7402 Mathematical Methods 4 Notes

Based on the 2013 spring lectures by Dr G Esler

The Author has made every effort to copy down all the content on the board during lectures. The Author accepts no responsibility what so ever for mistakes on the notes nor changes to the syllabus for the current year. The Author highly recommends that reader attends all lectures, making their own notes and to use this document as a reference only

MATH7402- Mathematical Methods 4.

8 January 2013. Applex 1 FROBENIUS' METHOD AND SPECIAL FUNCTIONS. Pr. Gavin ESLER Pedrson G22. consider the 2nd-order ODE dix + p(x) dx + q(x) y = 0 - (10. This equation is linear and homogeneous. Special cases: ① constitut coefficients, p(x)=a, q(x)=b. a, b ∈ R (constant) (2) Euler equisitions, where $p(x) = \frac{a}{x}$, $q(x) = \frac{b}{x^2}$. This gives $x^2y'' + axy' + by = 0$ Use the substitution $x = e^t$, let $Y(t) = g(e^t) = g(x)$. Then $\frac{dY}{dt} = \frac{d}{dt} g(e^t) = \frac{dy}{dx} \cdot \frac{dx}{dt} = x \frac{dy}{dx}$ Likewise, $\frac{d^2Y}{dt^3} = \frac{d}{dt} \left(e^{\dagger} \frac{dy}{dx}\right) = \chi^2 \frac{d^2y}{dx^2} + \chi \frac{dy}{dx}$. This leads to $\frac{d^2Y}{dt^2} + (a-1)\frac{dY}{dt} + bY = 0$. Then our survivily equation is $m_1^2 + (a-1)m + b = 0$ This leads to the first case, with appropriate cubstitutions. $\int Ax^{m_1} + Bx^{m_2}$, m_1, m_2 real and distinct $\int (A \log x + B)x^{m_1}$, $m_1 = m_2$ $g(x) = \begin{cases} \chi m_1 \cap g(x) + B \sin(m_1 \log x) \end{bmatrix}$ complex conjugates $m_{1/2} = m_1 \pm i m_1$ There is a quick method for this: insert y= X" directly into the equation (be careful though , complex solutions can be tricty). IEX Solve x2y"-2xy"+2y=0. solo. Try $y=x^{m}$. Then $y'=mx^{m-1}$, $y''=m(m-1)x^{m-2}$. $\Rightarrow x^{2}y''-2xy'+2y=0$ reduces to $m(m-1)x^{m} = 2mx^{m} + 2x^{m} = 0$ $\Rightarrow [m^{2}-m-2m+2]x^{m} = 0$. m2-3m+2=0 > m=1 or 2 > y(x)= Ax+ Bx2 What happens if p(x) and q(x) have a more general form? For example, p(x)= O(x) for P,Q polynomials etc. we canditry series solutions as a maine method. Insert ansatz y(x) = K=0 axxt and nork from there. We illustrate this with a general norted example. EX 1 solve y"- y=0 with the power series solution method. Solar. Take $y(x) = \sum_{k=0}^{\infty} a_k x^k$, $y' = \sum_{k=1}^{\infty} ka_k x^{k-1}$, $y'' = \sum_{k=2}^{\infty} k(k-1)a_k x^{k-2}$. Insert in equation: $\sum_{k=2}^{\infty} k(k-1)a_k x^{k-2} - \sum_{k=0}^{\infty} a_k x^k = 0$. We reinder first term in series, write j=k-2. Then $k=2 = k(k-1) a_k x^{k-2} = \sum_{j=0}^{\infty} (j+2)(j+1) a_{j+2} x^j$. Hence, relabelling j=k, our sums become k=0 ((k+2)(k+1) $a_{k+2} - a_k$) $x^k = 0$. We know that all these coefficients must, by definition of equality, be identically equal to 0. Then we realmange (k+2)(k+1) ax+2 - ax= 0 to get the recurrence relation: aprest the linearly independent solutions. generate one solution by setting 90=1, 21=0 > series in even powers of x, even function. The other is found by setting 20=0, 21=1 > series in odd powers, all fu the solution space is the linear span of these two solutions. If $a_0=1, a_1=0$, then $a_2=\frac{1}{1\cdot 2\cdot 3\cdot 1}, \dots, a_{2k}=\frac{1}{(2k)!}, y_1(k)=\sum_{k=0}^{\infty}a_{2k}x^{2k}=\sum_{k=0}^{\infty}\frac{1}{(2k)!}$ and if a0=0, a1=1, then a3= 32, a5= 1+32, a2kt1 = (2kt0). Then y2(x)= 20 t2kt0! = sinhx. Hence, y(x) = a coshx + b sinhx. It turns out to be (sometimes) dangerous to proceed as above: . in general, we do not know where the power series should begin. . we know nothing shout the existence or nature of solutions · could also extend to the complex plane to use familiar results about power series and analytic functions. We address these using the Frobenius' method. Frobenius method for solution of ODEs. We nork in C. Our equation is w" + p(z) w' + q(z) w = 0 for W, z E C, the primes now indicate derivatives dz. Use the following dusst2: w(2)= \$ ak zktc; at = 0. We force at = 0, so that power series begins for k=0 i.e. at zc. c is an unknown to be determined (may be different for solutions W1(2), W2(2).), we illustrate this with an example. Ex 2 . Zw" + 2 w + 4 w= 0. Solve for w(Z). Sett. $W = \sum_{k=0}^{\infty} a_k z^{k+c}$, $a_0 \neq 0$. $W' = \sum_{k=0}^{\infty} a_k (k+c) z^{k+c-1}$, $W' = \sum_{k=0}^{\infty} a_k (k+c) (k+c-1) z^{k+c-2}$. Inserting into equation, we get: $\sum_{k=0}^{\infty} a_k(ktc)(ktc-1) z^{ktc-1} + \frac{1}{2} \sum_{k=0}^{\infty} a_k(ktc) z^{ktc-1} + \frac{1}{4} \sum_{k=0}^{\infty} a_k z^{ktc} = 0.$ by convention, we re-index final term downwards. Also demand $a_{-1} = a_{-2} = \cdots = 0$. This gives $\sum_{k=0}^{\infty} \left[a_k \left[(k+c)(k+c-1) + \frac{1}{2}(k+c) \right] + \frac{1}{4} a_{k-1} \right] \frac{1}{2} \frac{k+c-1}{2} = 0$. Power series identically equal to zero \Rightarrow coefficients are zero. Set k=0, then $G_0[c(c-1)+\frac{1}{2}c]=0 \Rightarrow [c(c-\frac{1}{2})=0]$, which is the individe equation. Then c=0 or $\frac{1}{2}$. For $k\ge 1$, $\frac{c(k+c)(k+c-\frac{1}{2})a_k+\frac{1}{4}a_{k-1}=0}{c(c-\frac{1}{2})=0}$, the recurrence To find the two solutions, insert c=0 and c==2 into recurrence relation. For c=0, k(k-2) ak = - 1 ak-1 = ak= - 2k(2k-1) ak-1 = (-1)^k (2k) a_0, then,

WLOG, set $a_0 = 1 - \Delta u_0$ itrany constrant in solution. First solution is $W_1(z) = \sum_{k=0}^{\infty} a_k z^{k+0} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^k = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} (z^{\frac{1}{2}})^{2k} = \cos(z^{\frac{1}{2}}).$ Tor $c = \frac{1}{2}$, $a_k = \frac{-a_{k-1}}{t(k+\frac{1}{2})k} = -\frac{a_{k-1}}{(2k+1)(2k)} = (-1)^k \frac{a_0}{(2k+1)!}$. Thus, other solution is $W_2(z) = \sum_{k=0}^{\infty} a_k z^{k+\frac{1}{2}} = \sum_{k=0}^{\infty} a_k (z^{\frac{1}{2}})^{2k+1} = \sin(z^{\frac{1}{2}}).$ Thus, our final solution is $W_2(z) = a \cos z^{\frac{1}{2}} + b \sin z^{\frac{1}{2}}$.

Theory of the Trobenius method.

under what conditions (on p(2), q(2)) will the Frobenius method work? consider the equilion w"(2)+ p(2) w'(2)+ q(2) w(2)=0 - ()

Definition A point z= zo is said to be an ordinary point of () if p(z) and q(z) are both analyticat z=zo.

e.g. In Ex 1, w"-w=0, p=0 and q=-1 are analytic everywhere.

Taphindian A point Z= 20 is said to be a regular singular point of () if (7-20) p(2), (2-2) 2(1) are both analytic there.

Note: In other words, p(z) can have at worst a simple pole at Z=zo. p(z)= z-zo + Co + Ci (z-Zo)+... > (z-Zo) p(z) is analytic.

And by analogy, q(z) can have at north a pole of order 2: $q(z) = \frac{C-2}{(z-2_0)z} + \frac{C-1}{(z-2_0)z} + c_0 + c_1(z-z_0) + \cdots$

e.g. in Ex 2, 2W"+ ±W'+ ±W=0, p= 2 , q= 42. About z=0, p(Z), q(Z) are not analytic; but Zp(Z), Z²q(Z) are ⇒ Z=0 is a regular singular point.

Theorem (Fuchs's Theorem)

The general solution of (1) is obtainable by the method of Frobenius, in the form of a generalised power series about Z= Zo,

provided that Z= Zo is an ordinary or negular singular point of ().

Proof - Rigannes proof omitted, but partial proof will be derived subsequently.

this gives us a general rule of thundo: If z= to is an ordinary point, use native power series. If it is an ordinary singular point, use Trobenius. If neither, give up! the radii of convergence of [Contemp] Turther, when z= to is an ordinary point, the solution is analytic, with radius of convergence (at least) as large as the minimum of p(z), q(z).

Proof - (Fuchsis) Notethist we need only consider $z_0 = o$ (we could under the disage of variables $\tilde{z} = z - z_0$ in (1).	10 January 2013 Drayton B20 LT.
If Zo =0 is a regular singular point, then we know that the functions Z p(Z) and Z ² g(Z) have Taylor series:	Pr Gowin ESLER.
$z p(z) = \sum_{k=0}^{2} p_k z^k$, $z^2 q(z) = \sum_{k=0}^{2} q_k z^k$ with coefficients p_k, q_k . Now insert the Frobenius substitution (f) .	
$w(z) = \sum_{k=0}^{\infty} a_k z^{k+c}, a_0 \neq 0, w'(z) = \sum_{k=0}^{\infty} (k+c)a_k z^{k+c-1}, w''(z) = \sum_{k=0}^{\infty} a_k (k+c)(k+c-1)a_k z^{k+c-2}, with that, f) becomes.$	
$w'' + pw' + qw = \sum_{k=0}^{\infty} a_k(k+c)(k+c-1)z^{k+c-2} + \left(\sum_{k=0}^{\infty} p_k z^k\right) \left(\sum_{k=0}^{\infty} a_k(k+c) z^k\right) z^{c-2} + \left(\sum_{k=0}^{\infty} q_k z^k\right) \left(\sum_{k=0}^{\infty} a_k z^k\right) z^{c-2} = 0$	0.
Recall that we have an identity for multiplying power series, which in the general statement form is given by k	The the the state (Suget)
using this, (f) becomes $\underset{k=0}{\overset{\sim}{\underset{k=0}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\underset{k=0}{\underset{k=0}{\overset{\sim}{\underset{k=0}{\atopk=0}{\underset{k=0}{\underset{k=0}{\underset{k=0}{\underset{k=0}{\underset{k=0}{\underset{k=0}{\atopk=0}{\underset{k=0}{\atopk=0}{\underset{k=0}{\underset{k=0}{\atopk}{\underset{k=0}{\atopk=0}{\atopk=0}{\underset{k=0}{\atopk}{\underset{k=0}{\atopk}{k}{\underset{k=0}{\atopk}{k}{k}}}{k}}}}}}}}}}}}}}}}}}}}}}}}$	$= \sum_{k=0}^{\infty} \left(\sum_{j=0}^{k} f_{k-j} g_j \right) z^k.$
We can set coefficients to 0, taking out the jok from the verted sum: ax[(k+c)(k+c-1) + po (k+c)+ qo] + 2 aj (PK-j (jo	c)+9_k-j)=0.
For k=0 coefficient, $a_0[(c)(c-1) + p_0c + q_0]=0$. Individ equation is $F(c) = c^2 + (p_0-1)c + q_0 = 0$. This determines the coefficient	
i.e. where the power series begins. We note that $(ktc)(ktc-1) + p_0(ktc) + q_0 = F(ktc)$, so for $k \ge 1$,	
$a_{k} = -\frac{1}{F(k+c)} \sum_{j=0}^{K-1} a_{j} \left(P_{k-j} \left(j+c \right) + q_{k-j} \right).$ This is a recurrence relation for a_{k} , in terms of known $\{a_{0}, a_{1}, \dots, a_{k}\}$	a_{k-1} .
In principle then, we can use the recurrence relation to construct two LI solutions but not always! The things could	theoretically go mong:
· case I: Two distinct roots c1, c2 of indical equation, c1-c2 is not an integer (this case is good)	
· Case II: Double voots, C1=C2	and the delivery
 case II: Two divinet roots c1, c2 differing by on integer i.e. c1-c2=N∈ I (WLOG C1>C2) case II: Two divinet roots c1, c2 differing by on integer i.e. c1-c2=N∈ I (WLOG C1>C2) 	ng 2 LI solutions
Each of these cases will have to be theated separately. In order to deal with the thickier cases II and III, we include	a the function
of two variables $W(z,c) = \overset{2}{k=0} a_k(c) z^{k+c}$. Now c is allowed to vary freely as the angument of W; and $a_k(c)$ all $k-1$	satisfy the recurrence
relation above: $a_k = -\frac{1}{F(k+c)} \sum_{j=0}^{k-1} a_j(p_{k-j}(j+c) + q_{k-j})$. Wood $W(z_1,c)$ into equation: exactly as above, we get	
$\left(\frac{d^2}{dz^2} + p(z)\frac{d}{dz} + q(z)\right) W(z,c) = \sum_{k=0}^{\infty} \left[a_k F(k+c) + \sum_{j=0}^{k-1} a_j \left(p_{k-j}\left(j+c\right) + q_{k-j}\right)\right] z^{k+c-2}.$ so for $k \ge 1$, these coefficients all e	push to 0 as tak)
satisfies recurrence relation. Thus, only remaining term is k=0 term: as F(c) = as (c-c_1)(c-c_1)= for nots c_1,	· ·2·
For case I, this is simple, and things are exactly as before \Rightarrow the 2 solutions are $W_1(z) = W(z_1, c_1) \neq W(z_1, c_2)$.	
For case II, we have $c_1 = c_2$. then $\left(\frac{d^2}{dz} + \eta(z)\right) \frac{d}{dz} + \eta(z)$ $W(z,c) = a_0(c-c_1)^2 z^{c-2}$ for $c_1 = c_2$. We differentiate this with	t c, to get
a second solution in addition to W1= W(z,c1). The differenciated statement is ($\frac{dz}{dz^2}$ + p(z) $\frac{dz}{dz}$ + q(z)($\frac{2W}{2c}$ (z,c))= 20.000	
because $\frac{d}{dc} z^{c} = \frac{d}{dc} e^{c\log z} = \log z \cdot z^{c}$ set $c = c_1$, then $\left(\frac{d^{2}}{dz^{2}} + p(z)\frac{d}{dz} + q(z)\right)\frac{\partial W}{\partial c}(z,c_1) = 0$,	
so our second eduction is $\frac{\partial W}{\partial c}(z,c_i) = W_2(z) = \sum_{k=0}^{2^{n}} \frac{da_k}{dc}(c_i) z^{k+c_i} + \binom{a_k}{k} a_k(c_i) z^{k+c_i} \log z = \sum_{k=0}^{2^{n}} \frac{da_k}{dc}(c_i) z^{k+c_i} + W_i(z)$	购. 王.

1407-07.

				15 January 2013
				Dr. Gavin ESLER
E	(Bessel's equation of index 0)			Person G22.
	Nolve the ODE ZWITWITZWIJO.	ZW"	w' Ful	
	Notice the ODE $\mathbb{Z}W^{H} + W^{H} + \mathbb{Z}W = 0$. Notice the odd $\mathbb{Z}W^{H} + W^{H} + \mathbb{Z}W^{H} = 0$.	0% a 11 x14 x x k+c-1	ktc-l S a ktctl	
	$\sum_{k=0}^{\infty} \left[a_k (k+c)^2 + a_{k-2} \right] z^{k+c-1} = 0. \text{ set } a_k$	officients to zero: k=0; a0 c2=1); ao = 0 => c2=0 is indicial equation	n. C=O is a double root.
	$k \text{ odd}: a_k(k+c)^2 + a_{k-2} = 0.$ Since $a_{-1} = 0$			
	-			64 A
	$a_{2k} = -\frac{a_{2k-2}}{(2k+c)^2}$. Introduce $b_k = a_{2k}$; +	hen $b_k = -\frac{1}{2^2(k+\frac{1}{2})^2}$ (for book-keepin	gressons, ibit picks out even lak	1). solution is now W= Z bKZ
	Then from recurrence relation, $b_k = \frac{(-1)}{2^2}$	$\frac{1}{1} \left(\frac{1}{(k+\frac{1}{2})^2 (k-1+\frac{1}{2})^2 \cdots (1+\frac{1}{2})^2} \right)_{0}$	First white are can be (0)=	(-1)k. 1/2 bo, we can set h = 1 wing
	$W_1(2) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(k!)^2} (\frac{z}{2})^{2k}$. This solution is de	noted Jo(Z): Bessel function of five	t kind, with index o.	09 II
	From our theory, we know that the second	solution is given by W2(Z) = [Z	$\frac{db_k}{dc} = \frac{2k+c}{k} + \sum_{k=0}^{\infty} b_k = \frac{2k+c}{k} \log z \Big]_{c=0} =$	$\left[\sum_{k=0}^{\infty} \frac{db_k}{dc} z^{2k+c}\right]_{c=0} + W_1(z) \log z.$
	We need to find dc " In particular, u		Y G	
	So $\frac{dF}{dY} = P(N) \frac{d}{dY} \log P(N)$. Let $\frac{P(N)}{dY} = \frac{1}{(K+\frac{1}{2})}$	2 (K-1+ 5)2 (1+ 5)2, then log f(x)	$= \sum_{j=1}^{2} -2 \log (j + \frac{2}{2}) \Rightarrow \frac{d}{dc} f(q) = f(q)$	c) dr. (2 -2 log (j+ 5)).
	$\frac{d}{dc} f(c) = f(c) \cdot \frac{k}{k} = \frac{-1}{k+\frac{k}{2}}$, and $\frac{db_k}{dc} = \frac{1}{2}$			
	Hence the second solution is $W_2(z) = \frac{\varphi}{k=0}$	(k!)2 (2) + W(2) log(2): defin	e Yolz) as the Bessel function of the	second kind (index 0).
	Then the second solution is a linear could	bination of Jo(2) and Yo(2):		
		μ		
The Gam	13 Function.			
This R.	tion is used for book-keeping in Frobenius problems:	$\Gamma(x) = \int_{0}^{\infty} t x^{-1} e^{-t} dt \Gamma(t) = \int_{0}^{\infty} t x^{-1} e^{-t} dt$	$e^{-t} dt = [-e^{-t}]_{e}^{-e} = 1$	
in qui	novi is used for nour receiving in moderning probabilis.	12 417 00 - C - C - C - C - C - C - C - C - C	1 ba x-2 t 1 ba x-2	-+
	evaluate these using integration by Parts - $\Gamma(x) = \int$			
We con	xpress products in terms of I. consider (k+c)(K-1+0) (1+0). (K+(+1)= ($k+c) \Gamma(k+c) = (k+c)(k-1+c) \Gamma(k-1+c)$	$-c) = \cdots = (k+c)(k-1+c)\cdots (1+c)\Gamma(1+c).$
	$(k+c)(k-1+c)\cdots(1+c) = \frac{\Gamma(k+1+c)}{\Gamma(1+c)}$, on integers (s			
of cours	e, the gamma function can also take on non-integ	yer values, interpolates factorial to	all XER (except where singular).	
(an inte				
200000	vinus. Benels.			
special f	nctions are defined by their complex power series, ofte	in obtained by solving ODEs (such as	()).	
An exam	ple of this is <u>Bessel's equation with index v</u> er ($(constand)$, $Z^2 W'' + Z W' + (Z^2)$	$-v^2$) w = 0. which often avises in m	withemstical physics.
				()
this con	es up ponticularly in problems with axisymmetry (e.	e. wlindricol geometry	$(AJ_{\upsilon}(z) + BJ_{-\upsilon}(z),$	v 年 Z.
The soli	tions to this equation are given by, as is va	nes across a range of values,	$W(z) = \begin{cases} A J_o(z) + B Y_o(z), \\ A J_m(z) + B Y_m(z) \end{cases}$	V=0
			$l A J_m (z) + B Y_m (z)$	$V = m \in \mathbb{Z} \setminus \{0\}$.
	omespand to our edition three cases to solutions in			
we re	er to Ju(2) as the <u>Bessel function of the first kin</u>	d with index vec; Yo(z) as the	e Bessel function of the second kind	with index $\mathcal{Y} \in \mathbb{C}$.
For SD	infic properties of the Bessel functions, refer to the	e printed handout. sing	ular.	
			+ (z)~ 7 ^m	
	· examine the behaviour of Bessel functions as Z-			
To get	relationships between the Bessel functions, partic	worky the Jm (Z), MEZ which a	re particularly important in applications,	we can derive them from the
Bence	generating function: G(x,t) = exp (×(t-+))=	E Jm (*) tm. This formula hele	s us find certain relationships:	
20120	<u></u>			
E	By differentiating both sides with respect to t, find	is relation between $J_{m-1}(X)$, $J_m(X)$ a	and Jmrt (X). Also, by differentisting w	.v.t. x, find a relation between Jm-1, Junt 1, Jn
	Adu. $\exp\left(\frac{2}{2}(t-\frac{1}{2})\right) = \sum_{m=-\infty}^{\infty} J_m(x) t^m \Rightarrow$	> $\frac{5}{2}(1+\frac{1}{12}) \exp(\frac{5}{2}(t-\frac{1}{12})) = \sum_{k=1}^{\infty}$	$J_m(W) mt^{m-1} \Rightarrow \frac{\times}{2}(1+\frac{1}{2}) \stackrel{\circ}{\Sigma} T_n$	$m(x) t^{m} = \sum_{m=-\infty}^{\infty} J_{m}(x) m t^{m-1}$
	$\Rightarrow \frac{\chi}{2} \left(\sum_{m=-\infty}^{\infty} J_m(x) t^m + \sum_{m=-\infty}^{\infty} J_m(x) t^m \right)$	-2) - 5 T m-1 . 5	SET WE XT W TWI	
	Set coefficients equal to 0, then 2	$\overline{z} \left[J_{m-1}(w) + J_{m+1}(w) \right] - m J_m(w) = 0$	$\Rightarrow \frac{X}{2} (J_{m-1}(x) + J_{m+1}(x)) = m J_m(x)$	((the recurrence relation)
	Differentiste w.r.t., we get Jm W= 2			IF January 2013
			for a classes	Dr. GOVIN ESLER
	Note: we know $J_{-1}(x) = -J_1(x)$, hence J	$f_{0}(x) = -f_{1}(x)$.		Drayton B20.

Legendre's equation and regendre functions.

Legendre's equation and regenere-punctions. The Legendre's differential equation is the equation $(1-z^2)w''-2zw'+ v(v+1)w=0$, where $v \in \mathbb{R}$ is the index. This appears regularly in mathematical physics, particularly in publicus, it spherical in publicus with spherical sp

We notice that == 0 is an ordinary point of (1), while == ±1 are regular singular points, hence we expland about the ordinary point using the naive ansatz.

Then we have $w(z) = \sum_{k=0}^{\infty} a_k z^k$ (no constraint on a_0), and we insert this into l to get $(1-z^2)w^n - 2zw^n + \sqrt[n]{(n+1)}w = 0 \Rightarrow$ $\sum_{k=0}^{\infty} a_k k(k-1) z^{k-2} - \sum_{k=0}^{\infty} a_k k(k-1) z^k - 2\sum_{k=1}^{\infty} a_k kz^k + \sum_{k=0}^{\infty} v(v+1)a_k z^k = \sum_{k=0}^{\infty} a_{k+2}(k+2)(k+1)z^k - \sum_{k=0}^{\infty} a_k k(k-1) - \sum_{k=0}^{\infty} 2a_k kz^k + \sum_{k=0}^{\infty} v(v+1)a_k z^{k} = 0.$ $\therefore \sum_{k=0}^{\infty} \left[a_{k+2}(k+2)(k+1) - a_k(k(k+1) - v(v+1))\right] z^k = 0.$ Hence, set coefficients all to 0, which yields recurrence relation $a_{k+2} = a_k\left(\frac{(k-v)(k+v+1)}{(k+1)(k+2)}\right).$ Two solutions will include one with even powers of z: non-zero $a_0(a_{21}, \dots)$ is the other with odd powers of z: non-zero $a_1(a_3, \dots)$ Even jakisher related by $a_{2k+2} = a_{2k}\frac{(2k-v)(2k+v+1)}{(2k+1)(2k+2)}.$ while $b_k = a_{2k}$ then $b_{k+1} = b_k\frac{(2k-v)(2k+v+1)}{(2k+2)(2k+3)}$, $k \to 2k$ in recurrence relation. Add (a_k) dre related by $a_{2k+3} = a_{2k+1}\frac{(a_{k+1}-v)(2k+2+v)}{(2k+2)(2k+3)}.$ Write $b_k = a_{2k+1}$, then $b_{k+1} = b_k\frac{(2k+1)(2k+2+v)}{(2k+2)(2k+3)}$, $k \to 2k+1$ in recurrence relation. So the two solutions are $w_i(z) = \sum_{k=0}^{\infty} b_k z^{2k}, w_k(z) = \sum_{k=0}^{\infty} b_k z^{2k+1}.$

Assubly, the general solution of (1) is written $w(z) = A P_{\omega}(z) + B Q_{\omega}(z)$; where $P_{\omega}(z)$, $R_{\omega}(z)$ are known as the <u>legendue functions</u>. Each is a (different) linear combination of $w_1(z)$ and $w_2(z)$.

What is the ratio of convergence of these functions? We try d'Alembert's ratio test with $w_1(z)$: $\lim_{k \to 0} \left| \frac{b_{k+1} z^{2k+2}}{b_k z^{2k}} \right| = \lim_{k \to 0} \left| \frac{(2k+2)(2k+2+1)!}{(2k+1)(2k+2)!} z^2 \right| = \lim_{k \to 0} |z^2|$. If $W_1(z)$ converges, $|z^2| < 1 \Rightarrow |zk| \Rightarrow R=1$ is the radius of convergence; some is true for W_2 where R=1 is also the radius of convergence \Rightarrow and also for $P_1(z), Q_1(z)$. We do not get know if the series solution achievely converges at $z=\pm1$. In general, they do not there ever, in applications, it turns out that we care only about the legendre functions that are regular at $z=\pm1$. Are there special situations when this occurs? Too, where $v = n \in \mathbb{Z}$. Examine $b_{k+1} = b_k \left(\frac{(2k-v)(2k+1+v)}{(2k+1)(2k+2)} \right)$. If at some point the numerator is 0, the series terminates. We call such solutions legendre polynomials of order n. If v = 2n, $n \in \mathbb{Z}$, then we have $b_{N+1} = \frac{(2n-2h)(2n+1+v)}{(2k+1)(2k+2)} = 0$, and all subsequent coefficients are 0. This gives a legendre polynomial of order 2n. i.e. $W_1(z) = \sum_{k=0}^{\infty} b_k z^{2k} d c E_{R_1(z)}$ multiply by containt

The odd polynomials P21+1 (2) come from W2(2) when v= 2n+1. Pv(2)=Pn(2) whenever v=n.

 $\frac{1}{2} \frac{1}{2} \frac{1}$

Altomatively, we use the <u>Legendre generating function</u> formula. $G(x,t) = \frac{1}{(1-2kt+t+2)^{1/2}} = \sum_{n=0}^{\infty} t^m P_m(x)$. As was the case with the Bessel function, this gives us some relations between the polynomials.

Take partial derivatives w.r.t +: $\frac{x-t}{(1-2xt+t^2)^{3/2}} = \sum_{m=0}^{\infty} mt^{m-1} P_m(x) = G(x,t) \left(\frac{x-t}{1-2xt+t^2} \right), \text{ Then } (x-t) \sum_{m=0}^{\infty} t^{m} P_m(x) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{\infty} mt^{m-1} P_m(x), \text{ and } (x,t) = (1-2xt+t^2) \sum_{m=0}^{$

where m=0, $P_1(x) - xP_0(x) = 0 \Rightarrow P_1(x) = x$. Where m=1, $2P_2(x) - 3xP_1(x) + P_0(x) = 0 \Rightarrow 2P_2(x) = 3x^2 - 1 \Rightarrow P_2(x) = \frac{2}{2}x^2 - \frac{1}{2}$ indeed.

We could also have done the partial differentiation w.r.t. x, which would have yielded [Pint (x) - Pin-1(x) = (2m+1) Pm(x)], m>1, which is the differentiation identity.

Onopter 2

ORTHOGONALITY AND GENERALISED FOURIER SERIES.

Let f(x) be defined on the (periodic) interval $-\pi < x \le \pi$. Then recall the formula for tourier series: $f(x) = \frac{\alpha_0}{2} + \sum_{n=1}^{\infty} \alpha_n \cos(nx) + b_n \sin(nx)$, where $\binom{\alpha_n}{b_n} = \frac{\pi}{\pi} \prod_{\pi}^{\pi} \frac{\pi}{b_n} \binom{\cos(nx)}{\sin(nx)} dx$. New ides: We think of the set V of functions f(x) defined on $-\pi < x \le \pi$ as a <u>vector space</u>. Then,

the functions $\frac{1}{V_1(x)=1}$, $\frac{1}{V_{2j}(x)=\cos(jx)}$, $\frac{1}{V_{2j+1}(x)}=\sin(jx)$ for $j \ge 1$ can be regarded as a basis for the vector space V, since any fix in V can be expressed as a linear combination of the $\frac{1}{V_1(x)}$. (approved up to equality "almost enough never", this is a casual statement).

V is equipped with a "natural" inner product: <f,g>= 1-17 f(x)g(x) dx. under this inner product, notice that < Y, YK>=0 if j = K as it gives tourier integrals.

Also, our definition gives that < li, 4;>= 1 TT = 171. i.e. the set 14; I is acthogoad Notice then that the Fourier series formula can be written $f(x) = \sum_{j=1}^{\infty} \frac{\langle f_i, Y_j \rangle}{\langle Y_j, Y_j \rangle} Y_j(x)$, which is the form for gram-schmidt orthogonalisation. We can generalise it further, extending it to other orthogonal bases. consider eigenvalue problem AX = XX. If L = #X> is the differential operator. Take Ly = - hy, g(0)=0, g(1)=0 as boundary conditions. = non-trivial solutions for h= k=1. Then we see that complete orthogonal bases are generated by eigenvalue problems, and occur for differential equations. The role of the matrix is taken by a differential operator: plus boundary conditions $A=B=0 \quad \text{for } \lambda \leq 0 \Rightarrow \text{ no eigenvalues. For } \lambda>0: \quad y(o)=o \Rightarrow A=0, \quad y(l)=o \Rightarrow \quad B = in(\sqrt{\lambda})=o \Rightarrow \sqrt{\lambda}=k\pi \Rightarrow \lambda=k^2\pi^2; \text{ are non-trivial solutions}$ Then $\lambda_{k} = k^{2}\pi^{2}$ are the eigenvalues $(k \ge 1)$. These eigenvalues correspond to eigenfunctions. $y_{k}(x) = \sin(k\pi x)$. of course, we leave out the arbitrary constant B as eigenfunctions are defined only up to a constant, i.e. we can set B=1 WLOG Are these found eigenfunctions anthrogonal? We use <f,q>= So f(x) g(x) dx, then <y; yk>= So sin (j T x) sin (kT x) dx = 0 for j + k. 24 January 2013. Dr. Gavin Esler. Drayton B20. Differential equation eigenvalue problems arise naturally in the method of separation of randoldes. Boundary conditions play a key role. Ex Find the eigenvalues and eigenfunctions of Ly = - my for L= dr , y(0)=0 and y'(1)=0. Ado. As duesus, our only non-trivial solution is y= A cos (VA x) + B sin (VA x) ⇒ y(x) = BA cos (VA x) ·· A=0. y(1)=0 ⇒ cos(VA)=0, for non-trivial solution : $J_{k} = \frac{2k+1}{2}\pi$ for $k \in \mathbb{I}^{\dagger} u(v)$. Then $\lambda_{\overline{k}} = \frac{(2k+1)^{2}\pi_{k}^{2}}{2}$ are eigenvalues. corresponding eigenfunctions are $\sin(\frac{2k+1}{2}\pi x)_{k}$ inner product on L2(a,b) 12(a,b) is the space of functions of st. Ja 1612 dx exists. Then we define < f,g>w = Ja w(x) f(x) g(x) dx with a real-valued weight-function w(x)>0 on (a,b). En show that < y; yk>= 0 for the previous example (j = k) for w(x)=1. Add. $ky_{j}, y_{k} \ge \int_{0}^{1} \sin\left(\frac{2j+1}{2}\pi x\right) \sin\left(\frac{2k+1}{2}\pi x\right)$ i.e. This example also generates an orthogonal set of eigenfunctions 19kt. What makes these eigenfunctions onthogonal? In linear algebra, real symmetric (or complex Hernistian) matrices generate orthogonal bases. For a linear operator I (plus boundary conditions), the corresponding property is that it is self-adjoint. Retuition the adjaint, L', of a linear operator L with respect to an inner product <-,-> is another linear operator satisfying $\langle f, L'g \rangle_{W} = \langle Lf, g \rangle_{W} \quad \forall f, g \in L^{2}(a, b).$ Lis self-adjoint if L'=L. consider our first example, with fig $\in L^2(0,1)$ both satisfying fio)=fi)=0, then $\langle \pm f,g \rangle = \int_0^1 f'' \bar{g} dx$ for w(x) = 1. We integrate this by parts, then < f, g> = 10 f"a dx = -10 f'q dx + [f'q]0 = -10 f'q dx :: q satisfies b.c.) = 10 f q "ax+ [fq]0 = 10 fq" dx = <f, dq>. Then since $\langle f, f'_q \rangle = \langle f, f_q \rangle$, $\langle f, f'_q \rangle = \langle f, f_q \rangle \Rightarrow f' = f \Rightarrow f is self-adjoint.$ self-sdjoint What is the most general second order linear differential operator there is? the operator is known as the <u>stimm-lionville operator</u>, with boundary conditions.) d, y(a) + β, y'(a) = 0 L= with [\$ (p(W) \$)+ r(W)] with p(W) red, differentiable on [a,b], p(W)>0; r(x) red, continuous on (a,b); w(W)>0 red continuous on (a,b). Bopontional I is self-adjoint with boundary conditions stated above (1) 29 somwory 2013 Dr. Gavin ESLER Thome clf of - NTP: < Lf, g>w = <f, lg >w = Ja w(w) (two) dx (pw) df + r(w) f(w)) g(w) dx = Ja (dr. [p(w) df) + r(w) f(w)) g(w) dx. Research G22. then < Lf, g>w = Sa (cpf')'+rf)g dx. Integrate by parts. < Lf, g>w = Epf'g Ja + Sa -pf'g' + rfg dx = Epf'g -pfg Ja + Saf(ipg')'+rg) dx = $\left[\gamma f' \bar{g} - \rho f \bar{g}']^{b}_{a} + \int_{a}^{b} \kappa u f w \int_{a}^{b} w u d d \chi + \kappa u \bar{g}(\omega) \right] dx = \left[\rho f' \bar{g} - \rho f \bar{g}' \right]^{b}_{a} + \langle f, f g \rangle_{w}.$ Hence < ff, g7w = < f, fg7w if the baundong term is 0. check baundong term at x=b. [..] = p(b) (f'(b) g(b) - f(b) g'(b)) for al, a, b, b2 al non-zero. i.e. [...]b=p(b)[(- d2/f(b))]](b) - f(b)(- d2/f(b))] =.0. likewise, [...]a=0, so we get [...]a=0, <f(f(g)))=<f(f(g))) = f(b)] =.0. likewise, [...]a=0, so we get [...]a=0, <f(f(g)))=<f(f(g))) = f(b) = f(b) = -0. Much theory follows from the self-adjointness of L concerning the eigenvalue problem Ly = - my subject to (1).

This gives us the general stimm-liouville eigenvalue problem.

stim-tionville eigenvolue poblessa.		
	$\frac{d}{dx}\left(\rho(x)\frac{dy}{dx}\right) + \left(r(x) + \lambda w(x)\right)y = 0 \text{ subject to } \left(\begin{array}{c} d_{1}y(a) + \beta_{2}y'(b) = 0 \\ d_{2}y(b) + \beta_{2}y'(b) = 0 \end{array} \right)$	
0		
ticy results; which partial proofs of will be g	•	
	ad form on infinite unbounded set e.g. if $\lambda_1 < \lambda_2 < \lambda_3 < \cdots$, then $\lambda_K \rightarrow \infty$.	
[2] Two eigenfunctions y; and yk as	sociated with eigenvalues λ_j and λ_K are <u>orthogonal</u> (under b.c. () and inner product <>w)	
i.e. <y; yk="">w=0 if j=k.</y;>		
[3] The eigenfunction y; associated	with eigenvalue it is usingue up to a multiplicative constant.	
I Functions $f(x) \in L^2(a,b)$ can be	expanded in general Fourier series involving the (4K(x)), which form an orthogonal basis for	1 ² (a,b).
our generalised Fourier series in	s given by $f(w) = \sum_{k=1}^{\infty} \frac{\langle y_k \rangle_W}{\langle y_k \rangle_W} \frac{\langle y_k \langle w \rangle}{\langle y_k \rangle_W}$, with equility holding almost everywhere.	
(Partial) Proofs — [1] Consider < Lyk, yk]=	s given by $f_{W} = \sum_{k=1}^{\infty} \frac{\langle f_k \cdot y_k \rangle_{W}}{\langle y_k \rangle_{W}} \frac{\langle g_k \rangle_{W}}{\langle k \rangle_{W}} $, with equilibrity holding almost everywhere. $= \frac{\langle f_k \rangle_{W}}{\langle k \rangle_{W}} = -\lambda_k \langle y_k , y_k \rangle_{W}$. Also, $\langle L y_k , y_k \rangle_{W} = \langle y_k , L y_k \rangle_{W} = \langle y_k , -\lambda_k y_k \rangle_{W} = -\overline{\lambda_k}$	< yK, YK/W
-	is really q.e.d. [Note: we can caucel < "1K, yK7, because eigenfunctions are non-zero solution	
	k(4) corresponding to his and hk. then < by;, ykz= <+high, ykz= -hiky;, ykz.	
		8.4.). +)+ .
	$\exists \kappa \mathcal{V}^{\pm}_{n} < \beta^{1}, -\gamma \kappa \beta \kappa \mathcal{V}^{\pm}_{n} = -\gamma \kappa < \beta^{1}, \beta \kappa \mathcal{V}^{\pm}_{n} \Rightarrow \qquad \gamma^{1}_{1} < \beta^{1}, \beta \kappa \mathcal{V}^{\pm}_{n} = \gamma \kappa < \beta^{1}, \beta \kappa \mathcal{V}^{\pm}_{n} \Rightarrow \qquad \gamma^{1}_{1} < \beta^{1}, \beta \kappa \mathcal{V}^{\pm}_{n} \Rightarrow \qquad \gamma^{1}_{$. ou nj t nk, so
	infunctions are orthogonally q.e.d.	
[3] See printed lecture note		
	(gk) form a complete basis for $L^2(a,b) \Rightarrow f(x) = \sum_{k=1}^{\infty} a_k g_k(x)$ i.e. we can write any $f(x) \in L^2(a,b)$	
	th $y_j: \langle f, y_j \rangle_w = \langle \sum_{k=1}^{\infty} a_k g_k, y_j \rangle_w = \sum_{k=1}^{\infty} a_k \langle g_k, y_j \rangle_w = 0 + a_j \langle y_j, y_j \rangle_w \Rightarrow for an$	oitrany index j,
$\langle f, y_j \rangle_{w} = a_j \langle y_j \rangle_{w}$	$y_{j} \gg \alpha_{k} = \frac{\langle f_{k} y_{k} \rangle_{kv}}{\langle y_{k}, y_{k} \rangle_{kv}}$. Hence, $f(x) = \sum_{k=1}^{\alpha_{0}} \frac{\langle f_{k} y_{k} \rangle_{kv}}{\langle y_{k}, y_{k} \rangle_{kv}} y_{k}(x)$. p g.e.d.	
	y(0)=0 0 (1-(a) 4k)	
TEX solve y" + by =0, with	y(0)=0 $y(1)+ d_1y'(1)=0$ (d>0). Then, prove that $k=1, 2q_k - sin(2q_k) \sin(q_k x)=1$ for all x in 0 <x<1.< td=""><td></td></x<1.<>	
soln. This is a stierm-liouville	= eigenvalue problem: $L = \frac{1}{W} \left(\frac{d}{dx} \left(p \frac{d}{dx} \right) + r \right)$ with $W(x) = 1$, $p(x) = 1$, $r(x) = 0$. Then $dy = -\lambda y$; with s-L b.c. at x=0, x=1-
$y(x) = A \cos(\sqrt{x}x) +$	$B \sin(\sqrt{\lambda} x) \text{ for } \lambda > 0 \text{ (non-trivial solutions)} \cdot y(0) = 0 \Rightarrow A = 0 \cdot y(x) = B \sin(\sqrt{\lambda} x), y'(x) = 1$	3. I cos (IXX). 1 tan (9)
Then y(1) + x y(1) =	$B(sin(\sqrt{\lambda}) + d\sqrt{\lambda} \cos(\sqrt{\lambda})) = 0$. Consider $B \neq 0$, then consider $\tan(q) + dq = 0$, with $q = \sqrt{\lambda}$.	f fi fi
Roots 9K occur at	intersections of surves tang and -dq. There are infinitely many.	!!
	missions $\lambda_{K} = q_{K}^{2}$, $K = 1, 2, \dots$ where $1q_{K}$ are the ports of tan $q + aq = 0$.	· / :/ :/
Then, the correspondi	in eigenfunctions are 4_{k} =sin (9, k x), which form a complete basis for $L^{2}(a,b)$.	1 1 1 -dq.
Moore is our general	Alised Family comes for $f(x) = 1$ $f(x) = 1 = \sum_{k=1}^{\infty} \frac{\langle 1, y_k \rangle_w}{\langle u_k, u_k \rangle_w} \frac{y_k(x)}{\langle x_k, u_k \rangle_w} \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{\int_0^1 \sin(Q_k x) dx}{\int_0^1 \sin(Q_k x) dx} = \frac{1}{ x } \frac{1}$	$\frac{q_{k}x)I_{o}}{z(2q_{k}x)dx} = \frac{-\frac{1}{q_{k}}(\cos q_{k}-1)}{\frac{1}{z[x-\frac{1}{2q_{k}}\sin(2q_{k}x)]_{o}}}$
$f(x) = 2 \frac{4x}{5} \frac{1}{1-\frac{1}{2x}}$	dived Fourier series for $f(\kappa)=1$. $f(\kappa)=1=\sum_{K=1}^{\infty}\frac{\langle 1, y_K \rangle_W}{\langle y_K, y_K \rangle_W} y_K(\kappa)$. $\frac{\int_0^{1} \sin(q_K x) dx}{\int_0^{1} \sin(q_K x) ^2 dx} = \frac{-\frac{1}{q_K} [\cos t]}{\int_0^{1} \sin(q_K x) ^2 dx}$ $\frac{-\cos q_K}{\sin(2q_K)} = \sum_{K=1}^{\infty} \frac{4 \cdot (1-\cos q_K)}{2q_K - \sin(2q_K)} \sin(q_K x)_{//} q.e.d.$	ARMAR 22 AR
k=1 [k		
Count and - low - low - co	0 - 214 - 2	
General 2nd order problems . Chrom separation		+ (a) + (((1) +) ((1))
It typical separation of variables problem lead	As to $P(x)y''(y) + Q(x)y'(y) + (R(x) + \lambda)y(y)=0$. We compare this to stimm-lionnille equation $P(y) = \frac{P(x)}{P(y)} + \frac{P(x)}{P(y)} + \frac{P(y)}{P(y)} + P(y$	dx priv dx + (rex) + (win)y=0.
The firm-lionville apostion can be re-expres	need as $\frac{p(x)}{w(x)}y^{11} + \frac{p'(x)}{w(x)}y^{1} + (\frac{r'(x)}{w(x)} + \lambda)y = 0$. We need to choose p, w, r s.t. $\frac{p(x)}{w(x)} = P(x)$, $\frac{p'(x)}{w(x)} = P(x)$.	$\overline{A} = Q(N), \ \overline{W}(\overline{A} = R(N))$
We get P(X) = P(X) = dic log. p(X)):	$\frac{Q(t)}{P(t)}$, and $p(t) = \exp\left(\int^{t} \frac{Q(t)}{P(t)} dt\right)$ is the integrating factor. For w, r, we get $w = \frac{p}{p}$,	r= P.
Conclusion: We can always convert our ty	pical separation of variables problem into a stimm- Lionville problem provided that P(4) has no roots in	a a x x b.
(st. w>0). i.e. the separation	n of variables equation has no singular points on acx <b.< td=""><td></td></b.<>	
		31 January 2013.
There are shows unlimited possibilities for	expanding functions $f(x) \in C(a,b)$ in different generalised Former series.	Dr. Gavin ESLER. Dayton Bro
Est use the eigenvalue problem x	² y ¹¹ - xy' + λy = 0 y(1) = y le ^T) = 0. to expand fix defined on 1 < x < e ^T in a generalis	ed Fourier series.
Recall: Write Y(H) = y(et), X	= e^{t} . $\frac{dY}{dt} = e^{t} y'(e^{t}) = xy'$, $\frac{d^{2}Y}{dt^{2}} = e^{2t} y''(e^{t}) + e^{t} y'(e^{t}) = x^{2} y'' + xy'$. Equation becomes	$\frac{d^2Y}{dt^2} = 2\frac{dY}{dt} + \lambda = 0.$
Adn. $\frac{d^2 Y}{dt^2} - 2 \frac{d Y}{dt} + X = 0$	$= e^{t} \cdot \frac{dY}{dt} = e^{t} y'(e^{t}) = xy', \frac{d^{2}Y}{dt^{2}} = e^{2t} y''(e^{t}) + e^{t} y'(e^{t}) = x^{2}y'' + xy'.$ Equation becomes $= e^{t} (A \cos \sqrt{h-1}t) + B \sin (\sqrt{h-1}t) h>1$ $= \int e^{t} (At + B) Ae^{(t+\sqrt{1-h}t)} + Be^{(t-\sqrt{1-h}t)} h=1$ $= \int e^{t} (At + B) Ae^{(t+\sqrt{1-h}t)} + Be^{(t-\sqrt{1-h}t)} h<1$	get non-trivial solutions
for 1 s1. Then	$y(1)=0 \Rightarrow A=0, y(e^{\pi})=0 \Rightarrow B \sin(\sqrt{\lambda-1}\pi)=0 \Rightarrow \sqrt{\lambda-1}=k \in \mathbb{Z}, \lambda k = k^2+1 \text{ are out}$	eigenvalues.
	igenfunctions are $y_{k}(x) = x \sin (k \log x)$.	agen round.
-		
tor & generalised for	uner series, we need the $\{y_k(x)\}\$ to be orthogonal with respect to an inner product - need $p_r: IF = e^{\int \frac{Q}{P}} = e^{\int -\frac{1}{X} dx} = e^{-\log x} = \frac{1}{X} = p(x) \Rightarrow s-t$ form must be $x^3 \frac{d}{dx} \frac{d}{dx} + \lambda y = e^{-\log x}$	TO convert cystem into S-L form
Find integrating factor	$r: Lt - C = C = r = p(t) \Rightarrow 5 + form must be x = p(t) + y = r^{eT}$	$0 \Rightarrow w(x) = \overline{\chi^3}, p(x) = \overline{\chi}, r(x) = 0$
Hence, $f(x) = \frac{1}{K=1} \frac{1}{K}$	$\int_{\mathcal{R}} \frac{g_{k}}{2k} g_{k} dk, \text{where } \langle f_{i} g_{k} \rangle_{W} = \int_{1}^{e^{\pi}} \frac{1}{x^{2}} f(k) x \sin(k \log x) dx, \langle g_{k}, g_{k} \rangle_{W} = \int_{1}^{e^{\pi}} \frac{1}{x^{2}} x^{2} \sin^{2}(k \log x) dx$	dx.

7402-0h.

 $\langle y_{k}, y_{k} \rangle_{W} = \int_{1}^{e^{T}} \sin^{2}(k \log x) \frac{dx}{X} = \int_{0}^{T} \sin^{2}(kt) dt = \frac{T}{2}$. Then $f(x) = \sum_{k=1}^{\infty} \frac{2}{\pi} \left(\int_{1}^{e^{T}} \frac{f(q)}{q^{2}} \sin(k \log q) dq \right) \times \sin(k \log x)_{f}$.

Singular shum-Lionville systems.

We return to the proof of the self-adjointness of L. we had: <ff, q>w = <f, Lg>w + [p(fg' + f'g)]a. In a regular shunn-lioniille system, we had boundary conditions () that made the boundary terms vanish i.e. $[p(f_{\overline{q}}^{2} + f_{\overline{q}}^{2})]_{a}^{b} = 0$. We also had $a \leq p(x) \leq b$.

In a singular shum-lionville system, we have plate o and/or p(b)=0. The boundary condition (1) is then not needed at x=a (or x=b). It is replaced by the condition = y(a) finite and/or y(b) finite.

EX

 $(1-x^2)y^u - 2xy' - \lambda y = 0$ is begandre's equation. And ye solutions at $x = \pm 1$. Solu. $(1-x^2)y^u + (1-x^2)'y - \lambda y = 0 \Rightarrow \frac{d}{dx}((1-x^2)y') + \lambda y = 0$, which is in strum-Lianville from with w(x) = 1, $p(x) = 1-x^2$, r(x) = 0. Recall that our solutions are y(x) = AP (x) + BR v(x), where Pv, Rv are Legendre functions. In general , at X=±1 solution is singular (i.e. X=±1 are R.S.P. of ⊕) ⇒ (1-X²) y"-2Xy' + hy=0, y(±1) finite is a singular S-L system with eigenvalues $\lambda_{k} = k(k+1)$ $(k \in \mathbb{Z})$, $y_{k}(x) = P_{k}(x)$. " the Parly due the only finite solutions of B. Orthogonality: We know that $\int_{-1}^{1} P_{j}(x) P_{k}(x) = 0$ for $j \neq k$. Follows inunediately. Then we have our generalized travier series: For $-1 \leq x \leq 1$, $f(x) = \sum_{k=0}^{\infty} \frac{\langle f_{1}:9x \rangle}{\langle y_{k}, y_{k} \rangle} y_{k}(y) = \sum_{k=0}^{\infty} a_{k}P_{k}(y)$ where $a_{k} = \frac{\int_{-1}^{1} f(x) P_{k}(x) dx}{\int_{-1}^{1} (P_{k}(x))^{2} dx}$. We seek value of $\int_{-1}^{1} f(x) P_{k}(y) dx$. 5 Followary 2013. Use the generating function $G(x, t) = \frac{1}{(1-2xt+t^{2})^{V_{x}}} = \sum_{k=0}^{\infty} t^{k} P_{k}(y)$. square both sides, then integrate to get: Performing 22. $\int_{-1}^{1} \frac{dx}{1-2xt+t^{2}} = \int_{-1}^{1} \left(\sum_{k=0}^{\infty} t^{k} P_{k}(x) \right) \left(\sum_{k=0}^{\infty} t^{k} P_{k}(x) \right) dx = \sum_{k=0}^{\infty} t^{2k} \int_{-1}^{1} \left(P_{k}(x) \right)^{2} dx . \quad \text{LHs} = \left[-\frac{1}{2t} \log \left(1-2xt+t^{2} \right) \right]_{x=-1}^{x=1} = \frac{1}{2t} \left[\log \left(1+t \right)^{2} - \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} - \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} - \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} - \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} - \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} - \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} - \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} + \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} + \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} + \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} + \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} + \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} + \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} + \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} + \log \left(1-t \right)^{2} + \log \left(1-t \right)^{2} \right] dx = \sum_{k=0}^{\infty} t^{2k} \left[\log \left(1-t \right)^{2} + \log \left(1-t \right)^{2$ $(HS=\pm \left[\log\left(1+t\right)-\log\left(1-t\right)\right]=\pm \left[\left(t+\frac{z}{2}+\frac{z}{3}+\cdots\right)-\left(-t+\frac{z}{2}-\frac{z}{3}+\cdots\right)\right]=\pm \left[2t+\frac{2z}{3}+\frac{2z}{3}+\frac{z}{3}+\frac{z}{3}+\frac{z}{2}+\frac{z}{3}+$ comparing both sides, $\int_{-1}^{1} (P_{K}(x))^{2} = \frac{2}{2k+1} \Rightarrow f(x) = \frac{2k+1}{2} (\int_{-1}^{1} f(x) P_{K}(x) dx) P_{K}(x) dx$, which is the torusiter-legendre series.

Consider the eigenvalue problem $x^2y^{ii} + xy^i + (-m^2 + \lambda x^2) y = 0$, with y(0) finite and y(1)=0.

solo. Convert this into strum-lionville form. Integrating factor is $e^{\int_{X^2}^{X} dx} = e^{\log x} = x$. We get $x(xy')' - (m^2 - \lambda x^2)y = 0$

Pivide by x²: × \$ (x dx) - m²/2y = - by, or Ly = - by, with p(x)=x, w(x)=x, v(x)= - m²/2 p(0)= D ⇒ system is singularet x=0

. We have a shurm-Lionville eigenvalue problem. This is similar to Bessel's equation if h=1.

To solve this, we need to perform a change of variables: Write q= JX and Y(q)= y(x(q)), x(q)= 2. Use the chain rule. $\frac{dY}{dq} = y'\frac{dx}{dq} = \sqrt{x}y', \quad \frac{d^2Y}{dq^2} = \sqrt{y''}, \quad \text{then we have:} \quad \lambda x^2 \frac{d^2Y}{dq^2} + \sqrt{x} \times \frac{dY}{dq} + (-w^2 + \lambda x^2) Y = 0 \Rightarrow q^2 \frac{d^2Y}{dq^2} + q\frac{dY}{dq} + (-w^2 + q^2)Y = 0$ This is Bessel's equation of index $m: \chi(q) = A J_m(q) + B J_m(q)$ is the general solution for $m \in \mathbb{Z}$. Substitute to get y(x) = A Jm (JXx) + B Ym (JXx). At x=0, y(0) is finite ⇒ B=0 since Ym(0) is singular at x=0. ⇒ y(x)= A Jm (JXx). At x=1, y(1)=0 ⇒ A Jm (IN)=0. Bessel functions have infinitely many zeros, so Jm (IN)=0 i.e. A =0 at IN = jmk, K ∈ N where time to be the seros of Jm. > eigenvalues are $\lambda_K = j_{mK}^2$, eigenfunctions are $y_K(x) = J_m(j_{mK}x)$. Orthogonating: $\langle y_{j}, y_{k} \rangle_{w} = \int_{0}^{1} \times Jm(jmj) Jm(jmk) dx = 0 \quad \forall j \neq k$. Then we obtain our generalised Fourier series: $f(x) \text{ on } 0 \leq x \leq 1$ is given by $f(x) = \sum_{k=1}^{\infty} \frac{\langle f_{k} y_{k} \rangle_{w}}{\langle y_{k} y_{k} \rangle_{w}} y_{k}(x) = \sum_{k=1}^{\infty} \alpha_{k} Jm(jmk x) \text{ where } \alpha_{k} = \frac{\int_{0}^{1} \times f(x) Jm(jmk x) dx}{\int_{0}^{1} \times (Jm(jmk x))^{2} dx}$

 $\int_{0}^{1} \times (\operatorname{Jm}(j_{\mathrm{mk}} \times))^{2} dx = \frac{(\operatorname{Jmrt}(j_{\mathrm{mk}}))^{2}}{2} (\operatorname{verify} \text{ on sheet } 3, Q_{2}(d)). \quad \operatorname{Hence}, \quad \operatorname{QK}^{2} = \frac{2}{(\operatorname{Jmrt}(j_{\mathrm{mk}}))^{2}} \int_{0}^{1} \times f(3) \operatorname{Jm}(j_{\mathrm{mk}} \times) dx \quad , \text{ the faution-Best series}$

Periodic Sturm-Liouville systems.

Our ordinary trigonometric transfor series are weither regular nor singular strum-tionville systems. In fact, they derive from the periodic strum-tionville systems defined by $y'' + \lambda y = 0$, $\begin{pmatrix} y(\pi) = y(-\pi) \\ y'(\pi) = y'(-\pi) \end{pmatrix}$ (periodic boundary conditions).

This leads to $\lambda_{K} = k^{2}$, K > 0. eigenfunctions are $y_{0}(x) = 1$; and two eigenfunctions each for every k > 1: $y_{K_{1}}(x) = \cos(kx)$, $y_{K_{2}} = \sin(kx)$

We call the property of having the eigenfunctions for an eigenvalue: degeneracy.

Regansized does not occur for regular or singular problems : see [3] in theory on the printed lecture notes.

Chapter 3 SEPARATION OF VARIABLES, REVISITED...

In this chapter, we sum to solve linear partial differential equations: such as $\nabla^2 u = O$ (Laplaces), $u_t = \nabla^2 u$ (heat), $u_{t+1} = \nabla^2 u$ (wave).

whe will be	serative	DA à Paul au				weeks, das		11		spheres.			
		on a few geo				rectangles,		discs, or		CIS .			
To begin n	with, we n	eturn to a sin	mplor problem	A				()	(
Laplace's eq	quotion in	s rectangle.				osxel, osy	≤h•	0≤r<1.		0=r<1.			
											y=h	u= f60	x=l
Ба	Consider L	splace's equation	n on the rect	angle. Find -	the steady	temperature	distribution	u(xiy) in a 1	restangle	when the sid	es ave u=($\nabla^2 u=0$	4=0
		fixed temperati					.11					u=0.	
	Soln 1	white u(kiy) =	XGAYLY	$\nabla^2 u = X''Yt$	- XY" = 0	⇒ <u>x</u> =	X	(-ve sign lead	s to positiv	ve eigenvalues	>.		
		then { x"+	NY =0. W	e solve the fi	ivst epusitio	m as it is a	stum-Lion	wille problem (chas strum	m-lionville bou	undary condition	»),	
		X"+XX=0,	$X(o)=D_1 X(L)$	19)=0. is orun	- eigenvalu	re problem.	X(x) = {	A cos (JXX)+ E trivial solution	~> >in CIAX	λέο.			
											ur eigenvalues.		
		correspondin	g. Cizenfuncti	ious are ?	(k(x) = si	$n\left(\frac{k\pi x}{L}\right)$.	ve then mo	ve on to the	y-epustion	1: Y"-XY=	0 >		
		$Y''_{k} - \frac{k^{2}\pi^{2}}{L^{2}}$	Yk=0, Y	k(y) = CK ce	sh (뇬y)	+ DK sinh(KTy). Use	ther bounds	ny condition	ans YK(0)=0)⇒ Ck=0. ¥	k.	
		Then YKL	g) = DK sinh	(KITY). We	can now 1	write the gene	eval solution	: u(x,y)=	X Xk Xk	$) 1_k(y) = M_{k=1}^{N}$	$T_{L} D_{K} \sin\left(\frac{k\pi x}{L}\right)$	$\sinh(\frac{k\pi g}{L}).$	
		At the top	boundary.	u(x,b)= f(x)	· write &	WI EK XI	k(x) = f(x)	where Er =	Die sinh	(Kry) Jush	= PK sinh (KT	<u>h)</u> .	
		Take mapy	modult with	X: then	< Z. EKY	4K, X; >= E	: (Xi. Xi)	= < f. x > >	$E_{1} = \frac{\langle f \rangle}{\langle f \rangle}$	ixiz = Sb	$f(x) \sin\left(\frac{\pi x}{L}\right) dx$ $\sin^2\left(\frac{\pi x}{L}\right) dx$	- 2	
		St sin2 (-	エン)= 上 テ	Ei= 2 5	fw sin	(JTTX) dx.	8 81.8	durb a	-8	ปาปราวอ	Strt () St		
	10 842	4x(L-x) L2, fin		4 2 40	, (un - m	C L I Mil							
	14 +(4)=	L2 / tin	ul ulxiy).			a cL	.km	x 132/173	k³ kod	d		7 February 2013. Dr. Gavin ESLE	
	Solys.	By appliati	on of the for	muls we have	e found,	EK = E Jo J	(2m+1)TTy)	7 dx = 7 0	kev	en.		Dayton B20.	
		write k=24	nt1, then	$u(x,y) = \frac{32}{\pi}$	3 m=0 (2m	tl) ³ sinh(<u>c2m</u> +	LUTTH	$\int dx = \int \frac{32}{5} \pi^3$					
Ed 12	splace's equa	tion on a cive	le, with -T	π<θ <i>≤</i> π,	o≤r≤1,	u(1,0) = fle	n) = [0] ·				(rse ull	e) = f(e) = (e)
٨	soln. V	24= ナライイ	24) + 1-2 24	2. separate	variables	$u(r; \theta) = R(r)$)T(0). Th	en Pusts	tr(r tr)+	$\frac{R}{r^2} \frac{d^2 T}{d\theta^2} = 0$			
		vide through h										V U=0.	
	N	otice the alose	nce of regula	er singular s	s-L boundia	my conditions	, instead	consider periodi	ic problem	$\frac{dT}{d\theta^2} = -XT$	r takes periodic	boundary condition	015
	Т	$(-\pi) = T(\pi)$	ר'(-π) = ד ^ו (π)	. τ"+ λΤ:	=o ⇒ 7(0)= { A (0) (1) A0+B	(元句) + B Siv	1 (JXB) λ>0 λ=0	. For	λ=0, τ(-7	T takes periodic $T(T) \Rightarrow A = C$	but Barbitvar	y.
	E	isenfunction:	$T_{p}(\theta) = 1.$	then for X	>0, then	function see	on E-TTA periodic i	7 k^2 , we	have two	eisenfunction	us $T_{K_1}(\theta) = \cos k$	Q. TK (0)=sin	K19.
	Т	then for R-6	sustion: r	d (r dR)	=) >	$r^2 \frac{d^2 R_k}{dv^2} t$	r dRK - K	RK=0. which	is an Eule		stion. We try 1	$l_{\mu}(r) = r^{p}$	
		de plan	Just i aut	ar ar	2 12		$R_{1}(r) = \frac{C_1}{r}$	s + Dark o	k>1	a la dir	$\frac{dR_0}{dr} = 0 \Rightarrow R_0 =$	(log x + D	
											dr 1=0 -> NO	colog 1 1 20.	
		Solution must	be finite thy	physical limi	tations) at	r=0 > C	K=0. ∀k. lin.comb	Then Riklin	i)= DKrr.				
						60					t bk sin KB)	DK=1, Do=2 DK can be also	orbed into
		use boundar	y condition st	r=1: u(1	$(0) = \frac{1}{2} + (0)$	K=1 ak cosk	(O + bk sin	$\pi k\theta = f(\theta) = \theta $	9>π- /9	9≤π.		a	KI bK.
	(Get constants	ao, ak, bk	by forming	For inter in	tequals: ?!	bkt= +]	TT 1017 Sin KO	f de.	since 101 is en	ren, sin ko is c	$dd \Rightarrow b_{k=0}$.	
	4	a _k = = = { 0 0	cos (K8) d0	= ====================================	$\sin(k\theta)]_{0}^{T}$	- K Sin (kt	9))= + 2km	[t us (ko)]	= 2 KT [1-	-1) ^k -1] = {	the keven.		
		$a_{p} = \frac{2}{\pi} \int_{0}^{\pi} \theta$	$d\theta = \pi$. He	ence, u(1,0)= =====	N=0 (2m+1)	10) 2m+1	ų.					
							,					19 February 2013	
									×	=0,,,,,,,,,	X=1	Dr. Gavin ESLER	
EX He	est equation	non the "radie	thing" nod . H	est equation:	$u_t = u_{X_1}$	x, whit: the	unal diffusi	vity.		Inner	radiation of	Peanon G22.	
04	<x<1, t=""></x<1,>	D. Boundar	y conditions.	u(0,t)=0	(fixed ten	uperature on 1	HS of rod)	$\frac{\partial u}{\partial x}(1,t) = -\frac{1}{2}$	<i>κ</i> u(1,t) ι	radiation	heatinto sp	21e ·	
IN		ion: ultro)											
	soln.	Separate varia	Ides. u(x,t)	= XGT(t).	Insent into	heat equation	: X dt	= $T \frac{d^2 \chi}{d \chi^2}$, divide	de by XT.	- 누해= 것	dix =- 2 (see	dration constan	dt) ·
	ļ	Honget to solve	$\frac{1}{X}\frac{d^2X}{dX^2} = .$	-x ⇒ x"+	XX=0.	X(0)=0, X	$(q) = -\frac{1}{\alpha}\chi(q)$	$(1) \Rightarrow dX^{1}(1) +$	X(1)=0.	This is a str	wm-Liouville pro	blem (c.f. Ex3	, §2)
	1	X(1) = 1 + 1, 100 V	XX+B sin√X . solutions	x 20 otherni	se. X(o)=0⇒A=0	. XW= B	sin (Jilix), X'U	A) = BJX 4	05(JXX). ~X	$\frac{dX}{dy^2} = -\lambda (sep$ which we have: $\lambda = -\lambda$ (sep (1)) and λ (sep (1)) and (1) and (VA cos (VA) + sin	(1)]=0.
											demonstrate the		
								utions are Xk					
			J		,	tru	0-1-1-1		-a ² +	61.		00	
	×	YOW EXAMINE	T-Caustin P	~ eigenvalu	00 hr = 92	AL +	9kTk=0:	> TK(+) = AL	e TKT H	ence, achoral	solution is uls:	H= Z XLWT.	-(t)
		Now examine									solution is ulki theory, we can d		(t)

74-08

	$u(x_{10}) = \sum_{k=1}^{\infty} A_k \sin(q_k x) = 1 = \sum_{k=1}^{\infty} (X_k t x). \text{ Take inner product with } X_{ij}, \text{ which yields } \langle \sum_{k=1}^{\infty} A_k X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = \langle 1, X_i \rangle \Rightarrow \sum_{k=1}^{\infty} A_k \langle X_k, X_i \rangle = $	xx,xj>=Aj <xj,xj>=<1,xj></xj,xj>
	thus, $A_j = \frac{\langle I_j X_j \rangle}{\langle I_j X_j \rangle} = \frac{3}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j X_j \rangle} = \frac{1}{\int_0^1} \frac{\langle I_j X_j \rangle}{ X_j X_j$	t=o
	$u(x,t) = \sum_{k=1}^{\infty} \frac{+(1-\cos q_k)}{2q_k - \sin(2q_k)} \sin(q_k x) e^{-q_k^2 t}$	
	At lote times, $t \rightarrow \omega \Rightarrow u \sim \sin(q_1 x)_{11} \gg e^{-q_2^2 t} \ll e^{-q_1^2 t}$ etc.	
		1
E. ((2)bus equation in a sphere (of unit radius) (11,0,1)	(3B).
	Find the steady temperature distribution inside the sphere, given the applied surface temperature u(1,0, \$\$)= cos(30).	$\nabla^2_{u=0} \stackrel{2}{\rightarrow} 0$
	sdin use Laplace's equation in spherical polar coordinates $(r,0,\phi)$: $\boxed{\mathbb{T}^2 u = \frac{1}{r^2} \frac{3}{3r} (r^2 \frac{3u}{3r}) + \frac{1}{r^2 \sin \theta} \frac{3u}{3\theta} + \frac{1}{r^2 \sin^2 \theta} \frac{3^2u}{3t^2 = 0}}{\frac{3u}{r^2 u}}$	× 10 19
	Here, $0 \le r \le 1$, $0 \le \theta \le \pi$, $0 \le \varphi \le 2\pi$. We observe that boundary condition does not depend on ϕ , so we seek	
	drightmonetric ϕ -independent solutions. Then $\nabla^2 u = \frac{1}{r^2} \frac{2}{3r} \left(r^2 \frac{2u}{3r}\right) + \frac{1}{r^2 \sin \theta} \frac{2}{3\theta} \left(\sin \theta \frac{2u}{3\theta}\right) = 0.$	í.
	write $u(r, \theta) = R(r) T(\theta)$, then $0 = \frac{1}{r^2} \frac{d}{dr} (r^2 \frac{dr}{dr}) + \frac{R}{r^2 \sin \theta} \frac{d}{d\theta} (\sin \theta \frac{dT}{d\theta}) = 0$. Divide by $\frac{RT}{r^2} : \frac{1}{r} \frac{d}{dr} (r^2 \frac{dR}{dr}) = -\frac{1}{T \sin \theta} \frac{d}{d\theta} (\sin \theta \frac{dT}{d\theta}) = 0$.	$\frac{dT}{d\Theta}$)= λ (separation constand).
	(consider T-equation: $\sin \theta d\theta(\sin \theta d\theta) + M = 0$. Use $z = \cos \theta$ and define $T(\theta) = w(z(\theta))$. Then apply chain rule:	
	$\frac{dT}{d\theta} = \frac{dW}{dz} \cdot \frac{dz}{d\theta} = \frac{dW}{dz} (-\sin\theta) \Rightarrow \sin\theta \frac{dT}{d\theta} = -\sin^2\theta \frac{dW}{dz} = -(1-z^2) \frac{dW}{dz} \cdot \frac{d}{d\theta} (\sin\theta \frac{dT}{d\theta}) = -\frac{d}{dz} [(1-z^2) \frac{dW}{dz}] \cdot \frac{dz}{d\theta} = -\frac{d}{dz} [(1-z^2) \frac{dW}{dz}] \cdot \frac{dz}{d\theta} = -\frac{d}{dz} [(1-z^2) \frac{dW}{dz}] \cdot \frac{dz}{d\theta} = -\frac{d}{dz} [(1-z^2) \frac{dW}{dz}] \cdot \frac{dW}{d\theta} = -\frac{dW}{dz} [(1-z^2) \frac{dW}{dz}] \cdot \frac{W}{d\theta} = -\frac{dW}{dz} [(1-z^2) \frac{dW}{dz}] \cdot \frac{W}{d\theta} = -\frac{dW}{dz} [(1-z^2) \frac{dW}{dz}] \cdot \frac{W}{d\theta} = -\frac{W}{dz} [(1-z^2) \frac{W}{dz}] \cdot \frac{W}{d\theta} = -\frac{W}{dz} [(1-z^2) \frac{W}{d\theta}] \cdot \frac{W}{d\theta} = -\frac{W}{dz} [(1-z^2) \frac{W}{d\theta}] \cdot \frac{W}{d\theta} = -\frac{W}{dz}$	z^2) $\frac{dw}{dz}$](-sin θ).
	Thus, $\frac{1}{\sin\theta} \frac{d}{d\theta} (\sin\theta \frac{dT}{d\theta}) = \frac{d}{dz} (1-z^2) \frac{dW}{dz} \Rightarrow \frac{d}{dz} [(1-z^2) \frac{dW}{dz}] + \lambda w = 0$, which is legendre's equation.	
	At z=±1, θ=0, π. Then at poles, T(θ) is finite ⇒ W(±1) is finite. Hence, equation and boundary conditions yield a singu	Var Sturm-Lionville system.
	General solution is $\lambda = v(v+1) \Rightarrow w(z) = A P_v(z) + BQ_v(z)$. This is singular at $z = \pm 1$, except when $v \in \mathbb{N}$. Then we get be	gendre polynomials.
	Eigenvishes: $\lambda_{k} = k(k+1)$, eigenfunctions $W_{k}(2) = P_{k}(2) \Rightarrow T_{k}(0) = P_{k}(cos 0)$ by back substitution.	
	Then we consider R-equation. $\frac{d}{dr}\left(r^2 \frac{dR}{dr}\right) - \lambda R = 0 \Rightarrow \text{ insert } \lambda_{k} = k(k+1)$. $r^2 \frac{d^2 R_{k}}{dr^2} + 2r \frac{dR_{k}}{dr} - k(k+1)R_{k} = 0$ (Euler-	epistion).
	$Try R_k(r) = r^{\beta}. then r^{\beta} [p(p-1) + 2p - k(k+1)] = 0 \Rightarrow p(p+1) - k(k+1) = 0 \Rightarrow p = k \text{ or } -(k+1). R_k(r) = A_k r^k + \frac{B_k}{r^{k+1}} (k+1) = 0$	
	Since temperature is continuous, solution is finite (non-singular) at origin r=0 > Bk=0 > Bk(r)= Akrk.	
	then, general solution is $u(r,0) = k_{=0}^{\infty} Tk(0) R_k(r) = k_{=0}^{\infty} A_k r^k P_k(co; 0)$. Apply boundary conditions at r=1 to find tAk	}.
	By de Moirre's theorem, cos 30 = Re (cos 0 + isin 0) ³ = $4 \cos^2 \theta - 3 \cos \theta = \frac{\cos^2}{\kappa_{eo}^2} A_k Rk (\cos \theta)$.	
	King Rodrigues's formula, Polix=1, P1(x)=x, P2(x)= ₹x²-½, P2(x)= ₹x³-₹x. Letting x= cos0, we clearly require only 1	1. As to be non-zero.
	Thus, $A_1 \cos \theta + A_3(\frac{1}{2}\cos^3\theta - \frac{3}{2}\cos\theta) = (A_1 - \frac{3}{2}A_3)\cos \theta + \frac{5}{2}A_3\cos^3\theta$. By comparing coefficients, $A_3 = \frac{9}{5}$, $A_1 = -\frac{3}{5}$.	
	$\operatorname{soluction} : \operatorname{shus} \mathbf{W}(r, \theta) = \frac{2}{3}r^{3}\mathcal{B}(\omega, \theta) - \frac{2}{5}r^{2}(\omega, \theta)_{4}.$	
		Λu
	- wy view	Y Y
	wheres on s circular membrane (such as a drum). (initial (lipplement) (relation).	$u_{tt} = \nabla_u^2$
	$Domsin: 0 \leq r \leq 1, 0 \leq \theta \leq 2\pi 1. t > 0. $ within conditions: $u(r, \theta, 0) = f(r), Vt(r, \theta, 0) = g(r).$	iventor "drum" toched to frame.
	soln. We observe that fig depend only on radius = axisymmetric setup. Hence, we seek solutions that are 0-independent.	ustion, with u as the vertical displacement
	Separate to get ult; (1= K(r) (tr). Recall that $(u + r) = r + (u + r) = r + (u + r) $	
	R-equation is $\frac{d}{dr}(r\frac{dE}{dr})$ + rAR=0 ⇒ Bessel's equation of index 0. This is a shumm-lionnille equation, with w(r)=r, p(r)=r.	21 February 2013. Dr. Gavin ESLER
	Boundary conditions are $R(1) = 0$, $R(0)$ finite. Substitute $R(r) = Y(q(r))$ with $q(r)^2 \sqrt{3}r$. Equation then becomes.	Dridyton B20.
	q dq2 + dq + q1=0, the "standard" Bessel's equation · General solution is Y(q)= A Jo(q) + BYo(q) · or R(r)= A Jo(YXr)+	
	Y(0) is finite ⇒ 3=0. R(1)=0 ⇒ A J_{(1)}=0 ⇒ N= jok she eigenvalues, Jo (jok X)= yk are eigenfunctions. where	
	Now look at T-equation: $\frac{d^2T_k}{dt^2 + \lambda T} = \frac{d^2T_k}{dt^2} + j_{0k}^2 T = 0$ (SHM): $T(t) = a_k \cos(j_{0k}t) + b_k \sin(j_{0k}t) = Re[A_k e^{i \int_{0}^{t} t^2 T} T = 0]$	with AK=aK-ibK.
	Then general solution is u(r,t) = $\sum_{k=1}^{\infty} R_k(r) T_k(t) = Re \left[\sum_{k=1}^{\infty} A_k e^{i j_{ok} t} J_o(j_{ok} r)\right]$. We now use initial conditions to find (At	
	At t=0, u(r, 0) = Re [R=1 Ak Jo (joki)] = R=1 Qk Rk (H) = f(r). Use inner product with Rj. aj < Rj. Rj. w = < f, Rj. w. The	^
	$\alpha_{ij} = \frac{\int_{0}^{i} rf(n) J_{0} \left(\frac{1}{2}\phi(n)\right)^{2} dr}{\int_{0}^{i} \left(\frac{1}{2}\phi(n)\right)^{2}} \int_{0}^{i} rf(n) J_{0} \left(\frac{1}{2}\phi(n)\right) dr.$ We can also use the other condition - $u_{1}(r_{i}^{0}) = g(n)$ in or	der to show that
	bj = zok (I. (jok))= lo rg(r) Jo(jokr) dr. This gives us our find solution. 11.	
	Comments: · Each "normal mode" (solution for one value of K) has angular frequency WK= jok K>1.	
	compare wares on a curit length) string, wk = k π. k≥1. These are all integer multiples of the fundamental mode	wy. However,
	102, jos, jug etc. certainly are not integer multiples of jos - which is why drums are unable to produce notes	

• Note that unlike stringed solution, membrane solution is not periodic in time (Bessel functions are not in phase).

et alor to	
Chepter 4 INTEGRAL TRANSFORMS. 26 February 2013.	
Dr. Guin ESLEP Redron (22	
so far we have been working in bounded domains. Can we extend our analysis to infinite or semi-infinite domains?	
To do that, we need to extend the idea of Fourier series to R (the real line).	
to us inor, the news to extend the lates of towney series to be true real lines.	
Fringer Transforma.	
in this course, we will provide only a sketch proof of torriver transform theory.	
Start with Fourier series on $[-L, L]: f(x) = \frac{a_0}{2} + \sum_{m=1}^{\infty} a_m \cos\left(\frac{m\pi x}{L}\right) + b_m \sin\left(\frac{m\pi x}{L}\right), where \begin{bmatrix} a_{m1} \\ b_{m1} \end{bmatrix} = \frac{1}{L} \int_{-L}^{L} f(x) \int_{\sin\left(\frac{m\pi x}{L}\right)}^{\cos\left(\frac{m\pi x}{L}\right)} dx.$	
We ask also express this in complex form: $f(x) = \sum_{m=-\infty}^{\infty} A_m e^{\frac{im\pi x}{m-1}}$, where $A_m = \frac{a_m - ib_m}{2} = \frac{1}{2L} \int_{-L}^{L} f(x) e^{-\frac{im\pi x}{2}} dx$, $A_{-m} = A_m^*$, the complex conjugate.	
To see that this is an equivalent representation, $f(x) = A_0 + \sum_{m=1}^{\infty} A_m e^{i\frac{m\pi x}{L}} + A_m e^{i\frac{m\pi x}{L}} = \frac{a_0}{2} + \sum_{m=1}^{\infty} \left(\frac{a_m - ib_m}{R}\right)(cos() + isin()) + \left(\frac{a_m + ib_m}{R}\right)(cos() + isin())$	
Combining our formulae above, replacing variable of integration to t, we get $f(x) = \sum_{m=-\infty}^{\infty} \left(\frac{1}{2L} \int_{-L}^{L} f(t) e^{-\frac{im\pi T t}{L}} dt\right) e^{\frac{im\pi T x}{L}}$	
Now, we take the limit L-> as to generalise the tounier series to the real line R. To do this, we introduce some definitions.	
First: Define the set of points $\{k_m: K_m = \frac{mT}{L}, m \in \mathbb{Z}\}$. Then spacing $Sk = \mathbb{T}$.	
Notice that the 1kmt become dense in R in the limit L→00. spacing sk=kmti-km=芒.	
Then we have $f(x) = \int_{m=ros}^{\infty} \frac{1}{2\pi} \cdot \frac{\pi}{L} \left(\int_{-L}^{L} f(t) e^{-i \frac{m\pi}{L} t} dt \right) e^{i \frac{m\pi}{L} t} = \frac{1}{2\pi} \int_{m=ros}^{\infty} sk \left(\int_{-L}^{L} f(t) e^{-i kmt} dt \right) e^{i kmx}$	
Refine g(km) = ([L fit) e ikmx. Recall the (losse) definition of the Riemann integral on R: skip m=-a g(km) sk = Jos g(k) dk for sk = km+1	-ku
so in the limit L→∞ (i.e. 8k→0):	
· limits on inner integral go to ±00	
· outer sum can be replaced by an integral. As such, the result is $f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\int_{-\infty}^{\infty} f(t) e^{-ikt} dt) e^{ikx} dk$. This is known as the <u>Fourier integral formula</u> .	
We can split this formula up by defining $\hat{f}(k) = \frac{1}{12\pi} \int_{-\infty}^{\infty} f(t) e^{-ikt} dt$ then the formula becomes $f(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} dk$.	
The f(k) here take the role of the Family transforms.	
Remarks: in the forward transform, we often replace $t \mapsto x$.	
For which class of functions f(x) does the Fourier transform f(k) exist?	
Amounter: If $f(x) \in L^{1}(\mathbb{R})$, then $\hat{f}(k)$ exists for all $k \in \mathbb{R}$.	
Roof - f(x) & L'(R) > 500 If dx <00 by definition. $\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx$. $ \hat{f}(k) \leq \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f dx < 00 \text{ ppe-d}.$	
We look at some examples:	
Text $f(x) = \begin{cases} 1 - \frac{10}{2} & \text{tild ib toutier transform} \end{cases}$	
$\int \frac{du}{dt} = \int \frac{du}{dt} \int \frac{du}{dt} = \int \frac{du}{dt} \int \frac{du}{dt} = \int \frac{du}{dt} \int \frac{du}{dt$	
$Then \hat{f}(k) = \prod_{k=0}^{\infty} \left[\left[(1-\frac{k}{2}) \frac{\sin kx}{2} \right]_{0}^{0} + \int_{0}^{0} \frac{1}{4} \frac{\sin kx}{2} dx = \prod_{k=0}^{\infty} \int_{0}^{0} \frac{1}{4} \frac{\sin kx}{2} dx = \prod_{k=0}^{\infty} \left[-\frac{42kx}{k^{2}a} \right]_{0}^{0} = \sqrt{\prod_{k=0}^{\infty} \left(\frac{1-\cos ka}{k^{2}a} \right)}, \text{and} \hat{f}(k)$	
Nince $1 - \cos(k\alpha) = z \sin^2(\frac{k\alpha}{2})$, $\hat{f}(k) = \frac{\alpha}{\sqrt{2\pi t}} \left(\frac{\sin(\alpha k/2)}{(\alpha k/2)}\right)^2$	
We plot what it looks like on the right:	~
Note: ftx) scates horizontally ~a, f(h) scales horizontally as ~点.	1
En consider the function $f(x) = e^{-\frac{\chi^2}{q_x}}$ (Gaussian distribution). Find its torus transform.	
$\int_{\Gamma} \left(k \right) = \frac{1}{12\pi^2} \int_{-\infty}^{\infty} e^{-\frac{x^2}{\alpha^2} - ikx} dx. (axider decentric between the citety and explore the exp$	
Solar. $f(k) = \frac{1}{12\pi} \int_{-\infty}^{\infty} e^{-\frac{x^2}{a^2} - ikx} dx$. Consider the contour, as shown on the right; and evaluate $\oint_C e^{-\frac{x^2}{a^2}} dz$. We know that $\oint_C e^{-\frac{x^2}{a^2}} dz = 0$, by cauchy's theorem since $e^{-\frac{x^2}{a^2}}$ is analytic in region endosing C.	
We know that $S_C \subset aE = 0$, by couchy's theorem since e is shown in region encosing C . $P = \left[+ \left[+ \left[+ \right] + \right] \right]$	•
$\oint_{C} = \int_{C_{B}} + \int_{C_{T}} + \int_{C_{L}} g_{p} = un understanding, we know that \lim_{R \to \infty} \int_{C_{L}} \int_{C_{R}} = 0. \text{ then } \lim_{R \to \infty} \int_{C_{B}} -R = \int_{C_{B}} \int_{C_{B}} \frac{1}{R} \int_{C_{B}} $	
or, $R \ge 0$ (-G) $R \ge 0$ (G) $R \ge 0$ (G) $dE = 1 - 0$ $e^{-\alpha} dx = \pi i \alpha$. $L = 1 - \alpha e^{-\alpha} dx \Rightarrow T = J = e^{-\alpha} dx dy$. $r^2 = \binom{2\pi}{12} \binom{2\alpha}{12} - \frac{2\pi}{12} = \frac{1}{12} + \frac{1}{12} \binom{2\pi}{12} + $	
$I^{2} = \int_{0}^{2\pi} \int_{0}^{\infty} e^{-\frac{L^{2}}{\alpha^{2}}} r dr d\theta = \pi a^{2} \Rightarrow I = \pi a. \text{ then } \lim_{R \to \infty} \int_{0}^{2\pi} e^{-\frac{R^{2}}{\alpha^{2}}} dz = \int_{-\infty}^{\infty} e^{-(x+\frac{ika^{2}}{\alpha^{2}})^{2}a^{2}} dx = \sqrt{\pi} a.$ $\int_{-\infty}^{\infty} e^{-\frac{L^{2}}{\alpha^{2}} - ikx + \frac{L^{2}a^{2}}{4}} dx = \sqrt{2\pi} e^{\frac{L^{2}a^{2}}{4}} \hat{f}(k) \text{ then } \sqrt{2\pi} e^{\frac{L^{2}a^{2}}{4}} \hat{f}(k) = \pi a^{2} \Rightarrow \hat{f}(k) = \frac{L^{2}a^{2}}{\sqrt{2}} e^{-\frac{L^{2}a^{2}}{4}} \frac{1}{\mu}.$	
Function (FIX) Fourier transform.	
va va.	

7407-10

Note: the Fornier transform of a Gaussian curve is also a gaussian. this is the logic behind the Heisenberg's uncertainty Principle. if we choose a=v2, f(W)= e + f(K)= e + → the function is its own transform. (a>0) EX fw. soln. $\hat{f}(k) = \frac{1}{12\pi} \int_{-\infty}^{\infty} e^{-a|x|-ikx} dx = \frac{1}{12\pi} \int_{-\infty}^{\infty} e^{-a|x|} \cos kx dx$ (.: $e^{-ikx} = \cos kx - isin kx and I for sincreduct is add)$ $= \bigoplus_{n=1}^{\infty} \int_{0}^{\infty} e^{-ax} \cos kx \, dx = \bigoplus_{n=1}^{\infty} \Re \left\{ \int_{0}^{\infty} e^{-ax - ikx} \, dx \right\} = \bigoplus_{n=1}^{\infty} \Re \left[-\frac{1}{a t i k} e^{-ax - ikx} \right]_{0}^{\infty}$ varies as ta. = $\int_{\overline{T}}^{2} \operatorname{Re}\left(\frac{1}{a+ik}\right) = \int_{\overline{T}}^{2} \operatorname{Re}\left(\frac{a-ik}{a^{2}+k^{2}}\right) \operatorname{Then}\left(\widehat{f}(k)\right) = \int_{\overline{T}}^{2} \frac{a}{a^{2}+k^{2}}$ Note: This decoups with order ~a. 28 February 2013 Dr Govin ESLER Med Si G40/ Drayton B20. Recall that our transforms are Forward transform: $\hat{f}(k) = \frac{1}{12\pi} \int_{-\infty}^{\infty} f(x) e^{-ikx}$, inverse transform: $f(k) = \frac{1}{12\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} dk$. Notation . We will use F[f] (k) as an atternative to f(k). Roperties of Fornier Transforms: since fell, fix) = 0 as x = ±00. PD Transform of a derivative: $\mathcal{F}[f'(x)] = \frac{1}{Dar} \int_{-\infty}^{\infty} f'(x) e^{-ikx} dx = \frac{1}{Dar} [f(x) e^{ikx}]_{-\infty}^{\infty} + \frac{1}{Dar} (ik) \int_{-\infty}^{\infty} f(x) e^{ikx} dx. \quad \text{Hence,} \quad \mathcal{F}[f'] = (ik) \hat{f}(k).$ For instance we know that $\frac{1}{4k}e^{-\frac{x^2}{2}} = -xe^{-\frac{x^2}{2}}$ $\mathcal{F}[e^{-\frac{x^2}{2}}] = e^{-\frac{k^2}{2}}$. Then $\mathcal{F}[\frac{1}{4k}e^{-\frac{x^2}{2}}] = ike^{-\frac{k^2}{2}} \Rightarrow \mathcal{F}[xe^{-\frac{x^2}{2}}] = -ike^{-\frac{k^2}{2}}$. Then $\mathcal{F}[\frac{1}{4k}e^{-\frac{x^2}{2}}] = ike^{-\frac{k^2}{2}}$. P@ Derivative of transform: $\frac{d}{dx}\hat{f}(x) = \frac{d}{dx}\left(\frac{1}{1-x}\int_{-\infty}^{\infty}f(x)e^{-ikx}dx\right) = \frac{1}{1-x}\int_{-\infty}^{\infty}\frac{d}{dx}f(x)e^{-ikx}dx = \frac{1}{1-x}\int_{-\infty}^{\infty}-ixf(x)e^{-ikx}dx = \Pr[-ixf(x)] \cdot \operatorname{then} \Pr[xf(x)] = i\frac{d\hat{f}}{dx}$ Returning to previous example, $F[xe^{-x^2/2}] = i \frac{d}{dk} (\mathcal{F}[e^{-x^2/2}]) = i \frac{d}{dk} e^{-k^2/2} = -ik e^{-k^2/2}$. We can extend there results inductively: i.e. $F[f_{(n)}^{(n)}\alpha)] = (ik)^n \hat{f}(k)$ shift formulae. P3 consider F[f(x-c)], $c \in \mathbb{R}$. $F[f(x-c)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x-c) e^{-ik \cdot x} dx$. Taking u = x-c, du = dx, $F[f(u)] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(w) e^{-ik(u+c)} du$ then F[f(x)] = VIT (100 ftx) e^{-ikx} e^{-ikc} dx = e^{-ikc} f(k). Hence, F[f(x-c)] = e^{-ikc} F[f(x)]. For instance: $P[e^{-\frac{(\chi-\zeta)^2}{2}}] = e^{-ikc} P[e^{-\frac{\chi^2}{2}}] = e^{-ikc} e^{-\frac{k^2}{2}}$ P Consider F[e^{-icx} f(x)], CER. F[e^{-icx} f(x)] = the for f(x) e^{-icx} e^{-ikx} dx = the for e^{-i(k+c)x} dx = f(k+c). i.e. tensform evaluated at k+c For example: $F[e^{-ick-\frac{\chi^2}{2}}] = e^{-\frac{(k+c)^2}{2}}$ Konvolution Function. Refution the convolutions of two-functions f(x), g(x) & L^1(R) is the function (f * g)(x) = [- os f(x-y) g(y) dy. 201 Does f * g = g * f? $f * g = \int_{-\infty}^{\infty} f(x-y) g(y) dy = \int_{\infty}^{\infty} f(w) g(x-w) (-dw) = \int_{-\infty}^{\infty} f(y) g(x-y) dy = g * f$. convolution is commutative $(\text{bim: } f_ig \in L^1(\mathbb{R}) \Rightarrow f \star g \in L^1(\mathbb{R}).$ $\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}$ Let u=x-y. Then $\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}|f(u)||g(y)| dy du = \int_{-\infty}^{\infty}|f(u)|du \cdot \int_{-\infty}^{\infty}|g(y)|dy = \int_{-\infty}^{\infty}|f(v)|dx \int_{-\infty}^{\infty}|g(v)|dx < \infty$, so fige L¹. convolution theorem: what is Flf*g]? Flf*g]= transform (Jos f(x-y)g(y) dy) e-ikx dx = transform Jos f(x-y)g(y) e-ikx dx dy 45= 1= 1-00 gly) (100 f(x-y) e-itx dx) dy. change variables in inner integral. white u=x-y, x=u+y, dx=du. Then $\mathbb{P}\left[f_{\mathsf{reg}}\right] = \frac{1}{1-\alpha} \int_{-\infty}^{\infty} g(y) \left(\int_{-\infty}^{\infty} f(w) e^{ik(u+y)} du\right) dy = \frac{1}{2\pi} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} g(y) e^{iky} dy\right) \left(\frac{1}{2\pi} \int_{-\infty}^{\infty} f(w) e^{iku} du\right) = \sqrt{2\pi} \hat{f}(k) \hat{g}(k).$ Hence, the convolution theorem states that $\boxed{\Pr[f * g] = J_{2T} \hat{f}(k) \hat{g}(k)}$ (we also mile $\widehat{f} * g$). Given that $\Pr[\frac{1}{N^2 + \alpha^2}] = [\frac{T}{N} \frac{e^{-a|k|}}{a}$, find $\Pr[\int_{-\alpha}^{\infty} \frac{e^{-\frac{(k-y)^2}{2}}}{y^2 + a^2} dy]$. K Adn. Let $\int_{-\infty}^{\infty} \frac{e^{-(x-y)^2}}{y^2 + q^2} dy = f * q$. Then $f(x) = e^{-\frac{x^2}{2}}$, $g(y) = \frac{1}{y^2 + q^2}$. Then $F[\int_{-\infty}^{\infty} \frac{e^{-(x-y)^2/2}}{y^2 + q^2}] = 12\pi F[f(x)] F[g(k)]$ $\sqrt{2\pi} \hat{f}(k) \hat{q}(k) = \frac{\pi}{a} e^{-k^2/2} - a(k)$ Applications of Fourier Transform Theory. Notice on integral equation, such as find for if $\frac{1}{2}\int_{-\infty}^{\infty} e^{-|x-y|} f(y) dy = e^{-\frac{x^2}{2}}$. AD

 $\int_{-\infty}^{\infty} e^{-|k-u|} f(u) \, du = g * f \quad \text{for } g(\lambda) = e^{-|k|}. \text{ Take Fourier transforms of both sides } \pm lg * f) = h \quad \text{where } h = e^{-k^2/2}. \text{ By convolution theorem,}$ $\pm \sqrt{2\pi} \hat{g}(k) \hat{f}(k) = F[h] = \hat{h}(k). \quad \hat{g}(k) = \overline{\mathbb{R}} \cdot \frac{1}{k^2+1}, \quad \hat{h}(k) = F[e^{-k^2/2}] = e^{-k^2/2} \Rightarrow \pm \sqrt{2\pi} \cdot \left[\frac{1}{k^2+1} + \frac{1}{k^2+1} + \frac{1}{k^2+1}\right] = e^{-k^2/2} \Rightarrow \hat{f}(k) = (k^2+1)e^{-k^2/2}.$ Nince $\hat{f}(k) = (k^2 + 1) e^{-k^2/2}$, and we recall that $F[p^{11}(x)] = (ik)^2 \hat{p}(k) = -k^2 \hat{p}(k)$, $\hat{f}(k) = k^2 e^{-k^2/2} + e^{-k^2/2} \Rightarrow f(x) = (-\frac{d^2}{dx^2} + 1) e^{-x^2/2}$.

PG. (Brevel's Theorem).

Consider the inverse transform for the convolution: $(f * g)(x) = \int_{-\infty}^{\infty} f(x-y)g(y) dy = \int_{-\infty}^{\infty} f_{2\pi} \int_{-\infty}^{\infty} f_{2\pi} g(k) g(k) e^{ikx} dk$. This is true $\forall x \in \mathbb{R}$. Net x=0: Then we get $\int_{-\infty}^{\infty} f(-y)g(y) dy = \int_{-\infty}^{\infty} \hat{f}(k)\hat{g}(k) dk$. Perine a new function $h(y) = f^*(-y)$ (complex conjugate). Then $\hat{h}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f^*(-y) e^{-iky} dy = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f^*(u) e^{iku} (-du) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f^*(u) e^{iku} du = \frac{1}{\sqrt{2\pi}} (\int_{-\infty}^{\infty} f(u) e^{-iku} du)^* = \hat{f}^*(k)$. Thus, $\hat{f}(k) = \hat{h}^*(k)$, $h^*(y) = f(-y)$. Then substitute into \hat{f} : $\int_{-\infty}^{\infty} h^*(y) g(y) dy = \int_{-\infty}^{\infty} h^*(y) g(y) dy = \int_{-\infty}^{\infty} h^*(k) \hat{g}(k) dk \cdot \hat{\oplus}$. This is true for all h, so we can choose h(y) = g(y). This changes $\hat{\oplus}$ to $\underbrace{\int_{-\infty}^{\infty} g(-y) e^{-iky} dy}{\int_{-\infty}^{\infty} 1\hat{g}(k)|^2 dk}$. This is Parseval's Theorem. This gives us a method to simply calculate complicated integrals by relating them to their transforms:

A(2) Use Europeolis Theorem with $g(x) = e^{-a|x|} + o$ obtain $\int_{-\infty}^{\infty} \frac{1}{(x^2 + a^2)^2} dx$. We know that $g(x) = e^{-a|x|} \Rightarrow \hat{g}(k) = \int_{\overline{T}}^{\infty} \frac{a}{k^2 + a^2} \Rightarrow |\hat{g}(k)|^2 = \frac{2}{\overline{T}} \cdot a^2 \frac{1}{(k^2 + a^2)^2}$, $\int_{-\infty}^{\infty} |g(x)|^2 dx = \int_{-\infty}^{\infty} e^{-2a|x|} dx = 2 \int_{0}^{\infty} e^{-2ax} dx$ $\int_{-\infty}^{\infty} |g(x)|^2 dx = -\frac{1}{a} [e^{2ax}]_{0}^{\infty} = \frac{1}{a}$. From Parseval, $\int |g|^2 dx = \frac{1}{a} = \int_{-\infty}^{\infty} |\hat{g}(k)|^2 dx = \frac{2}{\overline{T}} \int_{-\infty}^{\infty} \frac{a^2}{(a^2 + k^2)^2} dk$. Hence, $\int_{-\infty}^{\infty} \frac{1}{(x^2 + a^2)^2} dx = \frac{\overline{T}}{2a^2}|_{1}$. Reason (22.

Note: We can check this result using contour integration.

Recall that for any h(x), g(x), \oplus : $\int_{-\infty}^{\infty} h^{*}(x) g(x) dx = \int_{-\infty}^{\infty} \hat{h}^{*}(k) \hat{g}(k) dk$. choose $g(x) = e^{-a|x|}$, $h(x) = e^{-b|x|}$. Then $\hat{g}(k) = \int_{-\pi}^{\pi} \frac{a}{a^{2}+k^{2}}$, $\hat{h}(k) = \int_{-\pi}^{\pi} \frac{b}{b^{2}+k^{2}}$. Then $\int_{-\infty}^{\infty} h^{*}(x) g(x) dx = 2 \int_{0}^{\infty} e^{-(a+b)x} dx = \frac{2}{a+b}$. From \bigoplus , $\frac{2}{a+b} = \int_{-\infty}^{\infty} \hat{h}^{*}(k) \hat{g}(k) dk = \frac{2}{\pi} \int_{-\infty}^{\infty} \frac{ab}{(k^{2}+a^{2})(k^{2}+b^{2})} dk$. Then $\int_{-\infty}^{\infty} \frac{dx}{(x^{2}+a^{2})(k^{2}+b^{2})} = \frac{\pi}{ab(a+b)} \int_{0}^{\infty} \frac{dx}{(x^{2}+a^{2})(k^{2}+b^{2})} dk$.

A3 PDEs: Laplace's equation on the half-plane.

Physical interpretation - Find the steady temperature distribution u(x,y) in a semi-infinite conducting plate, when a temperature distribution
$u(x,0) = f(x)$ is spplich to its boundary. Assume $f(x) \in L^1$. Physical considerations require $u(x,y) \to 0$ as $y \to \infty$. $\nabla u = 0$ $y > 0$.
$u(x, 0) = f(x) \text{ is spplich to its boundary. Assume } f(x) \in L^{1}. Physical considerations require u(x, y) \to 0 as y \to \infty.We take tourier Transforms in x-direction, since y only goes from 0 to \infty. \nabla^{2}u = u_{xx} + u_{yy} = 0.\frac{1}{2}$
$F[u_{yy}] = \frac{2^2}{3y^2} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} u(x,y) e^{-ikx} dx \right) = \frac{2^2}{3y^2} \hat{u}(k,y) = \frac{2^2}{3y^2} (k,y). F[u_{yx}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \frac{2^3 u}{2x^2} e^{-ikx} dx = (ik)^2 \hat{u}(k,y) = -k^2 \hat{u}(k,y).$
function of y/K As such, our equation is transformed into the form $\frac{\partial^2 \hat{u}}{\partial y^2} - k^2 \hat{u} = 0$. General solution is $\hat{u}(k,y) = A(k)e^{-ky} + B(k)e^{-ky}$, where A , B are arbitrary functions.
Now use boundary conditions to find Alk), B(k). Note that @ is equivalent to $\hat{u}(k,y) = \tilde{A}(k) e^{-i(k+y)} + \tilde{B}(k) e^{i(k+y)}$, by setting $\tilde{A}(k) = 2 B(k)$, $k \leq 0$ etc.
since $u \to 0$ as $y \to \infty$, $\hat{u} \to 0$ as $y \to \infty \Rightarrow \tilde{B}(k)=0$ as $1 k _q \to \infty$ as $y \to \infty$. $\therefore \hat{u}(k,y) = \tilde{A}(k) e^{- k _q}$. Now use boundary condition at $y=0$.
$u(x_{10}) = f(x)$. Take Fourier transform: $\hat{u}(k_{10}) = \hat{f}(k)$. $\hat{u}(k_{10}) = \tilde{A}(k) e^{-ik_{10}} = \tilde{A}(k)$. Hence, $\tilde{A}(k) = \hat{f}(k)$. As such, $\hat{u}(k_{10}) = \hat{f}(k) e^{-ik_{10}}$.
Notice that $\hat{u}(k,y) = \sqrt{2\pi} \hat{f}(k) \hat{g}(k,y) \text{for } \hat{g}(k) = \frac{e^{1/k/y}}{\sqrt{2\pi}}$. We know that $F [f * q] = \sqrt{2\pi} \hat{f} \hat{q}$, $f * q = q * f$.
Honce, u(x,y)= for f(x-t) g(t,y) dt = f * g. [Note: use t, so integration variable to avoid confusion with y. To complete solution, need to find
$g(x,y), \hat{g}(k,y) = \frac{e^{-ixy}}{12\pi}, \text{ Use inverse formula:} g(x,y) = \sqrt{2\pi} \int_{-\infty}^{\infty} \hat{g}(k,y) e^{ikx} dk = \sqrt{2\pi} \int_{-\infty}^{\infty} \frac{e^{-ixy}}{12\pi} \cos(kx) dk = \frac{1}{2\pi} \int_{0}^{\infty} e^{-ixy} \cos(kx) dk = \frac{1}{2\pi} \int_{0}^{\infty} e^{-ixy} \cos(kx) dx = \frac{1}{2\pi} \int_$
$g(x_1y) = \frac{1}{n} \operatorname{Re}\left[\int_0^{\infty} e^{-k(y+ix)} dk\right] = \frac{1}{n} \operatorname{Re}\left[-\frac{e^{-k(y+ix)}}{y+ix}\right]_0^{\infty} = \frac{1}{n} \operatorname{Re}\left[\frac{1}{y+ix}\right] = \frac{1}{n} \operatorname{Re}\left[\frac{y-ix}{y^2+x^2} = \frac{1}{n} \cdot \frac{y}{x^2+y^2}\right], \text{ Hence, our final solution is.}$
$u(x,y) = \frac{4}{\pi} \int_{-\infty}^{\infty} \frac{f(x-t)}{t^2 + y^2} dt \int_{t}^{t} (horse f(x) = \frac{1}{2} o x > a. \Rightarrow f(x-t) = \frac{1}{2} o x-t > a. x-t \le a \Rightarrow -a \le t - x \le a \Rightarrow x-a \le t \le x+a.$
then $u(x,y) = \frac{u}{\pi} \int_{-\infty}^{\infty} \frac{f(x-t)}{t^2+y^2} dt = \frac{u}{\pi} \left[\frac{1}{x-\alpha} \frac{t}{t^2+y^2} dt = \frac{u}{\pi} \left[\frac{1}{y^2} \frac{y^2 t^2}{y^2} - \frac{1}{\pi} \left[\frac{1}{y^2} \frac{y^2 t^2}{y^2}$
$q_1 \rightarrow -\infty$ $q_1 \rightarrow +\infty$ $q_2 \rightarrow +\infty$ $a_1 - \frac{1}{2}$ $a_1 - \frac{1}{2}$
infinite wire. $-a \qquad a$ $\eta_{1} = \frac{x\pi a}{y} \qquad \eta_{2} = \frac{x\pi a}{y}$
$\qquad \qquad $

u→o as x→ ±as. Also u(x,0)= fox.

AA

Exe the transform of this equation: $u_t = u_{xx} \Rightarrow F[u_t] = \hat{u}_t$, $F[u_{yx}] = -k^2 \hat{u}$ (as above). Then $\hat{u}_t = -k^2 \hat{u}$, we then integrate to get: $\hat{u}(k,t) = A(k) e^{-k^2 t}$. Apply initial condition = $u(x,0) = f(k) \Rightarrow \hat{u}(k,0) = \hat{f}(k)$. $\Rightarrow A(k) = \hat{f}(k)$ where t=0. Then $\hat{u}(k,t) = \hat{f}(k) e^{-k^2 t}$. $u(k,t) = \hat{g}(k,t) = \frac{e^{-k^2 t}}{12\pi}$, then $\hat{u}(k,t) = \sqrt{2\pi} \hat{f}(k) \hat{g}(k,t)$. $\int_{-\infty}^{\infty} f * g \, dy = \int_{-\infty}^{\infty} f(x-y) g(y,t) \, dy$, with u_t as the dummy variable. We need to find g(x,t): We know that $F[e^{-k^2 a^2}] = \sqrt{a^2} e^{-k^2 a^2/4}$. choose $a^2 = 4t$, then $F[e^{-\frac{k^2 t}{4t}}] = \sqrt{2t} e^{-k^2 t} \Rightarrow F[\frac{1}{2\sqrt{1t}} e^{-\frac{k^2 t}{4t}}] = \hat{g}(k)$ thence, $g(x,t) = 2\sqrt{\pi t} e^{-\frac{k^2 t}{4t}}$. Thus, general solution is $u(x,t) = \frac{1}{(4\pi t)} \int_{-\infty}^{\infty} f(x-y) e^{-\frac{u^2}{4t}} \, dy |_{I}$.

Note: This indegral has a smoothing effect on f(x) - scale of smoothing ~ 1747. Also, the function g(x,t) = 1477 e - 47 is known as the heat termed in 10.

7402-12

This converts singular distributions into Gaussians.

Generalised Inversion Formula. (cross-refor to handout)

Our inversion formula $f(x) = \frac{1}{12\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} dk$ is valid for continuous from if f(x) is discontinuous, say at x = xd, then our formula is modified to: $\frac{1}{2} \left[f(x_{4}^{-1}) + f(x_{6}) \right] = \frac{1}{12\pi} \int_{-\infty}^{\infty} \hat{f}(k) e^{ikx} dk$, where f(x) is continuous, $f(x) = f(x^{-1}) = f(x^{-1}) \Rightarrow$ recover original. At x = xd, $f(x) = \frac{1}{x+d}$, $f(x) = \frac{$

touries sine and cosine Transforms.	Med Sci / Drayton B20
f(x) = $\frac{a_c}{s} + \sum_{k=1}^{\infty} a_k \cos\left(\frac{k\pi x}{L}\right), f_{W} = \sum_{k=1}^{\infty} b_k \sin\left(\frac{k\pi x}{L}\right), give Fourier cosinel size series of f(W) on Oax SL.$	1
we can extend fix to fr(x), where fr(x)=> f(x) -2 < x <0. This is the even extension of for.	· fix)
Atternatively, we can also define the odd extension of X, f-(x) = 1-f(-x) -L(x<0, which is the odd extension of f(x).	
We can also adopt this idea with transforms: allows us to take transforms of functions defined on the half time, 0≤×<0.	L
Take the Fourier Transform of $f_{+}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_{+}(w) e^{-ikx} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_{+}(w) (\cos kx - i \sin kx) dx$	
$\hat{f}_{+}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f_{+}(k) \cos(kx) dx = \sqrt{\frac{2\pi}{2\pi}} \int_{0}^{\infty} f_{+}(k) \cos(kx) dx = \sqrt{\frac{2\pi}{2\pi}} \int_{0}^{\infty} f_{+}(k) \cos(kx) dx.$	
This atlants us to define cosine transform: $F=TFI(k)=\int_{0}^{\infty}\int_{0}^{\infty}f(k)\cos(kx)dx$.	
To get the inversion formula for $\hat{f}_{+}(k)$, we see that $\hat{f}_{+}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}_{+}(k) e^{ikx} dk$. We know that $\hat{f}_{+}(k)$ is even, so $\hat{f}_{+}(k) = \sqrt{2\pi} \int_{0}^{\infty} \hat{f}_{+}(k) e^{ikx} dk$.	
then f+W= F 100 FIFI(k) cos(KK) dK: for x =0, f(x) = F 100 FEFI(k) cos (kk) dk. Hence, forward and inverse transforms are syn	metrici

For the Towner size transforms, we nork with the odd extension. Then $\hat{f}_{-}(k) = \overline{V_{2T}} \int_{-\infty}^{\infty} f_{-}(k) e^{-ikx} dx = \sqrt{\frac{2}{3T}} \int_{0}^{\infty} -i f_{-}(k) \sin(kx) dx$ since product of two odds is even. We define the size transform: $\overline{F_{5}} [f_{-}(k) = \overline{f_{1}} \int_{0}^{\infty} f_{-}(k) \sin(kx) dx]$, whilt $\hat{f}_{-}(k) = -i F_{5} [f_{-}(k)$. Invesse transform is $f_{-}(k) = \frac{1}{\sqrt{2T}} \int_{-\infty}^{\infty} \hat{f}_{-}(k) e^{ikx} dx$. We know that $\hat{f}_{-}(k)$ is odd in k, and $f_{-}(k) = \sqrt{\frac{2}{3T}} \int_{0}^{\infty} \hat{f}_{-}(k) \cdot i \sin(kx) dk = \sqrt{\frac{2}{3T}} \int_{0}^{\infty} F_{5} [f_{-}(k) \sin(kx) dk]$.

Transforms of Derivatives: $f(y) \rightarrow 0 \text{ as } x \rightarrow 00$ $x \rightarrow 00 \text{ for } x \rightarrow 00$

Loplace Transforms.

Fourier sine and conine transforms can be used with functions f(x) defined on the half-line (05× <00). It is often easier to work with the captace Transform:

L[f(t)] = f(s) = for f(t) e^{-st} dt, sec. However, their inverses are more complicated.

Existence: LLFI exists for a much nider dass of functions than those in $L^{\circ}[(0,00)]$. (Fourier size and cosine transforma) If fit) ~ $e^{\beta t}$ as t-rood, $\beta \in \mathbb{R}$, $\beta > 0$, then the integral $\overline{f}(s)$ will exist if $\int_{0}^{\infty} e^{(\beta-s)t} dt = \left[\frac{e^{(\beta-s)t}}{\beta-s}\right]_{0}^{\infty}$ exists i.e. $\operatorname{Re}(s) > \beta$.

- Find L[1], L[t^m], L[e^{-at}] (and conditions for its existence).
 - soln. $f[A] = \int_{0}^{\infty} e^{-st} dt = \frac{1}{s}$, with Re(s) > 0 1 $f[t^m] = \int_{0}^{\infty} t^m e^{-st} dt$. Note that $(\frac{d}{ds})^m \int_{0}^{\infty} e^{-st} dt = \int_{0}^{\infty} (-1)^m t^m e^{-st} dt$
 - Thus, $\pounds[t^m] = (-\frac{d}{dS})^m [\int_0^{\infty} e^{-St} dt] = (-1)^m \cdot \frac{m!}{s^{m+1}} = \frac{m!}{s^{m+1}}$. [Attensitively recall $\pounds[t^{\alpha}] = \int_0^{\infty} t^{\alpha} e^{-St} dt$, α easily $\alpha \in \mathbb{R}$.]
 - set q=st, then $\frac{dq}{s} = dt \Rightarrow f[t^{\alpha}] = \int_{0}^{\infty} \left(\frac{q}{s}\right)^{\alpha} e^{-q} \frac{dq}{s} = \frac{1}{s^{\alpha+1}} \int_{0}^{\infty} q^{\alpha} e^{-q} dq = \frac{1}{s^{\alpha+1}} \int_{0}^{\alpha} (\alpha + 1)^{\alpha} \sin(\alpha + 1) \sin(\alpha + 1) = m!]$, with Re(s)>0/. $f[e^{-\alpha + 1}] = \int_{0}^{\infty} e^{-(\alpha + s)^{2}} = \left[\frac{e^{-(\alpha + s)^{2}}}{-(\alpha + s)^{2}}\right]_{0}^{\infty} = \frac{1}{s^{\alpha}}, \text{ with Re(s)} > -\alpha/p.$

Then, we consider L[cos wt], L[sin wt]. To do this, take $L[e^{iwt}]$, then $L[cos wt] = \operatorname{Re} L[e^{iwt}]$, $L[sin wt] = \operatorname{Im} Le^{iwt}$. $L[e^{iwt}] = \int_{0}^{\infty} e^{iwt} e^{-st} dt = \int_{0}^{\infty} e^{t} (iw-s) dt = \left[\frac{e^{(iw-s)t}}{iw-s}\right]_{0}^{\infty} = \frac{1}{s-iw}$. This is valid when $|e^{(iw-s)t}| = |e^{-st}| < 1 \Rightarrow \operatorname{Re}(s) > 0$. Then $\frac{1}{s-iw} = \frac{s+iw}{s^2+w^2}$. Since s^2 , w^2 are always real, $L[cos wt] = \frac{s}{s^2+w^2}$, $L[sin wt] = \frac{w}{s^2+w^2}$.

Reported of Laplace Transform: Given fits s.t. $\int_{-\infty} f(t) = \tilde{f}(s)$	19 March 2013.
O Livervity.	Phat HANKS. Recencer Giz
(2) shifting. We have two shifting results:	
$-\pounds [e^{-\alpha t}f(t)] = \int_{0}^{\infty} f(t) e^{-\alpha t} e^{-st} dt = \int_{0}^{\infty} f(t) e^{-(s+\alpha)t} dt = \bar{f}(s+\alpha). [First shift reputt] \pounds [e^{-\alpha t}f(t)] = \bar{f}(s+\alpha).$	٨
$d > 0.$ $d > 0.$ $f(t-d) = \int_{0}^{\infty} f(t-d) e^{-st} dt = \int_{-d}^{\infty} f(u) e^{-s(u+d)} du = e^{-sd} \int_{0}^{\infty} f(u) e^{-su} du (uith assumption that f(t-d) = 0 \text{ for } t < d.)$ extend	- F(4)
Hence, this yields the following: [second shift result] $\int [f(t-d)] = e^{-5d} f f(f]$.	>t.
Note that I[e ^{pt}] = L[1.e ^{pt}], so by first shift reput, L[e ^{pt}] = f r=s-p = s-p indeed.	
3) Remettive of Transform:	
$\pounds[t^{n}f(t)] = \int_{0}^{\infty} f(t) t^{n} e^{-st} dt, \text{Note that} t^{n} e^{-st} = (\frac{d}{ds})^{n} e^{-st} \cdot (-t)^{n} = (-\frac{d}{ds})^{n} e^{-st}, \text{then} \pounds[t^{n}f(t)] = \int_{0}^{\infty} f(t) (-\frac{d}{ds})^{n} e^{-st} dt = (-\frac{d}{ds})^{n} \int_{0}^{s} e^{-st} dt = (-\frac{d}{ds})^{n} \int_{0}^{s} e^{-st} dt = (-\frac{d}{ds})^{n} e^{-st} dt = (-\frac{d}{ds})^{$	f(+) e-st dt
Hence, $(-\frac{d}{ds})^n \mathcal{L}[f(t)](d) = \mathcal{L}[t^n f(t)] \rightarrow \mathcal{L}[t^n f(t)] = (-1)^n \overline{f}^{(n)}(s).$	
Ext Find 1. It sin wt].	
$\Delta \underline{\partial}_{n} = \int [f(s) = -L[sin_{wt}] = -\frac{d}{ds} \left(\frac{\omega}{(s^2 + \omega^2)} \right) = -\frac{2\omega s}{(s^2 + \omega^2)^2} $	
Transform of pointative:	
$ \text{Consider } \text{L}[f'(t)] = \int_0^\infty f'(t) e^{-st} dt = [f(t)] e^{-st} \int_0^\infty f(t) (-s) e^{-st} dt = -f(s) + s \int_0^\infty f(t) e^{-st} dt = -f(s) + s \text{L}[f(t)]. \text{ Hence } [\text{L}[f'(t)] = s \overline{f}(s) - s f(s) + s \text{L}[f(t)] = s \overline{f}(s) + s \text{L}[f(t)] = s \overline{f}(s) + s \text{L}[f'(t)] = s \overline{f}(s) $	Real
For $L[f^{n}(t)]$, define $g(t) = f(t) \Rightarrow L[g'(t)] = s\bar{g}(s) - g(s) = s\bar{f}'(s) - f'(s) = s(\bar{f}(s) - f(s)) - f'(s) = s^{2}\bar{f}(s) - sf(s) - f'(s)$.	ton.
$\frac{1}{10} + \frac{1}{10} $	
Thus inductively, $L[f^{(t)}] = 5^{(t)} f(5) - 2^{(t)} f(6) - 2^{(t)} f(6) f(7)$	integrate ust<00
(g) Convolution Theorem:	t A A
For loplace transforms, we define (f * gits) = So f(t-u) g(u) du = S-os f(t-u) g(u) du so fig are non-zero only for non-negative arguments.	
$\int [f + g] = \int_0^\infty e^{-st} \left\{ \int_0^\infty f(t-u)g(u) du \right\} dt = \int_0^\infty \int_u^\infty e^{-st} f(t-u)g(u) dt du \cdot u t v = t-u. dv = dt \Rightarrow \int [f + g] = \int_0^\infty \int_0^\infty e^{-s(v+u)} f(v)g(u) dv du$	- Ar
$\Rightarrow \pounds L f \ast g J = \int_0^\infty e^{-sv} f(v) dv \int_0^\infty e^{-su} g(u) du = \pounds L f J \pounds L g J = \pounds L f J \pounds L g J.$	7
a second seco	· · · · ·
hyperion.	
We use several tricks to obtain the inverse rapidle transform of a function.	
1. Partial Functions: Consider $\overline{K}(s) = \frac{e^{-5\pi}}{s^2(1+s^2)}$, we want to obtain $\chi(t)$. $\overline{\chi}(s) = e^{-5\pi} \left(\frac{1}{s^2} - \frac{1}{1+s^2}\right) = \frac{e^{-5\pi}}{s^2} - \frac{e^{-5\pi}}{1+s^2}$. We know that $\frac{1}{s}[t] = \frac{1}{s}$	$\frac{1}{2}$ $f[sint] = \frac{1}{2}$
$L [f(t-\alpha)] = e^{-\alpha s} \overline{f}(s) \text{ where } f(t-\alpha) = 0 \text{ if } t<\alpha. \text{ Then } \overline{x}(s) = e^{-s\pi} L[t] - e^{-s\pi} L[sin t] \Rightarrow x(s) = \begin{cases} t-\pi) - \sin(t-\pi) & t>\pi \\ 0 & t<\pi \end{cases}$, 3-41.
2. Convolution: consider $\overline{x}(s) = \frac{1}{(s+1)(s+2)} = \frac{1}{(s+1)(s+2)}$. we know that $\pounds[e^{-t}] = \frac{1}{s+1}$. If $f(t) = e^{-t}$, $\pounds[g] = \frac{1}{s+2}$.	
	-t, -t.
Hence, $\overline{x}(s) = \pounds [f] \pounds [g] = \pounds [f * g] \Rightarrow x(t) = f * q = \int_0^t f(t-u)g(w) du = \int_0^t e^{-(t-u)} e^{-2u} du = e^{-t} \int_0^t e^{-u} du = e^{-t} [-\frac{e^{-u}}{u}]_0^t = e^{-t} [-\frac{e^{-u}}{u}]_0$	e (1-e).
The technique depends on the problem; in this case using PF would have been easier.	
3. Consider $\bar{\chi}(5) = \frac{1}{(5-1)^5} = (\frac{d_1}{d_5})^4 \frac{1}{5-1} \cdot \frac{1}{4!} = (\frac{d_1}{d_5})^4 \pounds [e^t] \frac{1}{4!} = \frac{1}{4!} (-\frac{d_2}{d_5})^4 \pounds [e^t] = \frac{1}{4!} \pounds [t^4 e^t]$. By kinewrity, $\chi(5) = \frac{1}{4!} t^4 e^t$,	
Attennatively: let $f(t) = \frac{t^+}{24} \Rightarrow \tilde{f}(5) = \frac{1}{5^{\frac{1}{2}}}$ i.e. $\frac{1}{(1-1)^5} = \tilde{f}(5-1) = \pounds [e^{\pm} f(t)]$. Hence, $\pounds^{-1}[\tilde{f}(5-a)] = e^{\pm} f(t) = e^{\pm} f(t) = \frac{e^{\pm} t^+}{24}$ indeed.	
or, if all else fails, we use the general method of contraw integration:	
4. Contour indequation. Recall the Faurier integral theorem; which combines both the forward and inverse Fourier transforms: F(t) = 21) and eitt []	- os F(u) Eiku du] dk
Take Flui = e ^{-ch} flui with a st. I goo flui e ^{-cu} e ^{-iku} du exists. Then e ^{-ct} f(t) = $\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ikt} \int_{-\infty}^{\infty} flui e^{-(c+ik)u} du dk$. Resuranging,	
$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{(c+ik)t} \int_{0}^{\infty} f(w) e^{-(c+ik)u} du dk, \text{ assuming as usual that } f(w) = 0 \forall u < 0. \text{Let } s = c+ik, \text{ then } dk = \frac{ds}{4}. \text{ Then we I}$	-ookkee,
$f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{criment} \int_{0}^{\infty} f(u) e^{-su} du ds = \frac{1}{2\pi i} \int_{c-i\infty}^{criment} e^{st} \tilde{f}(s) ds.$ Hence, we have that $f(t) = \frac{1}{2\pi i} \int_{c-i\infty}^{criment} e^{st} \tilde{f}(s) ds.$	have cadjusted
	s-plone
This is called the Brommith Inversion Integral, which is avaluated over the Brommith Inversion Contour.	c >>
	integral here.
We nothick a to take values as on what candenations do we have for selecting a? a is defined as the convergence factor.	,
Since we are examining the Former Transform of $F(t) = \begin{cases} e^{-tx}f(t) + z \\ 0 & t < 0 \end{cases}$, we require $F(t) \in L^1(\mathbb{R})$ for the transform to be valid i.e. $\int_{0}^{\infty} \beta R(t) dt$ exists.	21 March 2013.
suppose that fit) ~ e ^{bt} (for $\beta \in \mathbb{C}$) so t > 00. Recall $\tilde{F}(5)$ exists for Re(5) > Re(β) (multiplying by \tilde{e}^{tt} will make this an exponential decay function)	Dr. Goin ESLER. MedsinGto/ Drayton B22.
Then sublogously, Joo IFHI at = Joo IFHI at mill exist ~ Joo 10 Bte-ct 1 at exists. Then c > Relpis & requirement, for the inter	palto converse.
There is an interpretation of this result in terms of the poles of $\overline{f}(s)$ in the complex s-plane: Recall that $\pounds Le^{\beta t} J = \frac{1}{s-\beta}$	1
	13 s-plane
there, the substitution of the lopbice transform, has a pole at s= β . For this specific example,	
Our Brommich integral 2 moust life to the right of s=β, so c> Re(β). This is the in general ≥ c must be chosen s.t. 2 lies to the right of	
all poles (+ branch points) of F(s) in the s-plane.	8 (Bromnich contour).

of there are no branch cuts,	and there are only a finite no	umber of poles, ne can enclose	e our poles and evaluate fr	using	1 .	
the residue theorem on a sen	ncivalor contour.			prouch	0 0	2
should up enclose the contract	on the left or the right? We con	wider the "notated version" of	Jondan's lanma: provided 12	(s) > 0 everywhere	-D branch	~
				on G. Ce,	point	
	$x t < 0$, $\int_{C_{L}} \overline{f}(S) e^{t} dS \rightarrow$,	in (flx)e dx.)	prosof F(s)	
	ight for t<0. Since it has no				C	> CR
when we dose to the left for	or $t>0$, then by residue theom	em, f(t) = > Res 1 F(s) e	st, s= sjt. where s; are p	des of F(s).	K osu A	8
Without and with Ex Using contour integration	on, solve the ODE X+ X= -	f(t) subject to initial condition	ous X(0)= X(0)=1 for f	$f(t) = \frac{1}{\pi} \frac{1}{\tau} \frac{1}{\tau} \frac{1}{\tau} \frac{1}{\tau} \frac{1}{\tau} \frac{1}{\tau}$	52	b"
Remort: This is a f					A-fet)	- 57
Noln. Take Laplace The	surforms of whole equation.	[[x]= sx-x(0), [[x]=	$S^{2}\bar{X} - 5 \chi(\sigma) - \dot{\chi}(\sigma) = S^{2}\bar{X} -$	5-1	π	
	$+xJ = s\tilde{x} - s - 1 + \bar{x} = \bar{f} \Rightarrow$					$\longrightarrow t$
4x X(5) = X11	(5) + x2 (5) is above. x2 (5) =	$\frac{5}{5^2+1} + \frac{1}{5^2+1} \Rightarrow \chi_2(t) = co.$	t + sin t (by impection). To	or X1(5), note that	,	
$\vec{x}_1(s) = \vec{F}(s)\vec{q}(s)$	5) is the transform of a convolution	an for $\overline{q}(5) = \overline{s^2+1} \Rightarrow q(t) =$	sint. Honce, X1(5) = F(5)q	$(s) \Rightarrow \chi_1(t) = f \ast g = .$	fu)g(t-u), du.	
	So fluisin (t-u) du, for genera					
······, · · ···	1	. (
		-F(S)	- et P	-sture dall -stu	pco -st	
slightly more gen	erally, we can use the inversion	formule: X(5)= 52+1. Find	-sπ -sπ -sπ	dt = (-ds)(s = at)+ T T e t.	
	$\frac{d}{ds} = \int_{0}^{\pi} + \pi \left[-\frac{e^{-st}}{s} \right]_{\pi}^{\infty} = -\frac{d}{ds} \left(-\frac{e^{-st}}{s} \right]_{\pi}^{\infty} = -\frac{d}{ds} \left(-\frac{e^{-st}}{s} \right]_{\pi}^{\infty} = -\frac{d}{ds} \left(-\frac{e^{-st}}{s} \right)_{\pi}^{\infty} = -\frac{e^{-st}}{s} \left(-e^{-st$					2
We use the Brown	with inversion formuls to get	$x_1(t):$ write $\overline{x}_1(s) = \overline{x}_{1a}(s)$	+ $\overline{X}_{1 p}(s) = \frac{1}{s^2(s^2+1)} + \frac{-e^{-s^2}}{s^2(s^2+1)}$	H). We find XIa (+) fis	t: c	>
	est ds. singularities at 0,				-10	Y
$X_{(a(t))} = 1 \Sigma$	kes { = 5 + + + + + + + + + + + + + + + + + +	. Rep $\{s=i\} = \left[\frac{(s-i)e^{s}}{s^{2}(s+i)}\right]$	is-i)]s=i by simple pole form	what: Rests=if = $\frac{e^{it}}{-2i}$.	1	
	1s=-if= e-it zi. then Rep (s=i)				nula Res (5=0)===================================	52 est 52(52+1)] s=e
5.	ore easier to use the lowest s					
1	one easier to use the lowerts $(1+st + \frac{s^2t^2}{21} + \dots)(1-s^2 + \dots) =$					
$S^2(S^2+1) = S^2$	1+ st + 21 +)(1-5+)=	⇒ coefficient of 3 = Res 1s=	oy=t ⇒ × na(t)=t-sin	t. Then we counder ?	(16(t). we see that	
X16(t) = 2mi]	$\frac{e^{st}e^{-st}}{s^2(s^2(s^2+1))} ds = -\frac{1}{2tt^2} \int_{S^2} \frac{e^{s(t-1)}}{s^2(s^2)} ds$ dosed to reft. Hence, X164	t1) ds. Here, t-IT takes the	role of t in the formula of	Xia(t). Hence, t-TT<0	when dosed to right,	π
t-T>0 when	closed to left. Hence, X16(4)	$= - \chi_{12} (t-\pi) (for t-\pi>0) =$	20 t-π<0 = 1	0 t <t< th=""><th>$= \begin{cases} (\pi - t) - \sin(t) & t > \\ 0 & t < \end{cases}$</th><th>η.</th></t<>	$= \begin{cases} (\pi - t) - \sin(t) & t > \\ 0 & t < \end{cases}$	η.
So final anow	er is $X(t) = \begin{cases} 0 \\ x_{1a}(t) + x_{2}(t) \\ x_{1a}(t) + x_{1b}(t) + \end{cases}$	$ \begin{array}{c} t < 0 \\ 0 < t < \pi \end{array} = \begin{cases} 0 \\ t < \tau \\ \tau \end{cases} $	tost tost octem			
×.			11			
ND OF SYLLABUS.						

£