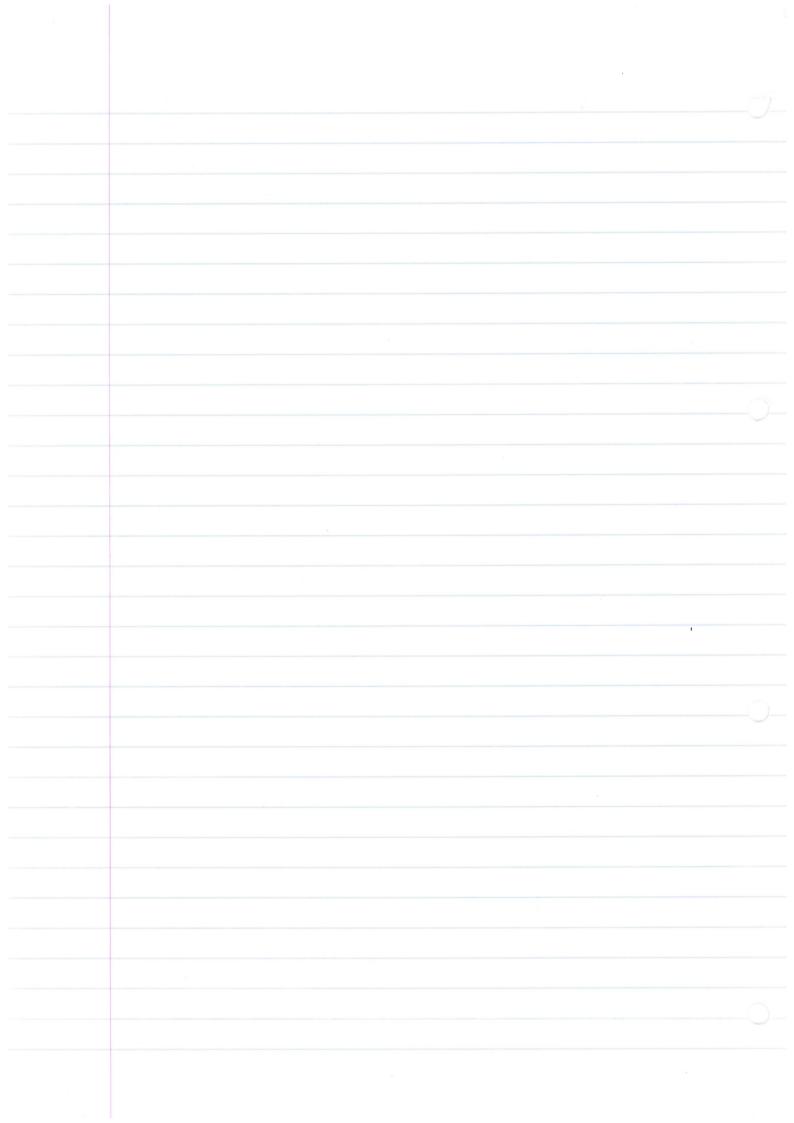

M111 Spectral Theory Notes


Based on the 2012 autumn lectures by Prof L Parnovski

M 111 Spectral Theory Leonid Parnoveski WWW. homepages. ucl. ac. uk / ~ ucablep

Office hour: han 4-5

Functional & Cooks: (i) Kolmogorov om + omin (e) Bolleges (3) Kreyszeig I for sounded operation, regoran.

1/10/2012 A: V-> V ohin V=n2 + co Think of A as $n \times n$ matrix $(A-)^2 = 0$ 7 is an eigenselve of A, if

7 + 0 eV 3+. Av = >v (A->s)

=> 2 is called on eigenvector

11 dim v = 40 (A-NS) is not a bijection I hinear Algebra payor is characteristic of (X-XI) = 0 Chp(x) = det (A - AI) = (x,-x) a/(x2-x) ex (xx-x) ex a, + 0, + .. + a = h a > 1 o(A) = {7,7, ..., xe { spets un and of A a; is called the algebraic multiplicity of D; V7: = { v, Av = 7, v { is a sectoral space V2: is linear subspace of v dim V2: to called the grandice multiplicity. Caspider A=(01) $Ch_{A}(x) = det(-x 1) = x^{2} = (x-0)^{2}$ 7 = 0 is on eigewelle visueite alg n=2 $\begin{cases}
0! \\
00) \begin{pmatrix} 2! \\ v_i \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (27) - (0) $\begin{pmatrix} v_1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

=> d'n (th) = 1 = geom. m.

alg. m = geon. m. if mate. is deeg. => alg. m = geom. m.

if $A = def(A^7) = A$ then A is symmetric, and alg. $m = geom_{i}m$. def-n. A is hurmal if AA = A A $CL_A(\lambda) = (-\lambda)^{31}$ Oha(2) = (2)31+1=0 o (A) = 2 04 iff $-\lambda^{31}=-1$ 5 (B) - spectrum of A -spectrum of B 5(B)

vector spaces shere field F = R, C Normal space is a sector space with norm io. 2) 1/21 = 7/WI 3) 110-1011 & 11 v11.+11w11 the distance d(v, w) = 112-w11 if V becomes a complete in s weith this distance, it is called a Banach Space an inner product on a sector space H is (\cdot,\cdot) : $M \times K \rightarrow F$, o.t. (1) $(\lambda x + \mu y z) = \lambda(x,z) + \mu(y,z)$ (2) (x,y) = (y,x) (3) (x,z) = 0 (x,z) = 0/=> x = 0Then $\|x\| = \sqrt{(x, x)}$ becomes a norm Bemark: $|(x, y)| \le \|x\| \cdot \|y\|$ Cauchy - Shwarz - Bdinganowski If I becomes a Banach space with this now then It is called a Hilbert space. Enamples (a) If dim V 2 +0 and V is normed, then V 1) l' = (x = (x1, x2, x3,), x = F, 11×11= (= 1×1 P) < + 00) 1≤p < +00 et is a normed space (proved in functional analysis) and Banach space

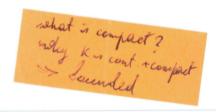
nepremum warm = suplied on N Then $||f_n - f_m||_{p \to 0}$ thus $||f_n||$ is Cauchy seq, but

if $\lim_{n \to \infty} f_n = f(\alpha) = f + 1$ $n \neq 0$ is not continuous $||f_n||_{p \to \infty} f_n = f(\alpha) = f + 1$ $||f_n||_{p \to \infty} f_n = f(\alpha) = f + 1$ $||f_n||_{p \to \infty} f_n = f(\alpha) = f(\alpha) = f(\alpha)$ explant the space made out of all limits of all Carachy signer in Cp[9,6] is Dended LP[9,6], 1.0. 1P[9,6] is completion ef (p/a,63 I all my talls are spen unless otherwise vinite it ed linear ferets spaces operators, spaces

oup Let x and of be linear space of B(72+py)=28x+pby

2, y \in X, pn \in F. out If x and of are normed spaces,

A: X -> 19 is linear hijection and MA all = MAH,


then nuch mapping is called an sometry 4) 3 (> 5 (A 13,6,1)) C B(0,C) Lyereit Thin ther norm of A

||A|| = inf { (70 | 1+24 | (2 | K | x | 1 | f |

= sup ||A||| = sup ||A||| = sup ||A||| ||A|||

||X||| = 1 ||A|| = 1 ||A|| = x + x ||A|||

||X||| = 1 ||A|| = 1 ||A||| = x + 0

Examples (1) I: X -> X (2) A: CCO, 17 -> R ?

[Af] = [Jof(+) alt] = C/1 f/1 = Coup / f(+) |

+ E[0,1] 1 Sof(+) dt (= So (for)) dt = So infu of = 11 fu -> A is bounded. 08 October, 2012 Examples: (1) A: $\times \to \times$, $\times = \subset [0,1]$ Af $(t) = \int_{0}^{\infty} K(t,s) f(s) ds$ where $K:[0,1]^{2} - r \neq s$ is continuous and is called the (integral) Kirnel of A Recall: [Since K is continuous and [0,1] is compact, K is bounded]

and $|K(s,t)| \leq M$ Therefore $|A|(t)| = |\int_{-\infty}^{\infty} |K(t,s)| |f(s)| |ds| \leq M$ where $|A|(t)| = |\int_{-\infty}^{\infty} |K(t,s)| |f(s)| |ds| \leq M$ and $\|Af \| = \sup_{t \in L0, 1J} \|Af(t)\| \le \|A\| \|f\|$ Thus A is bounded and $\|A\| \leq M$ $\|A\| = \sup_{\|A\| \leq M} \frac{\|A\|}{\|A\|} \leq M$ x = ((0,) (2) A f(t) = f'(t) DA = { f & C[0,1], f' & C[0,1] $A : D_A \rightarrow \times$ Claim: A 's not bounded

"need to find require of bounded function but deriventhey

huge "

a special case of B(x, y) happens when y = F $f: X \to F$ is called a (linear) functional

Remain If din x 1 +00 dim 3 2 +00 then such linear operator the set of all b-d-d limax functionals is called a dual space to x . x = x'= B(x, F) enaugh: $\times = l^p = \{ \alpha = (x_1, x_2, \dots), \|\alpha\| = (\sum_{i=1}^p |x_i|^p)^{1/p} < +\infty \}$ x*= lf where 1 = = 1 Shere is a natural isomely between $(l^p)^*$ and l^q .

Suppose, $g \in l^q$ $g = (g_1, g_2, ...)$, Define $f_g : l^p \rightarrow l^p$ by

we must to prove j^{-1} be following parts

the $(l^p)^*$ and l^q Then (1) this is well defined 2) 11911er = 11fg11er)* 3) + f e(lp)* J gel 9 a.t. f=fy ! 15 p < + 00 , p + = 1 Remark (1) (l 2)* \$ & l' (2) (C.) = l' Def. Let X be a Banach space; x, x & X 1) we say that an converges strongly to x

S-lim xn = x x -> x, hm x = x

if 11 xn - x11 = 0 2) we say that an converges to a recally when x = x x - x x - x x - x (x -) > f(x)

7 f(n - x) < 11 f H X 2 n - x 4 Creased MANN y & MAMIN) u man MAN = men MAN uparana Dec Many 2 & 5 car

 $fh \qquad \times_{h} \longrightarrow \times \qquad \longrightarrow \times_{h} \xrightarrow{} \times$ Suppose xn -> x and f c x*, then \[\int(\an) - \int(\an) \] = \[\int(\xu_n - \times) \] \\ \le \text{11 \int(\text{11 \times n - \times n - \times \inf(\text{\times n - \times n}) - \int(\times) - \times \inf(\times) -10 f(kn) -> f(x) U 11 A11 = sup 1/ A211
x + 0 1/211 Example: X = Co, en = (00,010,) & Co Proof: $11e_n - 011 = 11e_n 11 = 1 \neq 0$, so $e_n \neq 0$ Suppose that $f \in X^* = l'$ then $\exists y \in l' \Rightarrow l' = f_y$, i.e., $f_j(a) = \mathcal{E}_{X_j}$ Therefore $f_y(e_n) = y_n$, but $y \in l' \Rightarrow \mathcal{E}_j(y_n) < +\infty$ $\Rightarrow y_n \Rightarrow 0$ f(e)Claim: bloo en = 0 en +0 => y_==0. Thus, f(en) = y_= > 0 as n > 0 and 20 w-lim en = 0 ad. Let A_n , $A \in B(x, T)$ we say that (1) A_n converges to A uniformly $\lim_{n \to \infty} A_n = A$ if $\|A_n - A\| \to 0$ as $n \to \infty$ 3-lim An = A if it x & x we have An x -> Ax as n > 00 1.0 11 Anx - An11 ->0 (3) An come to A mercely W-lim An - A, if the GX we have whim An 2 - A a
i.e. +fGy ne have f(An x) -> f(An)

Claim: 1=> 2 =>

Of het \times be a normal space and \times_n , $\times \in \times$. (The say that the xear $\frac{\pi}{2}$, \times_n converges to π , if the sequence $S_m = \frac{\pi}{2}$, \times_n of partial sums converges troughy to π .

2) We ray that $\frac{2}{\pi}$, an converges absolutely, if $\frac{2}{\pi}N^{2}n$ converges Thus, $11S_m - S_n 11 \rightarrow 0$ as $n, n \rightarrow \infty$ to S_n is Cauchy $\times q$.

So $\exists \lim_{n \to \infty} S_n = x, \infty$ $\exists x, \rightarrow x$ That $\lim_{n \to \infty} S_n = x$ $\lim_{n \to \infty} S_n = x$ $\lim_{n \to \infty} S_n = x$. def. Let XI & a normal spaces and teB(x, y) the Keend of A Kee A = { x & x , Ax = 0 } Pand: suppose to a Kert , The lim xn , then Ax = Alim xy = lim Ax= = lim 0 = 0 20 X { Kext I Alim x bim han A is injection => KerA = 10}

A is injection => Ran A = 1 if A is bounded A is bijection () Both If An Eijection, then I h': Y -> x the Banach inverse maffing theorem x, y are Banach (A & B (x, y) to exists then A & B (yx) Suppose A: X -> 9 and Ae' and Ar' one operator ot.

A' A = I A A' - I y

Claim then A' = A' = A'

Proof: Ae' = Ae' I = Ae' (AAr') - (A' A) A' = I Ar' = Ar' II Ex. dim x < to AB=J => BA=J

Example X = 1 9 x = (x, x2,...) $A \mathcal{R} = (\alpha_2, \alpha_3, \alpha_4, \dots)$

Ba = (0, x, x2, x3, --)

A e, = 0 A en + = en ; Ben = en + , n c N We can thin of A and B as the matrices:

 $A = \begin{bmatrix} 01 \\ 00 \\ 0 \end{bmatrix}$ $B = \begin{bmatrix} 0 \\ 10 \\ 0 \end{bmatrix}$ 0

ABx=AB(x, x2,...) = A(0, x, x2,...) = (x1, x2,...); AB=J BAR= D (x2, x3, ...) = (0, x2, x3, ...) => b++D

1 1) AB one investable (i. R. A' & B' exists), Then AB is inecetable

2) AB is investable and Holde we ightetable then A and B are invertable (i-e-JA B)

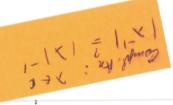
3) A,B commutative, A - exists =7 A and B commute.

15/10/2012 Pear (1) (AB) B-1 A-1) = I = B-1 A-1 (AB)

(2) Denote (AB) = S then A(BS) = SAB = I

then BS = A & SB = A e


20 A is insertable


(3) A'B = A'BAA' = A'ABA' = BA'

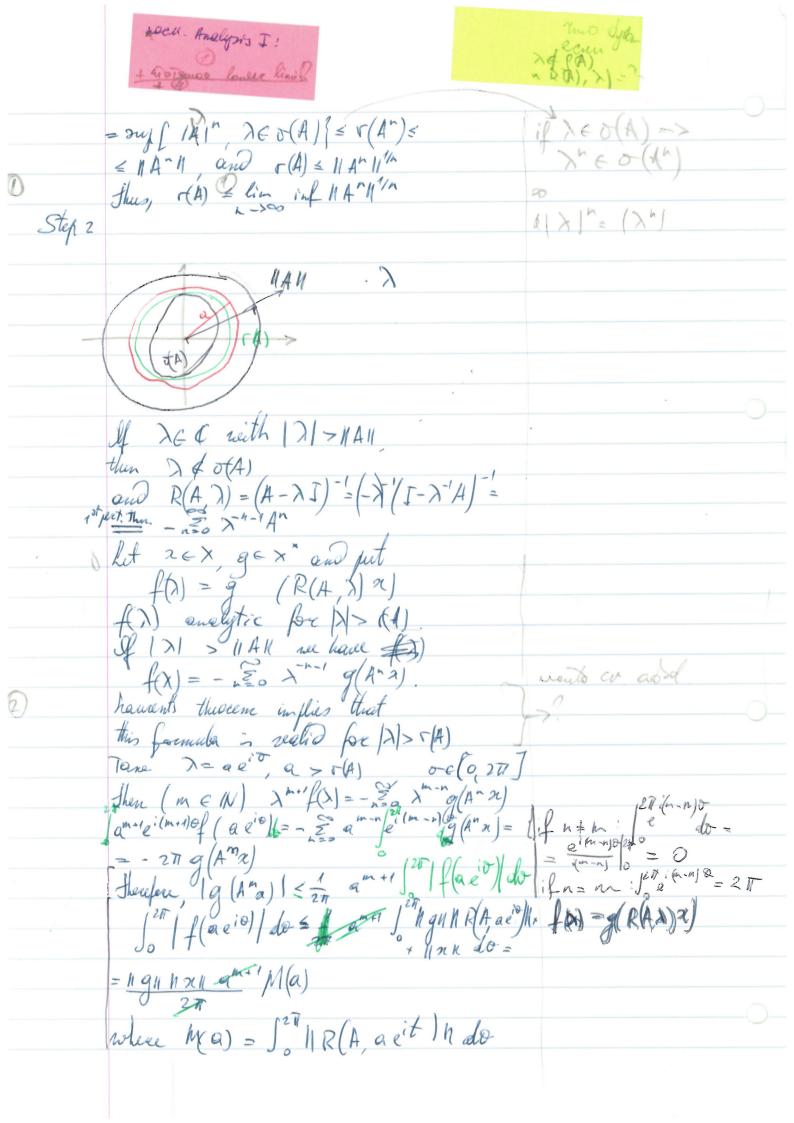
The 1st perturbation theorem Suppose X is Banach space A & B(x)

then (Ix -A) is investable un

We have I A" 11 < KAH" Proof: Since 2 11 A1" cons. => \$ || A" || come >> = A W. Since X is Banach. Put R: = & A" = line & A" then $(I-A)R = (I-A)\lim_{N\to\infty} \frac{1}{A^{N-1}} = I$ = $\lim_{N\to\infty} (J-A) \stackrel{\sim}{=} A^{N-1} = I$ Similarly R(I-A) = I, Apr 1 is bounded >> It is continuous -> (=> A respects limit Digeometric progr DO R = (I-A) Remark we also have: 11 (I-A)-11 = 1-1AH Perod. 1(T-A)"11 - 11 = 0 + "11 = 2 HAH" = 1 35-ing, weeks with infinite nun series IL 2nd perturbation thosen Let X be Banach; AB & B(X) A is insectable; 11 B11 < 11 A-111; then (A+B) is incectable (AtB) - A-1 = (-BA-1)h = [= (-A-B)] Aand 1(A+B)-11 & 11A'11 1-11BH 11ATH Proof We have ++B = AM (I - (-A'B)) = = (I-(-BA-1)) A Since 11 - A-1 BILS 11A-11 NBK & 1 a so we can use the 1st perturbation theorem From now on F= & (unless specified otherwise) Let X & Banach and A G B(X)



	Rom(H-)J) < { g < C(0,1], g() = 0 +X		
	So (4-) is not mujective 20		
	So $(4 - \lambda I)$ is not surjective 20 $(4 - \lambda I)$ Deem't exists.		
	Thus o(A) = [0,1]		
th.	Let x be a Banach and		
	AC NXI		
	Then (1) or (A) is closed and		
	(2) J(A) C {A ∈ C, A ∈ NAN }		
Proof.	Suppose 121 >11 All		
V	then (A-75) = (->)(I-> A)	\	
	is invertible, since MATAH = MAH = 1, By	•	
	the fiest per terdation them,		
	20 X E (A)		
0	Thus o(A) C B. (O, NAN)		
Claim	Can Suppose 20 6 f (A) and		
	() - /o) - / N		
0	then $\lambda \in f(A)$		
Proof.	we have A - NI = (A - No I) + (No-1) I		
	Since 11 (10-2) II = 1-201 / 4/4-201) 11		0
	we can apply the second perturbation,		
	therefore the to desuce that		
	(A->I) - crust => > (A)		
8	thus, f(A) is ofen and o(A) is doed to		
<i>D</i>			
Remain	$(A-\lambda J)^{-1}$		
	1777 exists		
	(A-Xt) Tenists and		
	has bounded usen.		
	wes running well.		


al	The operator - salved function	
,	$P(A) \ni A \longrightarrow (A-\lambda I)^{-1} = P(A,\lambda) \in B(x)$	
	The operator = salved function (A) 3 > -> (A->I)' = :R(A; X) & B(X) is called the resoluent of A	
Th	The 1-st resolvent identity	
	$R/A, \lambda) - R(A, \lambda_o) = (\lambda - \lambda_o) R(A, \lambda) R(A, \lambda_o)$	
Phoe	$ \begin{array}{ll} R(A, 1) - R(A, \lambda_0) = (A - \lambda_0)^{-1} - (A - \lambda_0)^{-1} \\ = (A - \lambda_0)^{-1} [A - \lambda_0] - (A - \lambda_0) [(A - \lambda_0)]^{-1} \end{array} $,
	$= (\lambda - \lambda^{\circ})(\lambda - \lambda^{\circ})^{-1}(\lambda - \lambda^{\circ})^{-1}$	
	(// · · ·) (A - // · · · · · · · · · · · · · · · · ·	
1L	the and resoluent identity	proof by curself
	$R(A,\lambda) - R(B,\lambda) = R(A,\lambda)(B-A) \cdot R(B,\lambda)$	
		1 0
th	het X be normed space and	I team functional Ar
	n c x housing such x	
	het X be normed space and n c X then > g c X* 2.t. 11g11 = 1 and 1gh) = 1211	
-#/		
16	Let & be a complex Banach space $\Omega \subset C$ be after $F: \Omega \to 2$ be a vector-valued function	
	F: S2 -> 2 Re a vector-valued function	
	TFAE	then the following ore agrice
(H No E D the Socientise exists.	0 ,
	$\frac{dF}{dx}(\lambda) = F'(\lambda_0) := S - \lim_{\lambda \to \lambda_0} \frac{F(\lambda)}{\lambda - \lambda_0} \in Z,$	
	11 = (2) = (C) 11 x-> 7.	
	i.e. f(x) - f(x0) - f(x0) -> > > .	
(2) +>0 € 52 has a neighbourhood 2. t. there	
	F(2) = Fo(2-20) Fn(20), Fn (An) EZ	
	and the series conveleges absolutely.	
(3) Y G E Z* a complex-realized f-n	
	$S \ni \lambda \longrightarrow G(F(\lambda)) \in C$ is analytic in S	

(4)	If & = B(x, y) for Banach x and y	1-> 2 otrangly	
\	then the equivealent Definition is	3=74	
	yxex + g ∈ gx a complex-salued f-n		
	$x \ni \lambda \longrightarrow g(F(\lambda) \times) \in C$		
	analytic in se		
Def	A rector-valued function (operator-valued) is analytic if it satisfies any of the adore property		
	is analytic if it satisfies any of	^	
	the adore property	of p(.) a function	
	1 1 0	(1) theretion at	
Th	let X be Donach	point t	
	$A \in \mathcal{B}(X)$		
	then the B(x)-realised function		
	R(A,.) is analytic in f(A), and	- / "	
	R(A,) is analytic in f(A), and the following hold	R(A, 2) = 1	
(1)	4 K(A, >) = R(A, 10), No 6 +(A)		
	ad / N= No		
(2)	$(-\lambda)R(A,\lambda) \rightarrow I$		
(3)	$ R(A, \lambda) > \frac{1}{d(\lambda, \delta(A))}$		
('	$\lambda \in \rho(A)$		
Tel.	$d(\lambda, S) := \inf \{d(\lambda, S), S \in S\}$		
7	SCC		
	d(T, s) == inf {d(t,s), tet ses}		
	TCC		
Proof	let Toc p(A).		
'	Then R(A, I) exists and has a		
	bounded norm in some neighborhood of ?		
	Therefore, R(A) - R(A,) - (S-)(R(A))R(A,	$\gamma_{\circ})$	
	$\begin{array}{c} 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$		

Shus R(A) x = 0 and x = A(R(A)x) a) = 0 so x = 0 but wer amount of \$ Thus o (A) & of Let X be Danach A G B(x) then o(A) is a non-empty blossed rebet and R(A, X) is analytic in p(A) = C \ T(A) En. 1) X=12, x = (x, x2,...) $Ax = (x, y, d, x_1, \dots)$ where Land is bounded seq. of compl. numbers =(*) o(A)) { dy } is $(A - \lambda I)^{-1} = (\lambda_1 - \lambda)^{-1}$ O (2-1) th 20 o(A) = 1 djj=1 JA) E { XE(X,5) 2) x= l2 Ax= (x2, x3,...) eigeneelues: Ax = >x, or $(\chi_1, \chi_3, \chi_4, ...) = (\lambda \chi_1, \lambda \chi_2, \lambda \chi_3, ...)$ or x2 = XX, $x_3 = \lambda z_2 = \lambda^2 x_3^2$ X4 = Xx3 = x3 x1 2 n = > " X, $\chi = \chi_1(1, \lambda, \lambda^2, \dots)$ E/XII converges 20 x + l, ip 17/21

	Thus $\sigma_{PP}(A) := \{eigenvalues of A = Bdo!\}$ and $\sigma(A) \supset \{eigenvalues = Bdo!\} \supset \sigma(A)$ $\sigma(A) = B(O!)$ since $HAH = 1$	pp fuce) point
	O(A) = b(0,1) $O(A) = b(0,1)$ $Since A = 1$	
		1/A 24 5 1/71
	u Au	1/2 4 £ 1
		but tom
		y=6, 8, (,)
Def	The spectral radius	: WA g11 = Ny 9
'	(A) := sup 1/31, X = 6 (A)	
	this is the redies of the neallest dine centred at the origin and containing	144 - 1 is a leven bound
	centres at the origin and containing	=> 1(A / = 1
	0 (A) we have (A) ≤ A	- / (// / - / /
JL,	(A) == lim 11 4 " 111/n	
Pred	I need to prove that	
	(1) 5(A) & lim inf 11 An 111/1	
	(1) $\Gamma(A) \leq \lim_{n \to \infty} \inf \ A^n\ ^{1/n}$ (2) $\Gamma(A) \geq \lim_{n \to \infty} \sup \ A^n\ ^{1/n}$	
Step!	Suppose, $\lambda \in J(A)$ then $\lambda^n \in J(A^n)$, becarting $(A^n - \lambda^n I) = (A - \lambda I)(A^{n-1} + \lambda A^{n-2} + \lambda A^{n-3} + \lambda^{n-1}I)$ since the specifiers in the RMS commute and $(A - \lambda I)$ is not inelectible,	lse
	Alexa (A - X 1) = (A - X 1) (A + X A	
	and $(A-\lambda I)$ is not innectible.	
	(An-xns) is not inesetible	
	Land so x e o (An).	
0	Therefore r(A) = [sup { A , > = o(A)] =	
	$r(A) = [sup \{(A), \lambda \in \delta(A)]] =$	

19 (Amx) 1 = 11911 1211 am+ 1 M(a) Take $g \in X^*$ st. ||g|| = 1 and ||g|| = ||g|| ||g||| ||g|||**(3)** Jaxing sup in the LHS we solain $x \neq 0$ | $A^{m}| \leq a^{m} \frac{a'M(a)}{2\pi}$, or $||A^{m}||^{1/m} \leq a \left(\frac{\alpha M(a)}{2\pi}\right)^{1/m}$ tane lim sup: Cim such UAm 11 1/m & a Since a neas arbitrary number 2it. a > r(A), this implies lim nep 11 A M 11 III v(A) the pertoals maffing theorem

Let $p(5) = \frac{\epsilon}{2} a_n 5^n$ be a polynomial with $a_n \neq 0$ We put $p(A) = \frac{\epsilon}{2} a_n A^n$ then o(p(A)) = p(o(A)) = (p(S), 5 = (A)) Proof Tane any ne C; play - probabling multipli thenote ? () , In the sal-us of p(3)=p (meliding multiplicaties) then $p(s) - \mu = \alpha_{\mu}(s - \lambda_{1}(s - \lambda_{2}).(s - \lambda_{\mu})$ and $p(A) - \mu I = \alpha_{\mu}(A - \lambda_{1}I)(A - \lambda_{2}I).(A - \lambda_{\mu}I)$ and the terms in the RHS commute Then pr & 5 (p(A)) <=>
p(A) - pr I is invertible 1=> all terms (A-7, I) on mout ble jet., N as they

Amus it is (cloco) Def het x be a normed space X=V, DV a projection, if $P^2 = P$ Afgebraic proof humma Let p & B(x) le a projection = it is not important then Q:= I-P is a projection

RP=PQ=0 and Kenf = Ran Q a Sual projection Rand > Ker Q Vint Q2=(I+P)2=I2+ 2P+P2=J-P=Q QP=(I-P)P=P-P=P-D=0 PR = P(T-P) = P-P2=0 Since GP=0 Ran PC Ker & Suppose that at ker a. thin Qa 20 for x = Px 20 x & Rang (I-P) x=0) ... Rex Q C Ran P : Ken P = Ker Q 10 prace Ker P = Ran a nee replace Pand Q. Y DV, OR, VI+VI=Y Lemma If P & B(x) is a frojection then Ran P is dosed V, aV, 50} and X = Ker P & Ran P ? direct sum Proof Ran P= Ken Q is closed since Q is barrows Suppose, $\alpha \in X$, then $\alpha = P \times + (I - P) \alpha$ RanD Ran Q= Kerl 20 X = Ran P + Ker P Suppose x & Ran PO Ker P then I ye x st. x = Py since x = kerP ner have Px = 0 P(Py) = Py = Py = x 20 2 = 0

	H	It De de CA Saber	7
	· In	her to non-Triefel projection	
		Let P is non-triviel projection (ic., P+I, P+0)	
		then o(P):= {0,1}	
	Pal	P ² P = C = 1	
	· coct	Spectral mapping the	
	8	$P^2 - P = 0 \Rightarrow$ spectral mapping the $= 0(0) = 0(P^2 - P) = (\lambda^2 - \lambda, \lambda \in 0(P))$	
		Thus x c o(P) => x(x-1)=0	
		=> x = 0 or x = 1	
		and therefore o(P) C { 0,1}	
			as otherwise P=0#
		We also know that Ram P + 101	as ormand & P = 0 F
		and Ran (I-P) + 10	
		Therefore Ker (I-P) + 101 and	
		Ken (P) 7 0	
		Thus P is not insertible and	
		. 00	
		I-P is also not investable	
		therefore 0 € O(P) and	*
		1 C J(P)	
		Thus o(P) = 10,11	
0			
			- 1

Let X be a normed space

A set K C X is called estationally compact

if each sequence in K has a Canoliny

subsequence

A set K C X is called compact

if each sequence in K has a subsequence compact

which conserges to an element of K. but in metric space

county to X to come comp. to sig com Prop rel. comp. => bounded K, CK } => desed and bounded

K, CK } => K, is rel. com. K, CK } => K, is comp. Ke closed Prof. din x 2 +00 then Kis rel. comf. (=7 K is b-dd Kis comf. (=7 K is closed, bodd Example X = l, then Bo (1) is b-del, But not cal composit since $x_n = e_n = (0, \dots, 0, 1, p, \dots)$ then of × n, 2m = 2 n pm so there is so Cauchy sig money. henme het X be a finite-dim - vector space, Then these nocus are equivalent. prof. definition of (i.e. Ja, c. 70 ot. txe X equivalnce of warmy C, 11 x 11 & 11 x 112 & C24 2(H1)

Cordary	Let x be normed space and
	Xo < x be a finite-dimensional subspace of x
	then Xo is closed
Frat:	Let e, e le « lans of xo
The second secon	then + x < Xo it has a form
	a= 2 c, e; and
	see fut 1 = 1 = max c; 1 yethe norm in X Suppose >x x x > conseiges to x x X in 11 11 breeda en ron byden?
	Suppose 3x € Xo converges to x € X in 11 11 beenda en ran hydern,
	$\alpha_{\mu} = \sum_{i=1}^{n} C_{i}^{i} e_{i}$
	=> xx is a Cauchy sequence in 11 11
	=> xx is Cauchy zeg in N N' as N N & N N' ace equivalent
CONTRACT AND ADMINISTRAL PROPERTY OF THE PROPE	=> +;=1, n the seq. 10; (== i cauchy on xo (deuto dir. 200)
	DA Jain, n there is a limit lime; =: C;
	et us put x=; Z; c; e; =>
THE RESIDENCE OF THE PERSON OF	=> xx concleges to x in 11 11' => xx concleges to x in 11 4
	$\Rightarrow \alpha = \lim_{x \to \infty} x_{e} \in X$
þ	So X is closed
Dol	let x and y be normed spaces
	A linear operator 7: x > 3 is compact operator if it maps bounded sets of x into
	if it maps bounded sets of x into
	relatively compact sets of y
11 1 2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The set of all compact operators from
	X to I is devoled by com(X, I)
	Com(x) := Com(x, x)
Perl	Com(x, y) C B(x, y)
The state of the s	Cem (", J) - (J)
Lema	Suppose 7 (Bc (1)) is relatively compact T & L(X, Y)
	then T is confect of Tis lin.
Prod	then T is confect of Tis lin. (a) $T(P_c(0,r)) = T(rB_c(0,1)) \stackrel{!}{=} rT(B_c(0,1))$
	is relatively compact

(h) If w C x is bounded	
then WCB(O, r) for some r>0	
I therefore Tw) c T (Beb, r) is relate comp.	
th (a) let T, T, & Com(X, y)	
$d_1, d_2 \in F$	
then & Ty + d, T & Com (x, y)	
(B) Let T & Com(x)	! also applicable
$A \in \mathcal{B}(x)$	for Co(K, y) just
then TA AT & Con(x)	mane rure
(c) let The Con(x)	Com(xy) com(yx)
MTn -711 ->0	=> Compact operators form
ther T & Com(x)	an ideal in the algebra
Prod (a) Suppose fax is launded seg in X	of bounded operators
Since T, is complet	ing this ideal is closed
Since T, is complet I a subseq. 1 × 4 1 C /24 5!	
t, x(1) is cauchy	
1 10 10	
I a moreq of x a (C x a) 2t.	
Txx in Cauchy	
then (7, x, 2 is also lausky	
therefore ((d, T, + d, 72) 20 " is Couchy	tx, is coughy
(6) Suppose for is bounded	yn is - 1
then here's also beused,	Danay is Coushy
and It April has a Cauchy sulsing.	dul to sing
So TA's compact	- one of the Def-n of
* Suppose (2n) is bounded	launded aferetes
Then I subseq (20) C (7) 2t.	
IT 2 is a Canohy sig.	
and since A is bounded	
A TX (1) is also Couchy	
Thus, AT & Com (x)	
(c) let {x_1} be bounded	

	7, is compact => {211/c(x1) s.t.
	17 2(1) 4 is Country
	T, is compact => (x") 2,5
	17, x(e) is Canchy
	0
	7 is compact => {2(m) { C { x(m-1) } 2 }.
	to am
	Coursider the diagnal sequera
	$y_n = x_n$
MC 2012 MARK TO THE REAL PROPERTY AND THE PROPE	Obeiously y is a subreg of may
<u> </u>	Note that I'm the seq. of ym, ymer, ymer, ymez, (C)?n)n=1
	Observably y is a subreg of {xn }. Note that I'm the seq. I ym, ymer ymez, [C 12m] no 1 Since IT x x is Country I'm yn yn yn ymer ym yn
	=> (Tm ga) is Country & m
	Let us procee that 17 yng in Cauchy sig.
CONTRACTOR AND STREET AND STREET AND STREET	who we assume that 114, 11 < 1 we have int-Tall
	117 yn - t gm 11 = 11 Tyn - Trym 1 + 11 Tryn - Trym 11 + 11 Tryn - Tym 11 = = 2 117 - Tru + 11 Tryn - Trym 11 < E
	Given E>O choose K st.
	$1/T + T \times 1/2 \leq \frac{1}{2}$
	Since ITa you is lauchy:
	Since ITa yn man in Country: 3 N st. NTa yn - Ta ym N < ? for n, m > N
Ŋ	Thus, 17 yn j in Cauchy.
	V
the	an operator $t \in B(x, y)$ is called lineage of learned the fruite - caux operator of founded map if $dm(Pan +) < +\infty$ is learned at
	frute - can ferator of lounded map
	if dm (Pan 7) <+00 is bounded set
Peal	Tis Porte on shouth of Tis compact dente of Prite de problège
	Tis finite - ram operator => Tis compact operator of finite die rebspace
Ex	Consider $T: X \rightarrow X X = C \setminus \{0,1\}$ given by $Tf(t) = \int_{0}^{\infty} K(t,s) f(s) ds$ $K \subset \mathcal{M}_{0}, \mathcal{M}^{2}$
	given by Tf(t) = 1 K(t,s)f(s)ds
	KG 6/0,1/2

	Prop: + c Com(x)	1
0	- Weierstross - the implies that &	7-10/10-21
	1/K(t, s) - P(t, s) 1 < -	1 3 4 pm-c ps 25.
2: 116	$P(t,s) = z^{(k)} e^{(k)} e^{(k)} s^{(k)}$	
10 parces	Dende Toft) = & Pa(+s) f(s) do	
	Carnel: 1 T - Tall = =	And the second s
100 100 100 100 100 100 100 100 100 100	Chains: 7 n is finite rank	
Plan		
Tr. of Clarents	$ (t-T_n)f(t) = \int_0^\infty (k-P_n)(s,t)f(s) ds \le$	
- 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 10000000 - 100000000	$\leq 1 \text{ If II}$ $= 1 \text{ If II}$ $= 1 \text{ If II}$	
17-7 4=	$\lim_{t\to\infty}\frac{1}{t}(t-T_n)\int_{-T_n}^T t dt \leq \frac{1}{n}$	
7 1 1	7 P(+) - [[] \$ (+ 3) P(x) da] =	
tr. of Warm 2	7. f(+) = [] p(+,>) f(s) ds] = = = = = = = = = = = = = = = = = = =	
11.000000000000000000000000000000000000	= 5, +x [] \$ 10 5° f6, ds < plan (1, t)	13 [4]
184 196 196 196 196 196 196 196 196 197 197 197 197 197 197 197 197 197 197		
	Since din (span (1, t,, t") < +0, dim (Ran Ta) < +00	
	Therefore Tis compact.	ment led : of propert
	sureface is conjuin.	d cond
12/11/12		4 (34)
^	almost cethogonalyty	Pt of orthogonal sector
Lenna	Let 1 × h a normed space and	y of ornigation section
	2. Xs \$ X be any closed rubpace of x	3 121=1
	3. EBO $EE(O,1)$	1=11x-5 K=
	then 326X X o.t.	
	11 = 1 and	
THE RESERVE THE PROPERTY OF TH	¥2€ X. [2-3] ≥ 1- ε	
Proof.	Since x + X 7x , EXX	
	Since x. dosed the Distance	
	d:= d(x, Yo) = inf d(x, 21) >0	
	7 C X 3	
	Chere ensts 4 EX	
1	Shere exists $y \in x_0$ s.t. $\leq \alpha(x,y) \leq d$	

Put 3 = x,-y then 11 3" = 1 Then 12-x11= 1/(x,-y) [x,-y+x11x,-y)] ! Prevent for to E $Z \frac{1-\varepsilon}{d} d = 1-\varepsilon$ The let x be a weened space of.

Be (1) is relatively compact then chux 2+00 Remain If din x = +00 then B(01) is compact Suffere din X = + ~ Choon x, e x s.t. 11x111 = 1 Put X, = span 4214 Shen x, + x is closed. apply lemma with & = 1/2 Note find 22 s.t. 11 2/211 = 1 and 1/x 2 - x111= 2 Put X2 = span { X1, 22} apply henna with 8 = 2 nee find x s xt. 11734 = 1 and 123-x,112 = Thus we construct a sequence {xn{ ?!.

hand = 1 (20 | xn | CBc(0,1))

but in the course 'll be using c = ; only.

and IXn-Xn 1 2 / for n x m so there is no Canoly subsequence.

Conday Ix & Con(x) if dim v = +0 dim Y 200 $\forall A \in L(x)$ nougher compact the let T c Com (x, y) and dim x = + 5 or dim y = + 5 then I is not invertible has no lounded include Proof:
Typose 7 is insertible: 7' (B(y, x) i. 0. $J^{-1}T = J_x$ and TTamo IJ. then I and I y are compact Corollary let Din X = + and T & Com(X) no melese then $0 \in \overline{5}(7)$ the let Te Con(x) and then I has finite multiplicity i.a. dim Xx < +0 Recall: X> == {2, 72 = 22 {U {o}} comp. of = Proof T | xx = > Jx x is not compact comp. of in Inf. Dol. if dim xx = =

from now on Remuse Let x be Francoh T & Con(x) Suppose A + 0 is not an eigenvelue of T then 11(+-)J) x11 >, C 11211 BC70 4xex also assume xx \$ 0 (Therwise to wears) Suppose not. Then 3 2x 2,f. 11 (7-> 1) xx11 = 1 12x1 (for each K I Xx ... Put Zn = 117x1 Then 1/2 x 1 = 1 and 11 (T-75) Zx 11 < k, i.e (T->J) Zn -> 0 as x-200 Since 7 is compact,
I a subsequence Zuj 2.t. {tzuj []=1 laudy and, since x is Franch J limo 72 = 2 0 2x = \frac{2}{2} = \frac{1}{4} \frac{1}{2} \right] = \frac{1}{4} \frac{1}{ > = 0 j -> 0 Since 1/2x; 11 = 1, we have 2 \$ 0 Moreoule, (7-7]) == (7-7] lin (22) = => lim (T-)] = 0 So 72=27, and I is an eigeneelle #

Rengua het x be Banach and Suppose A CB(x) satisfies (br c>0) KARNZCIAN YZEX Then KerA = {0} and Rom A is alosed Proof I 2 + ter + -> An = 0 => x=0 I Suppose y a Rom 4 yn ∈ Ran # s.t. yn -> g 12 3 an of. yn > Am, i.e. Then $\|x_n - x_n\| \le \frac{1}{\epsilon} \|A x_n - Ak_n\| - \infty$ as $x_n = \infty$, $x_n > \infty$, $x_n > \infty$, $x_n > \infty$, $x_n > \infty$. Since $x_n > \infty$ is Banch, $x_n > \infty$ is coulleging seq. Now apply $A \alpha = A \lim_{n \to \infty} A = \lim_{n \to \infty} A$ Condlay Suppose xis Louseh and KANN ZCNXK then Rec(A") = 204 and Rom (A") is closed Proof the have 1/4" ×11 ≥ C14" ×11 ≥ C2 11 A" ×11 ≥ So A satisfies all the Suntions of the theorem (pervious)

The Let X be Banach te Con (x) Suppose > * on not an eigenealise of T then 2 \$ 0(7) Proof: Put A = T -) I Denote X = X and X = Ran (A") = A"X Xn+1 CXn then Xn+1 = Par Ant' X = A (An X) = A Xn or = A X1 = Xn herefore, X=X, >X,) x2 >X3 ---I let us prove that for some n we hower Suppose not Xn+1 + Xn + n & Since Xny is closed effly almost sathogonaly !: $\exists x_n \in X_n \quad 2.4. \quad 11 \times n = 1 \quad and$ 1 Xn-311 + Z & Xn.1 where = = 2m + Anm - Ann E Xnie therefore 11 Tan - Tan 11 = | >111 2 - Xall > So {7 x 1 has no Caushy miling. This proces Claim 1 $X = X_0 \rightarrow X_1 \rightarrow X_2 \rightarrow X_k = X_{k+1}$

11

Denote by K the smallest index 2.7.

XK = XK+1 Suppose not them XX-1 + XX, 20 326 XK-1 1 2 9 th XK thin AZEXX = Xxx = AXX, therefore Iy EXR 2, t. AZ = AZ, or A(z-J) = 0(4-21)(5-4)=0Since $T(z-y) = \chi(z-y)$ Since $z \in \chi_R$, $y \in \chi_R$ $(z-y) \neq 0$ is an eigenvector corresponding to 7, i.e. I i om eigenealne # thus k = 0 and X = X, = Ran(t-)] So Ker (+-) = (0) Ran(+-X 5) = Y, 20 (7->I)-1 enists Since 11 (7-) J) 211 Z Ch 24 i i any sector put n = (T-15) y, Then 1191 Z 11 (7->3) 74 11 c i.e. 11(7->7)-yn < c'llyn, 20 11/7-75) 1/1 5 == Thus, $\lambda \in \beta(7)$

Det Suppose + is a linear space and then we say that this set is linear inafferment, wed to duch their species in EXAM: olver. if \(\times_{\text{g}} = 0 => \text{Caj} = 0 \) the let x be a linear space and A: X -> X le a lin eferatous Suppose (2m) are eigendectors of 4 correspond to different organisation In then {xn} is linearly independent set that X is Barach and T C Com(X) then o(T) is at most countouble and the only possible accumulation point of o (7) Recol: we will prome that for each positive of (500) 5(F) C G S 1/9 S= E(T) 0 { x e c , (x) > 8 { Suppose that for some of 70 five one points $71, 72, \dots \in \delta(T)$, Ajl> 8, Xx+ 7m for n +m. het x ± 0 le eigeneestors 1 x 1 = 3 x). Put Xn = spon (x1, x2, ..., 2n)

Since (vj.) are lin. ind., were home dim X n = n X1 = X2 = X, C X= { = { = 0 } = 0 } 7 2; = > xi TXL @ XL (T->1) Xn C Xn-1 Use almost orthogonality lemma $(\varepsilon = \frac{1}{2})$ to show that $\exists y_n \in X_n$ s.t. 11 /2 1 = 1 11 yn - 21 = 1 , + x & Xn-1

Let n>m. then

Tyn - Tyn = 7 yn + (T -) Jyn + 7 ym] == = > (yn-2), where = - = [(T - \lambda, I) y = + t ym] E Xa-1 Therefore 117yn - Tym 11 = 1 xn 1 11 yn - 211 = 2 4 7 yn | n = 1 has no much Cauchy Subseq.

though $TX_n = X_n$

het The Banach and $t \in \mathcal{B}(x)$ $g \in X$ is invariant, if $t \not \in \mathcal{G}$

want: y is does otherwise is toward

(.,.) : Hx H -> # now on all 20 61,y) = (y,x) Examples: l2, L2 [9,1]

(4,9) = Ja (4) g(t) dt dimen product $(x,y) = \sum_{j \geq 1} x_j y_j$ $|(x,y)| \le ||x|| ||y||$, where $||x|| = \sqrt{(x,x)}$ of Azysteen of 1xj sje j is called outhogonal system system if (xj, xx) -0, +j, xe J, j + x => x, 1 xx System = xt The x1 1.... xn orthogonal system

= ||x1 + + xn|| = \(||x|||^2 + ||x||^2 + ... + ||xn||^2 + ... + ||x 1 (poloeigentien Dentity) If F= 1R, then 4(x,y)= 11x+y112-11x-y112 (xxx) If F = C, then 4(x,y) = 11x+y11^2 - 1x-y11^2 + illx+iy11^2 - illx+iy11^2

(Pacallelogram how)

IL 11x+y11^2 + hx-y11^2 = 211x11^2 + 211y11^2 (*)

the if the Banach Sp. 1 then in true Wis Hilbert space

& (Orthogonality) Let The a closed subspace of H y is called orthogonal project for then for any x & H Jamique point y & L of. 11x-yu - d(x, L) == inff 112 - 24, 2 EL in Bouseh sped thes Dessait We also have work quarel (x-y, z) -0 > i.l. you con 40 e.g. s.l. Proof: Step1 of lemit Put d= ol(x, L) 2.1.1x-yall-2d Then 3 yn EL 2t. 1/x-y, 1/-> d as n ~ 5 Use pavellelogram lave to x-yn & x-yn $\frac{\partial^{2} y_{n} - y_{n} N}{\partial y_{n}^{2} - y_{n}^{2} + 2N \times -y_{n} N^{2}} = -\frac{112 \times -y_{n} N^{2} + 2N \times -y_{n} N^{2}}{2N \times -y_{m} N^{2}} = \frac{112 \times -y_{m} N$ 24-yn-ym ya- yan + 2x - ya- ya= = 2 /x - yn /2 + 2 /1 2 - ym / 2 -- 4/1 x - In + ym /2 \\
- 4/1 x - In + ym /2 \\
2 4 d \[
 \leq 2 \leq 7 \leq 1 \req 2 \leq thus Myn-ymll ->0 as n, m -> and y come as yn + K There is a limit y = ling or yn EL Ulso 3/12-yn = lin 112-yn1 = d 26L, we can assume that 1121 -1 w-y+12el (xeff)

Then d2 \le 1 2 - W12 = (x-y-\lambda 2, x-y-\lambda 2) per do mor-21 peopeties of (,) $= ||x - y||^2 - |x|(2, x - y) - |x|(x - y, 7) + |x||^2$ $= ||x - y||^2 - |x|^2 = ||x||^2 - |x||^2$ $= ||x - y||^2 - |x|^2 = ||x||^2 - |x||^2$ Thus, 7 = 0 = (x-y, +) Step 3 riniquenes Suppose y, is another faint 21. gi e L and 11/4, - 21 = d. Then step 2 implies (ghotix, 2)=0 + 2 61 [2] (x)= (3-[1]m; Jun (y-y1, 2) + 7 EL Tours $z = y - y_1$ $|(y - y_1)|^2 = (y - y_1, y - y_1) = 0 \#$ the attengonal complement is $M^{+} = \{ x \in \mathcal{H}, (\alpha, y) = 0 \neq y \in M^{\ell} \}$

Th. (1) M+ is a dozed linear subspace of \mathcal{R} (2) Mic Mr => $M_2^+\subseteq M_3^+$ (3) $M_1^{++}\supset M_3$

reed to offhay to to preser (4) (a) M+ = Span (M) (41/W 6) (5) Suppose M & Deuse in M m is dense? there M = { D } (m = H) Proof: exercise 1 Let 11 le a dosed lineare mespace Il Jun Il = M M M + Proof: het n & H We orthogonality theorem to fin yeth with 112-yn = d(x, h). Then (x-y,2) =0 + 2 EM $20 2 - y \in M$ x = y + x - yNow let us prease that M n m2 = 104. How (x, x) = 0, 20 z = 0. Def. a at $\{e_j\}_{j\in\mathcal{I}}$ is allew sethousemed system if $(e_j, e_k) = \{0, j^{\pm k}\}_{1, j=k}$

0

the true sethonormal system is linearly independent

Proof: obvious

set let & & H rer call (a, ej) the fourier coefficient of a w. r.t. the system 12jl

th (Busel impuelity)

1/212 2 El(2, ej)2

That {ln | n G pl be on orthonormal yeten Cn G ft soutisties \$10 n | 2 < + 00

then Ixe of of. $C_n = (x, e_n)$

We can choose & Chen stong combergues Moreover / x = E Chen

1-26. Let jen be an authonormal system

(x) ta E M/s: \$ x = \(\int \((x, e_n) \) en we have

(2) HXEN: ||X12 = \(\frac{2}{n} = 1 \) (2, (n))

(3) (x, ln) = 0 +n => 2=0

(4) Span 12n 1 = H

\$ jest sourier

are uncountable many grees a so combably many many many

Par sevel Didonts ty

such systems are called complete ashonsemal systems. Proof. in functional analysis. 26/11/2012 l2 { ln } = 1 en = (0, ..., 0, 1, 0, ...) L2 (0, 2TI) $e_{h} = e^{int}$ 527 Lent 100 the (Reizz refresentation thum-m)
het f: M -> It be a bounded linear functial then 3! ZE Il of. f(x) = (x, z) $(\forall x \in \mathcal{H})$ Moreover, 1/F1/ge" = 1/21/2 A/w: Proof: (1) if f=0, ten ==0 uniquely & rest Suppose, f=f3; Then Kerf is dosed therefore (Ker f) + 101 Jane y c (ker f) 1 y + 0 Thun far Il fal y = fg) ae ker f

and, therefore,
$$\frac{f(a)y - f(g) \times_{i} y}{i!} = 0$$

$$f(a) |_{i} y|_{i}^{2} = (x, f(g) y)$$
Thus,
$$f(a) = (x, z), \text{ where } z$$

$$z = f(y) y$$

$$y|_{i} = 0$$

Moresier, NA" 11 EVAN

the A's called adjoint operator of A

Peach: let yelle.

Peach: let yelle.

(An, y) is a line functional.

Moreover, (f(x)) = (4 x, y) = (A II NAII 11911, Country duranty

80 (in Counted and

1(£ 11 ≤ 11 A 11 lly 11

herefore, I! Ze R, zt.

fa) = (n, ?)

Moreover, $u^2h = ufv \leq u + u hyv$ $A(\pi, y) = (\pi, A y)$ $A(\pi, y) = A(\pi, A y)$

use Define A y: = 3 Then A is linear

Mosecule, 14°y" = 1(A")

thus NAM & NAM

A. Propertus of Adjoint operator

(i) $(d_1A_1+d_2A_2)^* = J_1A_1 + d_2A_3$ $A_1A_2 \in B(R)$

21, de e f

(ii) (AB) = B* A*

(iii) A - A

(iv) |(A*11 = 11 A11

(v) UA+ AN = NAA* N = NAN2

(vi) If A^{-1} emits then $(A^{+})^{-1}$ emits $(A^{+})^{-1}$: = $(A^{-1})^{+}$

gl/W: cheen

some space of product many Proof: (ii) $(AB)^{x}(y) = (B \times , A^{x}y) = (a \times , b^{x}A^{x}y)_{2}$ $= (B((AB)^{x}y))$ Therefore $(a, b^{x}A^{x}y - (AB)^{x}y) = 0$ touring a = awe see that $(a \times A^{x}y + (AB)^{x}y) = 0$

- c" algebra - algebra uth émochetia

(iv) we proved A & EllAn

Therefore A = KAN & A*

(v) We have: | AR AH & MA" | | AN = NAM?

On the other hand

NAH! = sup | |AaH| = sup (A x, 42) = |aH| = 1 | |aH| = 1

= sup (A A a, n) = sup | NA" A a N = NA" AM | |x|| = 1

ont to be an

O (i) $A^{-1}A = J = AA^{-1}$ Therefore, $(A^{-1}A)^* = J^* = J = (AA^{-1})^*$ $A^*(A^{-1})^*$ $A^*(A^{-1})^*$ $A^*(A^{-1})^* = (A^{-1})^*$

If $A \in B(A)$ Then $Kev(A^n) = (Ron A)^{\frac{1}{2}}$ $Kev(A) = (Ron (A^m))^{\frac{1}{2}}$ Proof: y & ker(A") (=> A" y =0 67 2(A'y) = 0 + 26 M 67 (A 1, y) = 0, ta e d (Ran A) Corollary (Ker A") = Ran A (Kere A) = Rom A* Def. Let A = B(H) (i) A is self - adjoint (symmetric), $\frac{1}{12}\left(Ax,y\right) = (2,Ay)$ (ii) A is normal if AA = A A (iv) At a unitary, if [ut=u*]
i. e. uh = u* u = I Sef. Let A: DA -> Il be an unbounded

peraler, with Demain DA C'Il

and DA = Il for given y e fl, consider the functional. f: DA -> F x = (A =, y) = : (12) Suppose that for a given y thin

functional has a form for = (2) we need where 2 is wigue DA = 76 Sun we say that y & DA sond A y = 2 to quaeonta, (if) f(n) can not be expression as (x, 2) ner sony that y & DA? - just for some (2,y) = (2,4°y) sales of y, det. An underended operator is called a self-adjoint operator if e-g- y=0 (1) $D_{A}^{*} = D_{A}$, and (2) $A^{\alpha} = A$ Def A is symmetric, if (A acy) = (a, Ay), Kacy & Dr This means that A" is antension of A (A > A) maning that DA = > DA and $A^*|_{D_A} = A|_{D_A}$ Examples L2 [0, 1] Af =if! = Called Sodolws DA = 1 f ∈ Lz, f : 6 Lz} = 4 [0,1] = w12

(Afg) = if f'g = ifg[+ f'fig'] = = (A, A*g) = So f A*g Aving some o Franze formula that implies if gl = 0 thus, A" g = ig! Dr= { g elz, g'elz, g(6) =0, g(1) =0} Af=if' DA = 1feh(, fe)=0, f(1)=0/ (Afig) = i \ f'g = if(a)g(i) - f(b)g(e)]+ + i JP (ig') Thus Ang = 'g' (the some formula)

Dun = 1 g & L_2, g'e L_2' ilf-adjenter o DA = 1 fch! f6) = f6) (Thus DAN = 1 g EL2, g'EL2, g (1) = g(0) (>> A is self-adjust.

 $D_{4} = \{g \in \mathbb{N}^{2}, g(1) = g(0) = g'(1) = g'(0) = 0\}$ SH = adjant boundary condition :(a) $f(1) = \beta f(0)$ | Periodic b.c. $f'(1) = \beta f'(1)$ $|\beta| = 1$

(2) $f'(a) = \lambda f(1)$? Radin b. c. $f'(0) = \lambda f(0)$ $\lambda \in \mathbb{R}$

(3) R(0) = f(1) = p Pirichlet B. C.

(4) f'(0) = f'(1)=0 Nevmanh b, c.

r cad Example De i mosth for similarity 2 or well-defined aut side Al = L2(2) looking sector Af= -Af 9. = gr. DA = ffelz, of felz, ox felz 9 Has feen = = N2 (s2) = integr. for people 12 D. H. G. A19 = -29 DA = (g = H2(2), g=0, 2=g/2=01 Self-adjoint R. C. Diridlet e.c. (1) f Jan = 3 Neumann L.C. (2) 2= floor = 0 Mir red B. C. (3) DR = DR UD252 Plan =0 のごもしかっ =0 (Radin l.c.) (a) $2\pi f |_{\partial x} = \alpha f |_{\partial x}$ $\lambda = \lambda(x) \in \mathbb{R}$

LACB(91) As normal iff. Ha ell.

What = HA" all $= ||A n||^2 = (An, An) = (a, A^n An) \text{ if A incernal}$ $||A^n a||^2 = (A^n, A^n) = (a, AA^n a) \text{ if A incernal}$ (An, Ay) = (An, An) = (An, An)

(An, Ay) = (An, An)

(An, Ay) identity: trage gl (Ana Ay) & Aza, Ay) Herefore, (A" An + AA"a, y)=0 and $A^*Ax - AA^*x = 0$,

so $A^*A = AA^*$ IL Suppose A le Courses

The Suppose A le Courses

Then (1) (Ran A*) + = ker A

(Ran A) = ker A*

- (2) Aa=dn=> An= Inc
- (3) Eigenvectors corresponding to Different eigenvelves of A are orthogonal to each offer

Peacl: O(A 21 = 4A 71, 20 get Ker A ET RE Ker A* ET acker (A-LI) 67 a e Her (A-JI) = Ker (A"-JI) E> An = In 3 Outpour, Aa 2d2 and Ay2事好, 大声 $\mathcal{L}(x,y) = (Ax, y) = (x, A^*y) = (x, By)$ = p(x,y)as $A \neq P \Rightarrow (a,y) = 0$ The Self-adjoint operator fragerties Suppose A & B(K), A = A" (1) DER => DA is a self-of. 7) A1 t A2 and self-adj-gl (3) If Also A1: A2 = A2 A1 (commute) then A (A z = s. - d. (4) MAn-HM ->0 An acce c. a. When A is self-ordy.

ens = o . f RKS = 0 (A, Az) = Az A, = AZAI=AIAZ Proof: Exercise.

Id. het 4 & B(H) the quardratic form of A 9 A (21) = (A 2, 2) 9A: H->1F If A is s-a then $(An, x) = (n, An) = \overline{(An, n)}$ 20 (An, n) e R flow het # = 0 Then A = A 6> 9 A (a) - R, tack Proof: (5) have alway fronts (Aa, x) = (Ha, 2) = (21, Ax) We went to prace 4 (n, y) =4(a, Ay) But 4(* x Ag) = (K(a+y) A(2+y)) -- (K(x-y), A(x-y)) + gi(A (x+iy), An+iy) - i(A(2-iy), A(n-iy))

Corollary If A = A"

then all its eigenvalues are real,
and eigenfunctions were spending to
Different eigenvalues are orthogonal
to each other.

Polorization Polorization for operator

03/12/12

Proof Suppose, A = >x. The 2nd St.: Then $\chi = \frac{(A \eta, 2)}{\|2\|^2} \in \mathbb{R}$ (exthagonality wee I has leea proper An Duppose, PEB(1) is a projection for normal A. I self adj ace nernal (1) P is s. a. (2) P is normal (3) Ran P = (Kex P) + (4)(Px,x) = 11Px112, 4xch Proof: (i) => (ii) odniens (ii) => (iii) for nound oferators me have: Ker P = (Rom P) ". (Ker P) = Ran P = Rom P rince Pis a projection $\left(\begin{array}{c} (\widetilde{u}i) => (\widetilde{1}) \end{array}\right)$ Poker P)= Ray (I-A)+ Recall: Ron ? = Ker(I-P) = Ran (I-P)+ Junforce, (F-P) (= (Px, Py) + (I-P/x, Py) = (x, Py) 20 P is symmettice (= all adjoint) (iii) => (iv)

Ker $A = \{0\}$ and Ron A is closed Suppose, $x \in (Ran(A))^{\perp}$ Then (A = 1, x) = 0 so x = 0Thus $(Ran A)^{\perp} = \{0\}^{\perp}$ and $(Ran A)^{\perp} = \{0\}^{\perp} = H$ Ron $A = \{0\}^{\perp} = H$

the ineq.

11 A ' 1 & & Collows from 4 that Let $A \in B(H)$. the following set is called the numerical range of ANum A: = 4 (A a, n), 1121 = 1 {= $= \left\{ \begin{array}{c} (A\pi, 2) \\ ||x||^2 \end{array} \right\} \pi \in \mathcal{U} \setminus \{0\}$ Remark ! Num A is comulex 2. Num A C Bc (0, 1/44) the o(A) c Num A Proof: Suppose × & Num A => 3 d = d(x, Num A) >0 o.t. FXEN 1 404 ratifies $\left|\frac{(A\pi, \pi)}{\|\pi\|^2} - \lambda\right| \geq 0$ Therefore $|(Ax, n) - \lambda(x, x)| \ge d |(x|)^2$ $1\left(\left(A-\lambda J\right) \approx \alpha, \alpha\right) \mid \geq d \| \times \|^2$... by prev. π . $A-\lambda J \approx i n e$, 50 7 € p(A) Therefore o(A) < Num A I then $|A| = \sup_{|x|=1} |(Ax, x)|$ Paroet: Put C:= sup 1(An, 2)/

if years & A

Num A is not always closed.

Then c = sup 1/4211-11/2/1 = 1/411
c.-8. /21/21 C:= sup ((=, 2)) = 30 het us prove that MAN & c or 240 [A(2,2)] MARINE C for each nay = 1 (A(x=y), 2+y) - (A(x-y), 2-y)= = 2(Ay, a) + 2 (A x,y) = = 2 (A x,y) + (Ax,y)] = 4 Re [(Ax,y)] (A2,2) < C Theaten, 4 Re [(A 2,y)] = C || 21 + y ||^2 + C || 21 - y ||^2 = 1 + law | 2 + C || 2 Por law (24×112 +211412) = 40 Suppose, Ax=0, Then NAxH & & suppose, Axx0 i.c. 1(Ax11 > 0 then nee put y = Ax and get: Refta, y) & c 11 A211 = 14 211 20 NARY & C Q.ED. Th. Lt A=A*

The het A = APut $M = \inf_{\|x\|^2} (Ax, x)$ wish $= \inf_{\|x\|^2} (Ax, x)$ $= \inf_{\|x\|^2} (Ax, x)$ $M = \sup_{\|y\|^2} (Ax, x)$ Therefore

(1) J(A) C[m, M] (2) m, M ∈ 5 (A) Preef. (1) We have proved that Nan A = [m, m] and therefore o(A) c [m, m] (2) - L 2 = MIH Put $\lambda = \frac{m+M}{2}$ Dende B = A - & I (B = 0. adj.) then, Put (Bx, x) = m-1 = m-1 =-B and sup = 1 (B2, 2) = M - x = B then $\sup_{\|x\|=1} |(Bx, x)| = \beta$ send the peec. Theorem implies 1(731 - 1) There exists a siquence x = M, s.t. 1(an 11 = 1 and (Bxn, xn) -> B then 1(B-BI) an 1=(B-BI) xa, (B-BI)xa) = 113 xul 2+ p 211 2/12 -2B (B xu, x) = € 2 B2 - 2 B4 (Bx, xx) = 0 >B BSALVI Claim : Herefore, (B-p I) cannot house

or of an miller

an A > 0. a

d I i 1. a

Suppose not;
$$(B - \beta I)^{-1} = R^{-1}$$
 founded

Then $1 = ||A|| = ||R|| (B - \beta J) ||A|| ||B - \beta J|| ||A|| |$

Corollary Let
$$A = A^*$$
then $3 > 6 = 6 (A) = 24$.
$$|\lambda| = ||A||$$

In particular, r(A) = 1/A 1

IL Suppose A is normal
then
$$||A|| = \Gamma(A) = Sup_1 |(A x, x)|$$

The (Glibert - Schmidt) Suppose, A = A" is compact then I am arthonormal set 1en 1 = 1 27. NE INU (+00) Aln= Inen ared Yx & yl has a Decomposition 1 cn = (2 en) x = Z cnenty = t y & Ker A and Moreover, $\sigma(A) \setminus \{0\} = \bigcup_{n=1}^{N} A_n \subset \mathbb{R}$ $|\lambda_{n+1}| \leq |\lambda_n|$ and lin 2n =0 if N = +90 Proof: A is compact, so = finite or infinite set o(A) \ {39 is at most countable can le finit/infinit and consists of points pre, Mz, Mz, Mg, ... 1 My if more infinil him m=0, 2 different pre-s on otthogonal M13/12/1/2/1/2/20 Since A-A*, pro EM Denote by Nx the eigenspace corresponding A=A" to per., Jim Nr 2 +00 Your on orthonormal basis of each No and write the resulting collection of vectors in a sequence {enlass (so that elements of Nr come before elements of Nr+1)

Show A en = xxen for xxe (Mx). Denote L= span lluln=1 dains Ker A = L Proof: Ker A C L mice each 2
eigenfunctions corresponding to different
engenwalues are extragonal

Ker A D L + Suppose, yelt, then $(Ay, ex) = (y, Aex) = \lambda x (g, ex) = 0$ So Age L', thus L' is imediant under A. Consider $B = A / L^2$ B is compact. B has no non-yero eigenealue (since if $Bx = \lambda x$, $\Rightarrow x = \lambda x$, and by construction $x \in L$) Therefore 5 (B) has no non-zero point. Since B is compact, any non-jero point in the spectrum is an engineeline so 5(B) = 104, and r(D) =0, and Therefore, 2 + = Ker A and $K = L \oplus Ker A$

A is compact

B has no allowed

to how non-yes

eigenvalue.