MATH0072 Riemannian Geometry Notes

Based on the 2018 autumn lectures by Dr J Lotay

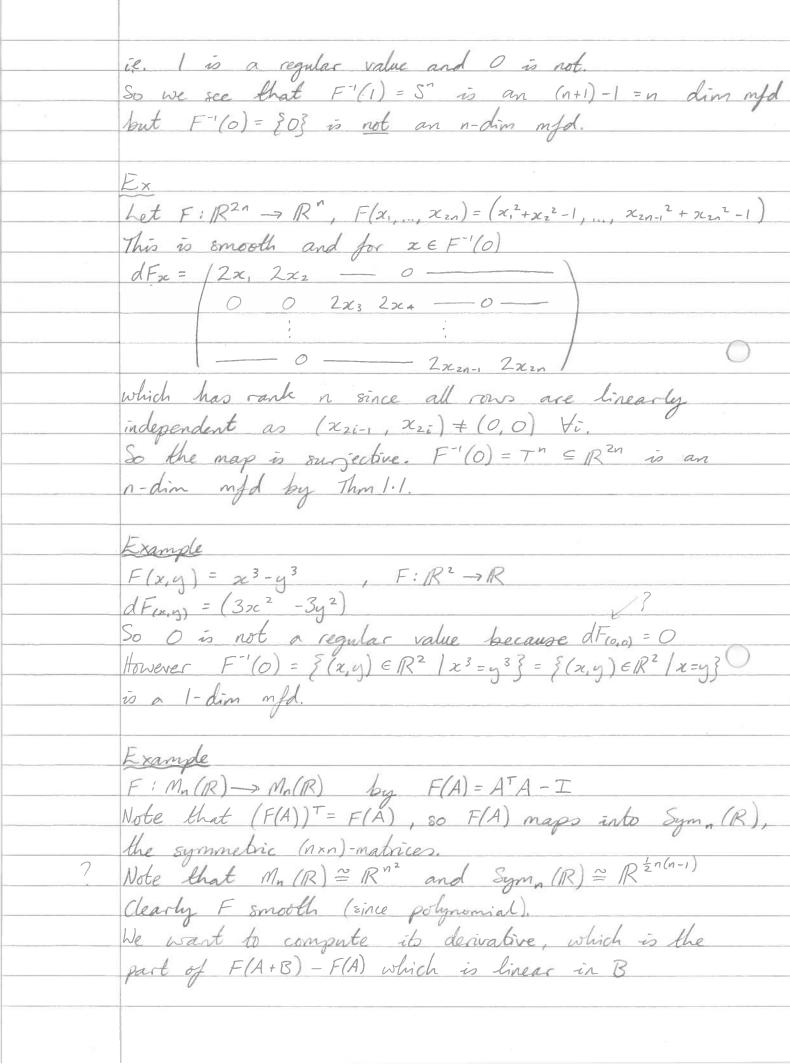
The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

MATH0072	
04 10 18	
04-10-18	Riemannian Geometry - Felix Schulze room 607
	4
	Office hour Thursday 12:45 - 1:45
	Do Carmo Boolhby
	Notes online - print them! Use both!
0	3 hasis are des - 21.
	3 basic examples in 2d:
	· sphere S2 (+ve by curved) = = x2+y2
	· flat plane R ² (flat) · sphere S ² (+ve by curved) \ \tau \ \tau = \tau^2 + y^2 · hyperbolic space H1 ² (-vely curved) \ \tau \ \tau = \tau^2 - y^2
	Objects:
	· geodesics (shortest paths between points) Length minimisers inf { length of all paths a ~> 6}
	· curvature (asea of small triangles = geodesic sides)
0	- fat (bigger than in flat space I sum of angles > 17)
	- fat (bigger than in flat space (sum of angles > 71) = positive curvature
	- this (smaller than in flat space / sum of angles < π) ≃ regative curvature &
	= regative curvature A
	Idea:
	local geometry => reobrictions on global geometry
	Let M be an n-dim manifold, K its curvature, Here are some example statements: If K < 0 then M is essentially R" topologically (Cartan-Hadamard thm)
	Here are some example statements:
	· If K < O then M is essentially R" topologically
	(Cartan-Hadamard thm)

· If K > S > O then M has finite diameter

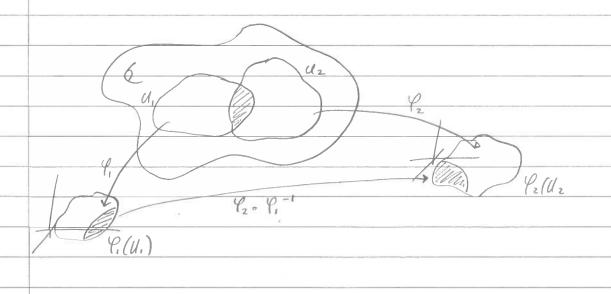
(and is therefore compact | and there are only

finitely many distinct closed loops (Bonnet-Myers thm).


(se. fundamental group is finitely generated). · If a < K ≤ 1 then M is essentially the is universe n-dim sphere S" topologically (sphere thm) §1 Manifolds (def": & examples) First fake def"
A manifold is a natural notion of a smooth object. For is a 2-dim manifold. [dimension = how many coords needed to describe each]

The upper half plane $H^2 = \{(x_1, x_2) \in \mathbb{R}^2 \mid x_2 \ge 0\}$ is a 2-din manifold. · Similarly H" = {(24, ..., xn) ∈ R² / 26n > 0} is an n-dim manifold. The unit disc B2 = {(24, x2) ER2 | 262 + x22 < 1} is a 2-din manifold · Similarly B" = {(x, m, xn) ∈ R" | £ 212 21} is an n-dim manifold. · The n-dim sphere $S^n = \{(x_1,...,x_{n+1}) \in \mathbb{R}^{n+1} | \underbrace{\mathbb{Z}_{x_i}}^2 = 1\}$ is an n-dim manifold · The torus {(2+coo)cost, (2+coo)sind, sino) & R3/0, pek is a 2-din manifold The n-dim torus Tn= {(coo, sino, coo, sino, coo, sino,) | onduct of a circles.

MATH 0072	
04-10-18	
	§1.2 some non-examples
	2nd Jake definition
	An n-dim manifold is something which locally "looks like" IR".
	"looks like IK".
	non-examples of marifolds
	· A cube · The closed disc in R2
	$\{x \in \mathbb{R}^2 : x \leq 1\}$
0	The hyperboloid of one sheet $\{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 - x_3^2 = 1\}$
	and the hyperboloid of two sheets
	$\begin{cases} (x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 - x_3^2 = -1 \end{cases}$ are 1-dim manifolds, but
	$\{(x_1, x_1, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 - x_3^2 = 0\}$ is a cone
	and not a manifold since it is not smooth at O.
0	\$1.3 More advanced examples of mfds.
	Ex
	$M_n(R)$ real non matrices $(1 (D) - 8 A c M(R) 1 (A) + D^3$
	$GL_n(R) = \{A \in M_n(R) det(A) \neq 0\}$ $SL_n(R) = \{A \in M_n(R) det(A) = 1\}$
	Note det(AB) = det(A)det(B), I in both, so both groups.
	Claim GLn(R) is a n2-dim manifold.
	GLn(R) is a n²-dim manifold. SLn(R) is a (n²-1)-dim manifold.


Let I be the identity natrix in $M_n(R)$ Then O(n) = { A & M, (R) | ATA = I} SO(n) = { A ∈ Mn (R) | ATA = I, det(A) = 1} Again note both of these sets are groups since I is in both and $(AB)^{T}(AB) = B^{T}A^{T}AB = B^{T}IB = I$ Then O(n) and SO(n) are \(\frac{1}{2}n(n-1) \) dim manifolds $SU(2) = \{(a \ b) : a, b \in \mathbb{C}, |a|^2 + |b|^2 = 1\}$ This is a group and a 3-dim manifold. In general, we have the special unitary group $SU(n) = \{A \in M_n(\mathbb{C}) \mid \overline{A}^{\intercal}A = I, \det(A) = i\} \leftarrow \dim n^2 - i$ $U(n) = \{A \in M_n(\mathbb{C}) \mid \overline{A}^{\intercal}A = I\} \leftarrow \dim n^2$ Remark
These examples given in terms of matrices are all
examples which are groups. In fact these are
almost the def of a Lie group
in group with manifold structure
s.t. group structure is compatible
with the manifold A bit more interesting: Let RP" be the space of straight lines in R"+1 through O. Then RP" is the real projective n-space and it is an n-dim manifold. Equivalently we can say RP^n is the quotient of $R^{n+1} \setminus \{0\}$ by the equivalence relation x = y if $x = \lambda y$ for some $\lambda \in R$.

MATH 0072	
05-10-18	
N. Control	Hence one can denote points in IRIP" by equivalence dances [x].
	We have to is a 2n-dim mfd.
	We consider CP" the set of complex lines in C"+1 through O. This is a 2n-dim mfd called the
	complex projective n-space.
	More explicitly, CP" is the quotient of C"+1\{0}
0	by the equivalence relation z~w if z= Iw for
	More explicitly, CP" is the quotient of C"+1\{0}\} by the equivalence relation $z \sim \omega$ if $z = \lambda \omega$ for some $\lambda \in C$. We denote points in CP" by equivalence
	danes [Z].
	§ 1.4 Constructing mfds, regular values.
	Let $F: \mathbb{R}^n \to \mathbb{R}^m$, written $F(x) = (F_i(x),, F_n(x)),$
	then $dF_p = \left(\frac{\partial F_i}{\partial x_i}\right)_{i=1,\dots,m}$
	j = 1j,n
0	Thm 1.1 (Regular value thm)
	Let F: R " > R" be a smooth map, and suppose that
	∀ ρ∈ F'(c), where F'(c) = {ρ∈ R n+m F(ρ)=c} ≠ Ø
	golds the derivative dFp: Rn+m -> Rm is surjective & pEF-(c)
	ie. c is a regular value of F.
	Then F'(c) is an n-dim manifold.
	Examples
	Let $F: \mathbb{R}^{n+1} \to \mathbb{R}$ be $F(x_1, \dots, x_{n+1}) = \sum_{i=1}^{n+1} \pi_i^2$
	Note dFx = (2x,, 2xn+1)
	If $x \in F'(1)$ then $dF_x \neq 0$, but if $x \in F'(0)$
	then dFx = 0.

MATH 0072 05-10-18 So we see $F(A+B) - F(A) = (A+B)^{T}(A+B) - A^{T}A$ $= B^{T}A + A^{T}B + B^{T}B$ linear in B quadratic in B Hence $|F(A+B) - F(A) - (B^TA + A^TB)| = |B^TB| \rightarrow 0$ |B| |B| |B|as $|B| \rightarrow 0$, so $|AF_A(B)| = |B^TA + A^TB|$. If $C \in Sym_n(R)$ and $A \in F^{-1}(0)$ then $dF_A(\frac{1}{2}AC) = C$. $So Thm!! \Rightarrow O(n) = F'(0) is an n^2 - \frac{1}{2}n(n+1) = \frac{1}{2}n(n-1)$ dimensional mfd. \$1.5 The formal definition Key points · "aboloact objects" e.g. the bows in R3 we know from geometry is the same" as T'= S'xS' = R4 · smooth geometric objects: sphere OK / come not OK X · objects on which we can measure how quantities change from point to point, is we can differentiate. Def 1.2

An n-dim mfd is a (seperable / second countable) metric space M st. there exists a family $A = \{(u_i, q_i) : i \in I\}$ where · U: CM is open and UUi = M · 4: : Ui -> R" are continuous bijections onto open sets P.(Ui) with continuous inverse (i.e. homeomorphisms) · Whenever linl; + \$, the bransition map 4: · Pi (Uin U;) -> P; (Uin U;) is a smooth (infinitely diff.) bijection with smooth inverse (i.e. a diffeomorphism).

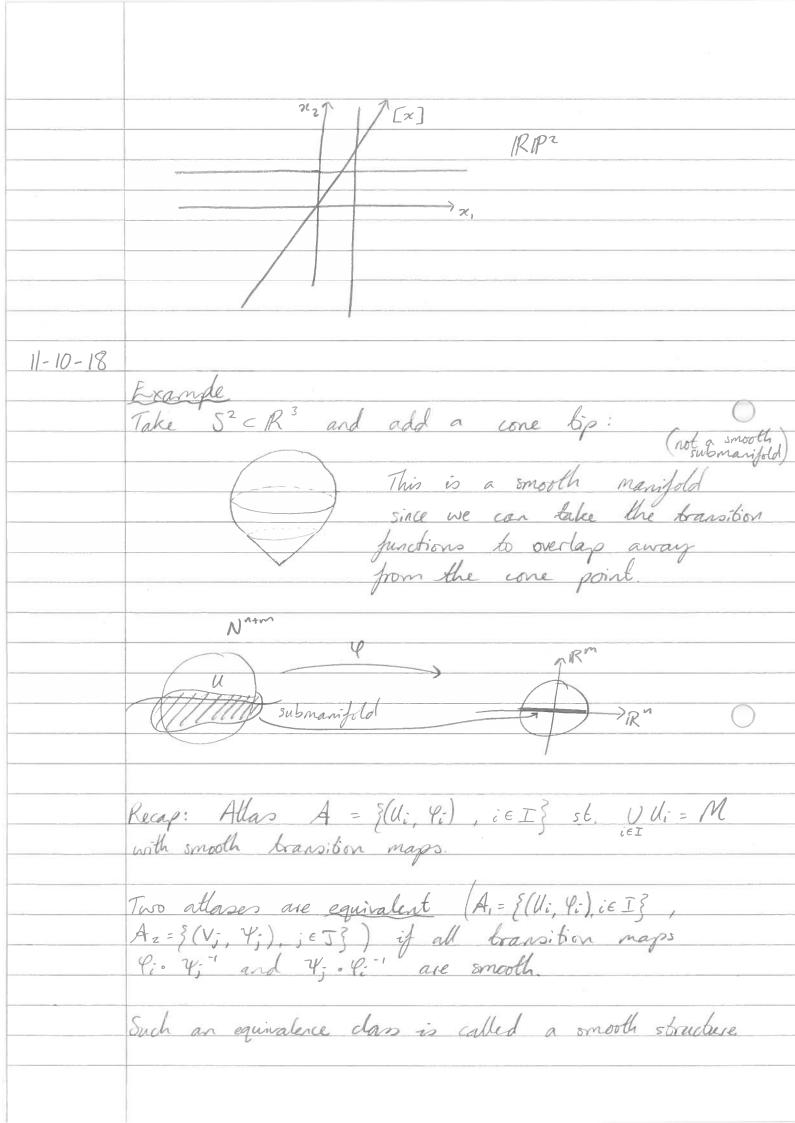
The family A is called an atlas and the pairs (Ui, Pi) are called coordinate charts.

Remark
Separable means there is a countable dense subset.

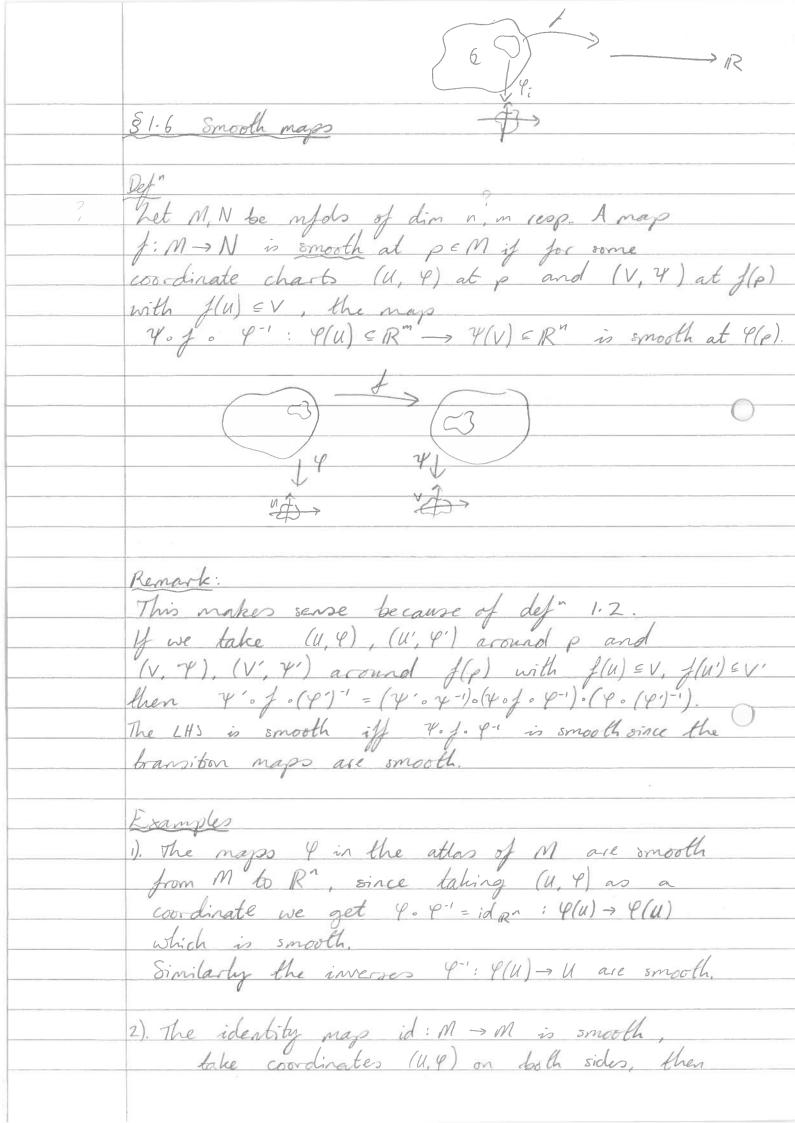
e.g. for \mathbb{R}^n take \mathbb{Q}^n [since $\mathbb{Q}^n = \mathbb{R}^n$]
Second countable means there is a collection of open sets which form a basis for all open sets.

e.g. for \mathbb{R}^n take balls $B_r(x)$ with $x \in \mathbb{Q}^n$, $r \in \mathbb{Q}^+$.

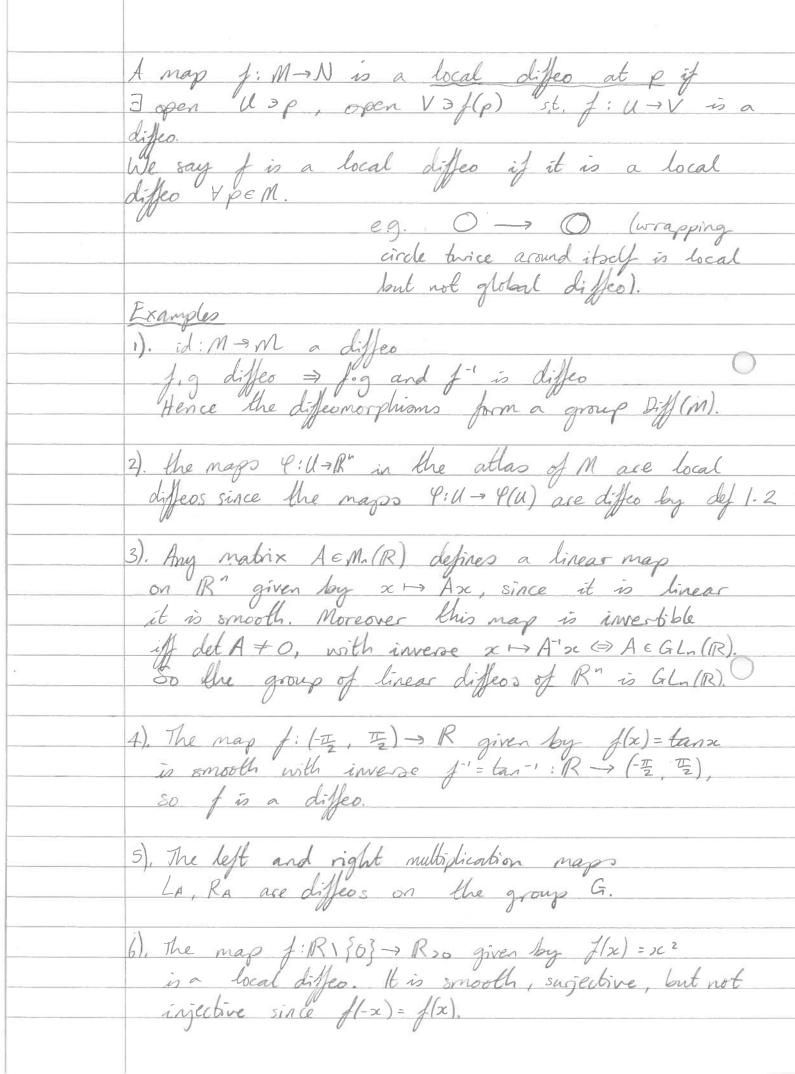
R' is a manifold.


Take $U_i = R^n$ and $\ell_i = Id$.

Same works for any open $\Omega \subset R^n$.


In fact, any open subset U of a manifold M is a manifold of the same dimension - take the atlas $\{U_i \cap U, Y_{i|u}\}$: $i \in I\}$ if $\{(U_i, Y_i) : i \in I\}$ is an atlas for M. $\Rightarrow GL_n(R)$, $M_n(R)$, $GL_n^+(R)$ are n^2 -dim $m_f ds$.

MATH 0072 05-10-18 Consider S. Let N = (0, ..., 0, 1) and S = (0, ..., 0, -1) be the "North" and "South" poles. Let UN = 5" \ {N}, Us = 5" \ {S}. Let $\Psi_N: U_N \to \mathbb{R}^n$, $\Psi_N(x) = (x_1, \dots, x_n)$ and $\ell_s: \mathcal{U}_s \to \mathbb{R}^n$, $\ell_s(x) = (x_1, \dots, x_n)$ (These are stereographic projections) We have explicit inverses $\frac{(y)^{2}}{(y)^{2}} = \left(\frac{2y_{1}}{1+|y|^{2}}, \frac{2y_{n}}{1+|y|^{2}}, \frac{|y|^{2}-1}{1+|y|^{2}}\right)$ $4s^{-1}(y) = \frac{2y_1}{1+|y|^2}, \dots, \frac{2y_n}{1+|y|^2}, \frac{1-|y|^2}{1+|y|^2}$ So PN, Ps are clearly homeomorphisms. · UN n Us = 5 1 { N, S}, PN (UN n Us) = R" 1 { 0} and 45.4": R" 1803 - R" 1803 is 450 (N (y) = 4 which is a diffeo because it is smooth if y + 0 and it is its own inverse. : by Defo 1.2, 5" is an n-dim mfd. For RP we have the following atlas


For i=1, ..., n+1 let $U_i = \{ (x_i, ..., x_{n+1}) \in \mathbb{RP}^n : x_i \neq 0 \}$ · We define P: Ui -> R" by $\mathcal{L}\left(\left[x\right]\right) = \left(\frac{\chi_{i}}{\chi_{i}}, \dots, \frac{\chi_{i-1}}{\chi_{i}}, \frac{\chi_{i+1}}{\chi_{i}}, \dots, \frac{\chi_{n+1}}{\chi_{n+1}}\right)$ Then the conditions of Def" 1.2 are satisfied for $\{(U_i, Y_i): i=1, ..., n+1\}$ and \mathbb{RP}^n is an n-dim m fd.

MATH 0072	
11-10-18	
	Thm 1.1 (Regular Value Thm)
	Let F: Rn+m -> Rm be smooth and suppose
	that $\forall \rho \in F^{-1}(c) \neq \emptyset$ the derivative $dF_{\rho}: \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{m}$
	is surjective. Then F'(c) is a smooth n-dim (submanifold
	of Rn+m
	Proof level set
	· By the Implicit Function Than, $\forall \rho \in F'(c)$ there
	exists a splitting $R^{n+m} = R^n \times R^m = \ker dF_p \times R^m$ such that if $p = (a, b)$ with this splitting, then there exist open sets
	such that if p=(a, b) wrt this splitting,
	then there exist open sets
	a E Vp SIR, b E Wp = IR and a smooth map we
	Gp: Vp -> We with Gp(a) = b st
La l'estate	F'(c) n (Vp x Wp) = {(a, Gp(q)): q = Vp}
	[writing as graph over tangent space].
	Let Up = F(c) n(Ve x We) which is (relatively) open
	Let $U_p = F'(c) n(V_p \times W_p)$ which is (relatively) open and $U U_p = F''(c)$ since $p \in U_p$.
	· $\forall p \in F^{-1}(c)$ let $P_p: U_p \rightarrow V_p \subseteq \mathbb{R}^n$ be given by
<u> </u>	$\mathcal{L}_{p}\left(q,\mathcal{L}_{p}(q)\right)=q.$
	Then $4p^{-1}(q) = (q, Gp(q))$ is it is a homeomorphism. · Claim: the transition maps $4p \cdot 4p^{-1}$ are smooth (Exercise)
	· Claim: the transition maps Pp. Pp. ace smooth (Exercise)
	Prop 1.3 (proof in notes)
	A surface in R3 is a 2-dim manifold.
	Prop 1.4 (proof in notes)
	Let M be an n-dim (submanifold of Rn+m as defined in
	Let M be an n-dim (sub)manifold of 1Rn+m as defined in Multivariable Analysis. Then M is a smooth n-dim manifold.

MATHOO72	
11 10 10	
11-10-18	
	4. idm. 4. = idqu) is smooth.
	necessary since smoothers brecessarily equiv.
	3). If M = R" is a submanifold then the
	restriction of any mostly was on R" to M
	is the second of
	4. idm. 9" = idequ) is smooth. necessary since smoothness on Mand in R. necessary since smoothness of Mand in R. necessary since smoothness of Mand in R. necessary since smoothness of Mand in R.
	11 NC 0 M . # 1 . 1.11 / 11
	If N= K is a smooth submanifold and the map
	f: R → R is smooth st. f(M) = N, then
	If $N \subseteq \mathbb{R}^m$ is a smooth submanifold and the map $f: \mathbb{R}^n \to \mathbb{R}^m$ is smooth st. $f(M) \subseteq \mathbb{N}$, then the restriction $f: M \to \mathbb{N}$ is smooth.
0	This is very helpful:
	i.e. take $f: \mathbb{R}^4 \to \mathbb{R}^3$,
	$f(x_0, x_1, x_2, x_3) = (x_0^2 + x_1^2 - x_2^2 - x_3^2, 2x_0x_3 - 2x_1x_2, 2x_1x_3 - 2x_0x_2)$
	which is smooth and $f(S^3) \subset S^2$.
	The restriction f: 53 -> 82 is smooth.
	4). Take G to be any of the groups of matrices we discussed, the multiplication map M: G x G -> G
	we discussed, the multiplication map m: G x G -> G
	given by m(A,B) = AB and the inversion map
	i: G -> G given by i(A) = A' are smooth.
0	
	$A^{-1} = \frac{1}{\det A} A^{\#}$
10	
12-10-18	
	Recall: f:M->N smooth (>> peVpcM, f(p) EUger CN,
	(Vp, 4), (Ufip), 4) the map 4. j. 4" is smooth.
	Defr 1.6
	A map f:M -> N is a diffeomorphism if it is a smooth bijection with smooth inverse.
	I // I// III III
	Then the manifolds are called diffeomorphic.

MATH 0072	
12-10-18	
-	81.7 Quotient constructions
	D h i a
	Def 1.7
	A group to acts on a manifold M by differs if
	knese is a homeomorphism (> Diff(M),
	A group G acts on a manifold M by differs if these is a homeomorphism G > Diff(M), ie. $\forall g \in G$ these exists for differ on M st.
	$f_3 \circ f_h = f_{3h} \forall g, h \in G.$
	Let G be a discrete ama le a brite
0	Let G be a discrete group (i.e. a finite group) or zone other countable group) acting by
	diffeos on M. We say that G act freely and
	properly discontinuously if
	· UpeM 3 open Vap with Vnfs(V) = & Vg = e.
	· Yp, q em with p + fg(q) Yg & G, Fopen Vap and
	open W3g with Vnfg(W)=& VgEG
+	Ihm 1.8
	het M be an n-dim manifold and G a discrete
	group acting freely and properly discontinuously
	on M by differs. Define an equivalence relation
	group acting freely and properly discontinuously on M by differs. Define an equivalence relation on M by $\rho \sim q \iff q = f_0(\rho)$ for some $g \in G$. Then the quotient space $M/n = M/G$ is an
	Then the quotient space M/2 = M/6 is an
	n-din manifold.
	Don't
	· Let {(Vi, Yi): i ∈ I} be an atlas of M s.t.
	Vinfg(Vi) = & Vg e G.
	Let TI: M -> M/G be the projection map, which
	is an open map.
	Then Ui = TI(Vi) is open, UUi = M/G
	· Since T: = T/V: Vi -> Vi is a homeomorphism, so
	[open & injective => inverse is continuous]

We can define li= Vio Ti': U: -> Vi(Vi) = R" which is a homeo. · If lind; +&, then Li (Uin U;) = V; OT (Uin U;) = 4: (V: n TI-1(U;)) = Vi(Vin U fo(Vi)) which is a disjoint union of open sets and dearly 4; o 4; is a homeo, so it suffices to show that 4504" is smooth Let p∈ P: (linli). Then 3! g∈ G st PEW = 4(Vinfo(Vi)). Then Y: (W) = Vinfo (V;) and Po Pilu= Y; OTI; OTI O Ti O Y: 1/W It is enough to show that Ti'o Ti is smooth on V= Vinfg(V;). If $g \in V$ and $g' = \pi_{j}^{-1} \circ \pi_{i}(g) \in V_{j}$ $\Rightarrow \pi_j(q') = \pi_i(q) \Rightarrow \exists g_q \in G \text{ s.t. } f_g(q') = q$ $\Rightarrow q \in f_{g_q}(V_i) \cap f_g(V_i) \Rightarrow g_q = g$ and hence $\pi_i^{-1} \circ \pi_i \mid_{V} = f_{g_q}^{-1} \mid_{V}$ which is smooth. Examples 1). Let Z2 = 31,-13 act on R" via f=id, f-,=-id. Clearly -id is a differ, but the action is not free since O is fixed. Claim: Zz octs freely and prop. discout, on R' {0}. Let >c = (x1, ..., >cn) ∈ R 1 {0} and >i ≠ i Trest We have $V_n - V = \emptyset$ ei $f \approx \mathbb{R}^n \setminus \{0\}$ with $y \neq x, y \neq -x$ yi + xi, y; +-xi +13 + 12 + 26

MATHOO +2	
12-10-18	
	V. W open. Vall = & Wall = &
	V, W open, VnW = &, Wn-V = & 3 Z acts freely and prop. discont. on R ⁷ 1 {0}.
	pergare prop. ascorn. on p. 170).
	Hence it act tooles and prop discort on any submarially
	Hence it acts freely and prop discont, on any submanifely $M \subset \mathbb{R}^n \setminus \{0\}$ st. $-M = M$.
	Examples
(0	0 & S" and - S" = S" 80 S" / = RP"
per also	(b) 0 is not in the cylinder C= {(x,y,z): x2+y2=1, -1 < 2<1}
Klein?	(b) O is not in the cylinder C= {(x,y,z): x2+y2=1, -1 < 2<13} and -C=C, hence C/z is a 2-dim mfd
	called the Möbius band
(c) Similarly Z = acts freely and prop. discont. on T2 CR3
	and hence $T^2/2$ is a 2-dim manifold called the
EV, &	Klein bottle.
	Example
	Let $a = (a_1,, a_n) \in \mathbb{Z}^n$, define $f : \mathbb{R}^n \to \mathbb{R}$
	Dy fa (x,, 26n) = (26+a,, 26n+an).
	This gives a homeo from Z" - Diff (R") by a ref. Which is free and prop. discont.
	Which is free and prop. discont.
	Then R'/2" is an n-dim mfd, called the
	r-dim torus T".
	§2 Targent vectors
	SZ rangem vernors
	§2. Tangent vectors and regular values
	5 - Janger Veron Sugar (emiles valle)
	Let $\alpha: R \to R^2$ (or R^n) be a curve.
	The tangent vector to a can be calculated
	via $\alpha(t) = (\alpha, (t), \alpha_2(t))$ and then taking derivative
	$\alpha'(t) = (\alpha'_i(t), \alpha'_i(t)).$
	$\alpha(t) = \alpha(t_0) + \alpha'(t_0)(t-t_0) + o((t-t_0)^2)$

Assume M2 c R3 is a 2-dim surface, pEM. Then a largest vector at p is given by a curve $\alpha \cdot (-\xi, \xi) \rightarrow M$, $\alpha(0) = p$ and we take the tangent vector as a'(0). Let M" c R"+m be an n-dim (sub) manifold. Propⁿ
Let F: R^{n+m} -> R^m be smooth, ca regular value of F st. M=F'(c) ≠ g. Then & peM, TpM = KerdFp. Let $p \in M = F'(c)$ and $x = \alpha curve$ through p. Then $F(\alpha(t)) = c$ since $\alpha(t) \in M = F'(c)$. Differentiating gives $\frac{d}{dt}F(x(t)) = 0$. Chain rule at t=0: $dF_{\alpha(0)}(\alpha'(0)) = dF_{\beta}(\alpha'(0)) = 0.$ => TpM = KerdFp. Note dim TpM = n and dim KerdFp = n+m-m=n => TpM = KerdFp. $f: \mathbb{R}^n \to \mathbb{R}$, $df = (\partial_1 f, \dots, \partial_n f)$ Examples
(i) $S^n = F'(0)$, $F(x) = \sum_{i=1}^{n+1} x_i^2 - 1$ $dF_x = (2x_1, ..., 2x_{n+1})$ So $Ker dF_x = \{y \in \mathbb{R}^{n+1} : \langle y, x \rangle = 0\} = \langle x \rangle^{\frac{1}{2}}$

MATH 0072 12-10-18 2). Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be smooth and let F(x,y) = f(x) - y. (Level set at 0 is graph of f) $dF_{(x,y)} = (df_x - I)$ $\Rightarrow F^{-1}(0) = graph(f) = \{(x, f(x)) : x \in \mathbb{R}^n\}$ is an n-dim manifold. We also get $\ker dF_{(x,y)} = \{(u,v) \in \mathbb{R}^{n+m} : df_{\infty}(u) = v\}$ $= \operatorname{graph}(df_{\infty}).$ $\Rightarrow T_{(x,f(x))} \operatorname{Graph}(f) \cong \operatorname{Graph}(df_{\infty}) \subseteq \mathbb{R}^{n+m}.$ 3) Consider SL(n,R) = {A ∈ Mn (R) | detA=1} is F'(0) where F: Mn(R) -> R is given by F(A) = det A - 1. Assuming det A + 0, we can unite F(A+B) - F(A) = det(A+B) - det(A) = det (A(I + A-B)) - det (A) = det (A) (det (I + A'B)) - det(A) By expanding: det (I + A-1B) = 1 + br (A-1B) + o(1B12) [A ∈ SLn(R)] => dFA(B) = br(A-B) For $A \in SL_n(\mathbb{R})$ this is non zero since $dF_A(A) = br(I) = n$ Thus by Thm 1.1 we have that SLn (R) is an Thus my I_{R} . n^2-1 dim Mfd.

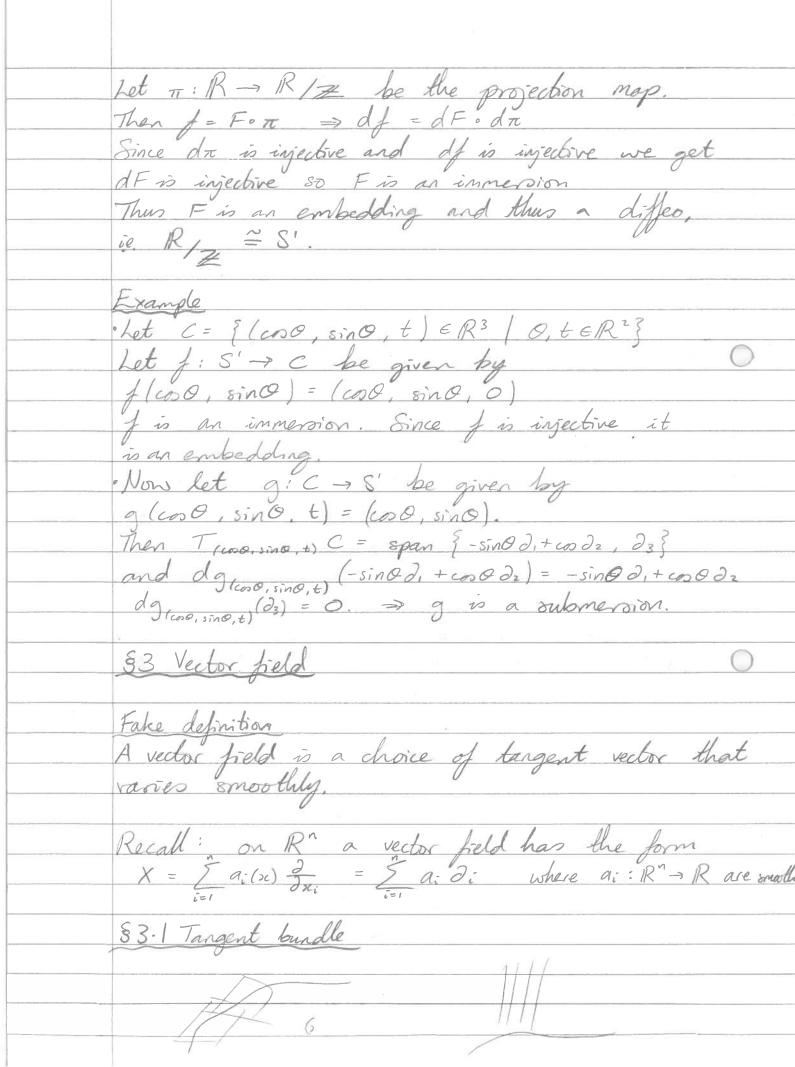
Moreover $T_ASL_n(R) = \{B \in M_n(R) | t_r(A^{-1}B) = 0\}$ $\Rightarrow T_TSL_n(R) = \{B \in M_n(R) | t_r(B) = 0\} = st_n(R)$ (Lie algebra is target space) Example Let C = {(x,y, z) \in 12 | x2 + y2 = z2} then the curves (t, 0, t), (0, t, t) are in C and have targent vectors
(1,0,1) and (0,1,1) at zero.

However $(1,-1,0)=(1,0,1)-(0,1,1)\in Spans(1,0,1),(0,1,1)$ is not in the tangent space to C at zero. So C can't be a 2-dim submanifold of \mathbb{R}^3 . \$2.2 Tangent vectors as differential operators 18-10-18 Assume $\alpha: R \to R^2$ through $\rho \in R^2$, and $f: R^2 \to R$ smooth. $\Rightarrow f \cdot \alpha: R \to R$ smooth. Differentiating at O, $(\alpha(0) = p)$, we get $(f \circ \alpha)'(0) = \frac{\partial f}{\partial \alpha_1}(p) \alpha_1'(0) + \frac{\partial f}{\partial \alpha_2}(p) \alpha_2'(0)$ We get a map $f \mapsto (f \circ \alpha)'(0)$ from $C^{\infty}(\mathbb{R}^2) \to \mathbb{R}$ given by $f \mapsto (\alpha'(0) \frac{\partial}{\partial x_1}|_{\mathcal{P}}) + \alpha'(0) \frac{\partial}{\partial x_2}|_{\mathcal{P}}) f$ which is a differential operator acting on functions. Can think of $\{\frac{\partial}{\partial x}|_{p}, \frac{\partial}{\partial x_{1}}\}$ as a basis of a 2-dim vector space and then identify with $\alpha'(0) = (\alpha, '(0), \alpha z'(0)).$ This works also on a myd M: Let a: R -> M a curve st. a(0)=p, f:M→R a smooth function. Let (U, 4) be coordinates around p, and Ψο x(t) = (a,(t), ..., an(t)) ∈ Ψ(u) ⊂ IR". $(f \circ \alpha)'(0) = \frac{d}{dt} (f \circ \alpha)(t) = \frac{d}{d$ $= \frac{d}{dt} \left[(f \cdot \varphi^{-1})(a_1(t), ..., a_n(t)) \right]$ $= \underbrace{\sum_{j=1}^{n} a'_{j}(0) \underbrace{\partial (f \cdot \varphi^{-1})}_{\partial x_{j}}}_{(j)} = \underbrace{\sum_{j=1}^{n} a'_{j}(0) \underbrace{\partial ||}_{\partial x_{j}} ||_{\varphi(p)}}_{(p)} \left[(f \cdot \varphi^{-1}) \right]$

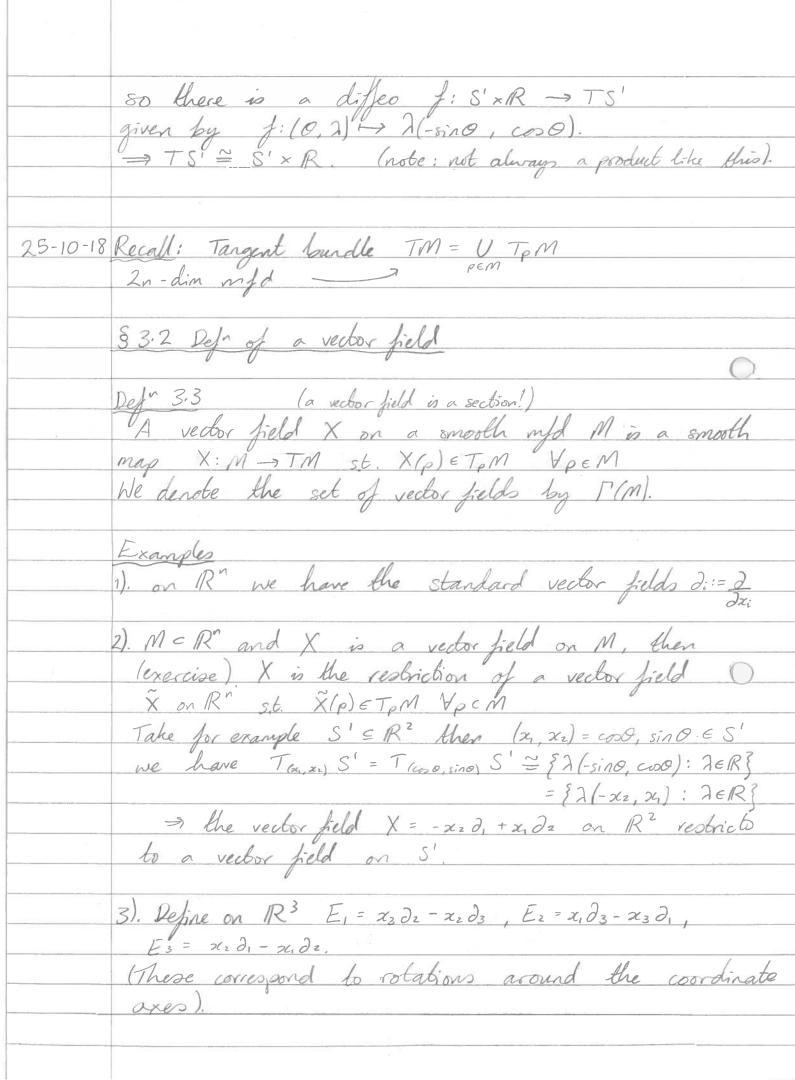
Propⁿ dim (TpM) = n Follows from the observation that given p and a chart (U, Y) around p, we can identify

ToM with linear combinations of $\{\frac{\partial}{\partial x_i}|_{q(p)}\}$ 2.3 Differential Let f: M -> N be smooth. Let X = x'(0) & TpM Then fox is a smooth curve in through f(p). We define the differential of f at p, which is a linear map $df_p: T_pM \rightarrow T_{f(p)}N$ by $df_p(X) = (f_0x)(0)$. Assure X = x'(0) = B'(0). Then we need to show Take a a curve through $p \in M$ and a chart (u, Ψ) around p, then we have a curve a = 40 a in Euclidean space. The curve fox definines $b = \psi \cdot f \circ \alpha$ in Euclidean space where (V, ψ) is a chart around $f(p) \in N$. Then the relationship between the tangent vectors of the curves a and b at 0 is

```
df(0,4)(20) = coocos(2, + coo sin(22 - sino2)
  dfe ) (dq) = -sino sinq d, + sinocos q d2
2). f: Rn -> Tn CR2n
      f(0_1,...,0_n) = (c_00_1, sin0_1, ..., c_00_n, sin0_n)
df(0_1,...,0_n) (\partial \theta_j) = -sin0_j \partial_{2j-1} + c_00_j \partial_{2j}
3). f: S^2 \rightarrow \mathbb{RP}^2 given by f(x) = [x] at (0,0,1) \in \mathcal{U}_s
Let X \in T_{(0,0,1)} S^2, f(0,0,1) = [(0,0,1)] \in \mathcal{U}_s
           where U3 = {[y1, y2, y3] \in RIP2 : y3 \neq 0}.
      Calculate of (e,e,1) (X).
       Recall Ps(0,0,1) = (0,0,0)
      and for (x_1, x_2) \in \mathbb{R}^2 6. t, |x|^2 < 1


(x_1, x_2) = (x_1
                                                                               = \left(\frac{2x_1}{1-|x|^2}, \frac{2x_2}{1-|x|^2}\right)
      = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}
a The identity map id: M-> M satisfies
              didp = id: TpM -> TpM.
B If f: P -> N and g: M -> P are smooth maps
then fog: M -> N satisfies the chain rule
        d(f.g) = df o(p) o dgp
    Exercise. [For b, use (fog)(x(t)) = f(g(x(t)))]
```

MATH0072	
19 10-18	
19-10-18	Example
	1: M→N d-llen
	$\Rightarrow f \circ f = idm, f \circ f' = idu$
	f: M→N differ. ⇒ fif = idm, fof'=idn So by the chain rule,
	d(f-) for off = id, df odf) for = id dpeM.
	So of p: TpM -> Tf(p) N is invertible with inverse
	$(df_{p})^{-1} = d(f^{-1})_{f(p)}$
	\$2.4 Local diffeo.
	P- n 2 Z
	A smooth near t: M > N is a local differ at a
	A smooth map $f: M \to N$ is a local differ at p iff $df_p: T_p M \to T_{f(p)} N$ is an isomorphism.
	Proof
[=	Assume of is a local diffeo at p
	=> 3 U3p open in M and V3f(p) open in N
Million Street	st. f. U - V is a differ.
0 8	By the previous example, of is an isomorphism.
0 0	1 of (11 4) (1 2)
	het (U, Y) , (V, Y) be chart around ρ and $f(\rho)$. Then $dY'_{H\rho}: R'' \to T_{\rho}M$, $dY_{H\rho}: T_{H\rho}N \to R'$
	are isomorphisms since 4' and 4 are local differs.
	=> d(4. j. 4') q(p): R" -> R" is an isomorphism
	by the drain rule.
	By the inverse function them 4 of o 4 - 1 is a
	local diffeo.
	Example
	The map $f: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}^2 \setminus \{0\}$ sabafied
	aferon = (coo - roino) which has full rank (two non
	sino resol varishing vectors which are b)


Example $f: \mathbb{R}^2 \to \mathbb{S}^2$ as before $\frac{df_{(0,\Psi)}}{df_{(0,\Psi)}} = \frac{|\cos\theta_{\cos}\Psi|}{|\cos\theta_{\sin}\Psi|} - \frac{|\cos\theta_{\cos}\Psi|}{|\sin\theta_{\cos}\Psi|}$ $\frac{-\sin\theta_{\cos}\Psi}{|\cos\theta_{\cos}\Psi|} = \frac{|\cos\theta_{\cos}\Psi|}{|\cos\theta_{\cos}\Psi|}$ has full cank if sin0 = 0.

if is a local diffeo but not global. $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(0, \varphi) = ((2+\cos\theta)\cos\varphi, (2+\cos\theta)\sin\varphi, 0)$ has $df(0, \varphi) = (-\sin\theta\cos\varphi, -(2+\cos\theta)\sin\varphi)$ -sino sin 4 (2+coso) cos 4 coso 0 / which always has full ranke, 2 > f is a local diffeo. \$2.5 Regular values Thm 2.8 (Regular value Thm)
Let M be a manifold of dim m+n and
N an manifold of dim m. Suppose f: M -> N
is smooth and let $c \in N$ st. $F'(c) \neq \emptyset$ and afp: TpM -> Typ N is surjective tpEF'(c). Then F'(c) is an n-dim submanifold of M and $T_p(F'(c)) = \ker dF_p \quad \forall p \in F'(c)$.

(YIA) HOO 72	
19-10-18	
	Examples
	1), $F: S^n \to \mathbb{R}$, $F(x_1, \dots, x_{n+1}) = x_{n+1}$.
	Then as a map from R1+1 -> R we have
	dFx = (0,, 0, 1) which is non-zero on
	Tres" except at points where x=(0,,0,±1) is
	when $F(x) = \pm 1$
	=> F-'(c), c 21 is an (n-1)-dim submanifold of sn.
	§ Immeroions, embeddings, submeroions
0	
	Def
	A smooth map f: M -> N is an immersion if
the late.	A smooth map f: M -> N is an immersion if dfo: TpM -> Tfo N is injective & pEM
	(ie, we need dim M < dim N).
	An injective immersion is called an embedding. If $f: M \to N$ is an embedding, then $f(M)$ is a manifold and $f: M \to f(M)$ is a diffeomorphism.
	If f: M - N is an embedding, then f(M) is a
	manifold and f: M -> f(M) is a diffeomorphism.
	A smooth map f: M -> N is called a submersion if dfe: TeM -> Type N is surjective & peM
0	if de: ToM - THON is surjective Y DEM
	and dim N = dim M.
	Example
	$f: \mathbb{R} \to \mathbb{R}^2$, $f(0) = (\cos \theta, \sin \theta)$
	$\Rightarrow df_{\theta}(\partial_{\theta}) = -\sin\theta \partial_{1} + \cos\theta \partial_{2}$
	which is non-zero YOER, so of a is injective
	$\forall \theta \in \mathbb{R} \Rightarrow f$ is an immersion.
	No embedding since \$(0+27) = 1/A)
	No embedding since $f(0+2\pi) = f(\theta)$. Define a free and property discret which it is
	Define a free and property discont action of \mathbb{Z} on \mathbb{R} by $f_n(\theta) = \theta + 2\pi n \forall n \in \mathbb{Z} \forall \theta \in \mathbb{R}$
	Then the man F: R/> R2 give her
	Then the map $F: R/Z \rightarrow R^2$ given by $F([0]) = f(0)$ is well-defined and is injective.
	the first with the might be the

MATHOO72	
19-10-18	
	Def"
	The targest bundle TM of M is given by
	The tangent bundle TM of M is given by TM = UTpM.
	perm
	Thm
	The targent burdle TM is a 2n-dim manifold 5.6,
	· there exists a smooth surjective map To: TM -> M s.E.
	· Ti'(p) = TpM which is a vector space & pEM.
0	· ∀ρ∈M, 3 open set U эρ and a diff Ψ:π-(u) →U×R" s.t. Ψ:π-(a) → [q]×R" is an isomorphism ∀ q∈U.
	ser to the top of the service proserve volete.
	Proof
A second	Let [(Ui, 4:) i E I } be an atlas of M and let
	TI: TM -> M be the natural projection, T(X)=p YXETPM.
	· Let Vi= Ti-(Ui) which we define to be open
	and clearly ()V: = TM
	· Let $\psi: V: \xrightarrow{i \in I} \mathbb{R}^n \times \mathbb{R}^n$ be given by
	41(p, n) = (Tilp), a(Ti)p(x)) so that Yi: Vi -> Mix/K
0	and continuous with continuous inverse because
	the same is true of 4: and (d4:)
	(this is an iso. by prop" 2.7).
	If VinV; + & then
	ν; · γ; · = (4; · 4; · (2), d(4;) 4: ·(2) · d(4;) · (u))
	$= (\mathcal{Y}_{i} \cdot \mathcal{Y}_{i}^{-1}(q), o(\mathcal{Y}_{i} \cdot \mathcal{Y}_{i}^{-1})_{q}(v))$?
	=> TM is a smooth 2n-dim marifold.
	Examples $T_p R^n = R^n \ \forall p \in R \Rightarrow T R^n = R^n \times R^n$
	y p v l v p v l v r l v
	2). Clearly points in TS' are given by pe(coo, sino)
	2). Clearly points in TS' are given by $p \in (coo, sin 0)$ and $q = \lambda(-sin 0, coo)$ since q must be orthogonal top. for some $0, \lambda \in \mathbb{R}$.
	for some O, Z & R.

M ATHO072	
25-10-18	
	4). Let f: R+ xR -> R2 1803, f(r,0) = (rcos0, rsino)
	We saw of (c, o) (dr) = co Od, + sinOd2
	$df(r,o)(\partial\theta) = -r\sin\theta\partial_1 + r\cos\theta\partial_2$ We let $X_r = \cos\theta\partial_1 + \sin\theta_2 = (x_1\partial_1 + x_2\partial_2)/r$
	$X_{\theta} = -r \sin \theta \partial_{1} + r \cos \theta \partial_{2} = -x_{2} \partial_{1} + x_{1} \partial_{2}$
	5). $f: \mathbb{R}^2 \to \mathbb{S}^2 \subseteq \mathbb{R}^3$, $f(\theta, \phi) = (\sin\theta \cos\phi, \sin\theta \sin\phi, \cos\theta)$
	dfie, o) (de) = cost cost d, + costsing d2 - sing d3 =: Xo (1)
0	$df(\theta,\phi)(\partial\phi)^{2}$ - sin θ sin θ ∂_{x} + sin θ cos θ ∂_{z} =: X_{θ} Θ are vector fields on $S^{2} \setminus \S$ N , S^{3}
	are vector peras on o 15 10, 53
	6) f: R" -> T" C R2n , f(0, 0) = (coo, sino, coon, sinon)
	6), $f: \mathbb{R}^n \to \mathbb{T}^n \subseteq \mathbb{R}^{2n}$, $f(\theta_1,, \theta_n) = (\cos \theta_1, \sin \theta_1,, \cos \theta_n, \sin \theta_n)$ $df(\theta_1,, \theta_n)(\partial \theta_i) = -\sin \theta_i \partial \theta_i$, $f(\theta_1,, \theta_n) = (\cos \theta_1, \sin \theta_1,, \cos \theta_n, \sin \theta_n)$
- 7,7	
	§ 3.3 Parallelisable manifolds
	D-Ln 3.4
	The tangent bundle TM of M is trivial if there
	The tangent bundle TM of M is trivial if there exists a diffeomorphism $\psi: TM \to M \times R^n$ 5.6, $\psi: \pi^-(p) \to p \times R^n$ is an isomorphism $\forall p \in M$
0	St. W: n-(p) -> p x R" is an isomorphism & p EM
	(il, a bundle isomorphism between TM and M×R')
	If TM is trivial, we call M parallelisable.
	Examples
	1). R' is brivially parallelisable
	2). S' is parallelisable by our previous example
	2). S' is parallelisable by our previous example howeve (see problem sheet 3): S ³ is parallelisable, but S^{2n} is not, but also S ⁵ is not.
	S' is not, but also S' is not.
	3) All the motion and to be have so
	3). All the matrix groups to we have seen are parallelisable (exercise).

TeG => ToG give a nowhere vanishing vetor fields Prop" 3.5
An n-dim manifold is parallelisable iff it has a linearly independent vector fields (at each point). Problem sheet 3. 1). For a 1-din mfd we have parallelisable

(=) 3 a nowhere vanishing vector field.

(=) S' is parallelisable. 2). On S' we can think of a vector field as a map $X: S^n \to \mathbb{R}^{n+1}$ s.t. $X(\rho) \in T_\rho S^n = \langle \rho \rangle^+$ Recall: Hairy Ball Thm: every vector field on S^{2n} has at least one point where it vanishes. Thus by prop 3.5, S^{2n} is not parallelisable. 3). T^n is parallelisable since the vector fields $X_j = -\sin\theta_j \ \partial_{2j-1} + \cos\theta_j \ \partial_{2j}$ on T^n are linearly independent $\forall j=1,...,n$. §3.4 Push forward Let $f: M \to N$ be a diffeo. Then we define the push forward $f_*: \Gamma(f_M) \to \Gamma(TN)$ by $f_*(X)(f(p)) = df_*(X(p)) \ \forall p \in M$.

This defines a vector field since f is a diffeo.

MATH0072 25-10-18 Examples

i) For $f: \mathbb{R}^+ \times \mathbb{R} \to \mathbb{R}^2 \setminus \{0\}$, f(r, 0) = (rcos0, rsin0)we have $X_c = f_*(\partial_c)$, $X_0 = f_*(\partial_o)$. 2). $f: \mathbb{R}^2 \to S^2 \subseteq \mathbb{R}^3$, $f(\theta, \phi) = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$ $X_{\theta} = f_{\theta}(\partial_{\theta})$, $X_{\phi} = f_{\theta}(\partial_{\phi})$. 3). $f: \mathbb{R}^n \to \mathbb{T}^n \in \mathbb{R}^{2n}$, $f(\mathcal{O}_i, ..., \mathcal{O}_n) = (cool, sinol, ..., cool, sinol)$ then $X_j = f_*(\partial_i) \ \forall j$. Lot (U, Y) be a chart on M and $X \in \Gamma(TM)$. Then we can map $X|_{H} \to Y_{*}(X)$. Explicitly $Y_{*}(X) = \underbrace{\hat{Z}}_{i=1} a_{i} \partial_{i}$, $a_{i} : Y(U) \to \mathbb{R}$ smooth, i=1,...,n. $\varphi^{-1}: \varphi(u) \rightarrow U$, $(\varphi^{-1})_* \left(\sum_{i=1}^n a_i \partial_i\right) = X/u$ 26-10-18 Assume $X, Y \in \Gamma(\mathbb{R}^n)$ given by $X = \Sigma a : \partial i$, $Y = \Sigma b : \partial i$. Then the operator $X \cdot Y$ is given by $X \cdot Y = \Sigma a : \partial i (\Sigma b : \partial i) = \Sigma (a : b : \partial i) + a : (\partial : b : \partial i)$ This is not arymore a linear comb. of ∂i 's so it is not a vector field on \mathbb{R}^n .

However $X \circ Y - Y \circ X = \sum_{i=1}^n (a_i(\partial_i b_i) - b_i(\partial_i a_i)) \partial_i$ which is a vector field on \mathbb{R}^n . Given X, Y & I (TM) we define the Lie-bracket of X, Y to be [X,Y] = X. Y - Y. X, i.e. if f is a smooth function on

M, then [x, y](f) = X(y(f)) - Y(x(f)). Let g: M -> N be a diffeo. Then

g*[X, Y] = [g*X, g*Y]. Note: as a function on N gr (X)(f) = (X(fog)) og -1 Let $f: N \to R$ be smooth. $g_{*}[X,Y](f) = [X,Y](f_{\circ g}) = X(Y(f_{\circ g})) - Y(X(f_{\circ g}))$ = $X(Y(f_{\circ g}) \circ g^{-1} \circ g) - Y(X(f_{\circ g}) \circ g^{-1} \circ g)$ = (g* X)(g* Y(f)) - (g* Y)(g* X(f)) = [g* X, gx Y](f). Claim: [X,Y] & [(TM). Let (U, 4) be a chart on M, then

[X, Y] = (4') * (9 * ([X, Y])) [Scoond partial derivatives commute] $= (\varphi^{-1})_* ([\varphi_* \times, \varphi_* Y]) \in \Gamma(TM|_{\alpha})$ PITIR" /4(u)) Remark [Y, X] = -[X, Y], so [X, X] = 0Examples 1). D: D: stendard vector fields on R $[\partial_i, \partial_j] = \partial_i(\partial_j) - \partial_j(\partial_i) = \partial^2 - \partial^2 = 0$. ठेम: ठेम: ठेम: ठेम: 2). E, = x3 dz - x2 doc, Ez = x, d3 - x3 d, E3 = x2d, -x, dz vector fields on R3. $[E_1, E_2] = (x_3\partial_2 - x_2\partial_3)(x_1\partial_3 - x_3\partial_1) - (x_1\partial_3 - x_3\partial_1)(x_3\partial_2 - x_2\partial_3)$ $= (x_2 \partial_1 - x_1 \partial_2) = E_3$ Similarly [Ez, Ez] = E, , (Ez, E,) = Ez.

MATH0072	
26-10-18	
	3). Let $X = x_1 \partial_1 + x_2 \partial_2$, $Y = -x_1 \partial_1 + x_1 \partial_2$ on \mathbb{R}^2
	then [x, y] = (x, d, +x, d) (-x, d) -(x, d) -(x, d) (x, d, +x, d)
	$= -\chi_1 \chi_2 \partial_{1,1}^2 + \chi_1^2 \partial_{1,2}^2 - \chi_2^2 \partial_{2,1}^2 + \chi_2 \chi_1 \partial_{2,2}^2 + \chi_1 \partial_2 - \chi_2 \partial_1$
	$-\left(-x_{1}x_{1}\partial_{1}^{2}-x_{2}^{2}\partial_{1}^{2}+x_{1}^{2}\partial_{2}^{2}+x_{1}x_{2}\partial_{2}^{2}+y_{1}\partial_{2}-x_{2}\partial_{1}\right)$
	4). Clearly the vector fields X; = -sin0; dz; + co0; dz; on T = R2n satisfy (Xi, X;] = 0.
	on TC/R satisfy (Xi, X; J=0.
0	
) Let (U, 4) be a chart on M. If di are the
	Shet (U, 4) be a chart on M. If di are the standard vector fields on R", then X: = (9') * di are vector fields on U and [xi, xj] = [(9') * di, (9') * dj]
	and [xi, x;] = [(4")* 2; (4")* 2;]
	1 \ 50 07
	$= (q^{-1}) * Ldi, di J = 0$ $= 0.$
	6). Let $f: \mathbb{R}^2 \to S^2$ be the map given by $f(0, \phi) = (\sin\theta \cos\phi, \sin\theta \sin\phi, \cos\theta)$
0	f(0, \$) = (sind cost, sind sind, cosd)
	then [do, dy) = 0
	$\Rightarrow (f_{\infty}(\partial_{\theta}), f_{\infty}(\partial_{\theta})) = 0.$
	7), 4 951: R3 -> S3 \ 853, then Yi = (451) E.
	7). If $\varphi_s^{-1}: \mathbb{R}^3 \to S^3 \setminus \{S\}$, then $Y_i = (\varphi_s^{-1}) E_i^-$ where E_i are defined in example 2) satisfy
	$[Y_1, Y_2] = Y_3.$
	D n
	The link to skiles the Tradi dektor
	The Lie bracket satisfies the Jacobi identity, it for $X, Y, Z \in \Gamma(TM)$ we have
	[X, CY, Z]] + [Y, (Z, X]) + [Z, (X, Y]] = 0.

Proof
Noe a local chart and compute on R". § 4 Riemannian mfds: definitions and examples

c: [0,1] -> R", l(c) = \(\frac{1}{2} \) | dt A Riemanian metric g on M is a smooth choice of positive definite inner product on each tangent space is. I pell we have a symmetric, boilinear map gp: TpM TpM -> R Def 4.1

A Riemannian manifold (M, g) is a manifold M with a Riemannian metric g. What are Riemannian metrics? An inner product on R' corresponds to a symmetric (positive definite) matrix A & Mat n. (R). For example, if $\langle \cdot, \cdot \rangle$ is an inner product on \mathbb{R}^n then there is a symmetric matrix A s.t. $\forall x, y \in \mathbb{R}^n$, $\langle x, y \rangle = x^T A y$ 1). On \mathbb{R}^n , the standard metric go is given by $g_0\left(\sum_{i=1}^n a_i \partial_i, \sum_{j=1}^n b_j \partial_j\right) = \sum_i a_i b_i$ () g. $(\partial_i, \partial_j) = S_{ij}$ Now on $\mathbb{R}^2 \setminus \{0\}$ take $r = \sqrt{x_1^2 + x_2^2}$, $X = x_1 \partial_1 + x_2 \partial_2$ Y = - x2 d, + x, d2 ⇒ g. (x,x)=1, g.(x, y)=0, g. (y, y)=x2²+24²=1²

MATH0072	
26-10-18	
	Hence go with the basis vector fields X, Y on $\mathbb{R}^2 \setminus \{0\}$ is $\{1, 0\}$
	$\mathbb{R}^2\setminus\{0\}$ is $\{1,0\}$
	$\left(O \left(r^2 \right) \right)$
	2) Late MCR" be a submitted. We can define
	2). Let $M \subseteq \mathbb{R}^n$ be a submanifold. We can define a metric on M by $g_{\rho}(x, Y) = g_{\sigma}(x, Y)$ if $X, Y \in T_{\rho}M \subseteq T_{\rho}\mathbb{R}^n$.
	$X, Y \in T_{\rho}M \subseteq T_{\rho}R^{n}$
	We call this the induced metric. [This is the first Fundamental Form when on surfaces].
	[This is the first Fundamental Form when on surfaces].
0	R) la sa deula a sa la Riem metric induced have
	3). In particular 5" has Riem. metric induced from the Euclidean metric on R"+1.
	We take X, = cool conf d, + cool sin & d2 - sin O d3
	We take $X_1 = collepse d_1 + collsing d_2 - sin 0 d_3$ $X_2 = -sin 0 sin \phi d_1 + sin 0 con \phi d_2$ on $S^n \setminus \{N, S\}$, then we have
	on S' \ {N, S}, then we have
,	$g(X_1, X_1) = 1$, $g(X_2, X_2) = \sin^2 \theta$, $g(X_1, X_2) = 0$
•	$g(X_1, X_1) = 1$, $g(X_2, X_2) = \sin^2\theta$, $g(X_1, X_2) = 0$ We can identify $g(X_1, X_2) = \sin^2\theta$, $g(X_1, X_2) = 0$ $g(X_1, X_1) = 1$, $g(X_2, X_2) = \sin^2\theta$, $g(X_1, X_2) = 0$ $g(X_1, X_1) = 1$, $g(X_2, X_2) = \sin^2\theta$, $g(X_1, X_2) = 0$ $g(X_1, X_2) = 0$
	In contrast, if we take the vector fields
0	$X_1 = -x_1 \partial_0 + x_0 \partial_1 - x_3 \partial_2 + x_2 \partial_3$
	$\chi_2 = -\chi_2 \partial_0 + \chi_3 \partial_1 + \chi_6 \partial_2 - \chi_1 \partial_3$
	$X_3 = -x_3 \partial_0 - x_2 \partial_1 + x_1 \partial_2 + x_0 \partial_3$
	which are all elements of T(TS3) then w.r.t. the
	induced mebic we have $g(x_i, x_j) = S_{ij}$.
	4). Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be given by
	f(0, φ) = ((2+cn0) cnφ, (2+cn0) sinφ, sin0)
	Then $X_i = f_{\infty}(\partial_{\theta}) = -\sin\theta\cos\phi \partial_{x} - \sin\theta\sin\phi \partial_{x} + \cos\theta \partial_{x}$
	$X_2 = f_*(\partial \phi) = -(2 + \cos \theta) \sin \phi \partial_1 + (2 + \cos \theta) \cos \phi \partial_2$
	are vector fields on T2. Then
	$g(X_1, X_1) = 1$, $g(X_1, X_2) = 0$, $g(X_2, X_2) = (2 + \cos 0)^2$
	So we can identify g with the matrix (1 0)

	4.3 Pull back and local metrics
	Assume f: M -> N a diffeo, X, Y & T (TM) and a metric h on N, then h acts on the
	and a metric h on N, then h acts on the
	vector fields f*(X), fro(Y)
	-I we get a metric on M defined by
	= we get a metric on M defined by $g(X,Y) = h\left(f_*(X), f_*(Y)\right)$
-	Def " 4.2
	Let 1: M-> N be smooth and let h be
	a Riemannian metric on N.
	We define the pullback for of h by (for h) (X, Y) = hy (dfp(X), dfp(Y)).
	(f h) (X, Y) = hy (dfp(X), dfp(Y)).
	14 X, Y are vector fields on M then (j*h)(X, Y) = h (fx(X), fx(Y))
	(f"h)(X,Y) = h (fx(X), fx(Y))
	0 0 1 3
	Prop^ 4.3
	Let $f: M \to N$ be an immersion (so df, is injective $\forall p \in M$) and let h be a Riemannian metric O
	De peril) and let h be a Riemannian metric
	on N. Then g=fth is a Riemannian metric on M.
	D d
	Proof
	Let peM, X, Y ETpM. Since h is symmetric,
	Bruillas and smooth = g is symmetric, bilineas
	and smooth.
	Positive definite: gp (x, x) = hgp (dfp(x), dfp(x)) >0
	and $g_{\rho}(X,X) = 0$ only if $df_{\rho}(X) = 0$. Since $df_{\rho}(X) = 0$
	Since of injective we have $df_p(x) = 0 \Leftrightarrow x = 0$
	=) g is pos. definite

 \vdash

-

-

MATH007	
01-11-18	
	Recall
	Defr
	J: M→ N smooth, ha Riem, metric on N.
	Define the pullback forh of h by f via
r Early	J: M-> N smooth, ha Riem, metric on N. Define the pullback fth of h by f via (fth) (X, Y) = hyp) (dfe(X), dfe(Y))
	∀ p∈M, ∀ X,Y ∈ TpM.
0	Pop 4.3
	Let $f: M \to N$ be an immersion, and ha Riem. metric on N, then $g = f *h$ is a
	Riem, metric on N, then g= fin is a
	Riem. metric on M
	Anuare (114) - chart as (Ma) there
	Assume (U, Y) is a chart on (M, g), then 4-1: 4(U) -> U & M is a different spinn
(4)	$=$ $(4^{-1})^*$ is a Riemannian metric on $\ell(u) \in \mathbb{R}^n$.
	So we can write it in terms of a symmetric
	matrix on R", in particular
	$\varphi^{-1}: \varphi(u) \rightarrow U \subseteq M$ is a diffeomorphism $\Rightarrow (\varphi^{-1})^* g \text{ is a Riemannian metric on } \varphi(u) \subseteq \mathbb{R}^n.$ So we can write it in terms of a symmetric matrix on \mathbb{R}^n , in particular $(\varphi^{-1})^* g(\partial_i, \partial_j) = g((\varphi^{-1})_* \partial_i, (\varphi^{-1})_* \partial_j) = g(\chi_i, \chi_j)$
	Alternatively, we can also write the Euclidean metric on \mathbb{R}^n as $g_0 = d\varkappa_1^2 + d\varkappa_2^2$ with the rule $d\varkappa_1 d\varkappa_2 (\partial \varkappa_1, \partial \varkappa_2) = d\varkappa_1 d\varkappa_2 (\partial \varkappa_1, \partial \varkappa_2) = \begin{cases} 1 & \text{of } i=1, j=k \\ 0 & \text{otherwise} \end{cases}$
	on \mathbb{R}^n as $g_0 = dx_1^2 + dx_2^2$
	with the rule dxids; (dx, dx) = dxida; (dx, du) = { or i=1, j=k
	C 1. On 1 11
	So dry metric on IR can be written as
	So any metric on R" car be written as g = \(\sum_{i,j} \) gi; da; da; where gi; is a positive, symmetric matrix of functions.
	We see if we write $(\varphi^{-1})^*g = \sum_{i,j} g_{ij} d\alpha_i d\alpha_j$, $g(X_i, X_j) = g_{ij}$

We will use the notation gis frequently in the rest of the course for the functions g(Xi, X;) where {X., ..., X, is a coordinate frame field in the Example Let f: R+xR-9 R2 \ [0], f(r,0)= (rcoo, rsino) then $X_1 = f_*(\partial_{\sigma}), X_2 = f_*(\partial_{\theta})$ $\Rightarrow f^*g(\partial_r,\partial_r) = g_0(f_0(\partial_r),f_1(\partial_r)) = 1$ $f^*g(\partial_r,\partial_\theta)=g_0(f_*(\partial_r),f_*(\partial_\theta))=0$ $f^*_{\alpha}(\partial_0,\partial_0) = g_0(f_*(\partial_0),f_*(\partial_0)) = r^2$ So fig = dr2 + r2d02 Example f(0, \$) = (sinOcosp, sinOsing, coso) defines local coordinates on S2 so the standard induced metric on 52 in (0, \$) coords is given by f go(do, do) = go (fr do, fr do) = 1 $f^*g_0(\partial\theta,\partial\phi)=0$, $f^*g_0(\partial\phi,\partial\phi)=\sin^2\theta$. $\Rightarrow f^*g=d\theta^2+\sin^2\theta d\phi^2$. § 5 The Levi-Gista Connection Assume (M, g) a Riemannian manifold. §5.1 Fundamental Thro of Riemannian geometry There exists a unique map $\nabla: \Gamma(TM) \times \Gamma(TM) \to \Gamma(TM)$ denoted by $\nabla(X,Y) \mapsto \nabla_X Y$ st. if $X,Y,Z \in \Gamma(T,m)$ and a,b are smooth for on M, then (i) Vax+by = a √x Z + b √x Z , (ii) √x (Y+Z) = √x Y + √x Z $(iii) \nabla_{x}(ay) = a \nabla_{x} y + \chi(a) y$

MATHO072 01-11-18 (iv) $X(g(Y, Z)) = g(\nabla_X Y, Z) + g(Y, Y_*Z)$ (v) $\nabla_X Y - \nabla_Y X = [X, Y]$ We call VXY the covarient derivative of Y write X and V the Levi-Civita Connection Assume V exists and satisfies (i)-(v) then (iv) => X(g(Y,Z))= g(VxY,Z)+ g(Y, VxZ) Y(g(Z,X)) = g(T,Z,X)+ g(Z, T,X). Z(g(X,Y)) = g(\forall_2 X, Y) + g(X, \forall_2 Y). We deduce from (v) X(g(Y, Z)) + Y(g(Z, X)) - Z(g(X, Y)) = 2g(VxY,Z)+g(X,[Y,Z])-g(Y,[Z,X])-g(Z,[X,Y]) We can now define TxY noing (+) and prove that it satisfies (i) - (v). For (i), if w is another vector field on U, we can calculate g(Vax+by Z, W) = = (ax+by) g(Z, W) + Z(g(W, ax+by)) -W(g(ax+6Y, Z)) - g(ax+6Y, [Z, W]) + g(Z, [W, ax+by]) + g(W, [ax+by, Z]) = g(aDx Z +6Dx Z, W) + Elatg(W, X) + 26/g(W, Y) -Wa)g(x,Z)-W(b)g(Y,Z) + W(a)g(Z,X)+W(b)g(Z,Y) - Z(a)g(W,X) - Z(b)g(W,Y) as required. (ii) - (v) see notes online.

```
02-11-18
                      Levi- Cinta connection
                        (M, g) Riem. manifold
                        X, Y, Z & [(TM)", a, b, c & C@(M)
                       Vax+by Z = a Vx Z + b Vy Z
                        \nabla_{x}(Y+Z) = \nabla_{x}Y + \nabla_{x}Z
                       Vx(aY) = a VxY + X(a)Y
                       X(g(Y,Z)) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)
                       \nabla_{x} Y - \nabla_{y} X = [x, y]
                      g(\nabla_{x} Y, Z) = \frac{1}{2} \left( \chi g(Y, Z) \right) + \chi (g(Z, \chi)) - Z(g(\chi, Y)) 
-g(\chi, [Y, Z]) + g(Y, [Z, \chi]) + g(Z, [\chi, Y]) \right)
                      Example
                       On \mathbb{R}^n: [\partial_i, \partial_j] = 0, g_0(\partial_i, \partial_j) = \delta_{ij}
                      The Ren , there we have X_i = -\sin\theta i \, \partial_{2i-1} + \cos\theta i \, \partial_{2i} which satisfy g(X_i, X_j) = \delta_{ij}, [X_i, X_j] = \delta
                     On S^2 let f(0, \phi) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)
and let X_1 = f_{\phi} \partial_{\theta}, X_2 = f_{\phi} \partial_{\phi}
Then [X_1, X_2] = 0.
                     Also g(X_1, X_1) = 1, g(X_1, X_2) = 0, g(X_2, X_2) = \sin^2 0.

Assume h = h(0, \emptyset) is a function on S^2, then

we have X_1(h) = \frac{\partial h}{\partial \theta}, X_2(h) = \frac{\partial h}{\partial \phi}
g(\nabla_x, X_1, X_1) = \frac{1}{2} X_1(g(X_1, X_1)) = 0.
                        9(Dx, X1, X2) = \( \frac{1}{2} \left( 2 \times, \left( g(\times, \times 2) \right) - \times 2 \left( g(\times, \times, \times) \right) = 0
```

MATH0072 02-11-18 Since X_1, X_2 are a basis for $TS^2 \setminus \{N, S\}$ We have $\nabla_X X_1 = 0$ $g(\nabla_X X_2, X_1) = \frac{1}{2}(2X_2(g(X_1, X_1)) - X_1(g(X_2, X_2)))$ $= -\frac{1}{2} \frac{2}{\partial 0}(\sin^2 0) = -\sin 0 \cos 0$. g(\frac{1}{2}\times_2\ => Dxx X2 = - sino coo X. g(\(\nabla_{\text{x}}, \text{X}_2, \text{X}_1) = \frac{1}{2}(\text{X}_1(g(\text{X}_2, \text{X}_1)) + \text{X}_2(g(\text{X}_1, \text{X}_1)) - \text{X}_1(g(\text{X}_1, \text{X}_2))) $g(\nabla_{X_{1}}X_{2}, X_{2}) = \frac{1}{2} (X_{1}(g(X_{2}, X_{2})) + X_{2}(g(X_{1}, X_{2})) - X_{2}(g(X_{1}, X_{2})))$ $= \frac{1}{2} \frac{\partial}{\partial P} (\sin^{2}\theta) = \sin\theta \cos\theta$ Since $g(X_2, X_2) = \sin^2\theta$, $[X_1, X_2] = 0$ $\nabla_{X_1} X_2 = \nabla_{X_2} X_1 = \frac{\sin\theta\cos\theta}{\sin^2\theta} X_2 = \cot X_2$ On 83 we had the vector fields $E_1 = -\chi_1 \partial_0 + \chi_0 \partial_1 - \chi_3 \partial_2 + \chi_2 \partial_3$ E2= -x2do + x3d, + x0 d2 - x, d3 $E_3 = -x_3 \partial_0 - x_2 \partial_1 + x_1 \partial_2 + x_0 \partial_3$ Let g be the induced metric, then g(E:, E;) = Sig [E, E2]=-2E3, [\(\bar{E}_i, \bar{E}_5\)]=-2 \(\epsi_{ijh} \bar{E}_k\) g (VE, E;, E) = = [-g(Ei, [E;, En]) + g(E; [En, Ei]) + g(En, [Ei, E;])) $= \frac{1}{2} \left(2 \epsilon_{ijn} - 2 \epsilon_{nij} - 2 \epsilon_{nij} \right) = - \epsilon_{ijn}$ $\Rightarrow \nabla_{E_1} E_2 = -\nabla_{E_2} E_1 = -E_3, \quad \nabla_{E_2} E_3 = -\nabla_{E_3} E_2 = -E_1,$ $\nabla_{E_3} E_1 = -\nabla_{E_1} E_3 = -E_2$, $\nabla_{E_1} E_1 = \nabla_{E_2} E_2 = \nabla_{E_3} E_3 = 0$.

Motivation $X \in \Gamma(TM)$, (U, Y) has vector fields $X_i = (Y^{-1})_* \partial_i$ $X_u = \sum_i a_i X_i$ where $a_i \in C^{\infty}(u)$ $\nabla_{Y} X = \nabla_{Y} (\sum_{a_{i}} X_{i}) = \sum_{a_{i}} (\nabla_{Y} X_{i})a_{i} + Y(a_{i}) X_{i}$ So if we write $Y = \sum_{a_{i}} b_{i} X_{i}$ $\Rightarrow \nabla_{x} X = \sum_{i,j} (b_{j} a_{i} \nabla_{x_{i}} X_{i} + b_{j} X_{j} (a_{i}) X_{i})$ § 5.2 Christoffel Symbols (U, Ψ) coordinates on (M, g), $X_i = (\Psi^{-i})_* \partial_i \in \Gamma'(TM)$ Since {X:} sieien form a basis for $\Gamma(TM)$ we can define functions Γ_i ; on U by $\nabla_{x_i} X_i = \sum_{i \neq j} \Gamma_{ij}^{*} X_{ik}$ which are the Christoffel symbols of ∇ in the chart (U, Ψ) . Examples (ii) For S^2 , $\nabla_X X_1 = 0$ $\exists \bigcap_{i} = \bigcap_{i}^{2} = 0.$ $\nabla_{x_2} \times_2 = -\sin\theta\cos\phi \times_1 \Rightarrow \Gamma_{22}^2 = -\sin\theta\cos\phi, \Gamma_{22}^2 = 0$ Prop'S.3 Let (U, 4) be coords on (M, g) and X: the coord. vector fields on U. Let g be given by gis = g(Xi, Xi) on U, then Γ_{ij} = Γ_{ji} and g^{ij} = $(g^{-i})_{ij}$ and let $\partial_{\mu}g_{ij}$ = $X_{\mu}(g_{ij})$ MATH 0072 02-11-18 Then $\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{k} g^{kl} (\partial_{i}g_{jl} + \partial_{j}g_{il} - \partial_{l}g_{ij})$.

Note: depends on coords! Proof $\nabla_{x_i} X_j - \nabla_{x_j} X_{i-1} = [X_i, X_j] = 0 \Rightarrow \Gamma_{ij}^{k} = \Gamma_{ji}^{k}$ Now g(Vxi Xj, Xi) = \(\sum_{g(\sum_{ij}^m Xm, Xi)} = \sum_{\sum_{ij}^m gmi} \) Kossel formula $= \frac{1}{2} \left[X_i (g(X_i, X_i)) + X_j (g(X_i, X_i)) - X_k (g(X_i, X_j)) \right]$ Finally, $\Gamma_{ij}^{k} = \sum_{l,m=1}^{m} \int_{l,m=1}^{m} \int_{l,m=$ = ½ (digit + digit - digit) Take the wonal coordinate frame on $T^n \subseteq \mathbb{R}^{2n}$ i.e. $X_i = \int_{\mathbb{R}} \partial_i$ where $f(x_1, ..., x_n) = (coox_1, sinx_1, ..., coox_n, sinx_n)$ $\Rightarrow g_{ij} = g(X_i, X_j) = S_{ij} \Rightarrow \Gamma_{ij}^k = 0$. For S^2 take $f(0, \varphi) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \varphi)$ so $X_i = f_* \partial_0$, $X_2 = f_* \partial_0$ $g_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2 \theta \end{pmatrix}$, $g_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2 \theta \end{pmatrix}$ Note: if either i or j is I then gi; is constant and $\partial z = \partial \varphi$ of anything is zero. $\Rightarrow \Gamma_{12} = \frac{1}{2} \sum_{i=1}^{n} g_{i}(\partial_{i} g_{2i} + \partial_{2} g_{1i} - \partial_{i} g_{12})$ = \frac{1}{2}g"(\partial_1 g_{12} + \partial_1 g_4 - \partial_1 g_{12}) = 0. $\Gamma_{12}^{2} = \frac{1}{2} \sum_{i=1}^{2} g^{2i} / \partial_{i} g_{2i} + \partial_{2} g_{1i} - \partial_{i} g_{12})$ $= \frac{1}{2} g^{2i} \partial_{i} g_{2i} = \frac{1}{2 \sin^{2} \theta} \frac{\partial}{\partial \theta} (\sin^{2} \theta) = \frac{1}{2 \sin^{2} \theta} \frac{\partial}{\partial \theta$ 2 sinocoso = coto.

86 Geodesics
Def 16.1 Let (M, g) be a Riem manifold.
 Assume a: I > M is a curve and let f=f(a(t))
be a function along the curve a, then
be a function along the curve α , then $\alpha'(t) = (f \circ \alpha)'(t) = d (f(\alpha(t)))$ dt
A curve y is called a geodesic if $\nabla_{z}, z' = 0$
Remark $\nabla_{X} Y _{p}$ is well defined if we know $X(p)$ and Y along a curve α s.t. $\alpha(0) = p$, $\alpha'(0) = X(p)$.
XY/ is well defined if we know X(p) and
Y along a curve α s.t. $\alpha(0) = \beta$, $\alpha'(0) = \chi(\rho)$.
Since
$\frac{d}{dt} g(y', y') = y'g(y', y') = 0$ $= 2g(y, y', y') = 0$
=) f' = \(\frac{1}{2} (\frac{1}{2}, \frac{1}{2}, \fr
We say y is is normalised if /z·/=1.
Let (4,4) be a coordinate chart and we write
Poj = (24,, 20)
$\Rightarrow (\varphi_{\circ g})' = \sum_{i=1}^{n} \varkappa_{i}' \partial_{i} = \varphi_{\#}(g_{i})$
$\Rightarrow y' = (\psi^{-1})_{*} \left(\sum_{i=1}^{n} 2i' \partial_{i} \right) \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow (u)$
$= \sum_{i=1}^{n} 2i_i'(Y^{-i})_* \partial_i$ $\times_i \downarrow$ $\uparrow_{I(t)}$
i=1
\(\gamma(t) \)
Thus $\nabla_{x'} = \sum_{i=1}^{n} \nabla_{x'} (2ii' \times i)$
$= \sum_{i=1}^{n} \left(\gamma'(2i') \chi_{i} + 2i' \nabla_{\gamma'} \chi_{i} \right)$

MATH0072 02-11-18 => \frac{1}{2} \fr $= \sum_{i=1}^{n} \chi_{i} \chi_{i}^{*} + \sum_{i,j=1}^{n} \chi_{i}^{*} \chi_{j}^{*} \prod_{i,j=1}^{n} \chi_{i}^{*} \chi_{i}^{*}$ $= \sum_{k=1}^{n} \left(x_{i}^{n} + \sum_{i,j=1}^{n} \prod_{i,j=1}^{n} x_{i}^{j} x_{i}^{j} \right) \chi_{n}$ Let (U, 4) be a coordinate chart on (M, g) and let y be a curve in U. Here write Poy = (x, ..., xn) then y is a These are called the geodesic equations. Examples 1), For R" [i," = 0 so the geodesic equations => xx" = 0 γ normalised \Leftrightarrow $(\sum a_k^2)^{1/2} = 1$. 2). Let f: R+xR -> R2\103 be given by $f(r, 0) = (r\cos\theta, r\sin\theta)$ Then $f * g_0 = g$ is given by $(g_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}, (g_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & '/r^2 \end{pmatrix}$ So we get (X, = dr, Xz = do) $\Gamma''_{11} = 0$, $\Gamma''_{22} = -\Gamma$, $\Gamma''_{12} = 0$, $\Gamma''_{11} = 0$ $\int_{22}^{2} = 0 , \int_{12}^{2} = \frac{1}{r}$ So Pxx1=0, Dxx2= Vxx1= 1x2, Dxx2=-rx, => (x=c, x2=0) Geodesic egis: ["-r(0')2 = 0, 0"+ = r'0' = 0. So 0'=0, r"=0 gives a solution corresponding to a ray through the origin.

3). On the standard booms $T^n \in \mathbb{R}^{2n}$ we saw $\Gamma_{ij}^n = 0 \quad \text{so w.r.t. the map } f = \mathcal{Y}^{-1} = (\cos\theta_i, \sin\theta_i, \cos\theta_n, \sin\theta_n)$ $\Rightarrow 0:(t) = a:t+b:$ $\Rightarrow g(t) = (\cos(a,t+b_i), \sin(a,t+b_i), ..., \cos(a,t+b_n), \sin(a,t+b_n))$ 4). For S^2 we take a normalised geodesic $y(t) = (\sin \Theta(t) \cos \phi(t), \sin \Theta(t) \sin \phi(t), \cos \Theta(t))$ Here $f(\theta, \phi)$ as usual. X, = fr do, X2 = fr de [] = [] = 0, [22 = -sin Ocos 0 $\Gamma_{11}^{2} = \Gamma_{22}^{2} = 0, \quad \Gamma_{12}^{2} = \cot \theta$ so the geodesic egns are: 0"-sinocoo (8')2 = 0 \$" +2 coto 0'g' = 0. We see that $\beta' = 0$ and 0" = 6gives a solution which : /x/2= (0')2 + sin20 (8')2=1 gives a solution which is $f(t) = \left(\sin(t + \theta_0)\cos\phi_0, \sin(t + \theta_0)\sin\phi_0, \cos(t + \theta_0)\right)$

MATH0072 15-11-18 Example: Hyperbolic plane H2 = {(x1, x2) eR2 /x2>0} $g = \frac{dx_1^2 + dx_2^2}{x_1^2}$ $\Gamma_{11}^{1} = \Gamma_{22}^{1} = 0$, $\Gamma_{11}^{12} = -\Gamma_{22}^{12} = \frac{1}{x_{2}}$, $\Gamma_{12}^{12} = -\frac{1}{x_{2}}$, $\Gamma_{12}^{12} = 0$ $\chi_{2}'' + \frac{1}{2}(|\chi_{1}'|^{2} - (\chi_{2}')^{2}) = 0$ Note $x_1 = const$, $x_2 = e^t$ is a solution. Let (U, 4) be a chart on (M, g) and let L= \(\frac{1}{2} \) gi; \(\tilde{x}_i' \) \(\til $\frac{d}{dt} \left(\frac{\partial L}{\partial x_n'} \right) - \frac{\partial L}{\partial z_n} = 0$ $\frac{d}{dt}g_{ij} = \chi'(g(X_i, X_j)) = g(\nabla_j, X_i, X_j) + g(X_i, \nabla_j, X_j)$ $= \chi_i'g(\nabla_{X_i} X_i, X_j) + \chi_i'g(X_i, \nabla_{X_i} X_j)$ = x'_i [xi g(Xm, X_j) + x'_i [xi g(Xi, Xm)] = x'_i [xi gm; + x'_i [xi gim] de (2L) = de (gin xi) = gin xi" + xi'xi'([ei gm; + [ei gin]) $\frac{\partial L}{\partial x_n} = \frac{1}{2} \times \kappa (g_{ij}) \times \alpha'_i \times \beta'_j = \frac{1}{2} \times \kappa (g_i(X_i, X_j)) \times \alpha'_i \times \beta'_j$ Xx= 2-= 1/2 (9 (Vxx Xi, Xj) + g (Xi, Vxx Xj)) xi' xj' = { ([hi ges + [hi gie) x' = x;

Multiply these equs by
$$g^{kn}$$
 and notice that

 $g^{kn}g^{kn} = Sin$

Then $d \mid \partial L \mid - \partial L = O$
 $dt \mid \partial x_{i} \mid \partial x_{i} \mid \partial x_{i}$
 $\Rightarrow x_{i}^{n} + \left[\Gamma_{ii}^{n} + g^{kn}\Gamma_{ii}^{m}g_{im} - g^{kn}\Gamma_{ii}^{m}g_{mi}\right]x_{i}x_{i}$
 $= x_{i}^{n} + \left[\Gamma_{ii}^{n} + g^{kn}\Gamma_{ii}^{m}g_{im} - g^{kn}\Gamma_{ii}^{m}g_{mi}\right]x_{i}x_{i}$
 $= x_{i}^{n} + \Gamma_{ii}^{n}x_{i}'x_{i}' = O$
 $f(x_{i}^{n}) = f(x_{i}^{n}) = f(x_{i}^{n})^{2}$
 $f(x_{i}^{n}) = f(x_{i$

MATH 0072 15-11-18 A smooth map $f:(M,g) \rightarrow (N,h)$ between Riemanian manifolds is an isometry if f is a diffeomorphism and g=f"h. Example $f: \mathbb{R}^n \to \mathbb{R}^n$, f(x) = Ax, $A = (a; j) \in M_n(\mathbb{R})$ When is this an isometry, when $g_0 = S_{ij}$? $f^*g_0(\partial_i,\partial_j) = g_0(f_0,\partial_i,f_0,\partial_j)$ $= g_0(A\partial_i,A\partial_j)$ $= g_0(\sum_{k=1}^n a_{ki}\partial_k,\sum_{k=1}^n a_{kj}\partial_k)$ Thus $f^{*}g_{0} = g_{0} \iff \sum_{k=1}^{n} a_{ki} a_{kj} = \delta_{ij} \iff A^{T}A = I$ Let z = x, +ixz, consider (H², g) (upper half plane) g = dzdz. 1 g = 1/(2)12 dzdz [Im(2)]2 f is an isometry if it is a diffeo. and $|f'(z)|^2 |Im(z)|^2 = |Imf(z)|^2$ Set f(z) = az + b where $a, b, c, d \in \mathbb{R}$ s.t. cz + d ad - bc = 1i.e. f can be identified with a matrix $\binom{ab}{cd} \in SL(2, \mathbb{R})$. f(2) = f(x, +ix) = ax, +iax2+6 Cx +icx2 +d = (acx2+acx2 +bd)+i(ad-bc)x2 1cz+d12

$$= f(z) = (ac|z|^{2} + bod) + i \operatorname{Im}z$$

$$|cz+d|^{2}$$

$$f'(z) = ad-bc = (cz+d)^{2}$$

$$f \operatorname{sends} H^{2} \text{ to } H^{2} \text{ and has inverse}$$

$$f^{-1}(z) = dz-b$$

$$-cz+a$$

$$\Rightarrow f \text{ a diffea and } f \text{ is an isomebry since}$$

$$|f'(z)|^{2} |\operatorname{Im}z|^{2} = |\operatorname{Im}f(z)|^{2}$$

$$|\operatorname{Im}z|^{2}$$

$$|\operatorname{Im}z|^{2}$$

$$|cz+d|^{4}$$

$$|b-10-18$$

$$|\operatorname{Ihm}$$

$$|\operatorname{het} p \in M. \text{ Then } \exists \text{ an open set } U \ni p, \quad \varepsilon > 0, \quad a$$

$$|\operatorname{smooth} \operatorname{man} \Gamma : (-2, 2) \times V \to M \text{ where}$$

Let $p \in M$. Then \exists an open set $U \ni p$, $\varepsilon > 0$, a smooth map $\Gamma: (-2, 2) \times V \rightarrow M$ where $V = \frac{1}{2}(q, X) : q \in U$, $X \in B_{\varepsilon}(0) \subseteq T_{q}M$ $\subseteq M$ such that f(q, X) $f(t) = \Gamma(f, q, X)$ is the unique f(q, X) geodesic in f(q, X) with f(q, X) f

Pool

re notes,

&7 Curvature

Prop 7.1 (/Defⁿ)
For vector fields X, Y, Z on M we define $R(X, Y) Z := \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{EX,YZ} Z$ which is a vector field on M. Then R(:,:) is brilinear in its arguments, R(X,Y) is a linear operator and $R(X,Y) Z(p) \in T_p M$ depends only on X(p), Y(p), $Z(p) \in T_p M$.

MATHOO7 2 16-10-18 R(X,Y) - operator sending vector fields to vector fields is the Riemann curvature operator. Properties of 7 and [:,] => {R(X,+X2,Y) = R(X,Y) + R(X2,Y)} (R(X, Y, + Yz) = R(X, Y,) + R(X, Yz) $(R(X,Y)(\overline{z}_1+\overline{z}_2)=R(X,Y)\overline{z}_1+R(X,Y)\overline{z}_2$ Let $f: M \to R$ be smooth NTS: $R(fX, Y) \neq fR(X, Y) \neq \text{ etc with } fX, fY, f \neq \text{ resp.}$ [fx, y] = (fx)y - y(fx)= f(x y - yx) - Y(f)x R(fx, y)Z = Vyx VyZ - Vy(f VxZ) - Vg[x, yz- yy]x Z = f Dx Dx Z - (f Dx Dx Z + Yy) Dx Z) - (f VCX,Y) Z - Y(f) Vx Z) = f R(x, y) Z Since R(X,Y)Z = -R(Y,X)Z $\Rightarrow R(x, y) = fR(x, y) =$ left to show R(X, Y)(12) = fR(X, Y)2. R(X, Y)(fZ) = Vx Py (fZ) - Vx (fZ) - Vcxxx (fZ) = Dx (Y(4)2+ f Dx 2) - Dx(X(1)2+ f Dx 2) -([x, y](f) = + f Vcx, xz =) = X(Y(f)) = + Y(f) = + X(f) = + f = Px = Px = Z -(Y(X(f)) = + X(f) = + Y(f) = + f = Px = Z -(Y(X(f)) = + X(f) = + Y(f) = Z + f = Px = Z - ([x, y](f) = + f V(x, x) =) = (x, x)(1) = - (x, x)(1) = + f R(x, x) = =fR(x,Y)Example Euc metric

M=(R", go), di standard orthonormal vector fields, $[\partial_i, \partial_j] = 0$, $\nabla_{\partial_i} \partial_j = 0$ $\Rightarrow R(\partial_i, \partial_j) \partial_k = 0$ Since R is linear, R = O on R

We define R by R(X, Y, Z, W):= g(R(X, Y)Z, W)
for vector fields X, Y, Z, W on M. Well defined and at pEM depends only on g(p) and the values of X(p), Y(p), Z(p), W(p) ETPM. R is called the Rieman curvature tensor. Remark If Xi are coord. V. f. s then let R(Xi, Xj, Xu, Xi)=: Right
If we take geodesic normal coordinates at p so that gij(p) = Si; , [i; (p) = 0, 1 gi; = Si; - 1 Right XnX1 + O(1x13). If R = 0 then a Riemannian manifold is said to be flat: E.g. (Rⁿ, g.) is flat.

some ton are flat! On S2, if we let X = for do, X = for do for f(0, \$) = (sindcoop, sindsing, coo), we have [X, X2] = 0 and \(\nabla_x, \times_1 = 0 \), \(\nabla_x \times_2 = -\sin \O \con \pi_x, \times_1 \) $\nabla_{X_2}X_1 = \nabla_{X_1}X_2 = \cot\theta X_2$. $R(X_1, X_2) X_1 = \nabla_{X_1} \nabla_{X_2} X_1 - \nabla_{X_2} \nabla_{X_1} X_1$ = \(\times_{\times_1} \left(\cot \O \times_2 \right) = -\frac{1}{\sin^2 O} \times_2 + \cot O \times_{\times_1} \times_2 Similarly R(X,, Xz)Xz = sin20X, So R(X1, X2, X1, X1) = 0, R(X1, X2, X1, X2) = -g(X2, X2) = -5in20 R(X1, X2, X2, X1) = sin2 P, R(X1, X2, X2, X2) = 0 Suppose instead we considered the orthonormal basis $E_1 = X_1$, $E_2 = X_2 / \sin \theta$, by linearity $R(E_1, E_2, E_1, E_1) = 1$

```
MATH0072
16-10-18
            Prop
              Let X, Y, Z, W be vector fields on M
            (a) R(Y, X, Z, W) = -R(X, Y, Z, W)
            b) R(x, Y, W, Z) = -R(x, Y, ZW)
            (c) R(Z, W, X, Y) = R(X, Y, Z, W)
            (d) Bianchi identity ) R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, X, W) = O.
             R(x, Y) Z = - R(Y, X) Z => (a)
            Claim (b) = R(x, y, Z, Z)=0
             O = R(X,Y,Z+W,Z+W)
                =R(X,Y,Z,W)+R(X,Y,W,Z)
             g(Px V, Z, Z) = X/g(D, Z, Z) - g(P, Z, D, Z).
                            = 1 X ( Y(g(z, Z))) - g(D, Z, Vx Z)
             g(V(x,x)Z,Z) = = (x, y)(g(Z,Z))
             g(R(x, y) Z, Z) = \( \frac{1}{2} \times (Y(g(Z, Z))) - \( \frac{1}{2} \times (X(g(Z, Z))) - \( \frac{1}{2} \times (X, Y) \) \( (Z, Z) \)
                              = 0 30 (b) is true.
            (d) R(x, y) + R(y, z) \times + R(z, x) y
                   = Dx Dy Z - Dx Dx Z - D(x, y) Z
                      + \nabla_{Y} \nabla_{z} \times - \nabla_{z} \nabla_{y} \times - \nabla_{Cy,z} \times
                      + PZDXY-VX PZY-VCZXIY
                 = \nabla_{x}(Y,2) + \nabla_{y}(Z,x) + \nabla_{z}(x,Y)
                      - PCY, 27 X - PCZ, XJY - PCX, YJZ
                = [X,[Y,Z]] + [Y,[Z,X]] + [Z,(X,Y)] = 0
(c) exercise. D
            R(X_i, X_j) X_k = R_{ijk} X_t
            Right = g(R(Xi, Xj) Xk, Xc) = g(Rijh X6, Xc)
           Furthermore writing de Pij = Xe (Pijk) we have that

Rijh = di Fjh - dj Fih + Fim Fjh - Fjm Fik (note sum over m)
```

Let o = span { X, Y} c TpM be a 2-plane. The sectional curvature of o is given by $K(\sigma) = K(X, Y) = R(X, Y, Y, X)$ $g(x,x)g(x,y)-g(x,y)^2$ This is well defined. Take any other basis of the form
{ax+by, cx+dy} st. ad-be \$0 then R(ax+by, cx+dy, cx+dy, ax+by)=(ad-be)2R(x, y, x, x) Similarly g(ax+bx, ax+bx) g(cx+dx, cx+dx)-g(ax+bx, cx+dx)2 = $[ad-bc)[g(x,x)g(x,y)-g(x,y)^2]$ Let R be st. it has properties a, b, c, d from previous prop". Suppose that Yo ESpan [X, Y] = TpM we have $\overline{K}(\sigma) := \overline{R}(x, y, y, x) = K(\sigma)$. g(x,x)g(x,y)-g(x,y)2 Then R = R Since K= K, we have YX, YETPM $R(x, y, y, x) = \overline{R}(x, y, y, x)$ R(X+Z, Y, Y, X+Z) = R(X+Z, Y, Y, X+Z) Y X, Y, Z ETPM LHS = R(X, Y, Y, X) + R(Z, Y, Y, Z) + 2R(X, Y, Y, Z) $\left[R(Z,Y,Y,X)=R(Y,X,ZY)=-R(X,Y,Z,Y)=+R(X,Y,Y,Z)\right]$ RHS = R(x, y, y, x) + R(Z, y, y, Z) + 2R(x, y, y, Z) $\Rightarrow R(X, Y, Y, Z) = R(X, Y, Y, Z)$ R(X, Y+W, Y+W, Z) = R(X, Y+W, Y+W, Z)=) R(x, y, w, Z) + R(x, w, y, Z) = R(x, y, w, Z) + R(x, w, y, Z) $R(X,Y,Z,W)-\overline{R}(X,Y,Z,W)=R(X,W,Y,Z)-\overline{R}(X,W,Y,Z)$ =R(Y,Z,X,W)-R(Y,Z,X,W)

```
MATH0072
16-10-18
            (yelic permutations leave (4x) invarient:

(R-R)(X, Y, Z, W) = (R-R)(Y, Z, X, W)
                           = (R-R)(Z, X, Y, W)
            Bianchi identity
            = 2(R-\bar{R})(X,Y,Z,W) = (R-\bar{R})(Y,Z,X,W) + (R-\bar{R})(Z,X,Y,W)
= -(R-\bar{R})(X,Y,Z,W)
            = 3(R(x, Y, Z, W) - R(X, Y, Z, W)) = 0
            Example 52
                    = R(X1, X2, X2, X1)
                g(X, X,)g(X2, X2) - g(X, X2)2
            * See notes for examples! *
```

MATHOOTZ	
22-11-18	
	38 Vector fields revisited
	§8.1 Vector bundles
	Defn
	A manifold E is a vector bundle over M if · I a smooth surjective map π: E→M s.t.
	· I a smooth surjective map π: E → M s.t.
	· TT-'(p) is a vector space ∀p∈M
	· \forall p∈ M \ni an open set $U \ni p$ and a diffeomorphism $\pi^{-1}(U) \rightarrow U \times \mathbb{R}^m$ s.t. $\psi: \pi^{-1}(q) \rightarrow \{q\} \times \mathbb{R}^m$ is
	an isomorphism & gell.
	T W
	Note: m is the same ∀ p∈ M and is called the
	Clearly Mis n-dimensional if E is non dim
	Clearly M is n-dimensional if E is n+m dim We call E the total space and M the base space.
	Examples
	1). M manifold, then $M \times R^m$ is the trivial boundle Simplest example $S' \times R \cong \{(cos0, sin0, z) : 0, z \in R\}$
	Simplest example S' x R = {(coo, sino, z): 0, z ∈ R}
	2) The tangent bundle is a vector bundle of rank n
	2) The tangent bundle is a vector bundle of rank nover an n-dim manifold M.

MATH 0072 22-11-18 Let E be a vector bundle over M. A section of E is a smooth map $s: M \rightarrow E$ such that $(\pi \circ s)(p) = p$. We denote the set of sections of E by $\Gamma(E)$, which is naturally a vector space since $s(p) \in \pi^{-1}(p)$, which is a vector space $\forall p \in M$. Example: A section of TM is a vector field. Remarks The graph of a section {(p,s(p)): pEM) is dearly diffeomorphic to M using the projection or. Consider the aglinder C=5' ×R, then we have the obvious sections s: S' -> C given by s(cood, sin0) = (cood, sin0, Z) YZER. such as $s(\cos\theta, \sin\theta) = (\cos\theta, \sin\theta, \cos\theta)$ Example
Let $S^2T_p^*M = \{symmetric bilinear maps g_p: T_pM \times T_pM \to R\}$ Then $S^2T_p*M=U$ S^2T_p*M is a vector bundle of rank $\frac{1}{2}n(n+1)$ over an n-dim manifold M Defr A Riemannian metric is a section of S27*M, i.e. ge [(S27*M) which is positive definite $\forall p \in M$.

A vector bundle of rank mover M is trivial if there exists a differ $\Psi: E \to M \times R^m$ st. $\Psi: \pi^{-1}(\rho) \to \{\rho\} \times R^m$ is an isomorphism $\forall \rho \in M$ (i.e. a bundle isomorphism between E and the trivial bundle Mx Rm). Propⁿ 8.4
A vector bundle of rank m is trivial iff
it has m linearly independent sections. Aroune E is trivial, i.e. ∃ a diffeo X:E→M×R^m
st. X(ρ): π'(ρ) → ξρ3× R^m is an isomorphism ∀ρ∈M. Then define sections si: M -> E + i=1,...,m by $Si(p) = \chi^{-1}(p)(e_i).$ Clearly $(\pi \circ Si)(\rho) = \rho \quad \forall \rho \in M \quad so \quad \text{there are sections}$ and Si are smooth since X (and thus X^{-1}) are smooth, so $s_i \in \Gamma(E)$. Moreover 2, si(p) + ... + 2msm(p) = 0 $= \lambda_1 \times \rho(s_1(p)) + \dots + \lambda_m \times \rho(s_m(p)) = 0$ =) 2, = ... = 2m = 0 So the sections is are linearly independent UpEM. Suppose indead that we have linearly independent Since $\{e_i\}$ form a basis of R^m we can define $e^{\pi i'(p)}$ $\chi: M \times R^m \rightarrow E$ via $\chi(p, \lambda, e, +, + \lambda mem) = (p, \lambda, s, (p) + in + \lambda m sm(p))$ dearly X: Ep3 × IR -> 17-(p) is a well-defined isomorphism and $\pi \circ \chi(p, x) = p$ so χ is a bijection.

MATH 0072	
22-11-18	
	clearly x is smooth and its inverse is smooth
	Clearly X is smooth and its inverse is smooth so this gives the required bundle isomorphism.
	§8.2 Integral curves
	Given a curve $\alpha: (-\varepsilon, \varepsilon) \to M$ we can define
	§8.2 Integral curves Given a curve $\alpha: (-\varepsilon, \varepsilon) \to M$ we can define $\alpha'(t) \in T_{\alpha(t)}M$ by $\alpha'(t) = \alpha'_{\epsilon}(0)$ where $\alpha_{\epsilon}(s) = \alpha(s+t)$.
	The map $t\mapsto \alpha'(t)$ from $(-\epsilon,\epsilon)$ into TM is smooth,
	The map $t\mapsto \alpha'(t)$ from $(-\epsilon,\epsilon)$ into TM is smooth, so defines a vector field α' along α .
	1 at XE [/=m) and DEM
	Then there exists a unique curve xx: (-5 5) -> M
	Let $X \in \Gamma(TM)$ and $\rho \in M$. Then there exists a unique curve $\alpha \rho: (-\varepsilon, \varepsilon) \to M$ $st. \alpha(0) = \rho$ and $\alpha' \rho(t) = \chi(\alpha \rho(t))$.
7	Why? Take a chart (U, P) around p so we can write $P = (x_1(t),, x_n(t))$
Tax V	can write $f \circ \alpha_{\rho}(t) = [x_{i}(t),, x_{n}(t)]$
(O()	
	$\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}} \right) \right) = \frac{1}{\sqrt{2}} \left(\frac{1}{\sqrt{2}$
0	so we have the ODE
	$x_i'(t) = a_i(x_i(t), \dots, x_n(t))$
	with the initial condition (x,, xn)(0) = P(p).
	These curves are called integral curves of X
12.	

23-11-18 Recall Integral curve through ρ $\alpha: (-\xi, \xi) \to M$ s.t. $\alpha(0) = \rho$, $\alpha'(t) = \chi(\alpha(t))$. Examples Xi= di on Rn $x_p(t) = (x_1(t), \dots, x_n(t))$ $x_p'(t) = (x_i'(t), \dots, x_n'(t))$ = (0, ..., 1, 0) 2; = C; j = i xi(t) = ci+t Let X=x, d2-x2d, on R3 and let (a, az, az) ER3 The integral curve $x(t) = (x_1(t), x_2(t), x_3(t))$ of X through 20 satisfies $\chi'_1\partial_1 + \chi'_2\partial_2 + \chi'_3\partial_3 = \chi_1(f)\partial_2 - \chi_2(f)\partial_1$ $\Rightarrow x_1'(t) = -x_2(t)$, $x_2'(t) = x_1(t)$, $x_3'(t) = 0$. $\Rightarrow x''(t) = -\infty(t) \Rightarrow \infty(t) = A\cos(t) + B\sin(t)$ =) x2(t) = Asin(t) - Bsin(t) => { >4(t) = a, cost - azsint $|x_2(t)| = a_2 \cos t - a_1 \sin t$ Note: X reobsicts to a vector field on the cylinder $C = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1^2 + x_2^2 = 1\}$ Why? - Check $X \in \text{Ker } D(x_1^2 + x_2^2 - 1)$ > Integral curves of X starting on C stay on C.

111A1H00+	
23-11-18	
	Ex
	S ²
	(2)
	§8.3 Flow
	observe the map $(t,q) \mapsto \alpha_1(t)$ from $(-\epsilon,\epsilon) \times V$ into M is smooth by theory of ODEs.
	is smooth by theory of ODEs.
-0-	
	Def 8.6
	Let $X \in \Gamma(TM)$ and $p \in M$.
nv. r., let	Let V3p be open st we have integral curves
	xp: (-E, E) → M of X through q Vq EV.
	We define the flow of I on I as the family
	of smooth maps $ \{ \emptyset_{\pm}^{\times} : V \longrightarrow M \mid \pm \in (-\xi, \varepsilon) \}, \emptyset_{\pm}^{\times}(q) = \alpha_{q}(t). $
	$\{\emptyset \pm : V \longrightarrow M \mid \pm \in (-\xi, \xi)\}, \emptyset \pm (q) = \alpha_q(t).$
	Note 00(9) = 1dy.
0	Ena do
	Example $X = \partial_i \circ n R^n$
	$\Rightarrow \alpha_q(t) = q + te$
	⇒ \$\phi^{\partial}(t)\ is just branslation by t in ei-direction.
	in the state of th
	Example
	Recall the vector field X on the cylinder
	$C = \{(cold, sind, z) \in \mathbb{R}^3 \mid 0, z \in \mathbb{R}\}$
	The flow of X on C is
	\$\psi_*(coo, sino, \ge) = (coosint - sinocost, sinocost + coosint, \ge)
	= (co(0+t), sin(0+t), z)

Now consider instead the vector field. Y= x, 22 - x22, + 23 which restricts again to a vector field on C. The integral curves satisfy $x_1'(t) = -x_2(t)$, $x_2'(t) = x_1(t)$, $x_3'(t) = 1$ So the flow of γ is $\theta_t^{\gamma}(\cos\theta, \sin\theta, z) = (\cos(\theta+t), \sin(\theta+t), z+t)$ i.e. sinew motion. Let $p \in M$ and let $\{ \emptyset_{+}^{\times} : V \rightarrow M : t \in (-\epsilon, \epsilon) \}$ be the flow of $X \in \Gamma(TM)$ on $V \ni p$. Then $\emptyset_{+}^{\times} \circ \emptyset_{+}^{\times} = \emptyset_{+++}^{\times}$ if both sides are well defined and \emptyset_{+}^{\times} is a local diffeo around p. Proof

Note $\phi_t^{\times} \cdot \phi_t^{\times}(q) = \alpha_{\alpha(t')}(t)$ and $\phi_{t+t'}(q) = \alpha_{\gamma}(t+t')$ Note $\frac{d}{dt} \propto_q(t+t') = \chi(\chi_q(t+t'))$ $\frac{d}{dt} \propto_{2(t')} (t) = X (\alpha_{2(t')}(t))$ and $\alpha_2(t+t')\Big|_{t=0} = \alpha_2(t')$, $\alpha_{\alpha_2(t')}(t)\Big|_{t=0} = \alpha_2(t')$ so by uniqueness of solutions to ODEs, we have that $x_q(t+t') = x_{q(t')}(t) \quad \forall t \in (-\varepsilon, \varepsilon).$ Note \$\phi_t^{\times} \cap \psi_t^{\times} = \psi_0^{\times} = id => \$\phi_t^{\times}\$ is a local diffeo.

23-11-18 38.4 Lie derivative Let X, Y & M(TM), p & M and consider &t * the flow of X around p. We can see how Y changes around p wrt X. First look at Y along an integral curre $\alpha p(t)$ of X, i.e. $Y(\phi_t^{\times}(\rho)) \in T_{\phi_t^{\times}(\rho)} M$ Recall $\phi_t^{\times} \cdot \phi_t^{\times} = id. \implies \phi_{-t}^{\times}(\phi_t^{\times}(\rho)) = \rho$ => d(&-x) = Tax(P) M -> TpM => (p-x)* (Y(p+x(p))) ETpM Def 8.8
Given X, Y & M (TM) we define the Lie derivative of Y wrt. X by L × (Y(p))=lim (px) * (Y(ptx(p))) - Y(p) + 90 + where {\$\phi_{\pm} \times \text{ it } \estarce(-\varepsilon, \varepsilon)} is the flow of X near p. Example Let Y = Eb; d; be a vector field on R". We know $\phi^{2i}(\rho) = \rho + te_i$ so $(\phi^{2i})_* = id$. Hence $L_{2i}(\rho) = \lim_{t \to 0} (\phi^{2i})_* (\gamma(\phi^{2i}(\rho))) - \gamma(\rho)$ = $\lim_{t\to 0} \frac{Y(p+te_i)-Y(p)}{t} = \frac{\sum_{j=1}^{n} \partial_{i}b_{j}\partial_{j}}{t}$ =) Lg. d; = 0 and if X = x, 22 - x22, then Lo, X = 02, Lo, X = 0, Lo, X = 0

MATH0072

Popr LxY = [x, y] So we have the properties $L_{\times} Y = -L_{\times} X$ $L_{\times} (Y + Z) = L_{\times} Y + L_{\times} Z$ $L_{\times} (JY) = JL_{\times} Y + X(J) Y$ Note: we don't get a connection since $L_{1} \times Y = \int L_{1} \times Y - Y(f) \times Y$ Example $X = \sum_{a;\partial;} \text{ on } \mathbb{R}^n$ $\mathcal{L}_{x} \partial_{i} = (-\mathcal{L}_{d_{i}} \times) = \sum_{j=1}^{n} a_{j} \mathcal{L}_{2i} \partial_{j} - \sum_{j=1}^{n} \partial_{i} a_{j} \partial_{j}$ $= -\sum_{i=1}^{n} \partial_i a_i \partial_i$ For example, let X = 24 22 - x22, Lx 2, = - 22, Lx 22 = - 2, Lx 23 = 0. Def 8.10
Let $X \in \Gamma(TM)$ and let g be a Riemannian metric. Then $\mathcal{L}_{X} g(\rho) = \lim_{t \to 0} (\mathcal{I}_{t}^{\times})_{x} g_{\sigma \tilde{k}(\rho)} - g_{\rho}$ where It's the flow of X around p. We call vector fields X st. Lxg = 0 killing fields ? [Isometries (hilling fields]

MATH0072 23-11-18 Recall that the flow of ∂i is a translation on $\mathbb{R}^n \Rightarrow (\mathscr{G}_{\pm}^{\times})^* g_0 = g_0 \Rightarrow \mathcal{L}_2, g_0 = 0$. Similarly the vector fields $X_1 = x_2 \partial_1 - x_2 \partial_1$, $X_2 = ... etc$ define rotations around the coordinate axes ⇒ (\$\psi_{\psi}\)*go = go = \frac{1}{2} \times \frac{1}{2} \sigma_{\psi} \go = 0. § 9 Riemannian metrics revisited §9.1 Isometries and local isometries Def 91

A smooth map $f: (M,g) \rightarrow (N,h)$ between Riemannian manifolds in an isometry if f is a diffeo and g = f * h. Clearly the isometries of (M,g) form a group, on fact a subgroup of Diff(M), which we call Isom(M). Geodesics and curvature are defined purely by the Riemannian metric, they are invarient under isometries. Example Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be linear, i.e. f(n) = Ax $\Rightarrow f*g_0 = g_0$ (i.e. $g_0(Ax, Ay) = g_0(x, y)$) $\Leftrightarrow A \in O(n)$ Note that translations are isometries. Hence (modulo showing every isometry of R" is affine linear) we have Irom (R") = O(a) × R".

Example clearly Isom (5", gstandard) = O(n+1) Example By problem sheet 5 we have $Isom(H^n,g)$, where g is the hyperbolic metric, is given by $Isom(H^n,g) = O^+(n+1) = \frac{1}{2}A = (a_{ij}) \in M_{n+1}(R) \mid A^TGA = G$, where $G = I_n O$ Example Recall SU(n) (ie. A*A = 1, det A = 1) then Ta SU(n) = {B e Mn (C) | ATB + BTA = 0, 4 (ATB) = 0} = {AX ∈Mn(c): X + XT=0, br(x)=0} Claim: g given by gA(B,C) = -6 (ATB ATC) =-br(X, Y)=ga(AX, AY)VAESU(n), B=AX, C=AY ETASU(n) is a Riemannian metric. Note ga(B, c) = 6(X Y) = 6(YX) = ga(C, B) $\overline{tr}(X,Y) = tr(X,\overline{Y}) = tr(X^T,Y^T) = tr((YX)^T)$ = br(xx) = br(xx) It is also positive definite: if we write x_1, \dots, x_m for the columns of X, $-br(X^2) = br(\bar{X}^T X) = \sum_{j=1}^n |x_j|^2$ Let Lc: SU(n) -> SU(n) be given by Lc(A) = CA. Claim: Lc is an isometry AX, AY E TA SU(n) (Lc*g)(AX, AY) = gea ((Lc)*AX, (Lc*)AY) = gea (CAX, CAY) = -tr(XY) = ga (AX, AY => g is left invariant.

23-11-18 Moreover Re: SU(n) -> SU(n) given by ReA = AC is as isometry since (Reg) (AX, AY) = gae(AXC, AYC) = - 6 (ACTAXCACTAYC) = - br (CTXYC) = - br(YX) = - br(XY) $= q_A(AX, AY)$ so g is also right invarient. 29-11-18 0 $f: (M,g) \rightarrow (N,h)$ is a local isometry if for $g \in N$ s.t. f(p)=q, $\exists U$ open, $p \in U$, V open, $g \in V$ s.t. $f: U \rightarrow V$ is an isometry (i.e. $f: U \rightarrow V$ differ and f*h=g). Assume we have charts (U, 4) on (M,g) and (V, 4) on (N, h) st. 4(U) = 4(V) = W CR" and $(\varphi^{-1})^* = (\psi^{-1})^* h$ on W.

Then $(\psi^{-1} \circ \varphi)^* h = \varphi^* \circ (\psi^{-1})^* h$ $= \varphi^* \circ (\varphi^{-1})^* g = g$ So the map $f := \psi^{-1} \circ \psi : U \rightarrow V$ is an isometry. Note that (9K) is equivalent to 9ij = 9((4-1) + di, (4-1) + di) = (4-1)* g(di, d;) = (4-1)*h(di, d;) = hij. Example We have minimal surfaces (that is the mean curvature $H = \lambda_1 + \lambda_2 = 0$) in \mathbb{R}^3 known as the helicoid M, = 3 (scoot, ssint, t) | s,t EIRS

MATH 0072

and the cateroid $M_2 = \left\{ \left(\cosh(2) \cos \theta, \cosh(2) \sin \theta, 2 \right) \middle| 2, \theta \in \mathbb{R} \right\}.$ Define local coordinates on M, by $f_1(x_1, x_2) = (\sinh x_1 \cos x_2, \sinh x_1 \sin x_2, \pi_2)$ and on M_2 by $f_2(x_1, x_2) = (\cosh x_1 \cos x_2, \cosh x_1 \sin x_2, \pi_1)$ $f_1)_* \partial_1 = \cosh x_1 \cos x_2 \partial_1 + \cosh x_1 \sin x_2 \partial_2$ $f_1)_* \partial_2 = -\sinh x_1 \sin x_2 \partial_1 + \sinh x_1 \cos x_2 \partial_2 + \partial_3$ $So (f_1)_* g_0 = \cosh^2 x_1 dx_1^2 + (1 + \sinh^2 x_1) dx_2^2$ $= \cosh^2 x_1 (dx_1^2 + dx_2^2)$ $(f_2)_*\partial_1 = \sinh x, \cos x_2 \partial_1 + \sinh x, \sin x_2 \partial_2 + \partial_3$ $(f_2)_*\partial_2 = -\cosh x_1 \sin x_2 \partial_1 + \cosh x_1 \cos x_2 \partial_2$ So $(f_2)_*g_0 = (1 + \sinh^2 x_1) dx_2 + \cosh^2 x_1 dx_2^2 = \cosh^2 x_1 (dx_1^2 + dx_2^2)$ ⇒ M, and M2 are locally isometric Example
Pseudo-aphese is locally isometric to hyperbolic of space (see notes). § 9.2 Goup actions Given a discrebe group of acting freely and properly discontinuously on a narifold M, the quotient map

TT: M - M/G is a local diffeo. by prop 1.9 and hence an immersion by prop 2.7. Thus by propor 4.3 if we have a netric hon My we got a metric 71th = g on M.

MATH 0072 29-11-18 Thm 9.2 Let to be a discrete group acting freely and properly discontinuously by isometries on a Riem. manifold (M,g), is suppose that the diffeomorphisms to on M are isometries tyck. Then there exists a Riem metric h on M/G St. TI: M > M/ is a local isometry. Idea: define h st. #h = g and show it is well Note dre: TeM -> Tu(e) M/G is an isomorphism

V peM by prop 1.9 and It is surjective, so we can define h by $h_{\pi(e)}(X,Y) = g_{e}((d\pi_{e})^{-1}X, (d\pi_{e})^{-1}Y).$ Why is this well defined? Take 9 # p st. 11(9) = 11(p). => q=fg(p) for some geG => T(p) = T10 fg(p) So differentiating gives diffe = d(Tr. fg) = differ od (f2) = dT7 od(f3)p. => dTq = dTp . (d(fg)p)-1 => (dTq) = d(fg)p . (drp)-1) gq ((d Tq) 'X, (d Tp) 'Y) = 9/3(p) (d(fg)p · (d Tp) -1 × , d(fg)p · (d Tp)-17 = (fog) ((d) Te) -1 X, (d) Te) -1 Y = 9 ((drp)-1 X, (drp)-1 Y since to is an isometry. Moreover, h is pos. definite since hop (X,X) = go ((dre)-(X), (dre)-(X))>, 0 and equal to zero iff X=0 since (drip) is an isomorphism.

Note id and -id are isometries on Rⁿ⁺¹
so RPⁿ, the Möbius band and the Klein bobble
obtain Riem metrics from S¹, the cylinder and T² c R². Example Example
We get a flat metric on R'/m (see notes). Example By Thm 9.2 the projection $\pi: S^n \to \mathbb{RP}^n = S^n_{\mathcal{I}_2}$ is a local isometry.

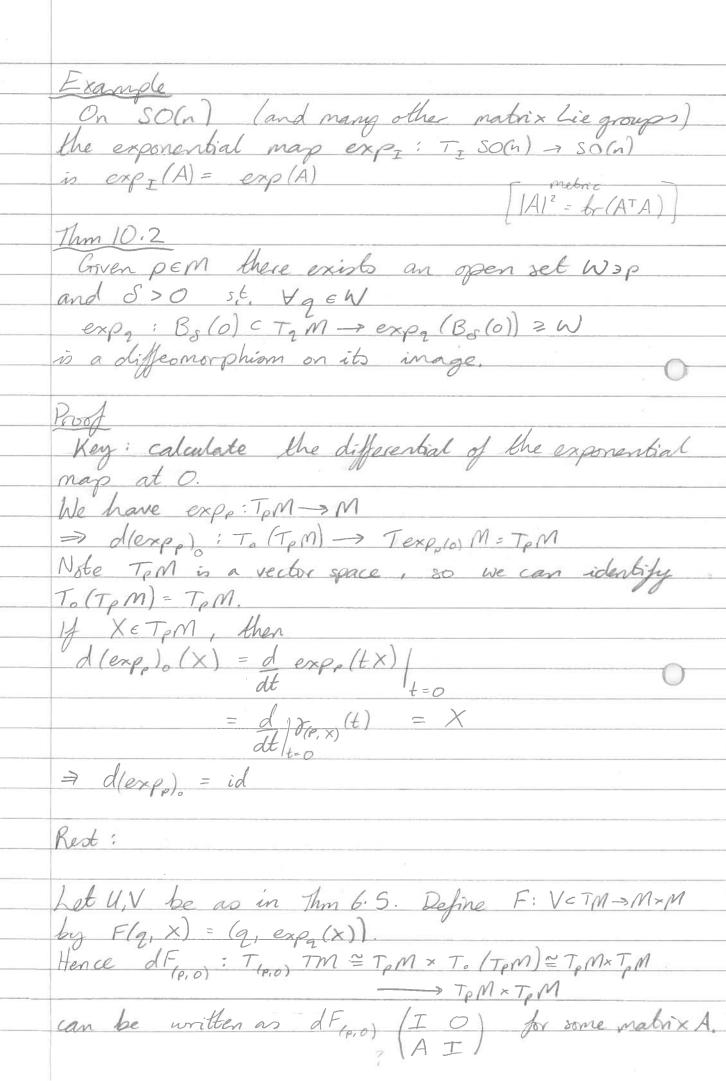
Therefore, since the condition for being a geodesic is a local one (determined by the Christoffel symbols in a chart) we see that if g is a normalised geodesic in S^n then $g = \pi \circ g$ is a normalised geodesic in S" then y = 17. " is a normalised geodesic in RP". Note: $\mathcal{J}(t+2\pi) = \mathcal{J}(t)$ bout $\mathcal{J}(t+\pi) = \mathcal{J}(t)$ since $\hat{\mathcal{J}}(t+\pi)=-\tilde{\mathcal{J}}(\pi)$ and $\pi(\tilde{\mathcal{J}}(t))=\pi(-\tilde{\mathcal{J}}(t))$. By thm 6.5, I' geodesic & in IRIP" through [p] onth y'(0) = X, dre: TpS" - Tcp IRIP" is an isomorphism, these exists a unique great circle a through p with drip(x'(0)) = X => Too in a geodesic with (TO a)(0) = p, (TO x)'(0)=X.

30-11-18	§9.3 Parallel bransport
	(M,g) a Riemannian manifold
	Defn 9.3
	Let a be a curve in M and X a vector field
	Def ⁿ 9.3 Let α be a curve in M and X a vector field along α (i.e. $X(\alpha(t)) \in T_{\alpha(t)} M$ and $t \mapsto X(\alpha(t))$ is smooth).
	We say X is parallel (along a) if Va X = 0.
0	Assume α is contained in coordinate chart (U, Ψ) , write $(\Psi \circ \alpha)(t) = (\chi_1(t), \dots, \chi_n(t))$
	(U, 4), unite (40 x)(t) = (2, (t),, zn(t))
	and if $X_i = (\varphi^{-1}) * \partial_i$ as usual, then write $X = \sum_{i=1}^{n} a_i X_i (\text{think } X_i \circ \alpha)$ Then $\alpha' = \sum_{i=1}^{n} \chi_i' (\varphi^{-i}) * \partial_i = \sum_{i=1}^{n} \chi_i' X_i$
	X = 2 a; X; (think X; 0 x)
	Then a = 2 ki (1) & Oi = 2 ki / i
	Note x'= xx (2+). Then
	Note $x' = \alpha_*(\partial_+)$. Then $\nabla_{\alpha'}(\sum_i a_i x_i) = \sum_{i=1}^{n} \alpha'(a_i) x_i + a_i \nabla_{\alpha'} x_i$
0	$= \sum_{i} a_{i}' \chi_{i} + a_{i} \sum_{j=1}^{n} \chi_{j}' \chi_{j}$
	$= \sum_{i} \left(a_{i}' \times_{i} + a_{i} \sum_{j} n_{j}' \nabla_{x_{j}} \times_{i} \right)$
	= \(\frac{1}{2} a_i' \times i + a_i \) \(\frac{1}{2} \) \(\times \)
	$\frac{1}{2} \sqrt{\sum_{i} (\sum_{i} a_{i} \chi_{i})} = \sum_{k=1}^{n} \left(a_{k}' + \sum_{i,j=1}^{n} \prod_{ij} a_{i} \chi_{j}' \right) \chi_{k} \qquad (* *)$
	So parallel () 1st order ODE (in local coordinates).
	Remark
	This confirms the geodesic equi.

Example

On \mathbb{R}^n , $\Gamma_{ij}^k = 0$ $\nabla_{\alpha} \cdot X = \sum_{k=1}^n a_k^i \times_k$ 80 parallel \Leftrightarrow $a_k^i = 0$ Example Let X = (for (do), X = (for (do)) be the standard vector fields on 82. vector fields on 82. Then $\Gamma_{\parallel}^{2} = \Gamma_{\parallel}^{1} = 0$ Then $\Gamma_{\parallel}^2 = \Gamma_{\parallel}^1 = 0$ $\Gamma_{22} = -\sin\theta\cos\theta$, $\Gamma_{22}^2 = 0$, $\Gamma_{12}^2 = \cot\theta$. $\Rightarrow X = a_1X_1 + a_2X_2$, then given a curve $x(t) = f(O(t), \varphi(t))$, we get $\sqrt{X} = (a_1' - (\sin O(\cos O)a_2 \varphi') X_1 + (a_2' + \cot O(a_1 \varphi' + a_2 O')) X_2$ So assume $\phi = const.$ along α i.e. $\theta = t$ and $\beta' = 0$ then $\nabla_{\alpha'} X = \alpha'_1 X_1 + (\alpha'_2 + cot(t)\alpha'_2) X_2$ then $\nabla_{x}.X = a_1 X_1 + \mu_2 + \omega_{1}$, $\Rightarrow X_1$ is parallel along α ((=) α geodesic) but Xz is not parallel. Take 0 = const, g=t => Vx X = (a' - sinocoso az) X, + (az'+coto a) Xz => X1 and X2 are parallel along a iff Example Dixumion on T20 R3 - see notes. Let p, g ∈ M and x: [0, L] → M be a curve between p and q. Given X. = Taro, M = TpM there exists a unique parallel vectorfield X along a s.t. X(p) = Xo. The map Tx: TpM -> T2M given by Tx(X.)=X(2) is an isometry, so an isomorphism st. 9p(Xo, Yo) = 92(Ta(Xo), Ta(Yo))

MATH 0072 30-11-18 Note: it suffices to show this for the case that a is contained in a coordinate chart (U, 4). Otherwise since [O, L] is compact we can cover the image with a finite number of coordinate charts and the result follows lay doing it on each sub-interval. Note: X is parallel iff RHS of (# #) = 0.
This is a 1st order ODE in n variables


(ai(t), ..., an(t)) together with n initial conditions

(ai(0), ..., an(0)) = X.

> solution exists and is unique. Using is to an isomorphism? Clearly to is linear (since the sum of two parallel vector fields X, Y is again parallel). Let $\beta(t) = \alpha(L-t)$ and consider $\tau_{\beta}: T_{q}M \to T_{p}M$. Thus $\exists!$ vector field \forall along β $\exists t$, $\forall (q) = \chi(q)$. However B'(t) = x'(L-t), so $\nabla_{x'} X = 0 \Rightarrow \nabla_{B'} X = 0$. By uniquener of Y we have $Y(p) = X_0$. $T_{\beta} \circ T_{\alpha} = id_{T_{\rho}M}$. Let $X_0, Y_0 \in T_pM$ and consider X, Y the unique parallel vector fields along α st. $X(p) = X_0$, $Y(p) = Y_0$. Since $\alpha' = \alpha_*(\partial_{\pm})$ we have $\frac{d}{dt}g(X,Y)=\alpha'(g(X,Y))=g(\nabla_{x'}X,Y)+g(X,\nabla_{x'}Y)=0$ => gp(X0, Y0) = gp(X(p), Y(p)) = g(X, Y)(x(0)) $=g(X,Y)(x(L))=g_2(X(q),Y(q))=g_2(\tau_x(X_o),\tau_x(Y_o))$ $=\int_{\mathbb{R}^n} \tau_x \text{ is an isometry}.$

Example Example
Consider S^2 with standard parameterisation $f(0, d). \quad x(t) = (\sin 0 \cos t, \sin 0 \sin t, \cos 0)$ $= x' = x_2, \quad x = a, x_1 + a_2 x_2$ X parallel (=) $\nabla_{\alpha'}X = (\alpha_1' - \sin\theta\cos\theta \alpha_2)X_1 + (\alpha_2' + \cot\theta \alpha_1)X_2 = 0$ $(\Rightarrow) \alpha_1' = \sin\theta\cos\theta \alpha_2 \quad \text{and} \quad \alpha_2' = -\cot\theta \alpha_1$ Differentiating: $a_1'' = -\cos^2\theta a_1$ $\Rightarrow \{a_1(t) = a_1(0)\cos(t\cos\theta) + a_2(0)\sin(t\cos\theta)\}$ $\sin\theta$ $\left(a_2(t) = a_2(0)\cos(t\cos\theta) - a_1(0)\sin(t\cos\theta)\right)$ So parallel transport along & is the map $(a_1 X_1 + a_2 X_2) = (a_1 \cos(t\cos 0) + a_2 \sin(t\cos 0)) X$, + (-a, sin(tcoo) + az cos(tcoo)) X2 § 10 Geodesics revisited Recall Let $p \in (M, g)$, there is $\varepsilon > 0$ and $U \ni p s t$. $\forall g \in U$ and $X \in T_p M$ with $|X| = \sqrt{g(X, X)} < \varepsilon$ there exists a unique geodesic $\gamma_{(2, \times)}: (-2, 2) \rightarrow M$ 5t, $\gamma_{(2, \times)}(0) = q$ and $\gamma'_{(2, \times)}(0) = X$. Let $V = \{(q, \times): q \in U, X \in B_{\epsilon}(0) \in T_2M\}$. §10.1 Exponential map We define the smooth map $\exp_p: V \rightarrow M$ by $\exp_2(q, X) = \chi_{(q, X)}(1)$. This is called the exponential map. MATH0072 30-11-18 We often restrict $\exp_{\rho}: B_{\epsilon}(0) \subseteq T_{\rho}M \to M$ by $\exp_{\rho}(X) = \chi_{(\rho, X)}(1)$. Note $J_{(p, \pm x)}(1) = exp_p(\pm x) = J_{(p, x)}(\pm)$ Examples 1). (R", g) , &(p,x)(t) = p+tx $\Rightarrow exp_{\rho}(X) = \rho + X$ 2). Consider TrcR2n If p = (coo, sino, ..., coon, sinon) $X = \int_{\mathbb{R}} (\frac{S}{2}a - \partial i)$ where $f(x_1, ..., x_n) = (cox, sinx, ..., cox, sinx)$ then we have $y_{(p,x)}(t) = (\cos(a_1t + \theta_1), \sin(a_1t + \theta_1), \dots, \cos(a_nt + \theta_n), \sin(a_nt + \theta_n))$ $\Rightarrow \exp_p(x) = (\cos(a_1t + \theta_1), \sin(a_1t + \theta_1), \dots, \cos(a_nt + \theta_n), \sin(a_nt + \theta_n))$ 3). On SZ we have geodesics for CER given by

y(t) = (sin(ct+0)) cn(d.), sin(ct+0) sin(d.), cos(ct+0.)) They all start at $p = \gamma(0) = f(0_0, \phi_0)$ and $\gamma'(0) = c \times 1_0$ $\Rightarrow \exp_{\phi}(c \times 1) = \gamma(1) = (\sin(c+\theta_0)\cos(\theta_0), \sin(c+\theta_0)\cos(\phi_0), \cos(c+\theta_0))$ Note exp. $(2\pi X_1) = \exp_{\rho}(X_1)$ So the exponential map is not injective. We saw on the Hypertolic plane (H^2, g) that the geodesics for $C \in \mathbb{Z}$ are given by $\gamma(t) = (x_1, e^{ct}x_2)$ $g = dx^2 + dy^2$ $\Rightarrow \gamma(0) = (x_1, x_2) = \rho$, $\gamma'(0) = C \partial_2$ $n^2 + y^2$ => expe(cd2) = y(1) = (x, x2ec)

MATH0072	
30-11-18.	
	⇒ dF _(Pro) is an voomorphism So F is a local diffeo by Prop ⁿ 2.7.
· · · · · · · · · · · · · · · · · · ·	Thus $\exists \varepsilon > \delta > 0$ and open sets $\tilde{U} \subset U$, $\tilde{W} \subset M \times M$ s.t. $(\rho, \rho) \in \tilde{W}$ and if $\tilde{V} = \{q, X\}$ s.t. $q \in \tilde{U}$, $X \in B_{\delta}(0) \subset T_{2}M\} \subset V$ then $F: \tilde{V} \to \tilde{W}$ is a diffeo.
0	Choose an open set $W \ni p \le b$. $W \times W \subseteq \widetilde{W}$ Then if $q \in W$ we have $W \subseteq \exp_q(B_{\xi}(0))$ as required.
06 - 12 - 18	§10.2 Length and normal nbhds
	Def 10.3 The length of a piecewise smooth curve $x: [0,1] \to M$ is $L(\alpha) = \int_0^1 x'(t) dt = \int_0^1 \sqrt{g(x'(t), x'(t))} dt$ Note this is invarient under reparameterisation.
0	For normalised geodesic $\gamma:[0,l] \to M$, $L(\gamma)=l$ since $ \gamma'(t) =1$.
	We say a curve x is (length) minimizing if $L(\alpha) \leq L(\beta)$ for all precense smooth curves $\beta: [0, 1'] \rightarrow M$ st. $\alpha(0) = \beta(0)$ and $\alpha(1) = \beta(1')$. Examples See notes.
	Def "10.4 An open set $U \subseteq M$ with $p \in U$ is called a normal noble of p if B an open set $V \subseteq T_pM$ s.t. $exp_p: V \to U$ is a diffeo.

If $B_{\varepsilon}(o) \subseteq V$ we define $B_{\varepsilon}(\rho) = \exp_{\rho}(B_{\varepsilon}(o))$ to be the gendesic ball of radius ε centred at ρ and $\partial B_{\varepsilon}(\rho) = S_{\varepsilon}(\rho)$ to be the geodesic sphere of radius ε around ρ . An open set $W \subseteq M$ is called a totally normal neighbourhood if it is a normal nebhol $\forall p \in W$. Thm 10.2 was existence of totally normal normal We call all geodesics emanating from pradial geodesics. Note: By Thm 10.2, given a pt. $q \in B_{\varepsilon}(\rho)$ (ε sufficiently small) then all radial geodesics from ρ to q are the unique geodesic connecting ρ to q in $B_{\varepsilon}(\rho)$. 1). $p \in \mathbb{R}^n$, $X \in T_p \mathbb{R}^n \cong \mathbb{R}^n$, then $\exp_p(X) = p + X$ So expp is defined $\forall x \in T_pR^n$, so expp is a differ between T_pR^n and R^n . 2). Let N be the north pole in S", expn is the map which follows a great circle, and if $X \in T_N S$ s.t. $|X| = \pi$, then $\exp_N(X) = S$ (south pole) Hence expn: Bn(0) = TNS" -> S" \ {S} is a diffeo, so S"\{S} is a normal nobed of N. MATH 0072 06-12-18 §10.3 Geodesics are locally length minimizing Lemma 10.5 (Gauss lemma)

Let $\rho \in M$ and $X \in T_{\rho} M$ st. $\exp_{\rho}(X)$ is defined.

If $Y \in T_{\times}(T_{\rho} M) \cong T_{\rho} M$, then gexp,(x) (d(expp)x(x), d(expp)x(Y)) = gp(X, Y). $\frac{x}{y} = \exp_{e}(x)$ $\frac{d_{exp_{e}}(y)}{d_{exp_{e}}(x)}$ Proof
Write $Y = Y^T + Y^L$ where $Y^T \in Span(X), Y^L \in Span(X)^L$ Note the geodesic $\mathcal{J}(p, x)$ so that $\mathcal{J}(p, x)(0) = p \quad exp_p(x) = \mathcal{J}(p, x)(1)$ satisfies $\mathcal{J}(p, x)(1) = \mathcal{J}(p, x)(1) = \mathcal{J}(p, x)(1)$ $\gamma_{(\rho,x)}(t) = \exp_{\rho}(tx)$, $\gamma'_{(\rho,x)}(t) = d(\exp_{\rho})_{tx}(x)$ >> \(\(\(\exp_{\text{e}} \) \(\(\exp_{\text{e}} \) \(\(\exp_{\text{e}} \) \(\(\exp_{\text{e}} \) \) \(\(\exp_{\text{e}} \) \(\(\exp_{\text{e}} \) \) $\delta'(e,x)(1) = d(exp_e)_x(x)$ Moreover, $|\gamma'(\rho,x)(t)|^2 = g_{\tau(\rho,x)}(t)(\gamma'(\rho,x)(t), \gamma'(\rho,x)(t))$ = g expe(tx) (d(expe) (x), d(expe)(x) This is constant in t, by def of a geodesic. Thus choosing t=0 and t=1 $g_{exp_{\rho}(x)}(d(exp_{\rho})_{x}(x), d(exp_{\rho})_{x}(x)) = g_{\rho}(x,x)$

Since $Y^T \in Span(X)$ (if $Y^T = \lambda X$ for some $\lambda \in \mathbb{R}$) = $g_{exp_{\rho}(X)}(d(exp_{\rho})_{X}(X), d(exp_{\rho})_{X}(Y^T)) = g_{\rho}(X, Y)$ So since $g_{\rho}(x, Y^{\perp}) = 0$ by def^{n} it is enough to show that $g_{exp_{\rho}}(t \times) (d(exp_{\rho})_{\times}(x), d(exp_{\rho})_{\times}(Y^{\perp}) = 0$ There exist $\varepsilon > 0$ st. if $X(t) = X \cot + Y^{\perp} \sin t$ then $\exp(sX(t))$ is well defined for $s \in (0,1]$ and 0 $t \in (-\varepsilon, \varepsilon).$ Let $f(s,t) = \exp_{\rho}(s \times (t))$ so $s \mapsto f(s,t) = \exp_{\rho}(s \times (t))$ are radial geodesics. We can differentiate f to get $\frac{\partial f}{\partial s} = d(exp_e) \frac{(\chi(t))}{s\chi(t)} \text{ and } \frac{\partial f}{\partial t} = d(exp_e) \frac{(s\chi'(t))}{s\chi(t)}.$ Since $f(1,0) = \exp_p(x)$ and $x'(0) = Y^{\perp}$, we see that gerpo(x) (d(expp) (x), d(expp) x (Y^{\pm}) = gerpo(x) (3\frac{1}{2} (1,0), 2\frac{1}{2} (1,0)) Now the covarient derivative along curves where t is constant is $\mathcal{V}_{1} \cdot \partial_{s} \cdot \partial_{s}^{2} = 0$ (geodesic eq") In a coordinate chart (U, φ) around $f(s, t_0)$ s.t. $\varphi \circ f(s,t) = (x_1(s,t), \dots, x_n(s,t))$ we can calculate $\nabla_{\varphi} \xrightarrow{\partial f}$ in the chart (U, φ) as $\frac{\sum_{j=1}^{n} \frac{\partial x_{j}}{\partial t} \partial_{j} = \int_{j=1}^{n} \frac{\partial^{2} x_{j}}{\partial s \partial t} \partial_{j} + \int_{j,k=1}^{n} \frac{\partial x_{j}}{\partial s} \frac{\partial x_{k}}{\partial t} \nabla_{\partial_{k}} \partial_{j}}{\int_{j}^{n} \frac{\partial x_{j}}{\partial s} \partial t} \nabla_{\partial_{k}} \partial_{j}^{n} ds$

MATH 0072 06-12-18 which is symmetric in s and t, so

Vi ds dt = Vi dt ds So we get (as in thm 9.4) $\frac{\partial}{\partial s}g(\frac{\partial f}{\partial s},\frac{\partial f}{\partial t}) = g(\nabla_{f}\frac{\partial f}{\partial s},\frac{\partial f}{\partial s},\frac{\partial f}{\partial t}) + g(\frac{\partial f}{\partial s},\nabla_{f}\frac{\partial f}{\partial s})$ $=g\left(\nabla_{t}\frac{\partial f}{\partial s},\frac{\partial f}{\partial t}\right)=\frac{1}{2}\frac{d}{dt}\left|\frac{\partial f}{\partial s}\right|^{2}$ = 0 const > 9 (34, 24)(1,0) = 9(34, 24)(s,0) \text{\$\text{\$}\$} > 0 Now $\frac{\partial f}{\partial t}(s, 0) = d(\exp_{sx})(sY^{\perp}) \rightarrow 0$ as $s \rightarrow 0$ => g(2f, 2f)(1,0) = gexpo(x)(d(expo)x(x), d(expo)x(Y1))=0 07-12-18 \$10.3 Geodesics locally leight minimoring Geodesics y: [0, L] -> M in BE(p) with y(0)=p are minimizing. Moreover if $\alpha: [0, L] \rightarrow M$ is a piecewise smooth curve st. $\alpha(0) = \gamma(0)$, $\alpha(L) = \gamma(L)$ and $L(\alpha) = L(\gamma)$ then $\alpha([0, L]) = \gamma([0, L])$. Proof (non examinable) Let a: (0, L) - M be a comparison curve. f f(0)= f(L) then y is const. ⇒ L(y)=0 (=) y minimising) Whon y(0) + y(L). Since we are in BE(p) the unique geodesic from $\gamma(0)$ to $\gamma(L)$ is the radial geodesic (thm 6.5)

If $\alpha([0,L]) \notin B_{\mathcal{E}}(\rho)$, choose $T \in [0,L]$ s.t. the first time that $\alpha(T) \in S_{\mathcal{E}}(\rho)$. Then $2(\alpha) \geqslant L(\alpha|_{[0,T]})$. So $\alpha \mid_{[0,T]} \subseteq B_{\varepsilon}(\rho)$. Reparameterise St. $\alpha \mid_{[0,T]}$ is defined on [0,L] and call this α .

If we can show $L(\alpha) \geq L$ (radial geodesic from $\alpha(0)$ to $\alpha(L)$) then we're done since we will have shown that the radial geodesic minimises length over all curves connecting p to any other point. Assume $\alpha([0, L]) \subseteq B_{\varepsilon}(p)$. Whog. suppose $x(t) \neq p$, t > 0. Write $\alpha(t) = \exp_{\rho}(r(t) \times (t))$, $t \in (0, L]$, $r: (0, L) \rightarrow \mathbb{R}^{+}$ piecewise smooth. X(t) smooth in TpM, |X(t)|=1. Write geodesic $\gamma: [0, L] \rightarrow M$ from p to q as $\gamma(s) = \exp(s - (L) \times (L))$ Use rotation of proof of Gauss Lemma $\alpha(t) = f(r(t), t)$ s.t. $\alpha'(t) = r'(t) 2f(r(t), t) + 0f(r(t), t)$ By Gauss Lemma, $g(2f, 2f)(r(t), t) = g_{exp_{\rho}(r(t) \times (t))}(d(exp_{\rho})_{(r(t) \times (t))}(x(t)), d(exp_{\rho}) (x(t)))$ = $g_p(x(t), x(t)) = 1$. $g(\frac{\partial f}{\partial s}, \frac{\partial f}{\partial t})(r(t), t) = g_{exp_{\rho}(r(t) \times (t))}(d(exp_{\rho})_{r(t) \times (t)}(x(t)), d(exp_{\rho})_{r(t) \times (t)}(x'(t)))$ $=g_{\rho}(\chi(t),\chi'(t))=\frac{d}{dt}|\chi(t)|_{g_{\rho}}^{2}=0$ Hence $|\alpha'|^2 = |r'|^2 + |\partial f|^2 > |r'|^2$

MATH 0072 07-12-18 So L(x) = \[\langle \ $= L\left(\frac{\Gamma(1) \times (L)}{L}\right)$ So the geodesic y is minimising Now if L(x) = L(y) (=) 2f = 0 (=) X(t) = 0 So X(t) = X const, and $|\Gamma'| = \Gamma' > 0$ So x is a monotonic reparameterisation of y $\left(\frac{1}{2}(s) = \exp\left(\frac{s\Gamma(L)X}{L}\right)\right)$ so $x([0,L]) = \frac{1}{2}([0,L])$ Prop 10.7 If y: [0, L] > M is a piecewise smooth curre with /y/ const, and it is locally minimising then y is a geodesic. Let t & (0, L), Wa totally normal nehd of y(t) Then 35>0 st. [t-5, t+5] = [0, L] and smooth and joins thro points (t-0, t+6) $p=\chi(t-\delta)$ and $q=\chi(t+\delta)$ in a geodesic ball centred at p since W is a totally normal nbhd. By thm 10.6, L[t] is the length of the radial geodesic $\beta(s) = \exp_{\rho}(s \times)$ from ρ to g so $\alpha = \frac{1}{2} [t+s,t+s]$ is a monotonic reparam.

	i.e. $\alpha(s) = exp_{p}(r(s)X)$, $r(s)$ positive increasing
	punction with r(0) = 0.
W 2	By proof of them 10.6, $ \alpha' ^2 = r' ^2, r' = r' \text{ since } r \text{ increasing}$
	so ris a multiple of s.
	Hence a is a radial geodesic
	Therefore y is a geodesic on [t-o, t+o] and
	t arbitrary, so y satisfies the geodesic equal everywhere and so is a geodesic.
	everenthere and so is a goodesic
8	See online notes for example about geodesies in CP".
	Joseph Joseph Joseph Joseph Joseph
1/2/2	\$10.4 Completenen
	§10.4 Completeners (M, g) a connected Riem, mfd.
	Def "
	(M, a) is (aerdesically) complete it
	Def (M,g) is (geodesically) complete if $\exp_{\rho}(X)$ is defined for all $X \in T_{\rho}M$ and $\forall \rho \in M$.
	experience for the conference of the
	Equivalently roomalized goodesis
	1- (+) = exp. (+X) are defined $\forall X \in T_0M$
	Equivalently, normalised geodesics $ \frac{1}{ X =1}, \forall t \in \mathbb{R}, \forall p \in M. $
	Example
	1021
	complete not complete
	See notes for more examples.

-

-

 \vdash

H

-

-

-

-

07-12-18 Prop 10.9 If $p,q \in (M, g)$ define $d(p,q) = \inf \{ L(\alpha) \mid \alpha \text{ piecewise smooth curve joining } p \text{ to } 2 \}$ Then (M, d) is a metric space. Proof (non examinable)

The metric balls $B_{\varepsilon}^{d}(\rho)$ in (M,d), ε sufficiently small, are geodesic balls $B_{\varepsilon}(\rho)$ in (M,g)by thm 10.6. Any geodesic ball is an open set in (Mig) by def. Moreover given any open set U in (M,g), then $\forall p \in \mathcal{U} \exists \, \mathcal{E}(p) > 0$ s.t., $\mathcal{B}_{Kp}(p) \subseteq \mathcal{U}$ by existence of normal neighbourhoods, hence U= un on of geodesic balls. So if d defines a metric, d defines same open sets as topology on M. 1), d(p,p)=0 +peM: x(t)=p +t L(x)=0 so d(p,p)=0. 2), d(p, q) = d(q, p): x: [0,] → M pom p to 2 B(t) = x(L-t), B'(t) = - x'(L-t) so 13'(t) = 1x'(L-t) L(x) = L(B) so d(p,q) = d(q,p). 3) Direquality: P.J. TEM, x, B pieuvise smooth curves from p to 2, 2 to r resp. Take & from p to r by tracing a then B. L(x)=L(x)+L(β). d(p,r) ≤ L(x)+L(β) & such x, β. taking inf: d(p,r) = d(p,q) +d(q,r). 4). d(p, g) > 0 \p + q: 3 open set U >p, 9 & U. Since exp cts, 35 >0 st. exp (Bs(0)) well-defined and contained in U, so 9 \$ expp(Bs(0)). Let a be a piecewise smooth curve p to q. Take & part of a contained in exp. (Bs(0)), must meet So(p). However since geodesies are locally length miniming (thm 10.6), L(B) 20, So L(x) > L(B) 2 S. > d(p,q) 2 S > 0.

So (M, d) is a metric space. §10.5 Hopf-Rainon Key point: if a Riemannian mfd is complete then any two points can be joined by a minimising geodesic. Theorem 10.10 (Hopf-Rairow thin) Let (M,g) be a corrected Riem mfd. Then the following are equivalent.

(a) (M, g) is geodesically complete

(b) exp, is defined on all of ToM for some pEM

(c) closed & bounded subsets of Mare compact. a (M,d) is complete as a metric space. Proof Con-examinable a => b: by defn b => c: First show that & qEM I geodesic y: [0, L] -> M s.t. y(o) = p and y(L) = q Let gem, d(p,g)=L. Let s>0 st. Bo(p) is a well-defined geodesic ball around p and let So(p) = OBo(p) be usual geodesic sphere. Consider map x + d(q,x). This is cts. for x & So(p) so achieves a minimum at some $x_0 \in S_S(\rho)$, write $x_0 = \exp_{\rho}(S(X))$ for some XETPM, |X|=1. Let S(s) = exp, (sx) (defined YseR by assumption) Want to show: y is a geodesic joining p to q. It points in the right direction. Let A = { s ∈ [0, L] s.b. d(z(s), q) = L-s}

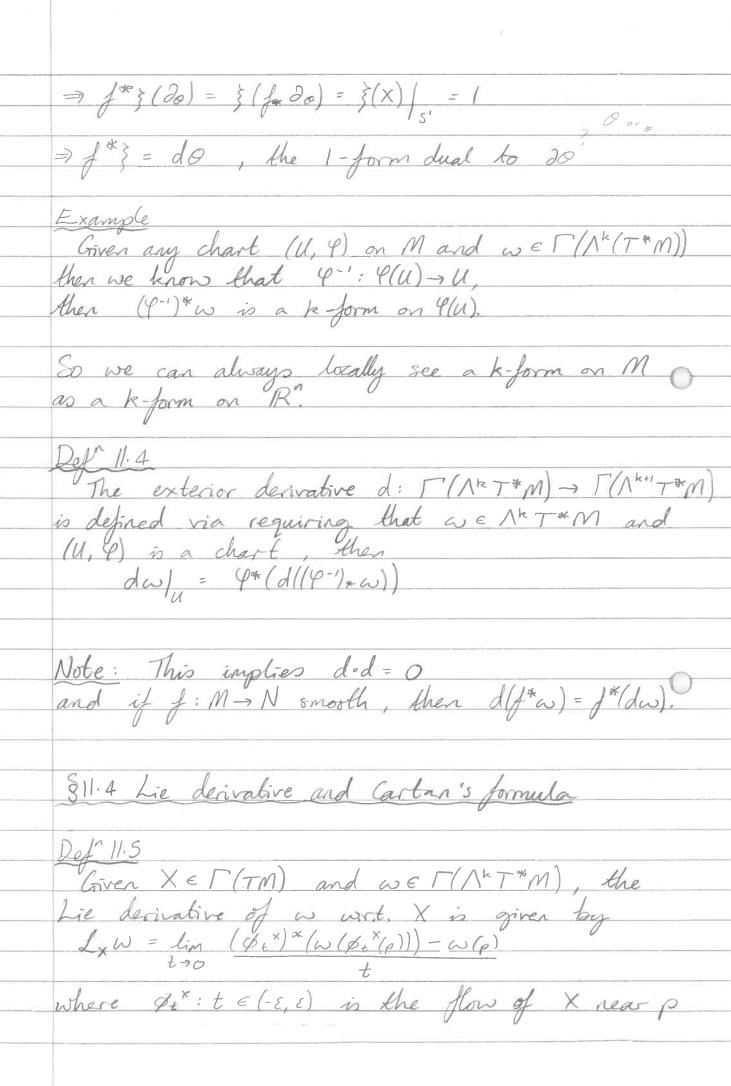
MATH 0072 07-12-18 A = & since O ∈ A, d(p, 9) = L (2(0)=p) A dozed since d is ets. If we can show A is open than A=[0,2] so LEA so d(z(L),q) = L-L= 0 so z(L) = q so j is a geodesic joining p to q. L(j) = L|x| = L = d(p,q), as desired. Suppose So < L, So EA. Need to show so + So ∈ A for some So >0. Choose S. > 0 st. Bs (y (so)) is well defined geodesic ball. Let yo ESS (7 (so)) be s.t. yo is min of $y \mapsto d(y, q)$. Since $s_0 \in A$, $L-s_0 = d(\gamma(s_0), q) = S_0 + \min_{y \in S_{\sigma_0}(y_0, q)} = S_0 + d(y_0, q)$ Hence d(yo, 9) = L - (so + So) If we can show that go = y (so + o.) then d(z(so+So), q) = d(yo, 2)= 2 - (so+So). So So + So E A >) A gren Now d(p, yo) 2 (d(p,2) - d(2, yo) = |L-(L-(so+o))| However, a curve given by Jollowing of from p to y (so) and then radial geodesic in Bo (y (so)) from y(so) to yo has leight L(a) = so + do and piecewise smooth p to yo d(p, yo) < L(x) = 5. + S. => d(p, yo) = so + So and minimising la' l'o conot. (union of geodesics) so prop 10.7 is a geodesic, so smooth Uniqueness of geodesics = x = y so yo = y (20+00) as required

Now if $C \subseteq M$ is closed and bounded then $C \subseteq B_R(p) \subseteq \exp(B_R(0))$ R, R' > 0 (by what we've just shown). BR(0) compact, exp cto > exp (BR(0)) is compact so C is compact, as desired. Let (pn) be Cauchy in (M,d). (pr) is bounded so C= {pr | n EN} closed and bdd so compact. So (pn) has a convergent subsequence so (pn) converges to pECEM. So (M, d) complete. Suggood Mis not geodesically complete.
Then I normalised geodesic of defined on (0, so)
but not at so. Choose a strictly increasing sequence (Sn) in [O, So) with so converging to so.

(Sn) convergent => (Sn) Cauchy = $f(s_n)$ is cauchy $d(y(s_n), y(s_m)) = |s_n - s_m| < \varepsilon \forall n, m > N$ (M,d) complete => 3 po EM s.t. d(J(sn), po) > 0 as n > 00. W botally normal nohad of po 3 8 > 0 s.t. expa(Bs(0)) -> M is a differ onto an open set containing W YgEW. Choose N large enough st. r, m>N. => f(sn) EW Un>N and d(g(sn), f(sn)) < 8 Choose m, n > N, 3! geodesic a: [0, L] -> W st. a(0)= y(sn), a(L)= y(sm) x = y where they are both defined by uniqueness.

07-12-18 Since exp diffeo Bs(0), and its image contains W, a (radial geodesic from f(sn)) extends & beyond so. Renark The minimising geodesic joining p to q is not necessarily unique (e.g. sphere, p=N, q=S) The upper half space has property that there is a minimising geodesic joining any two points but is not complete. (c) tells us any compact narifold must be complete \$10.6 Cartan-Hadamard Hum Simply connected: every loop in M can be continuously deformed to a point. (\mathbb{R}^2, g_0) $(\mathbb{R}^2 \setminus \{0\}, g_0)$ \times Thm (Cartan - Hadamard) Let (M,g) be a simply connected, connected and complete n-din Riem, mpd. with sectional curvature $K \leq O$. Then exposition $M \Rightarrow M \Rightarrow a$ diffeo. (i.e. $M \cong \mathbb{R}^n$) S' connected & simply connected for n? 2. S' \neq R' so it cannot admit a complete metric with K < 0. (cf. Gaun Bonnet for S²). [areas with K ≤ 0 but] must have K>0 somewhere

2-12-18	
	311 Differential Forms
	SII. 1 Review: James on R"
	V
	On \mathbb{R}^n we have 1-forms: $d\omega_1,, d\omega_n$ $\Rightarrow any 1-form \alpha can be written as \alpha = \sum_{i=1}^n \alpha_i d\alpha_i, \alpha_i \in C^\infty(\mathbb{R}^n)$
	Recall $dx_i(\partial_i) = S_{ij} \implies dx_i(\sum_{i=1}^n a_i \partial_i) = a_i$
	k-forms are wedge products of 1-forms $dx_{i_1} \wedge \wedge dx_{i_k} \qquad \left[\binom{n}{k} \text{ basis elements} \right]$
	n-forms on R" are multiples of danndan.
	O-form: function f:R" -> R (smooth).
	Example
	Example $M'' \subset R''$ submanifold, so we can restrict a form on R'' to M by acting on tangent vectors to M (writing $M = M''$, n -lim subsufel.)
	(writing M = M", n-dim subsufel.)
	eng. 8 = 24 doc - 12 doc, on 12 (10)
	evaluate on $36 \partial_2 - x_2 \partial_1$
	$\frac{3}{3}(x, \partial_2 - x_2 \partial_1) = x_1^2 + x_2^2 = 1$
	26 ² +262 ²
	whereas $\{(x_1\partial_1 + x_2\partial_2) = -x_1x_2 + x_2x_3 = 0\}$
	$2\zeta^2 + 2\ell_2^2$


12-12-18	Exterior derivative
	n n
	Recall $d(adx_i, n ndx_{in}) = \sum_{j=1}^{n} \frac{\partial x_j}{\partial x_j} dx_{ij} n ndx_{in}$ extend linearly.
(: ?; ?	excerca uneary.
	On functions: $df = \sum_{n=1}^{\infty} \frac{\partial f}{\partial n} dn$
	1- forms: $d(\sum_{i=1}^{n} a_i dx_i) = \sum_{i,j=1}^{n} \frac{\partial a_i}{\partial x_j} \wedge dx_i$
0	Note: Inform -> dI=0
	Pro l-aci
	Properties: - d.d = 0
10.4	- Assume f:R" - R", wak-form on R"
	ther for is a k-form on R",
	- Assume $f: \mathbb{R}^n \to \mathbb{R}^m$, ω a k -form on \mathbb{R}^m then $f^*\omega$ is a k -form on \mathbb{R}^n , $df^*\omega = f^*(d\omega)$
	Example
	$\frac{\xi = x_1 dx_2 - x_1 dx_1}{x_1^2 + x_2^2} \text{on} \mathbb{R}^2 \setminus \{0\}$
-0-	$\frac{2\lambda^2 + 2\lambda^2}{2\lambda^2 + 2\lambda^2}$
	$d_1^2 = \partial_1 \left(\frac{\chi_1}{\chi_1^2 + \chi_1^2} \right) d\chi_1 d\chi_2 - \partial_2 \left(\frac{\chi_2}{\chi_1^2 + \chi_2^2} \right) d\chi_2 \Lambda d\chi_1$
	$= (\alpha_1^2 - \alpha_1^2) d\alpha_1 \wedge d\alpha_2 + d\alpha_2 \wedge d\alpha_1) = 0$
	$(\chi_1^2 + \chi_2^2)^2$
	Recall: a form s.t. dw = 0 is called closed, a form s.t. w = dy is call exact [exact =) closed]

Forms on manifolds Def 11.1

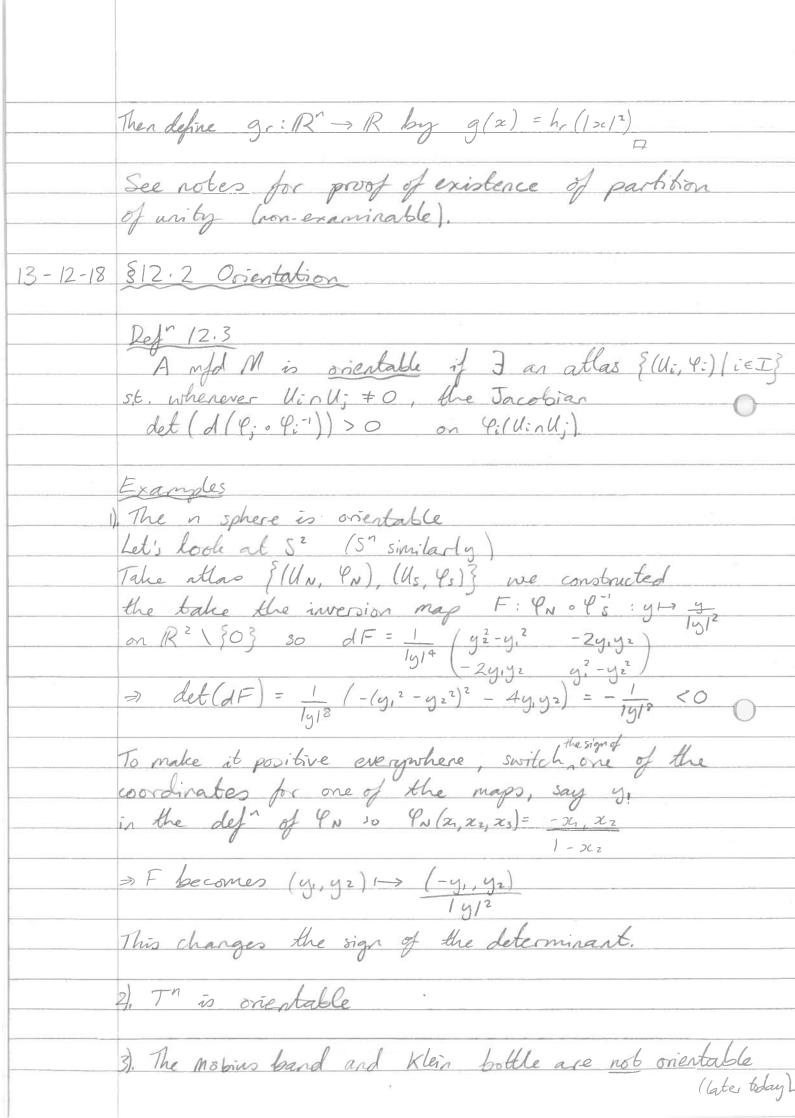
N' TpM = {alternating k-linear maps w: TpM × ... × TpM -> R? which is a vector space, and let

NRT*M = U NKTP*M

PEM which is a rank (") vector bundle over M. The sections $\Gamma(\Lambda^k T^*M)$ of $\Lambda^k T^*M$ are called Examples - O-forms are functions f: M→R - N'Tp*M = T*pM and N'T*M = T*M. T*M is a rank a vector bundle over M, called the cotangent bundle and Tp*M is called the cotangent space of M at p. - 1 T* M is a rank I vector bundle over an n-dim mfd M. Assume we [(T*M) and X & [(TM) Then $\omega(\rho) \in T^*\rho M$ and $X(\rho) \in T_\rho M$ => ω(p) (X(p)) ∈ R → w(x) e C °(M) i.e. 1-forms are "dual" to vector fields. If TM is trivial () there are n L.I. vector fields Xi, ..., Xn on M. Define w., ..., won by wi(X;) = Sij. 12-12-18 Then the wi are L. I. land nowhere varishing since the X; are nowhere varishing) so prop¹ 3.5 => T*M is trivial as well Let g be a Riem metric on M. For $X \in T_pM$ define $X^{\flat}(Y) = g(X,Y)$. This is well-defined since g is bilinear. Moreover $X \mapsto X^{\flat}$ is injective: $X^{\flat} = 0$ iff X = 0(since g is non-degenerate). Dhe inverse map for w∈ Tp*M, which we call ω # ∈ TρM, by ω(Y) = g(w#, Y). §11.3 Pullback and exterior derivative Let $f: M \to N$ be a map. If $\omega \in \Gamma(\Lambda^k T^*N)$ we can define the pullback $f^*\omega \in \Gamma(\Lambda^k T^*M)$ by $(f^*\omega)(\rho)(X_1,...,X_k) = \omega(f(\rho))(df_{\rho}(X_1),...,df_{\rho}(X_k))$ VPEM, X, WKETPM. Note: (fog) = g * . f * Example } = x, dx2 - x2dx, on R2\{0} We saw }(X)=1 for X = x, d2 - 262 d, Let f:R -> R2 be f(0) = (coo, sin0) then f(R) = S' and for (do) = - sin Od, + cos Odz which is the restriction of X to S'.

12-12-18 ⇒ Lxw is also a k-form on M since Lxw(p) ∈ Λk TpM and X, ware smooth. Example J:M→Ra O-form L×f=X(f) Let XE [(TM) and WE [(1kT*M) We define the inner product of X with w, called 1x w bo be the k-1 form defined by

1xw (Y, , , , Yn-1) = w(X, Y, , , , Yk) Then Cartan's formula is Lxw=d(xxw)+ xx(dw). Consider the 1-form $\xi = \frac{1}{x_1} \frac{dx_2 - x_2 dx_1}{dx_1^2 + x_2^2}$ on $\mathbb{R}^2 \setminus \{0\}$. then $d\xi = 0$ so lay (artan's formula $\mathcal{L}_{x,\partial_1 + x_2\partial_2} = \mathcal{L}_{x,\partial_1 +$ and Lx2,-x2 } = d(3(x2,-x2)) = d(1) = 0. Let (M,g) be a Riem. mfd We can extend the Levi-Civita connection to forms: y ω is a k-form we can define.


∇_xω (Y₁,..., Y_k) = X(ω (Y₁,..., Y_k)) - ∑ω(Y₁,..., Y_x, Y_y, Y_y, Y_y, Y_k)

for Y₁,..., Y_k ∈ Γ(TM).

Example Let X, Y, Z & (TM) we see that $\nabla_{x} Y^{p}(Z) = X(Y^{p}(Z)) - Y^{p}(\nabla_{x} Z)$ = X(g(Y,Z)) - g(Y, \(\ni_X Z)\) = g(Dx Y, Z) $= (\nabla_X Y)^p(Z)$ We can extend the def of covarient derivatives to metrics (k-tensors) with the same formula. In particular $(\nabla_{x}g)(Y, Z) = X(g(Y, Z)) - g(\nabla_{x}Y, Z) - g(Y, \nabla_{x}Z)$ Thus g is always parallel. §12 Orientation and Riem, metrics § 12.1 Partitions of unity Thm 12.1 Let M be a mfd. with an atlas $\{(U_i, Y_i) \mid i \in I\}$ there exists a smooth family of functions $\{f_i : M \to R, j \in N\}$ st. support $-\forall j \in N$, $\exists i \in I$ st. spt $f_i = \{p \in M : f_i(p) \neq 0\} \subseteq U_i$ $-\forall p \in M$, $\exists open set W \ni p st. W n spt <math>f_i \neq \emptyset$ for only finitely many j. - f;(p) ≥ 0 ∀; ∈ N and p∈ M $-\sum_{i=1}^{\infty}f_i(\rho)=1$ We call $\{f_i: j \in \mathbb{N}\}$ a partition of unity, subordirate to the atlas $\{(U_i, \Psi_i) \mid i \in I\}$

MATH 0072 12-12-18 Prop 12.2 Let $B_r(0)$, $B_r(0) \subseteq \mathbb{R}^n$ be the open and closed balls of radius r > 0 around O. For each r > 0, \exists smooth functions $g_r : \mathbb{R}^n \to \mathbb{R}$ st. - g. 2,0 = gr = 1 on Br/2(0) - gr = 0 on R" \ Br(0) => spt gr = Br(0) Proof (non-examinable) Consider h: $R \rightarrow R$ given by $h(t) = \begin{cases} e^{-tt} & t > 0 \end{cases}$ $0 & t \leq 0 \end{cases}$ as $h'(t) = \frac{1}{t} e^{-tt} > 0$ for t > 0 we see that h is increasing and $0 \le h < 1$.

Now $h'(t) \to 0$ as $t \to 0$ because e''t $t^{-k}e^{-t/t} = t \cdot t^{-k-1}e^{-t/t} \le (k+1)! t \sum_{m=0}^{\infty} t^{-m}e^{-t/t}$ = (k+1)! t=> h'(t) -> 0 as t >> 0 Note h (h) (t) = pzk (t) e-1t where pzk(t) is a polynomial of degree 2k. $\Rightarrow h^{(k)}(t) \rightarrow 0$ as $t \rightarrow 0 \Rightarrow h$ is smooth on R. Consider $h_c: R \to R$ given by $h_c(t) = h(c^2 - t^2)$ h(r2-t2)+h(t2-1/4 r2) This is well defined since if $h_r(r^2-t^2)=0 \Rightarrow |t| > 0$ 80 t2- 412 >0 and similarly the other way around Since the denominator never varishes, hold) is smooth Moreover 0 = hr = 1, hr(t)=0 iff ther and hold = 1 iff h(t2-1-12) = 0 = H1 = 1/2

1 AT HOO'T	
12-10-10	
13-12-18	4). Al Lie groups are orientable
	Thm 12.4
	For an n-mfd M, the following are equivalent:
	(a) M is orientable (b) I a nowhere varishing n-form on M (the volume form) (c) NT* M is trivial
	Proof
0	Note 1 T*M has rank 1, then we can use prop 3.5.
	(3) 7(6)
	Suppose I is a nowhere varishing n-form on M and let {(Ui, Vi), i \in I} be an atlas where
	Pi(Ui) is connected (we can always assume this).
	R. Compare this to (9:1)* a which is an
	n-form on Pi(Ui), so (Pi')* D= 7: D.
	where his a non vanishing function on Pi(Ui). If hi < 0 we change Y: pro (x(p),, x(p))
0	to \(\(\ilde{\chi}: \rho \) \(\ilde{\chi}: \rho \chi \rho \) \(\ilde{\chi}: \rho \chi \rho \rho \rho \rho \rho \rho \rho \rho
	We know from MV Analysis that
	We know from MV Analysis that (4. 4. 1) x 20 = det(d(4. 04. 1) 12.
	Moreover $(\Psi_{i} \circ \Psi_{i}^{-1})^{*} \circ (\Psi_{i}^{-1})^{*} \Omega = (\Psi_{i}^{-1} \circ \Psi_{i}^{-1})^{*} \Omega$ $= (\Psi_{i}^{-1}) \Omega$
	$\det(d(\Psi; \circ \Psi; ^{-1})) \lambda; \Omega_{o} = \lambda; \Omega$
	=> det(d(4; 04:-1))>0
	$(a)\Rightarrow (b)$
	Assume M is orientable and let {(Ui, 4i), i ∈ I} be an orientation

By Thm 12.1 we have a partition of unity [f;:M-)R, ; EIN] subordinate to this atlas. $\forall j \text{ choose } i(j) \text{ s.t. } \text{spt} f_i \subseteq U_{i(j)}$ $\Rightarrow U(U_{i(j)}) = M \Rightarrow \{(U_{i(j)}, (V_{i(j)}), j \in \mathbb{N}\} \text{ is an all as}$ Define $\Omega = \sum_{j=1}^{\infty} f_j q_{iq}^* - \Omega_o$ where we set f; (is) \(\int_i = 0\) outside of sptf;.

\(\Omega\) is nowhere vanishing: Let $p \in M$ and choose Wap open st. Writty $\neq \emptyset$ for finitely many j, by intersecting with a coordinate chart if necessary, we can?

We like for some $k \in N$.

Then $(q_{k-1})^*(\Omega) = \sum_{j=1}^{\infty} f(q_{k-1})^* \circ q_{ij}^* \Omega_0$ = = f; 0 qu' ((ij) 0 qu') - 12. and the sum is actually finite.

Note that for some $j \in \mathbb{N}$, i(j) = k and $f_k \circ ?_k^{-1}(p) \neq 0$ 1). any parallelisable mfd is orientable 2). On R' we have the standard orientation given by I. We can use this to say that any basis {bi, ..., bn} of R' is positively oriented if \(\Oo (b_1, ..., b_n) > 0\) Similarly for an oriented manifold we can equip each tangent space with a positively oriented basis.

13-12-18 Def 12.5 We say two orientations I and I'm M are the same if I = 2 I' and I > 0, I:M > R We say a diffeo $f:M \to N$ is orientation preserving if, given volume forms Ω on M and γ on N, $f^*\gamma = 2\Omega$ for $\lambda:M \to R$, $\lambda>0$. Example id: M -> M is always orientation preserving. However -id: R" -> R" (-id) * Ωo = det (-id) Ωo is or estation preserving only if n is even, orientation reversing if n is odd. Note -id: 5" -> 5" is thus also orientation preserving if n is odd (important that normal vectors -> normal vectors) Suppose RP is orientable. Then I a volume form I on RP. T: S" -> RP" is a local diffeo => f = T * I is an n-form on S" and is nowhere variohing (since IT a local differ) Do y is a volume form on 5°. However To (-id) = T = T = (id) to Th => f = 7 x 1 = (-id) * 0 x * 12 = (-id) * g = (-1) * y => contradiction if n is even See notes: if n is odd, can use the orientation on S' to construct an orientation on RP?

14-12-18	
	§12.3 Riemannian mebrics
	hm 12.6
	Every mfd has a Riem. metric.
	Proof
	Lot M be as a - mld with as attack Sla- 4.1. i & To
	and let go be the standard metric on R. Than 12.1 => 3 partition of unity { j; ; eN} subordinate to the allas. For each j eN 3 i(j) st.
	Thin 12.1 => 3 partition of unity & ; EN & subordinate
	to the atlas. For each jeN 3 i(j) st.
	set f; & U:(j), take the atlas {(Ui(j), Pi(j)), jc N}
	"; "; ";
	On U; since & is a diffeo, &: U; -> 4; (u;) CIR", we have that &; "go is a Riem metric (prop" 4.3).
	write g:= 9: 90.
	→ fig; is smooth symmetric and bilinear, and we can extend it by O to all of M.
	we can extend it by to all of M.
	Then define $g = \sum_{j=1}^{\infty} f_j g_j \in \Gamma(S^2 T^*M)$
	Take $p \in M$. Then $g_p(X, X) = \sum_{j=1}^{\infty} f_j(p)(g_j)p(X, X) \ge 0$ $\forall X \in T_p M$ since $f_j \ge 0$.
	∀X∈ToM since 1= ≥0.
	Assume $q_{\ell}(X, X) = 0$
	$\Rightarrow f_{i}(\rho)g_{j}(x,x)=0 \forall j$ Since $\sum f_{i}=1 \exists \alpha \in \mathbb{N} st. f_{i}(\rho)>0$ $\Rightarrow g_{i}(\rho)(x,x)=0 \Rightarrow X=0$
	Since If = 1 3 a j EN st. f(p) >0
	$\Rightarrow q;(p)(x,x)=0 \Rightarrow X=0$
	Example
	Assume M orientable, g a metric on M $\Rightarrow \exists a \ \mathcal{E}(\text{bion} \ \ \text{vol} \in \Gamma(\Lambda^n T^*M) \ \text{s.t.} \ \text{vol} = 1.$ This is the volume form.
	=> da section vol e l'(N"T*M) st. vol = 1.
	This is the volume form.

MAJHOOTZ	
14-12-18	In a chart (U, 4) one has
	In a chart (U, Y) one has $(Y^{-1})* \Omega = \sqrt{\det(g_{ij})} \Omega_0,$ $\delta 13 C = \int_{\mathbb{R}^n} det(g_{ij}) det(g_$
	§13 Curvature Revisited §13.1 Rigi and scalar curvature
	D 19121
-0-	We define the Rica curvature tensor Ric $\in \Gamma(5^2T^*M)$ by Ric $(X, Y)(p) = \sum_{i=1}^{n} R(E_i, X, Y, E_i)$
	for all $p \in M$, $X, Y \in T_p M$, where $\{E_1,, E_n\}$ an $O.N.$ -basis for $T_p M$.
	Note $Ric(Y, X) = \sum_{i=1}^{n} R(E_i, Y, X, E_i) = \sum_{i=1}^{n} R(X, E_i, E_i, Y)$
	$= \sum_{i=1}^{n} R(E_i, X, Y, E_i) = R_{ic}(X, Y)$
0	Why is this a brace? Recall given X, Y, Z on M we have the map Z -> R(X, Y) Z which sends vector fields to vector fields.
	Moreover, at p this depends only on X(p), Y(p), Z(p) 80 this is a well-defined map TpM-3 TpM
	The Ricci curvature is then given by $Ric(X,Y) = T_{\Gamma}(Z \mapsto R(Z,X)Y)$
1 , 2 x	Locally, let (U, Y) be a coordinate chart and {X,,, X, } the coordinate frame Let {E,, En } be an orthonormal frame on U, and write this as En = EauXi, for
	C=1

invertible matrix of functions $A = (a_{ij})$ Note $S_{KL} = g(E_K, E_L) = g(\hat{\Sigma}_{aik} X_i, \hat{\Sigma}_{aj_L} X_j)$ = E aik ajl gij which is (in matrix notation) $A^{T}gA = I$ $\Rightarrow g = (A^{T})^{-1}A^{-1} = (AA^{T})^{-1}$ $\Rightarrow g^{-1} = AA^{T}$ $Ric(X_i, X_j) = \sum_{k=1}^{n} R(X_i, E_k, E_k, X_j)$ = \(\int \) \(\R(\chi_i, \alpha_{in} \times_i, \chi_j) \\
= \(\int \) \(\Riml_i, \alpha_{in} \times_i, \alpha_{in} \) \(\Riml_i, \alpha_{in} \) \(\Rim Remark If we take geodesic normal coordinates, i.e., $g_{ij} = S_{ij}$ and $\Gamma_{ij}^{*} = 0$ at p, and let Ω be the local Riemannian volume form.

Then $(Y^{-1})^*\Omega = (1 - \frac{1}{6} \sum_{i,j} Ric(p)_{ij} \times i \times_j + O(1 \times 1^3))\Omega_0$ Example Assume M has dim 2, take $\{E_1, E_2\}$ to be an O.N.-basis of T_pM then $K(T_pM) = R(E_1, E_2, E_2, E_1) = \underbrace{\tilde{\Xi}}_{\tilde{z}=1} R(E_j, E_2, E_2, E_j)$ = Ric(E2, E2) = Ric(E, E.) Remark: In dim 3, the Ricci curvature still determines the curvature R, but the formula is more difficult (not boue for dim > 4)

MATH 0072	
14-12-18	
	Remark
	Recall that the Rici terror is a summetric
	(0,2) - tensor, as is the Riemannian metric.
	We say that (M, 9) is Einstein if Ric = 79
	Recall that the Rici terror is a symmetric $(0,2)$ -tensor, as is the Riemannian metric. We say that (M,g) is Einstein if Ric = λg for some constant $\lambda \in \mathbb{R}$.
	In particular, in the case 2=0, then
	(M, g) is called Ricci-flat.
	In particular, in the case $\lambda = 0$, then (M, g) is called Ricci-flat. Similar concept to a minimal surface.
	Def 13.2 surface.
	The scalar curvature S of M is a smooth function on M given by $S(p) = \sum_{i,j=1}^{n} R(E_i, E_j, E_j, E_i) = \sum_{i=1}^{n} Ric(E_j, E_j)$
	function on M given by
	$S(p) = \angle R(E_i, E_j, E_j, E_i) = \angle Ric(E_j, E_j)$
A THE RESERVE OF THE PARTY OF T	
March 1997	for pEM and {E, En} an ON basis of
	1 p /VI.
	Q 1.
	Remark
	one can compute that for pell the volume
0,	One can compute that for $\rho \in M$ the volume of a small geodesic ball $B_2(\rho)$ is given by $vol_2(B_2(\rho)) = (1 - \frac{S(\rho)}{6(n+2)} \epsilon^2 + O(\epsilon^4)) vol_{Ent} (B_{\epsilon}(0)).$
	6(n+2) - (1 6(n+2) Ent (DE (0)).
	I ocalles in a condinate chart (U. 4) we get
	Locally, in a coordinate chart (U, Y) we get as before $S = \sum_{i,j=1}^{L} R(E_i, E_j, E_i)$
	= E Riskl gilgik = E Rici, gij
	i,k,j, l i,j=1

	813.2 Constant curvature
	Roman 13.3
	A Riem and (Ma) has constant sectional
	currenture K iff Y vector folds XX7 (2) or M
	Prop ⁿ 13.3 A Riem. mfd (M,g) has constant sectional curvature K iff Y vector fields X, Y, Z, W on M we have R(X, Y, Z, W) = K(g(X, W)g(Y, Z) - g(X, Z)g(Y, W))
	The same of the sa
	Roll
	Suppose (Mg) has constant sectional curvature
	Proof Suppose (M,g) has constant sectional curvature K . Define $\overline{R}(X,Y,Z,W) = K(g(X,W)g(Y,Z)-g(X,Z)g(Y,W))$. Then $R(X,Y,X,X) = \overline{R}(X,Y,Y,X)$. Since \overline{R} has the same symmetries as R , prop 7.5 implies $R = \overline{R}$.
,	Then R(X, Y, Y, X) = R(X, Y, Y, X)
	Since R has the same symmetries as R, prop 7.5
	implies R = R.
	Suppose R is as given, then $K(X, Y) = K$
	Prop 13.4
	Prop ⁿ 13. 4 If (M_{ig}) has constant sectional curvature K then $R_{ic} = (n-1)Kg$, $S = n(n-1)K$
	then Ric = (n-1) Kg, S=n(n-1)K
	, J
	Proof see notes.
	Examples
	· R" has sectional curvature O
	· S2 has const. Sectional curvature 1, same
	for IRP2. => Ric = g, S=2
	· H2 has const. sectional aurative -1
	-> Ric = -g, S=-2.
	See notes for some more detail.
	U

14-12-18 Let (M, g) be complete n-din Riem manifold with conde sectional curvature Ke {-1,0,1}. Then there exists a discrete group G acting freely and properly discontinuously on S', R', or H' by isometries, s.t. (M,g) is isometric to 5"/G if K=1 · R"/G if K=0 · H / G if K=-1. Prop 13.8 Let M be a complete 2n-dim Riem, mfd with with constant sectional curvature 1. Then Mis nometric to S2n or RP2n Thm 13.7 says (M, g) is isometric to S^{2n}/G Hence $G \subseteq O(2n+1)$ (consider rescaling radius of S^{2n} and applying some isomeby). Let x & G and fx the corresponding isometry then $det f_x = \pm 1$. If det for = 1 then for has I as an eigenvalue. So pe has a fixed point on S^{2n} (corresponding to a unit eigenvector ρ to the eigenvalue!).

If a does not act freely if for is not od.

Assume det $f_n = -1 \implies \det(f_{n^2}) = 1 \implies f_{n^2} = id$ \$13.3 Curvature and topology
We say Ric > k for k & R if Ric (X, X) > k
for all unit tangent vector X on M.

Thm 13.9 (Bonnet - Meyers)

Let (M,g) be a complete manifold with $Ric \ge (n-1) > 0$. Then M is compact and $diam(M) \le \pi \Gamma$ ie. dist(p,q) = Tr Yp,q = M. Thm 13.10 (Synse)
Let (M,g) be compact n-din Riem, mfd with a if M is orientable and n is even, then M is simply connected.

B if n is odd, then M is orientable Thm 13.11 (Differentiable Sphere than)
Let (M,g) be compact, simply connected n-dim
Riem. mfd. with $\frac{1}{4} < K \le 1$. Then M is diffeomorphic
to S^n .