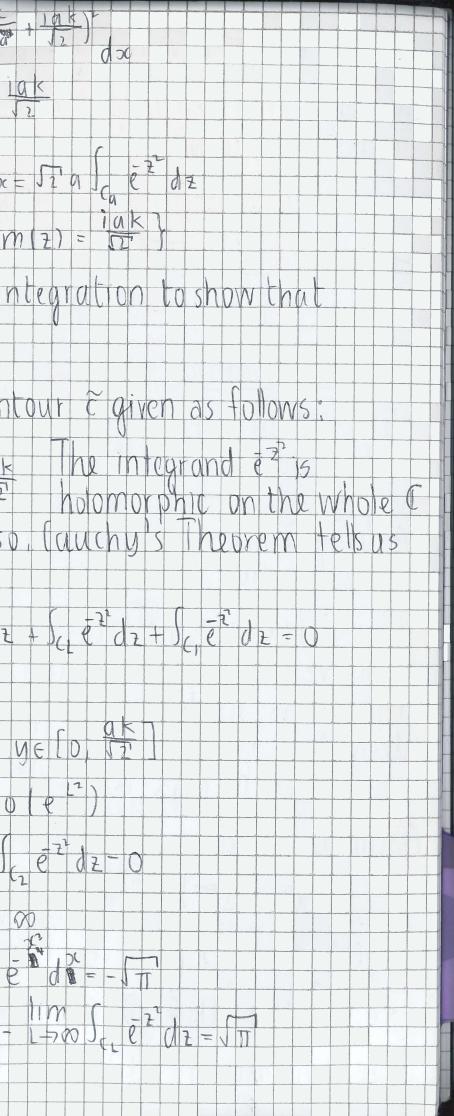
 $C_n = \frac{1}{L} \int_{-1}^{L} f(p_1) e^{-i\frac{n\pi}{L}} dx \quad \forall n \in \mathbb{Z}$

If we define the points kn = L, Vnc T these form a partition of the reat line R, with spacing Sn=Kn+1-Kn= T/1, which tends to zero as 1->0, We can re-write previous ean as: $f(x) = \frac{1}{2L} \sum_{n=+\infty}^{\infty} \frac{1}{-L} \frac{1}{L(s)} \frac{1}{2} \frac{1}{L(s)} \frac{1$

multiply and divide by δ_n : $F(x) = 2\pi \frac{1}{2} \int_{-\infty}^{\infty} f(s) e^{-ikns} ds \int_{-\infty}^{-ikns} ds$


We identify here a Riemann sum which in the limit L -700, i.e. bn-70, we expect to convege to the following expression

 $\frac{1}{f(1)} = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} f(x) e^{-ikx} dx$ therefore, the fourier integral formula can be written as. $f(\chi) = \sqrt{2\pi} \int_{\infty}^{\infty} f(k) e^{ik\pi} dk$


condition for F(K) to exist VK is Ja Harda coo

Key idea of the proof. $\left| \frac{1}{F}(k) \right| \leq \frac{1}{12\pi} \int_{0}^{\infty} \left| f(x) \right| e^{-ikx} \left| dx \right|$ $\leq \frac{1}{52\pi} \int_{\infty}^{\infty} |f(x)| dx < 00$

2 Calculating FT $E_{X,1} = \frac{1}{1} + \frac{1}$

We calculate F(K) directly	$= \frac{1}{\sqrt{2\pi}} e^{-\frac{3}{2}k^2} \int_{-\infty}^{\infty} e^{-\frac{1}{\sqrt{2\pi}}}$
$F(k) = \overline{J_2} + J$	Introduce Z JZa J
$x = \frac{1}{12\pi} \int_{-1}^{1} \frac{f(x)e}{f(x)e} dx$ $\int_{-1}^{1} \frac{f(x)e}{f(x)e} dx + \int_{-1}^{0} \frac{f(x)e}{f(x)e} dx - \int_{0}^{1} \frac{f(x)e}{f(x)e} dx$	$= \frac{1}{200} \left(\frac{x}{4\sqrt{2}} + \frac{1}{10} \frac{x}{1} \right)^{2} dx$
The leave it as an exercise to check	where $C_{a} = 1 Z \in C$, Trr
$\frac{1}{1} = \frac{1}{1} \left(\frac{1}{e^{ik}} + \frac{1}{e^{ik}} \right)$	We will use contour in $\int_{C} e^{2} dz = \sqrt{T}$
$\frac{21}{1} = \frac{1}{1} = 1$	Consider the dosed cont
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$L = \frac{1}{2\pi} \left(\frac{1}{(-ik)^2} \right) \left(2 - \frac{ik}{e^i k} \right)$	$\frac{1}{2} = \frac{1}{2} + \frac{1}{2} + \frac{1}{2} = 0$
$= \frac{1}{12\pi^{1}} \frac{5}{12\pi^{2}} \frac{1}{12\pi^{2}} \frac{1}{12\pi^{2}$	$= \frac{1}{2} \int_{-\frac{1}{2}} \frac{1}{2} + \int_{-\frac{1}{2}} \frac{1}{2} \int_{-\frac{1}{2}} \frac{1}{2} + \int_{-\frac{1}{2}} \frac{1}{2} \int_{-\frac{1}{2}} \frac$
Ex 2] let a 70 parameter. Let $f(x) = e^{-x^2/2a^2}$ We show that $\overline{f'(k)} = a e^{-a^2k^2/2}$	$\begin{array}{c} +0 & 7 \\ -2^{2} \\ e \\ \end{array} \\ \end{array} \\ = e \\ \end{array} \\ \begin{array}{c} +1 \\ +1 \\ +1 \\ +1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1 $
$\frac{-2}{f(k)} = \frac{1}{12\pi} \int_{-\infty}^{\infty} e^{-3\hat{c}/b} dx - 1kx$ $= \frac{1}{12\pi} \int_{-\infty}^{\infty} e^{-3\hat{c}/b} dx - 1kx$	$\frac{-1}{2} + 2i + y = 0$ $\frac{-2}{1} + 2i + y = 0$
We can complete the square: $2i^{2} + ikpc = \left(\frac{2}{2}q + \frac{iakp}{2}\right) + \frac{akp}{2}$	$= 7 In the limit 1 + 6$ $\lim_{k \to \infty} \int_{(k} e^{\frac{2}{k}} d\frac{2}{k} = -\int_{\infty} e^{\frac{2}{k}} d\frac{2}{k} =$
$= \frac{2}{1} + \frac{1}{12} + \frac{1}{12}$	$\frac{-2^{2}}{G} = -\frac{1}{G}$

$=7f(k) = \frac{1}{577}e^{2k^2}f^2aff' = ae^{2k^2}$

Remark, This example shows that the FT of a A Gaussian of a width a is a Gaussian of width ta

A FILD a e z $f(x) = e^{\frac{2}{2}a^2}$ ae 2. (1)

standard deviation -> width 3 Properties of FT

The FT of derivatives A function f and its FT Fare uniquely determined via the fourie integral formula.

A consequence of this is that if we can find some function g(K) s.t flan = , _ glk)e'k dk

then we deduce gikh + F(k) This allows us to determine the FT of the de vative fires as follows

 $f(x) - \int_{2\pi}^{2\pi} \int f(k) e^{iKx} dk$ Assuming we can interchange differentiation/integration

 $f'(x) = \int f'(x) f'(x)$

=7 g(k)=9kf(k) must be the FT of f'(x)

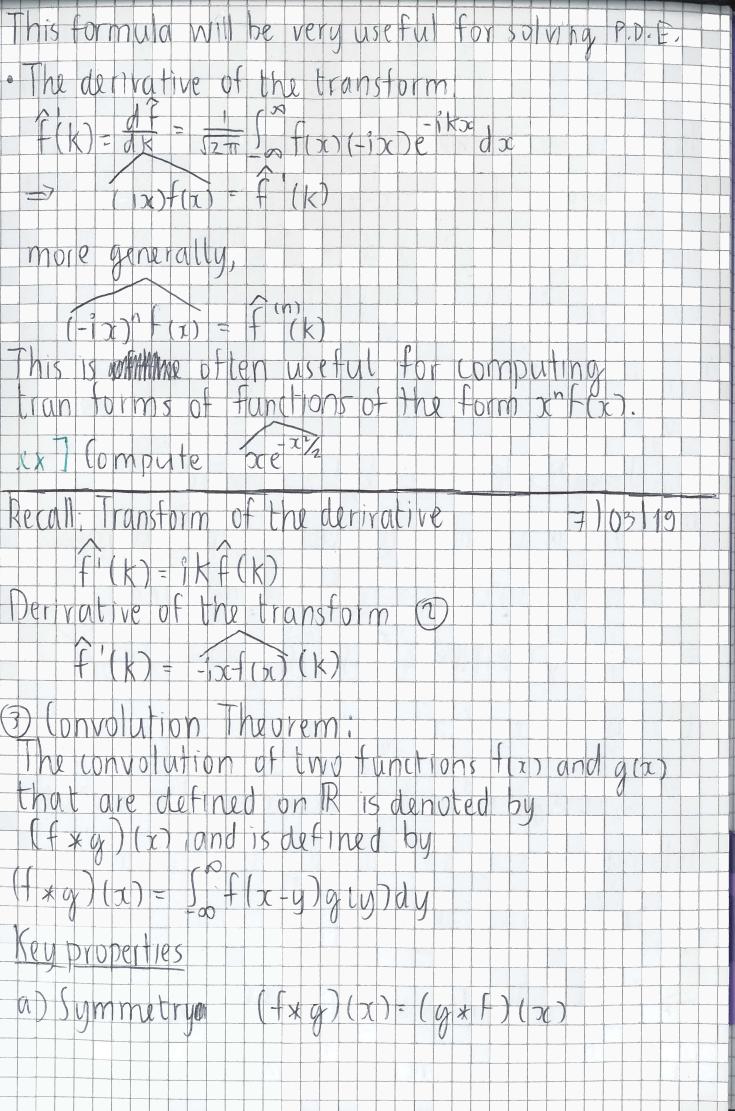
 s_0 f'(k) = ik f(k)

More generally find (k) = (ik) f(k)

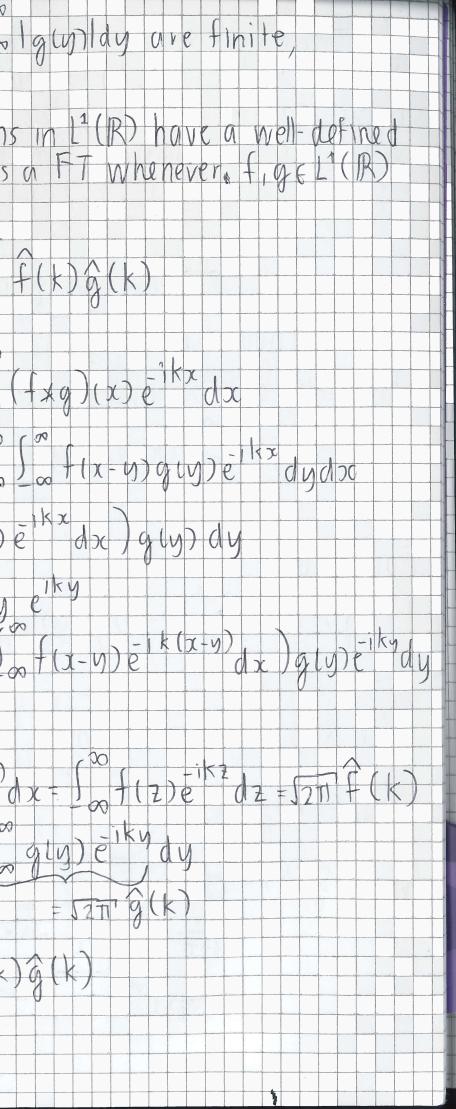
. The derivative of the transform. $f(k) = \frac{df}{dk} = \frac{1}{\sqrt{2\pi}} \int_{\infty}^{\infty} f(x)(-ix) e^{-ikx} dx$ -(x) + (x) = f(k)

more generally,

(-1) (1)This is writting often useful for computing


ex] compute aex2 Recall: Transform of the derivative

f(k) = ikf(k)Derivative of the transform (2) f'(k) = -ix-f(bi)(k)


3 Convolution Theorem: that are defined on R is denoted by (fxy)(x) and is defined by

 $(f * g)(x) = \int_{0}^{\infty} f(x - y)g(y)dy$ Key properties

-

Proof.	Jos F(z) dz and Sol
$(f_{xq})(x) = \int_{0}^{\infty} f(x-y)g(y)dy$	then txg E L? (R)
x let Z = x - y <= w) y x - z	Recall that functions FT, hence fxg has
$\frac{1+xg}{x}=\frac{1}{x}+(\frac{z}{z})g(x,\frac{z}{z})dz$	Convolution Theorem
t herefore $(f \neq g)(\chi) - (g \neq f)(\chi)$	Fxq (k) = J2TT f Proof:
Le Recall Fel (R) means for IF(x) dx 200	$f_{XQ}(k) = \sqrt{2\pi} \int_{0}^{0} (k) dk$
Proof 20, co	
$\int \frac{1}{\sqrt{1+x^2}} \frac{1}{\sqrt{1-x^2}} = \int \frac{1}{\sqrt{1-x^2}} \frac{1}{\sqrt{1-x^2}$	$(\infty)(\infty)$
Recall the trangle inequality for integrals	$= \sqrt{2\pi} \int \frac{1}{2} \sqrt{2\pi} \int \frac{1}{2} \sqrt{2\pi} $
$\frac{11}{2} + (x - y) g(y) d(y) < \frac{1}{2} + (x - y) \frac{1}{2} (y) \frac{1}{2} + (y - y) \frac{1}{2} \frac{1}{2} + (y - y) \frac{1}{2} \frac{1}{2} + (y - y) \frac{1}{2} \frac{1}{2} \frac{1}{2} + (y - y) \frac{1}{2} \frac{1}{2} \frac{1}{2} + (y - y) \frac{1}{2} \frac{1}{$	Multiply/divide by
$= 7 \int \int (f + g)(x) dx \leq \int \int \int f(x - y) f(y) dy dx$	$+ \times g(k) + \sqrt{2\pi} g(k) + \sqrt{2\pi}$
Change order of integration:	$\frac{1}{2} = \frac{1}{2} = \frac{1}$
$=7\int_{\infty}^{\infty} (f \times g)(x) dx \leq \int_{\infty}^{\infty} f(x \cdot y) dx g(y) dy$	$-\infty f(x-y)e d$
$\frac{1}{5} \frac{1}{5} \frac{1}$	$=7f \times g(k) = f(k) \int_{-\infty}^{\infty}$
$\int_{-\infty}^{\infty} \frac{1}{f(x-y)} dx = \int_{-\infty}^{\infty} \frac{1}{f(z)} dz$	
$= 7 \int_{-\infty}^{\infty} (f * g)(x) dx \le (\int_{-\infty}^{\infty} f(z) dz) \int_{-\infty}^{\infty} g(y) dy = 0$	= = = = = = = = = = = = = = = = = = =
Hence, if fandy are in L ¹ (R) i.e.	

1) Parseval's Theorem

 $\frac{f^{\alpha}}{f(x)} = \frac{f^{\alpha}}{f(x)} = \frac{f(x)}{f(x)} = \frac{f(x)}{f($

= fr fr f(k)g(k)ekx dk

Menow choose q(x) = F(-x) 21-

The LHIS can be evaluated as follows

 $(f \neq g)(x) = \int_{\infty}^{\infty} f(x-y) g(y) dy$

 $= \int_{-\infty}^{\infty} f(x-y) f(-y) dy$

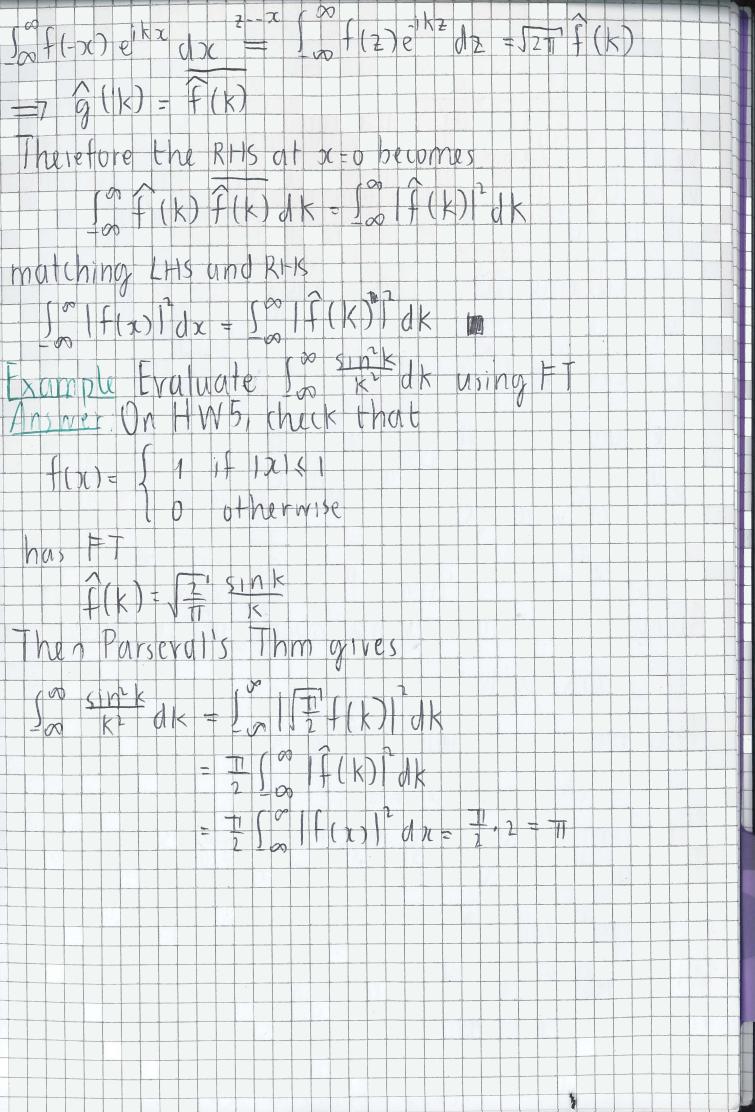
= or 2c = 0 $(f_{Xy})(y) = \int_{-\infty}^{\infty} f(-y)f(-y) dy = \int_{-\infty}^{\infty} |f(-y)|^2 dy$ $= \int_{-\infty}^{\infty} F(x) \int_{-\infty}^{\infty} dx$

The RHIS at x=0 becomes

 $\int_{\infty}^{\infty} \hat{F}(k) \hat{g}(k) \cdot I dk$

Now g(k) - 12TI - 2TI - $= \sqrt{\frac{1}{\sqrt{2\pi}}} \int_{-\infty}^{\infty} f(-\chi) e^{-ik\chi} d\chi$

 $= \int_{2\pi}^{1} \int_{2\pi}^{\infty} f(-x) e^{ikx} dx$


 $= 7 \hat{g}(k) = \hat{F}(k)$ Therefore the RHS at see becomes

matching LHIS and RHIS $\int_{\infty}^{\infty} |f(x)|^2 dx = \int_{\infty}^{\infty} |f(k)|^2 dk$

H()= { 1 if 121<1 1 0 otherwise has FT

 $f(k) = \sqrt{\frac{1}{2}} \frac{\sin k}{k}$ Then Parseval's Thrm gives

 $\int_{\infty}^{\infty} \frac{\sin^2 k}{k^2} dk = \int_{\infty}^{\infty} \frac{1}{\sqrt{2}} \frac{1}{2} \frac{1}{\sqrt{2}} \frac{1}{\sqrt$ $= \frac{1}{2} \int_{-\infty}^{\infty} |\hat{f}(k)|^2 dk$

Applications of FT to PDES

12 03 19

$V(20,0) = f(20) \iff V(k,0) = f(k)$

=7 The solution is $\hat{u}(k,t) = \hat{f}(k) e^{kt}t$ that function a with floc).

Recall $g(x) = e^{-x^2/2u^2} = 7 \hat{g}(k) = g e^{-g^2/2}$ $G(p(t)) = \frac{1}{54\pi t} \frac{-2^{2}}{4t}$ Therefore $G(k,t) = \int 4\pi t$ $\int 2t e^{-kt} = \int 2\pi t e^{-kt}$

Recall the convolution Theorem $f \neq g(k,t) = J_{2TT} f(k) g(k)$

by the fourier integral formula u(x,t) = (f * g)(x,t)

SO $u(x,t) = \int \frac{1}{\sqrt{1+t}} \int \frac{1}{\sqrt{1+t}} \int \frac{1}{\sqrt{1+t}} \int \frac{1}{\sqrt{1+t}} \frac{1}{\sqrt{1+t}} \int \frac{1}{\sqrt{1+t}} \frac{1}{\sqrt{$ Ex 2 Nave equation on the real axis

Vonsider Ute = UIR VXER, EDD with initial conditions

Ex 1] Heat equation on the Real axis Consider the heat equation Ut = Marc VaceR, +70 with the initial conditions u(x, o) = f(pc)

where find is a given Function.

Let us define ack, t) as the FT of u(x, t) wr. t. a tor tixed t

 $\hat{u}(kt) = \int_{2\pi}^{1} \int_{-\infty}^{\infty} u(x,t) e^{-ikx} dx$

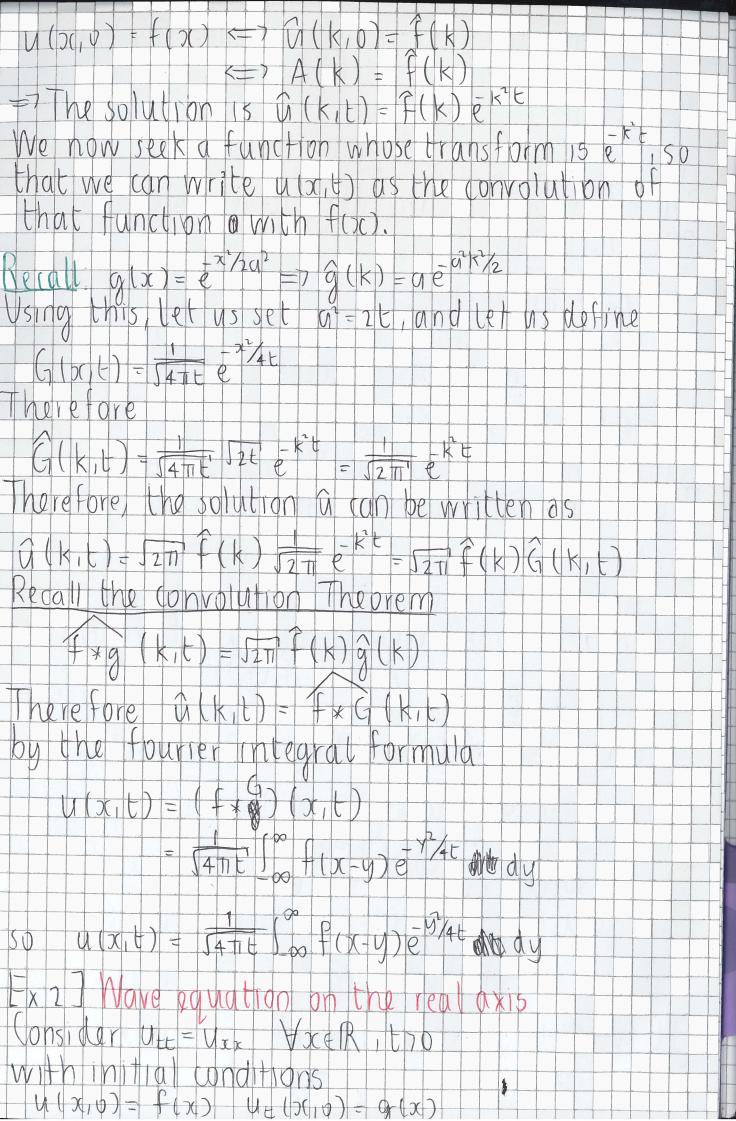
The idea is to find the equation that is obtained by applying the FT to all the terms in the PDE. Merefore, we seek!

 $\widehat{\mathcal{M}}_{t} = \frac{1}{2\pi} \int_{\infty}^{\infty} \mathcal{M}_{t}(\mathcal{M}_{t}) = \frac{1}{2\pi} \mathcal{M}_{t}(\mathbf{x}, t) = \frac{1}{2\pi} \mathcal{M}_{t}(\mathbf{x}, t)$

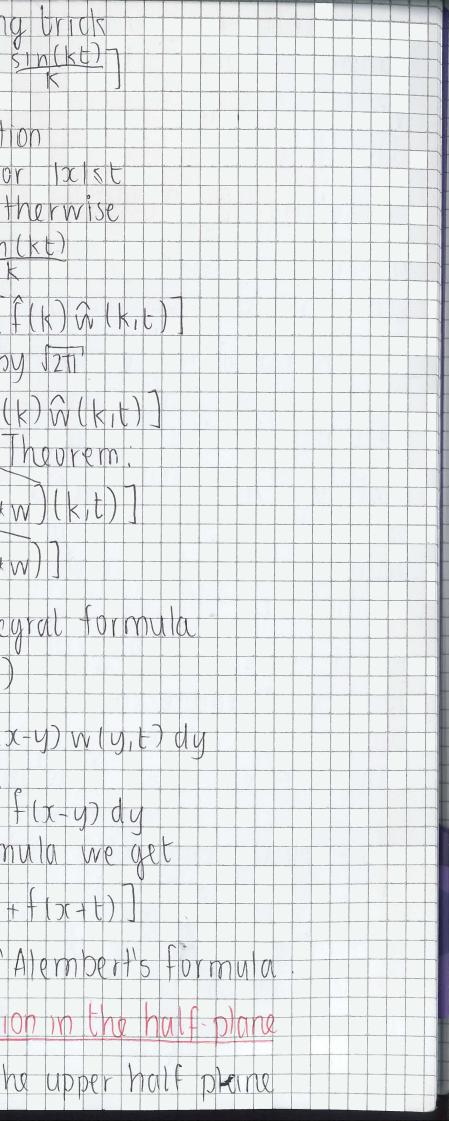
Applying the result on transforms of derivatives

 $\overline{\mathbf{W}}_{\mathbf{x}\mathbf{x}} = (\mathbf{i}\mathbf{k})^{2}\hat{\mathbf{W}}(\mathbf{k},\mathbf{t})$

Therefore, the heat equation becomes


 $\frac{\partial}{\partial U} G(kU) = -K^2 G(kU)$

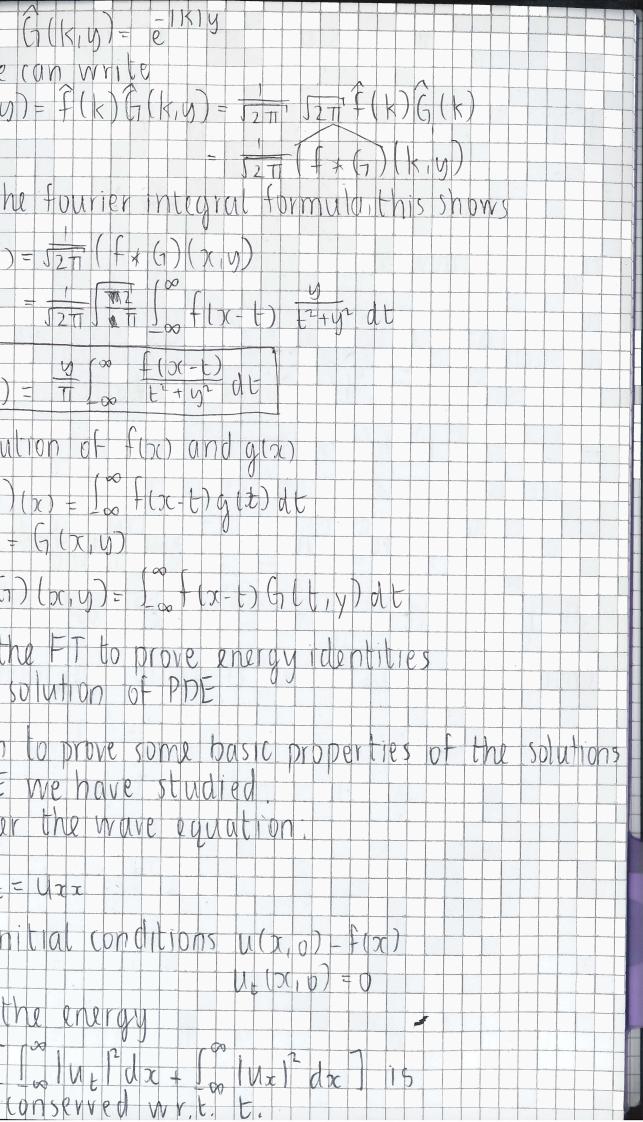
This is an ope wir.t. t, with Kadting as a parameter The solution is then of the form:


 $\hat{A}(k,t) = A(k)e^{-kt}$

Where ALL Dis the "constant" of the ODE, which can depend on the parameter K

to Find AUR), we use the initial conditions

Where fix and giz are given functions	Are use the following
For simplicity, we consider here y(x)=0	$\int G(k t) = \frac{2}{2t} \left[f(k) \right]$
We define of the	TE we define the function
V: The transform of the derivatives in the	$\mathbf{R} = \{ \mathbf{x}, \mathbf{t} \} = \{ \mathbf{x}, \mathbf{t} \}$
TI PDE are then	$=) \mathcal{N}(\mathbf{x}, t) = \begin{bmatrix} 2 & 5 & 1 \\ 7 & 7 & 7 \\ 7 & 7 & 7 \\ 7 & 7 & 7 \\ 7 & 7 &$
$\frac{1}{2} \qquad \qquad$	$= 7 \hat{\Omega}(k,t) = \int_{2}^{\pi} \frac{\partial}{\partial t} \left[\frac{1}{2} \right]$
	Multiply and divide by
$P = \frac{1}{2k^2} G(k_1 t) = -k G(k_1 t)$	$\frac{1}{10000000000000000000000000000000000$
F Again, this is an one wir.t. C, K a purameter	By the convolution
L'Ine general form of the solution is.	$\frac{U(k_it) = 2}{10} \frac{2}{2} \frac{1}{2} \frac$
We determine $A(k)$ and $B(k)$ using the B.C.S. $V = U(2, p) = f(p_1) = P G(k, p) = F(k)$	± 2 3 E (+ * v
	By the fourier inter
$S_0 - G(k,t) = F(k)(os(k,t) + B(k)sin(k,t))$	$(x,t) = \frac{1}{2} \frac{1}$
$G_{k}(k_{l}) = -kf(k)sin(k_{l}) + kB(k)cos(k_{l})$	$= \frac{1}{2} = \frac{2}{2} = \frac{1}{2} = $
$M_{E}(\mathcal{Y}(\mathcal{O}) = \mathcal{O} \iff \mathcal{O}_{E}(\mathcal{K}(\mathcal{O}) = \mathcal{O}$	$= M(x,t) = \frac{1}{2} \frac$
	Using Leibniz's form
	$\frac{1}{2} \frac{1}{2} \frac{1}$
$\hat{U}(k,t) = \hat{F}(k) \cos(kt)$	This is (part of) d'
It won't be possible to write down Martias	Ex 3] Laplace's equation
the convolution of two functions	Consider $\Delta u = 0$ in th


	$\frac{d(x,y) \in \mathbb{R}^{2}, y_{70} \otimes with B.CS u(x,0) - F(x)}{u(x,y) \to 0} as y_{-1} \propto 0$
	We set a(ky) = 52ti 1 w u(r,y) e dx Therefore
	$\widehat{\mathcal{U}}_{yy}(ky) = \partial y_{r} \widehat{\mathcal{U}}(k,y)$
	and $\hat{W}_{x} = -\hat{K}\hat{W}(K_{1}Y)$ since $\Delta M = 0$ M = 0
	This is an ope w.r.l. y. with parameter k
	We can write the solution as $f(k,y) = A(k)e^{-1kly} + P_3(k)e^{1kly}$
	(This is willog, equivalent to writing the solution
	[] [] [] [] [] [] [] [] [] [] [] [] [] [
	Recult y=x u(x,y)=0 So, we shall require that u(x,y) 70 us y=x
	Since $\frac{1}{1+700}e^{1} = \frac{1}{1+1} + \frac{1}{1+1} + \frac{1}{1+1}$
	So, we require that B(k) = V < to ensure that A(k,y) = 0 as k y = 100
	To find A(k), we use u(b o) = f(b).
	$T = \hat{G}(k_0) = A(k) = f(k)$ Therefore, the solution is $\hat{G}(l_1y) = \hat{f}(k) e^{l_1k_1y}$
1 20	Let $G(x,y) = \int_{\overline{H}}^{2} x^{2} + y^{2}$

X

	Then G(K,y) = - 1K1y
	So, we can write $G(k,y) = F(k)G(k,y) =$
	Using the fourier integr
	$u(x,y) = \int_{2\pi}^{2\pi} (+ x (y)(x)) = \int_{2\pi}^{2\pi} \int_{2\pi}^{\infty} \int_{2\pi$
	$\frac{1}{1} \left(\left(\left(\left(\right) \right) \right) \right) = \frac{1}{1} \int_{-\infty}^{\infty} \frac{1}{1} \left(\left(\left(\left(\left(\left(\left(\right) \right) \right) \right) \right) - \frac{1}{1} \right) \left($
-	Convolution of find and
	$\frac{(+ x g)(x) = 1}{g(x) = G(x, y)} + (x - t) c$
	$(f * G)(pr, y) = \int_{-\infty}^{\infty} f(x)$
	Using the FT to prove a for the solution of PDE
-	We aim to prove some b
	Consider the wave equ
	$U_{tt} = U_T x$
	with initial conditions
	Then the energy

- -

ZL

Recall solution a(k,t)= F(k) costkt) Then Using Parseval's Theorem.

 $\int_{\infty}^{\infty} |U_{E}| dx = \int_{\infty}^{\infty} |U_{E}| dt = \int_{\infty}^{\infty} |f(k)K(sin(kE))|^{2} dk$

 $= \frac{1}{2} \int_{-\infty}^{\infty} |u_{E}|^{2} dx = \int_{-\infty}^{\infty} \frac{1}{F(k)} \frac{1}{K} \sin^{2}(kE) dE$

Agan by Parseval's Theorem

 $\int_{\infty}^{\infty} |u_x|^2 dx = \int_{\infty}^{\infty} |\hat{u}_x|^2 dx = \int_{\infty}^{\infty} |\hat{u}_x|^2 dx$

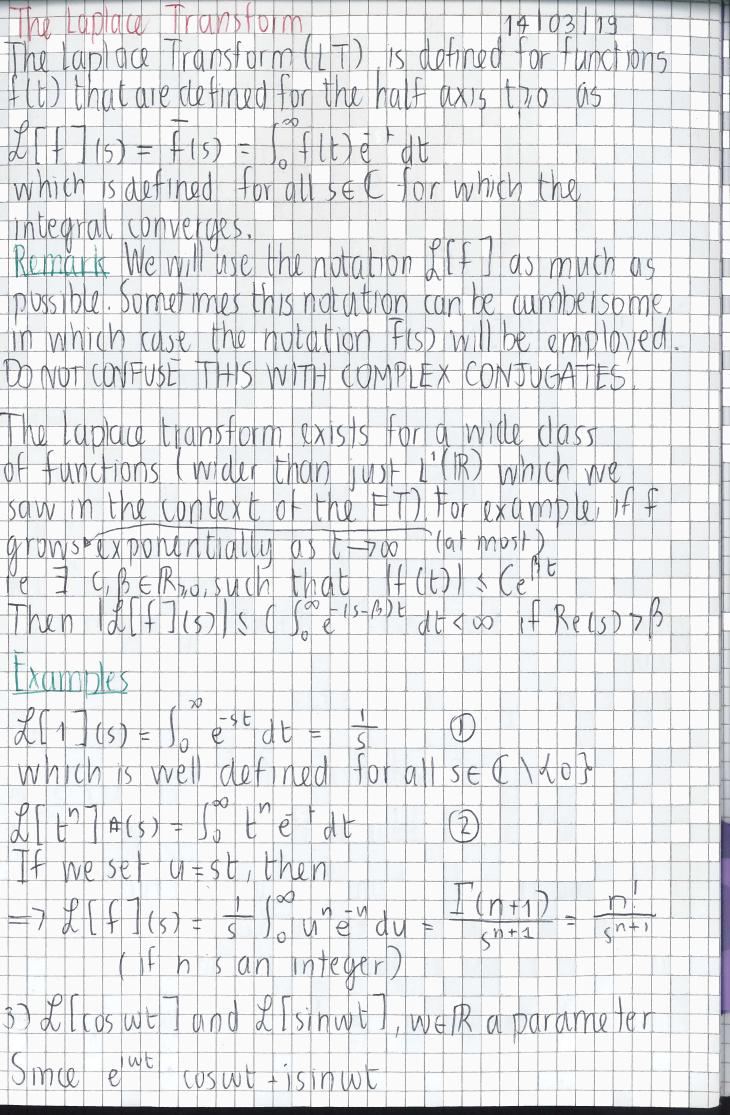
 $-\int_{\infty}^{\infty} k^2 (F(k))^2 (os) (kt) m dk$

 $= 7E = \frac{1}{2} \int_{-\infty}^{\infty} k^2 I f(k) I dk$

which is independent of t.

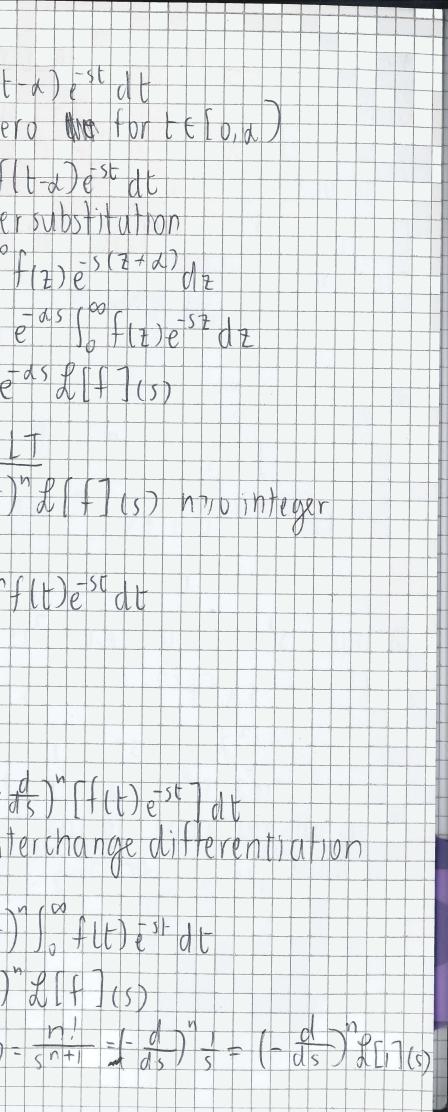
Ex T For the heat equation example, show that

 $\frac{d}{dt} \int_{\infty}^{\infty} |u(xt)|^2 dx = -2 \int_{\infty}^{\infty} |u(xt)|^2 dx$


Conclude that Is In (x t) it dx is non-increasing

 $\mathcal{L}[f](5) = \overline{f}(5) = \int_{0}^{\infty} f(t) e^{t} dt$ which is defined for all sEC for which the integral converges.

Examples


 $\mathcal{L}(1)(s) = \int_{0}^{\infty} e^{-st} dt = \frac{1}{s}$ $\mathcal{L}[t^n] \neq (s) \neq \int_0^\infty t^n e^{-t} dt$ If we set u=st, then $= \frac{1}{2} \left[f \right] (s) = \frac{1}{2} \int_{0}^{\infty} \frac{n - n}{2} du = \frac{1}{2} \left(\frac{n + 1}{2} \right)$ (if his an integer)

Since elut coswt +isinwt

or leiw	$\int_{1}^{\infty} (s) = \int_{0}^{\infty} e^{iwt} - st dt = \int_{0}^{\infty} e^{-ist} dt$	De de la como	Proof
			$\frac{\mathcal{L}[f(t) - d)](s)}{For a 70, -f(t-d) is zero$
W Bytak Us alcosu	t Jisz= Re[2[e'wt]isz] = 5+wz		$Sp \& [f(t-a)](s) = \int_{a}^{\infty} f(t)$
the Lesina	$t](s) = Im[d[e^{iwt}](s)] = \frac{w}{s^{1} + w^{2}}$		Setting $z = t - \omega$, after $\mathcal{R}[f(t - \lambda)](s) = \int_{0}^{\infty} f$
I 4) 2 [e	$at](s) = \int_{0}^{\infty} e^{at} - st dt \qquad (d \in \mathbb{R})$ $= \int_{0}^{\infty} e^{-(s-a)t} dt = \frac{1}{s-a} for$		= ↓ ē + o
	$\int_{0}^{\infty} e^{-\frac{1}{2}} dt = \frac{1}{2} - \frac{1}{2} + \frac{1}{2$	an seu Relstad	2) Derivatives of the L=
E D Shif	t results		$\mathcal{L}\left[\left\{\frac{1}{2}\right\}\left(\frac{1}{2}\right)\right](s) = \left(-\frac{1}{2}\right)^{n}$ $Proof$
a) For Le	d = constant $f(t) = f(f)(s) + d$		LILMFLED ISD = 6 HMF
Proof			Note that $t^n - st = (-d)^n - st$ $t^n = (-d)^n - st$
Le	$= \int_{0}^{\infty} f(t) e^{-1s+d} t dt$		Therefore
	$= \mathcal{L}[f](s+a)$		LE flt)](s)= lo (- de Assuming we can inte
b) Typ we sh	AN LONSIGUER TRAS DEING RAGENGER		2 (th fit)](s) = (- d)
fora	1 tro. Using the convention	x 7,07)	$=\left(-\frac{d}{ds}\right)^{n}$
			Example LE 1(57=

-(

Tr	30 Japlace transform of derivatives
-	$\mathcal{L}f](s) = s \mathcal{L}[f](s) - f(0_+)$
K	where flot is the Epot flot the right -
Vs	limit of fat zero
51	
	$f(t)e^{-5t}$
RI	Proof
LE	
1. 1.	
1	$= \left[f(t) e^{5t} \right]_{2}^{\infty} - \int_{0}^{\infty} f(t) \partial t e^{5t} dt \qquad $
	$\mathcal{L}[f'](s) = -f(o_{+}) + s \int_{0}^{\infty} f(t) dt = dt$
4	
V	Example: Show that R[f"](s) - s? R[F](s) - sflot - frot
	L[f'](s) = SL[f'](s) - f(0+)
-	$= s^{2} R [f](s) - s f(0_{+}) - f(0_{+}) $
-	$(\overline{r}_{S}(s)) + f(0) + f(0) + f(0)) = (\overline{r}_{S}(s)) + f(0) + f($
1. I	pr(m) $pr(m)$ $pr(m)$ $pr(m)$ $pr(m)$ $pr(m)$
1,11 ()	
1 ¹ 1 1	
1 1 1 1	
T	

T ----

-

{

19/3/19. 4) Convolution Theorem for the LT. Let f(t) and g(t) be two functions defined for £70 and consider their zero-extension for £<0 $(f \ast g)(E) = \int_{-\infty}^{\infty} f(E - y)g(y) dy$. - ∞ (an start from zero Since g(y) = 0 for y < 0, and f(t-y) = 0 for t < y, we can simplify $(f * g)(t) = \int^{t} f(t - y)g(y) dy$. Convolution Theorem for LT. L[f*g](s) = L[f](s) L[y](s)or equiverlety frg(s) = F(s)g(s) Proof . $\mathcal{L}[f \neq g](s) = \int_{0}^{\infty} (f \neq g)(t) e^{-st} dt \quad (def \\ of \ LT)$ $= \int_{0}^{\infty} \int_{0}^{t} f(t-y)g(y)e^{-st} dy dt$

Multiply/Divide by e-sy $J[f * g](s) = \int_{0}^{\infty} \int_{0}^{t} f(t-y) e^{-s(t-y)}$. ·g(y)e - sy dt We now sweep order of integration'. $\int \left[f \ast g \right](s) = \int_{0}^{\infty} \left(\int_{y}^{\infty} f(t-y) e^{-st-y} dt \right) g(t) e^{-st} dy$ If we set z=t-y, then we can simply the inner integral. $\int_{y}^{\infty} f(t-y) e^{-s(t-y)} dt$ $= \int_{0}^{\infty} f(z) e^{-sz} dz = \int_{0}^{\infty} f(z) dz$ $\Rightarrow 1[f * g](s) = 1[f](s)[g(y)e^{-3y}dy$ = 1[f](s) f[g](s)

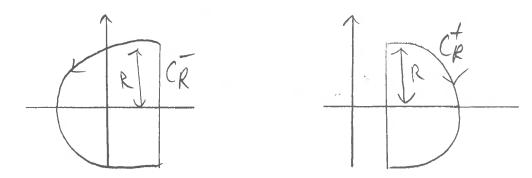
Inversion of the LT We consider scoreral methods for investing LT. NUsing known examples, shift theorems, pertial fractions and formulas for derivatives. Example 1 Find f(E) such that $\overline{f}(s) = \frac{e^{-st}}{s^2(1+s^2)}$ Answer: Real shift result: $f(f(\epsilon - \alpha)](s) = e^{-s\alpha}f(\epsilon](s)$ We therefore see that f(E) = g(E - T) where $f[g](s) = \frac{1}{s^2(s^2+1)}$ Usivy partial fraction : $f[g_3(s) = \frac{1}{s^2} - \frac{1}{s^2 + 1}$ Recall from previous examples $\int [f'](s) = N!$

$$\Rightarrow \int [f](s) = \int_{s^{2}} \\$$
and $\int [sein (soft]] = \int_{s^{2}} \\$

$$\Rightarrow For w = 1, we have $\int [sin f] = \int_{t+s^{2}} \\$

$$\Rightarrow g(t) = \int t - sin f \quad if f \neq 0 \\ if f < 0 \\ if f < 0 \\$$
satisfing $\int [g](s) = \int_{s^{2}} - \int_{s^{2}} \\$
Therefore the solution is
$$f(t) = g(t - \pi) = \int ((t - \pi) - sin(t - \pi) + \pi \neq 0) \\$$

$$F(t) = \int (s) = \int_{s^{2}} \\ (st)(s+2) \\$$
Answer: Using Partial fractions
$$\int [f](s) = \int_{st} \\ \\ (st)(s+2) \\$$$$


Recell the other shift results. I [e-st. f(E)](s) = [[E](sta) => $L = \int \left[e^{-t} g(t) \right](s)$ where $\int \left[g \right](s) = \frac{1}{s}$ Recalling theat I[1](S) = 1/5, we see that => $f[e^{-t}](s) = 1$ and $f[e^{-2t}](s) = 1$ st1 st2. $=)f(t) = \int e^{-t} - e^{-2t} \text{ for } t \neq 0$ $\int 0 \quad \text{for } t < 0.$ Example 3. $\mathcal{L}[\mathcal{E}](S) = \frac{1}{(S+1)^5}$ We see that $f(t) = e^{t}g(t)$, where $J[g](s) = \frac{1}{e^s}$ Recalling $\int [t^4](s) = \frac{4!}{s^5} = \frac{24}{s^5}$

We see that $g(t) = 1 t^4$ so that $f[g3(s)] = \frac{1}{24}t^4$ for £7.0 $= f(t) = \int t^{q} t^{q}$ for EKO. 2) General Hethod for inverting LT: The Bromisich integral formula. Kecall the Fourier Intergol Formula: $F(E) = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} F(y) e^{-iky} dy \right) e^{ikt} dk$ Choosing F(t) = e^{-ct} f(t), where c is a constant that will be choosen to generate the convergence of some integral. $=) e^{-ct} f(t) = \int_{\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(y) e^{-(c+ik)} dy \right) e^{ikt} dk$ $2\pi \int_{\infty}^{\infty} \int_{-\infty}^{\infty} e^{-ct} f(t) dy = \int_{\infty}^{\infty} e^{-ct} f(t) dt$ Multiply by e^{ct} , we get $f(t) = 1 \int_{2R}^{\infty} \left(\int_{1}^{\pi} f(y) e^{-Cc+ik} y dy \right) e^{(c+ik)t} dk$.

Supposing that f(t) = 0 for t < 0, we have $f(t) = 1 \int_{2\pi}^{\infty} \left(\int_{0}^{\pi} f(y) e^{-(c+ik)y} dy \right) e^{(c+ik)y} dy.$ Observe that $f(f)(ctile) = \int_{0}^{\infty} f(y) e^{-(ctile)t} dle$ $= f(\epsilon) = \int_{2\pi}^{\infty} f(\epsilon) (c+c'k) e^{(c+ik)\epsilon} dt$ This repersent as integral in the complex plane on a live parallel to the imginary axis, shifted $c = \{s = c + ik, k \in (-\infty, \infty)\}$ integral transform Mr Aside: Put s=ctik, ds=idk, we have $f(\epsilon) = \frac{1}{2\pi i} \int \int [\epsilon](s) e^{s\epsilon} ds$

Back to the example: Question to dosse c? Example f(E) = e^{BE}, BEIR =) $\mathcal{I}(f_{3}(s)) = \begin{pmatrix} 1 & \text{for } Re(s) > B \\ 5-B & \text{for } Re(s) < B^{\text{or } s=B} \\ +\infty & \text{for } Re(s) < B^{\text{or } s=B}, \\ (\text{ undefined for } Re(s)=B, S \neq B.) \end{pmatrix}$ For this function, we must pick C>B, i.e the contour must lie to the right of the singularity of 1/S-R in the complex plane. More generally, suppose that L(E)(s) can be extended to a holomorphic function on C except at finitely many pole of some finite degree. Eq, for f(d)= "the choose to extend J [t](s) as J[f](s) = I for all SEC [B]. S-B We now cloose a such that $C = \{S = Ctik, ke(-\alpha, \infty)\}$ lies to the right of surgularity in L(f](s) $f(t) = \int_{C} \int_{$ Bromwich integral formula

Depending on the functions given, and the value of t, we can view S. LLF. 3 (s) e^ (st) is as the limit of either a left contour CR or a right contour CR (as R->00)

Example For $f(f)(s) = \frac{1}{5-B}$, then for any $f(t) = \int_{C} \frac{1}{5-B} e^{st} ds$ If t > 0 => $\int_{C} \frac{1}{5-B} e^{st} ds = \lim_{R \to \infty} \int_{S-B} \frac{1}{5-B} e^{st} ds$ $f(t) = 2\pi \operatorname{Res} \left[\frac{e^{st}}{5-B} , s=B \right]$ $= 2\pi i \left[e^{Bt} \right]$ $= 2\pi i \left[e^{Bt} \right]$

For E<0, we have

$$\int_{C} \sum_{s=\beta} e^{st} ds = \lim_{R \to +\infty} \int_{C_{R}} \frac{1}{s-p} e^{st} ds$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= 0$$

$$\frac{1}{1+s^{2}} + \frac{1}{s} + \frac{1}{s}$$

21/3/19 LT For sloving ODES The LT is useful for slowing ODE's with non-zero right-hand sides, i.e. inhomogenous ODES, provided that all boundary conditions are imposed at a single point (e.g. E=0) Example QS of Pb sheet 6 use the LT to show that the soln of $x^{*} + 2x^{*} + 2x = f(x)$ and $\chi(o) = \chi'(o) = 0$ is $x(t) = \int_{0}^{t} f(t - y)e^{-y}sen(ty) dy$ Solution: Recall the formular of derivatives (using bur notation) $\bar{x}''(s) = s^2 \bar{x}(s) - x'(o_+) - s x(o_+)$ $\overline{x}'(s) = s\overline{x}(s) - x(o_{+})$ Assuming x(E) is continous on (0, +00), we can use the I.C. to simplify $\overline{x}^{\prime\prime}(s) = s^2 \overline{x}(s)$, $\overline{x}^{\prime}(s) = s\overline{x}(s)$

Therefore, the transformation of the egn is $s^{2}\bar{x}(s) + 2s\bar{x}(s) + 2\bar{z}(s) = f(s)$ $() \ \overline{x}(S)(s^2+2s+2) = \overline{f}(s)$ (=) $\overline{x(s)} = \frac{\overline{f(s)}}{s^2 + 2s + 2}$ Let g(t) be the function that satisfies $\overline{g}(s) = \frac{1}{s^2 + 2s + 2}$ $\Rightarrow \overline{x}(s) = \overline{f}(s)\overline{g}(s) = (\overline{f} + g)(s)$ $\Rightarrow By the constant that$ Thus, x(t) = (f * g)(t)It remains only to find g(t) a) Shift theorem method $\overline{g}(S) = 1$ $\overline{s^2 + 2s + 2}$ = $(s + 1)^2 + 1$ = $(s + 1)^2 +$ Recall shift result $\int \left[e^{\alpha t} f(t) \right](s) = \int \left[f(s + \alpha) \right]$

Since I [sen wt] (s) = 1/s2+1, it follows that $\mathcal{J}\left[e^{-t}\operatorname{sen} t\right] = \frac{1}{(s+1)^2 t} = \overline{g}(s)$ $\Rightarrow g(t) = e^{-t} \sin t$ for t 70 b) Bronwich Integral Formula method Find the poles of $\overline{g}(s)$, i.e. roots of $s^2 + 2s + 2s$ which are $\alpha_{\pm} = -1 \pm c$ $=) \overline{g}(s) = 1$ $(s - \alpha_{+})(s - \alpha_{-})$ the Bronwich Integral Formula is $g(t) = \lim_{\substack{t \in S^{t} \\ z\pi i \int (s - \alpha_{t})(s - \alpha_{t})} ds$ where C is a live parallel to the imginary axis, to the right of L / × / We can evaluate the integral for + 70 $\int \frac{e^{st}}{(s-d_{+})(s-d_{-})} ds = \lim_{R \to \infty} \int \frac{e^{st}}{(s-d_{+})(s-d_{-})} ds$

therefore, by the Residue Theorem, for £70 $\int \frac{e^{st}}{(s-d_{+})(s-\alpha_{-})} ds = 2\pi i \left[\frac{\operatorname{Res}\left[\frac{e^{st}}{(s-\alpha_{+})(s-\alpha_{-})}, \frac{s-\alpha_{+}}{(s-\alpha_{+})(s-\alpha_{-})} \right] \right]$ $+\operatorname{Res}\left[\frac{e^{st}}{(s-\alpha_{+})(s-\alpha_{-})}, s=\alpha_{-}\right]$ $=)g(t) = \left[\frac{e^{x_{t}t}}{x_{t}-x_{t}} + \frac{e^{x_{t}-t}}{x_{t}-x_{t}}\right]$ = 1 (e-t+it - e-t+it) = e sent Therefore: $x(t) = (f \star g)(t) = \int_0^t f(t - y)g(y) dy$ $=\int^{\xi}f(\xi-y)e^{-y}\sin y\,dy$ Excercise : Derive g(t) using partial fractions MN

Q6, Pb Seet 6 Slove y`+y = f(t) y(0) = 0y'(0) = 1Solution: Transform of the eqn is: $s^{2}\bar{y}(s) - sy(0) - y'(0) + \bar{y}(s) = \bar{f}(s)$ $(\Rightarrow (s^2 + 1)\overline{y}(s) = 1 + \overline{f}(s)$ $(=) \overline{y}(s) = \frac{1}{s^2 + 1} + \frac{1}{s^2 + 1}$ Therefore, using I [sen t](s) = /s2+1, and using convolution Thm y(t) = sent + (f + sent)(t)= sent + ft f(t-y) sening dy

an a	