M114 Riemannian Geometry Notes

Based on the 2013 spring lectures by Dr J Lotay

The Author has made every effort to copy down all the content on the board during lectures. The Author accepts no responsibility what so ever for mistakes on the notes nor changes to the syllabus for the current year. The Author highly recommends that reader attends all lectures, making their own notes and to use this document as a reference only

Riemannian Geometry

1

NOVELRIVS

Riemannian Geometry	Manifeld
4 problem sheets due weeks 3, 5, 9, 11 in	Monday Lectures
A MARIENT M (S. S. Method Educer Such that	
Course outline :	
Part A: Manifolds, general theory of smo objects	oth geometric
Part B: Riemannian manifolds, curved of	ofects with
starking applications 200 Parts	1900 (iu) 9
- b f ((W)) is a hemdermanism	
Aun: what is a manifold?	
on grope to to (approvid) - a for (as not)	
Rn n-dumensional metric Euclidean space	2
(coordinates (scil, scn)	
standard orthonormal basis enen	(diffeomorphism)
$B_r(x) = i y \in \mathbb{R}^n : d(x, y) < r i$	
$d(x_iy) = \sqrt{2} (x_i - y_i)^2 dy_1 + y_2 = 0$	
VER" open if YaceU Ir>O st Br (ac) SI	Un 010 -9019
= D every open set is the union of open balls	
=> open balls form a basis for open set	R' is an indication
French and a strike a second of the second strike strike and a	
An n-dumensional manifold "Tooks like" Rn r	rear each point.
"Abstract" object which does not depend	on the
ambient space.	
maginal manifold and poor alle he iscarse sen	
$\subseteq \mathbb{R}^3$ {(cos 0, sun 0, cos 4,	, sun +) : 0, 4 < R].
ER"	Plus = us all f
So use can define the second second	
We want to consider smooth objects	
mabrie soase becourse R"to a or ag g d=	
(i) / (no) × = (m. c. p. c.	a) and the and the
2NS 110 - 5" 1551 these are bass and have	
How does a vary from 2 to y?	
it. cuit à cuiterencière à .	

9 9 Q(a) 04

fold

Detinction:

An n-dimensional manifold M is a methic space such that IA = { (mi, Pi) : i E I } with Mi is open in M Viel and Vertri = M Pi: Mi - PR" is a continuous byection onthe Pilui) open in R" with continuous byection ie Pi pi - DPi(pii) is a homeomorphism If uiny + & then goodi' : Piluiny) -> Po (oiny) is smooth linfinitely differentiable) bijection with smooth inverse (diffeomorphism) A is an atlas and (ui, P;) are called charts (or coordenate charts) P. o P: are called transition maps Rn is an n-dumensional manifold - take M= Rn, P=id. Any open set UER" MER" is an n dimensional n dimensional manifold as well IF M is an n-dumensional manifold any open USM is also an n-dumensional manifold as well, take autras atlas. l(vi=uinu, fi) :ieI} Example 1.3: Sn = foce IRn+1 : Z. oci = 1} S' is a seperable metric space because R"+" is. We Let N= (101, (0,0,0..., 0), S= (0,...0,-1) ie North and south poles Let MAN UN = Sn ISNS Us = Sn ISS3 these are open and UN UUS = Sn Now use 'stereographic projection" Rn

fulsc)

9

felx)

$$\begin{split} & \Psi_{N}: U_{N} \longrightarrow \mathbb{R}^{n} \\ & \Psi_{N}(x_{1}, \dots, x_{n+1}) = (x_{1}, \dots, x_{n}) \quad (continuous) \\ & 1 - x_{n+1} \\ & \Psi_{S}(x_{1}, \dots, x_{n+1}) = (x_{1}, \dots, x_{n}) \quad (continuous) \\ & 1 + x_{n+1} \\ & \Psi_{N}^{-1}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n} \\ & \Psi_{N} \\$$

Example: 1-4 months and build for the algorithment a se

Let RIP" be the set of straight unes through 0 in Rⁿ⁺¹ Equivalently Rⁿ⁺¹ 1803/ where 20my iff y=220 for some 2 € R1803.

class of 2

We can represent Exil by xees" unique upto x

=> RPⁿ is a seperable methor space.

For l=1,...,n+1 let $U_i = f[De_1,...,Dentif \in \mathbb{RP}^n | De_i \neq 0]$ open because $[Def fe U_i]$ then $B_{12}(fef) \in U_i$ and $U_i^{\dagger} u_i = \mathbb{RP}^n$ because $\forall [Def] \in \mathbb{RP}^n$ since $De_i \neq 0$ $P_i : U_i \longrightarrow \mathbb{R}^n$ $P_1(Ex_1,...,x_{n+1}) = (\infty a_1,..., \infty n+u)$

 $\Psi_{n+1}\left(\left[\Sigma_{1},\ldots,\Sigma_{n+1}\right]\right)=\left(\Sigma_{1},\ldots,\Sigma_{n}\right)$

D. D. = x XAVI

DCn+1

diffeon

2 maps here are continuous and well defined.

if
$$y \in [\infty] = y = \lambda \infty$$

so $P_1(y) = (y_{21}..., y_{n+1}) = \lambda (\infty + 1) = P_1(\infty)$
 $y_1 \qquad \lambda > c_1$
Again equivalence classes
 $P_1^{-1}(y_1, \dots, y_n) = [1, y_1, \dots, y_n]$
i all continuous.

(Pn+: (y,...., yn) = [y,....yn,1]

wlog isj

$$U: \cap U_j = f [x_j \in \mathbb{R} \mathbb{P}^n : x_i \neq 0 \neq x_j]$$

 $\varphi_i(u: \cap U_j) = f (y_1, \dots, y_n) \in \mathbb{R}^n : y_j \neq 0$
 $\varphi_i \circ \varphi_i^{-1} = \varphi_i([y_1, \dots, y_j, \dots, y_n])$
 $i^{m} pos$

Remark: An atlas is an manifold structure on the metric space An additional A and an additional A' are equivalent if AUA' is an additional, Equivalent atlases define the same manifold.

Theorem 1.5

Let F: R^{n+m} - D R^m be a smooth map such that $\forall p \in F^{-1}(0)$ dFp: R^{m+n} - D R^m is surjective (ie 0 is a regular value of F) Then F⁻¹(0) is an n-dimensional manifold

Proof: $F^{-1}(0)$ is a seperable methic space because \mathbb{R}^{n+m} is. Implicit function theorem = $\mathbb{P} \ \mathbb{P} \in F^{-1}(0) \ \exists$ splitting of $\mathbb{R}^{n+m} = \mathbb{R}^n \times \mathbb{R}^m$ such that if $P^{-}(a,b)$ as \mathbb{R}^n , be \mathbb{R}^m then \exists open $\mathbb{V}_P \subseteq \mathbb{R}^n$ st $a \in \mathbb{V}_P$, $\mathbb{W}_P \subseteq \mathbb{R}^m$ st be \mathbb{W}_P and a smooth map $\mathbb{G}_P: \mathbb{V}_P \longrightarrow \mathbb{W}_P$ with $\mathbb{G}_P(a) = b$ and $F^{-1}(0) \cap (\mathbb{V}_P \times \mathbb{W}_P) = \{(q, \mathbb{G}_P(q)): q \in \mathbb{V}_P\}$ Let $\mathbb{U}_P = F^{-1}(0) \cap (\mathbb{V}_P \times \mathbb{W}_P)$ note \mathbb{U}_P is open on $P \in \mathbb{U}_P$ $= \mathbb{P} \cup \mathbb{U}_P = F^{-1}(0)$

m	
	$P_p: U_p \longrightarrow R^n$ $P_p(q, G_p(q) = q (projection)$
	$P_p: U_p \longrightarrow \mathbb{R}^n$ $P_p(q, G_p(q) = q (projection)$
	\$ qp(up) = Vp - open
	Pri: Vp -> Up comments (1 Ac) + c & l upmax3
	4p'(q) = (q, Gp(q)) continuous as Gp(q) is continuous.
	Thus Pp is a homeomorphism.
	IF up n llq 7 & then if the splitting map of R ^{mth} R ⁿ ×R ^m
	are the same for p and q then
	lg ofp': Vp nVq - > Vp nVq is the identity and is
	a diffeomorphism
	if the splittings are different \$polatis Top where
3	This a projection map to an Rn factor un IRn+mg
	(given by implicit function theorem) which amounts to a
	change in coordinate in R" defined by Gp which is
	amooth and the fire of the states and the states and the
	= > 9g, 9p' is a defeamorphism
ELANUS	so FT'(0) is an n-dum manifold. Tenos pres (0) -7
MIQU	not a manual a second a second a second a second a son
2	Remark: This works just as well for F defined just on an
	open set and for any other regular value of f.
	Let F: R - P R bourfor une for the second that a second the
	Example 1=6 (Brow Re (By Brow) + R (Brow) - + A = + A = + A = A
2	Let F: Rn+1 - DR be defined by
	$F(the F(x)) = \sum_{i=1}^{n+1} x_i^2 - 1 \text{ then } F^{-1}(0) = S^n \text{ and } 0$
	$dF_{\infty} = (2\infty, 1, 2\infty, 1 \neq 0 \forall \infty \in F_{1}^{-1}(0)$
	=D dFa: Rn+1 -D R is surjective
	and thus by theorem 1.5 = D S" is an n-dim manifold.
	In general given R1-PR12 we and det northublester gran
	Example t-7 IT much the prove the property - (0) = (p. 0) 71
	Lot F: R ²ⁿ D R ⁿ be defined by
	Let $F: \mathbb{R}^{2n} \longrightarrow \mathbb{R}^n$ be defined by $F(x_1, \dots, x_{2n}) = (x_1^2 + x_2^2 - 1, \dots, x_{2n-1} + x_{2n}^2 - 1)$
	1200, 2002 0 0
	$dF_{x} = 0$ 0 2x3 2x4 · · · · ·
0	i i i i i i i i i i i i i i i i i i i
	rank of matrix is n for sceft'(0) because (1) maps
	$(x_{2i-1}, x_{2i}) \neq (0,0)$ $\forall i = b \ 6$ is a regular value.
	(alter states + coro) ve - v o is a regular value.

theorem 1.5 = D f (0) is a regular n-dum monifold which is in fact Th the standar n-tgons in R²ⁿ

Example 1.8

 $F: \mathbb{R}^2 \longrightarrow \mathbb{R} \quad F(x,y) = x^3 - y^3$ then $dF(x,y) = (3x^2 - 3y^2) = (0,0)$ at any $(x,y) = (0,0) \in F^{-1}(0)$ $= D \quad 0 \quad \text{is not a regular point of } F.$ but $F^{-1}(0) = f(x,y) : x^3 = y^3 \int = f(x,x) \in \mathbb{R} : x \in \mathbb{R}^3.$ which is a smooth 1-dum manifold.

Example 1.9 Protect 13

F: $\mathbb{R}^3 - \mathcal{D} \mathbb{R}$ by $F(x_1y_1z) = x_2^2 + y_2^2 - z_2^2$ then $dF_{(x_1y_1z)} = (2x_1 2y_1 - 2z_2) \neq (0,0,0)$ except when $(x_1y_1z) = (0,0,0)$ = $\mathcal{D} \subset \mathbb{R}$ is a regular point of F iff $c \neq 0$ F'(c) is a 2-dim manifold (hyperboloid) for $c \neq 0$. F'(o) is a constant and we will show that this is not a manifold

Example 1.10

Let $\mathbf{f}: \mathbb{R}^2 \to \mathbb{R}$ be $\mathbf{f}(x,y) = x^{2}ty^{2}$ Define $F: \mathbb{R}^3 \to \mathbb{D}\mathbb{R}$ by $F(x,y,z) = \mathbf{f}(x,y) - z$ $d f(x,y,z) = (2x, 2y, -1) \neq 0$ = $0 \text{ is a negular point value } (-1 \neq 0) \text{ of } \mathbf{f}.$ = $\mathbf{p} F^{-1}(0) = \{(x,y,z): z = x^{2}ty^{2}\}$ is a 2-dim manifold.

Example 1.11

In general given $\mathbb{R}^n \to \mathbb{R}^m$ we can define $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$ by F(x,y) = f(x) - y and dF(x,y) = (dfx - I) is surjective $\forall (x,y) \in \mathbb{R}^{n+m}$ = $P F^{-1}(0) = Graph of f = \{lx, f(x)\}: c \in \mathbb{R}^n\}$. is an n-dem menifold.

Example 1.12

Let $M_n(R)$ be non real matrices Symmetric matrices $M_n(R) \cong R^2$ Symmetric Matrices $M_n(R) \cong R^2$ Symmetric $R^{\frac{1}{2}n(n+i)}$

F: MnCR) - DSymn(R) by F(A) = ATA = I dFACB) = ATB+BTA SO IF AEF- (0) (=DAAT=I) and EE symm(R), then dFa(ZAC) = C = D dFA is surjective VAEF- (0) $= DF^{-1}(0) = O(n)$ is a Ln(n-1) dum - manifold O(n) splits into 2 manifolds (one with det =+1 and one with det = -1) $SO(n) = \{A \leq O(n) : det(A) = 1\}$ special orthogonal matrices is a Incn-1) durn manifold who have been a fear the man the (could look at F: GLACR) - SymCR) det >0 rather than look at all non mathees) Proposition (148 V.) have a haven shade and a second shade A surface in R³ is a 2-dum manifold M/a = M/ (199300 B) 1005 - 2001 - (1 + 0/23) = - (140 = 24 + Proof: MSR3 is a surface of YPEM I open W3P and open VPER3 and smooth map zp: Vp - b Wp nM such that 1. 2 plis a homeomorphism (and lo brook a deboard ball M. d(xp)g: R2 - DR3 injective Vg EVp Let Up = Wp n M open and U up = M Let \$p: Up - PR2 be \$p = xp so \$p (up) = Vp open = D Pp homeomorphism. up nup' = o Pp'. Pp' = = p' o 2 p Curves and surface courses => 2 p' = xp is a diffeomorphism (change of coordunates) Proof uses ii + Inverse function Thm N diffeon

Example 1.14: The torus in \mathbb{R}^3 , $\{(2 + \cos \theta) \cos \theta, (2 + \cos \theta) \sin \theta, \sin \theta\} : \theta, \theta \in \mathbb{R}\}$ is a 2-dim manifold.

An n-(sub)manifold M in Rn+m is an n-dum manifold.

Proof: Multivariable analysis course => Vp EM = open Wp E R^{n+m} open wa Vp = Rⁿ and smooth map 2=p: Vp -> Wp n M such that i == p homeomorphism ii d(2=p)q: Rⁿ -> R^{n+m} wjective

So some proof as proposition 1.13

Deturbon 1.16

A map $f: M \longrightarrow N$ between manifolds is smooth at pEM if 3 constant charts (u, P) on M around p and (V, Y) on N around f(p) with $f(u) \le V$ such that $V \circ f \circ P^{-1}: P(U) \longrightarrow Y(V)$ is smooth.

Suppose (U', P') is another chart around p and (V', Ψ') another chart around f(p) with $f(U') \leq V$ then $\Psi' \circ f \circ (P')^{-1} = (\Psi' \circ \Psi^{-1}) \circ \Psi \circ f \circ P^{-1} \circ (P \circ (P')^{-1})$

=> definition of smooth makes sense for f. (independent of choice of chart).

f is smooth if it is smooth at all pem.

Example 1.17

(U, P) chart on M.

 $P: U \rightarrow R^n$ is smooth because in <u>definition 1.16</u> we let (U, P) = (U, q)and $(V, V) = (R^n, id) = D id \cdot P \cdot q^{-1} = id$ is smooth on $P(U) \leq R^n$ Similarly $P^{-1}: P(U) \rightarrow M$ is smooth

Example 1.18 Any "constant" map f: M-DN (ie q fixed f(p)=q Vpem) is smooth because the corresponding map between Euclidean spaces is a constant map

Definition: 1.19

f: M-PN is diffeomorphism if it is a smooth byection with smooth where. (We then say M and N are diffeomorphic)

WSIND burghtp

f: M-DN is a local diffeomorphism at pEM if I open USP, open V sf(p) such that f: U -> V is a diffeomorphism. Example 1.20 (U, P) chart on M then P: U-DR " is a local diffeomorphism Thornem 1.21 Let G be a discrete (le countable) group and M an n-dimensional manifold st Ygele. I a diffeomorphism og: M-DM with i If ee G is the identity then the = id G along on M i dan = da o An VaineG Jaw Haward -W YPEM 3 open Vap st Vn \$q(V) = \$ Vg #e. iv Vp, q & M with p = q = open V=p, open W=q such that $V_{\Omega} \phi_{g}(W) = \emptyset \quad \forall g \in G.$ G acts freely (ie with no fixed points) and properly discount nously on M. Then M/G = M/~ (where prog iff Egele at g= +g(p)). is an n-dem manifold Example 1.22 G=Z2={1,-1} acting on R" with \$-, =-id = 00 = (1) = 0 (1) This action is not free on Rⁿ because O is fixed a) a acts freely and properly discontinuously on Sn (O&Sn) (take V, W to be subsets of a nemisphere) = D Smy is a n-dum manifold 1/2 which is RPn b) & acts on dylander on C = { (x, y, Z) ER3 : x2+y2=1 121=13. => 4/22 is a 2-dem manifold = mobiles band a stand of c) & acts ... on T2 in R3=0T2/RZ/2 is 2-dem menifold = Klien bottle proof: M/a is a second countable method sallipspace with "quotient" metric $d(E_{p_1}, E_{q_1}) = min(d(p, \Phi_g(q)))$ (by a discrete and w). Let {(Vi, ti) i e I } be an atlas for M st Vin \$g(vi) = \$ \$\$ \$\$ \$\$ Vie I (by iii). Let li= T(Vi) where TI: M -DM/G is projection TT-'(ui) = U degount union of open sets and is open

PULL is open in
$$M_{\mathbb{R}}$$
 by detinition and $\bigcup_{i=1}^{k} U^{i} : M_{\mathbb{R}}$
because $\bigcup_{i=1}^{k} V_{i} \cdot M$
Act $\Pi_{i}: \Pi_{i}: V_{i} = PU^{i}$ which is a homeomorphism (it is injective
because $V_{i} \cap \Phi_{0}(V^{i}) \in V_{0} \oplus V_{0}$)
Let $\Psi_{i} = V_{i} \cdot \Pi_{i}^{i}: U^{i} = PR^{i}$ homeomorphism onto its image $\Psi_{i}(V^{i})$
Suppose $U(i \cap U_{i}^{i} \neq M$
 $\Psi_{i}(V_{i} \cap \Pi_{i}^{i}: (U_{i}))$
 $+V_{i}(V_{i} \cap \Pi_{i}^{i}: (U_{i}))$
 $+V_{i}(V_{i}) \cap \Phi_{i}^{i}(V_{i}) = \frac{1}{2} (g_{i} G_{i} g_{i} p_{i} (V_{i})) = W$
 $\Psi_{j} \circ \Psi_{i}^{i} |_{u} = \Psi_{j} \circ \Pi_{i}^{i}: \Pi_{i}(Q_{i}) \in V_{j}$ and $\Pi_{j}(Q_{i}^{i}) = \Pi_{i}^{i}(Q_{i})$
 $+V_{i}^{i} \otimes \Pi_{i}^{i}: \Pi_{i}^{i}: Q_{i} \in V_{i}$ and $\Pi_{i}(Q_{i}^{i}) = V_{i} \otimes Q_{i}(V_{i})$
 $+V_{i}^{i} \otimes \Pi_{i}^{i}: \Pi_{i}^{i}: Q_{i} \otimes V_{i}$ and $\Pi_{i}(Q_{i}^{i}) = \Pi_{i}^{i}(Q_{i})$
 $+V_{i}^{i} \otimes \Pi_{i}^{i}: Q_{i} \otimes V_{i}$ is a inserve V
So it is showed $= G_{i} \otimes G_{i} \otimes$

.

LAN-MARTIN MONTAGEN ADDAME TO MA DISINGER LARDER LA AND DE LA AND A

Example: 1.24 Ex 1.22 and prop 1.23 ⇒ we have local diffeomorphisms between Sn & RP, cyunder & mobius band and the tonus on R³ & the Klien bottle. These are not diffeomorphisms (not injective) But S' ≅ RP'

Detrinon 2.5 Let (u, e), (v, v) be chardle on the end of the start (u, e), (v, v) be chardle of the start (u, e), (v, v) if and d(v) = 0, (v, v) = 0, (v, v) if and d(v) = 0, (v, v) = 0, (

A 101 IS the differential repartmenting of (10 dring) in and ref" (which is how we identify i with a hinchon on item) intercover if we use 39 h(g) (not to update (nhag) characterio failenavit) the (on other of a co cossidiung into a first a production failenavit) into mal violar for goossidiung into a first a production and contact into mal violar for goossidiung into the first a set ((1, 9, d)] nous)

Detrocor 2.3

X is a langent vector to M at p if 3 and a on M thighly primal such that I X - and M at storing in the good to the and state M of the

Let dip be curves on M. Brough p. . earned served an be a

La returnation particulation

ent vectors and the tangent bundle

Jehnchon: 2,1

A curve in M (through p) is a smooth map $\alpha: (-\epsilon, \epsilon) \longrightarrow M$ (with $\alpha(0) = p$) such that $\forall te(-\epsilon, \epsilon) = J$ a chart (U, P) and $\delta > 0$ such that $\alpha(tt-\delta, t+\delta) \leq U$ and and

* Pod:(t-S, t+8) - P R" is a curve (in the usual sense).

Detribon 2.2

Let α be a curve on M through p, let $U \ni p$ be open and $f: U \longrightarrow R$ be smooth at p.

Then $f \circ \alpha : (-\varepsilon, \varepsilon) \longrightarrow \mathbb{R}$ is smooth at 0 (if we choose $\varepsilon > 0$ small enough that $\alpha(-\varepsilon, \varepsilon) \subseteq u$).

Call $\alpha'(0)$: $f \mapsto (f \circ \alpha)'(0)$ the tangent vector to α at 0.

Suppose (u, φ) is a chart around $p = p \varphi(\alpha(t)) = (\alpha_1(t), \dots, \alpha_n(t)) \subseteq \mathbb{R}^n$ $(f \circ \alpha)'(o) = \frac{d}{dt} (f \circ \varphi^{-1} \circ \varphi \circ \alpha)(t) \Big|_{t=0}$

 $= \frac{d}{dt} \left(f \circ \varphi^{-1} \right) \left(a_1(t), \dots, a_n(t) \right) \Big|_{t=0}$

 $= \sum_{i=1}^{n} \alpha_{i}(0) \frac{\partial(f \circ \varphi^{-i})}{\partial x_{i}} \Big|_{\varphi_{i}(p) = (\alpha_{i}(0), \dots, \alpha_{n}(0))}$

 $(f \circ \alpha)'(o) = \left(\sum_{i=1}^{n} a_i(o) \frac{\partial}{\partial \alpha_i} |_{\varphi(\rho)}\right) (f \circ \varphi^{-i}).$

=> x'(0) is the differential operator Z ai'(0) di lever adang on fog- (which is how we identify f with a function on Rn) Moneover if we use di provas a basis (tangent vector to curve P-'(0,..., 0, t, 0,... 0) at 0 assuming P(p)=0) then ∞'(0) is identified with the vector (a,'(0),..., an'(0)) e R"

Dennihon 2.3

X is a tangent vector to M at p if \exists curve α on M through p such that $X = \alpha'(0)$

Definition 2.4

Let d, B be curves on M through p.

We say $\alpha \wedge \beta$ if and only if \exists chart (u, φ) around ρ such that $(\varphi, \alpha)'(o) = (\varphi, \beta)'(o)$

Suppose (V, ψ) is another chart around p. Then $(\psi \circ \alpha)'(0) = (\psi \circ \varphi^{-1} \circ \varphi \circ \alpha)'(0) = d(\psi \circ \varphi^{-1})_{\varphi(p)}(\varphi \circ \alpha)'(0) * d \text{ for } \mathbb{R}^n \to \mathbb{R}^n$ =D definition is independent of the coordinate chart as $d(\psi \circ \varphi^{-1})_{\varphi(p)}$ is an isomorphism.

We say that Ex] is a tangent vector to M at p.

Given $[\alpha']$ define $X = \alpha'(0)$ Suppose $\beta \in [\alpha]$ Then $(f \circ \beta)'(0) = (f \circ \varphi^{-1} \circ \varphi \circ \beta)'(0)$ $= d(f \circ \varphi^{-1})_{P(\alpha)}(\varphi \circ \beta)'(0)$

 $= d(f \circ \varphi^{-1})_{\varphi(\varphi)}(\varphi \circ \alpha)'(\varphi) = (f \circ \alpha)'(\varphi)$

So X is well defined.

Given tangent vector X at $p \exists \frac{conve}{conve} \propto in M$ through p such that $\alpha'(o) = X$. So we map X to $[\alpha']$ (this is well defined by essentially the same argument as above)

Dennihon: 2.5

Let (U, P), (V, V) be charts around pet and let $U, V \in \mathbb{R}^n$ We say $(U, P, u) \land (V, V, v)$ if and only if $d(V \circ P^{-1})_{P(p)}(u) = V$.

We can E(u, P, u)] a tangent vector to Matp.

Given $[\alpha]$ and chart [u, P] take $u = (P \circ \alpha)'(o) \in \mathbb{R}^n$ * = D we get a map $[\alpha] \mapsto D [(u, P, u)]$ Given [(u, P, u)] take $[\alpha]$ for any curve through p such that $u = (P \circ \alpha)'(o)$ Definition 2.6

Let TpM denote the set of tangent vectors to M at p.

Proof If $X = E \propto J = E(U, Q, u)] \in T_{PM}$ Define λX , $\lambda \in \mathbb{R}$ by $\lambda X = E(U, Q, \lambda u)]$ vormes and one tangent bundle

If $X' = E(u, q, u')] \in T_p M$ then define X + X' = E(u, q, u + u')]So T_pM is a vector space E(u, q, e;)] are unearly independent on T_pM = $p T_pM$ is an n-dimensional vector space \square .

Proposition 2.8

Let $F: \mathbb{R}^{n+m} \longrightarrow \mathbb{R}^m$ be a smooth map with 0 a regular value of F. Then $T_p F^{-1}(0) = \ker d F_{p}^{*}$.

 $\begin{array}{rcl} proof: Let & When X = ExjeT_{p}F^{-1}(0) = b F(x(t)) = 0 & \forall t \\ 0 = d F(x(t)) &= dF_{p}(x'(0)) \\ dt &= 0 \end{array}$

=D &'(0) E Kerd Fp dum kerd Fp = n because 0 is a regular value. The map TpF'(0) -- > kerd Fp is injective because &'(0) = 0 = > X = 0 => TpF''(0) = kerd Fp.

Example 2.9 allos 2000

 $S^{n} = F^{-1}(0) \text{ where } F(x_{1}, \dots, x_{n+1}) = \sum_{l=1}^{2} x_{l}^{2} - 1$ $dF_{(x_{1},\dots,x_{n+1})} = \partial(x_{1},\dots,x_{n+1})$ $= D Tp S^{n} = lq \in \mathbb{R}^{n+1} < p, q > = 0$ $= \langle q > \frac{1}{2}$

Example 2.10

 $\begin{aligned} & \text{Ph} \text{Let } f: \mathbb{R}^n - \mathbb{P} \mathbb{R}^n \text{ be a smooth map , then } \text{Graph}(f) = F^{-1}(0) \\ & \text{where } F(x,y) = f(x) - y \\ & \text{d} F_{(x,y)} = (df_{x} - I) = \mathbb{P} T_{(x,f(x))} \text{Graph}(f) = f(g_{U},v) \in \mathbb{R}^{n+m} : v = df_{x}(u) \\ & = Graph(df_{x}) \end{aligned}$

Example: 2.11 vector to Mat p. 1

 $SL_n(R) = F^{-1}(0) \text{ where } F(A) = \det A - 1$ $\forall A \in SL_n(R) \quad dF_n(B) = \operatorname{tr}(A^{-1}B) \neq 0^{*} \text{ for } B = A \text{ for example}$ $= D0 \text{ is a regular value } = D SL_n(R) \text{ is un } (n^2 - 1) - \dim \operatorname{manifold}$ $T_A SL_n(R) - \{B \in \operatorname{Mnc}(R) : t(A^{-1}B) = 0\}$ * det(A+B) - det(A) = det A(det(t+A^B) + 1) det $\binom{1+c_{12}}{1+c_{12}}$ = $1+(c_{11}+c_{12})+O(c^2)$ $(1+c_{12})$ = $1+tr(A^B) + O(1+B11^2)$ $c=A^B$ = D ddetA(B) = $tr(A^B)$ Example 2.12 bet $c=f(x,y,z)eR:xc^2+y^2=z^2$? $t \mapsto D(t,0,t)$ and $t \mapsto D(0,t,t)$ are curves on C through O, with tangent vectors at O (1,0,1) and (0,1,1)=D(1,-1,0)e span f(1,0,1),(0,1,1)? but not tangent to a curve in C through O (because curve is $t \mapsto P(t,-t,0)$) =D tangent vectors to C at O do not form vector space =DC is not a manifold.

Definition 2.13

Let $F = [\alpha] = E(u, \varphi, u)] \in T_p M$

 $f \circ \alpha: (-\epsilon, \epsilon) \longrightarrow N$ is a curve on N through f(p)Define the differential of f at p by $df_p: T_pM \longrightarrow T_{f(p)}N, df_p(\epsilon \alpha \exists) = \epsilon f \circ \alpha \exists$ $\alpha'(o) = \chi = (f \circ \alpha)'(o)$

Let [(V, 4, v)] = [fox] = > v=d(+of of -1)pep(u) Proposition 2.14 (kinda inverse finction thin for mon (poids)

A smooth map f: M->N is a local diffeomorphism at p (=) dfp is an isomorphism

Proof: = $P \exists$ open $U \exists p$, $V \exists f(p)$ st f: U = PV is a diffeomorphism Consider id: M = PM then $d_{1}d_{p} \equiv id$ on $T_{p}M$. Consider $f_{1}: M_{1} = PM_{2}$, $f_{2}: M_{2} = PM_{3}$ $d(f_{2} \circ F_{1})_{p} = df_{2}f_{1}(p) \circ d(F_{1})_{p}$ by chain rule

f: U-DV diffeomorphism => f'of = id : U-DU

= $D d (f' \circ f)_p = d f_{f(p)} \circ dF_p = id$ }= $D d f_p is an isomorphism d (f \circ f')_{f(p)} = d f_p \circ dF_{f(p)}^{-1} = id$ }

A= dfp is an isomorphism = D dim M = dim N = n First part of thesproof gives that if (U19) is a chart around p and (V, V) is a chart around f(p) = D d Qp : Tp M - P Top IR" is an isomorphism d Verep: TERENN-PRM is an isomorphism => d (to f o P-1) pcp) is an isomorphism from IRn to Rn = d trees o d Fp o (d Pp) -1 Inverse function than =>] open U'sp, V'sf(p) st tofoq-1: P(U) -> t(V) is a diffeomorphism => f: U'-DV' is a diffeomorphism. Example 2.15 Let $f: \mathbb{R}^2 \to \mathbb{T}^2 \subseteq \mathbb{R}^3$ by $f(\theta, \phi) = ((2 + \epsilon \epsilon \cos \theta) \cos \phi; (2 + \cos \theta) \sin \phi, \sin \theta)$ $dF(\theta,\phi) = (-\sin\theta\cos\phi - (\theta+\cos\theta)\sin\phi)$ $(-sund \cos \phi + (2 + \cos \theta) \cos \phi)$ LEE COSO 10 MOL MARCHINE DA A = $D df_{(0,p)}$: $R^2 - D T_{f(0,p)} T^2$ is an isomorphism = D f is a local diffeomorphism by prop 2.14 (but not a diffeomorphism). (1) ab a long of the more more than the Dehnution: 2.16 The tangent bundle of M is $TM = U T_{PM} = f(p, X) : p \in M, X \in T_{P} M$

Theorem 2.17: 100-11 menopomoet no al wab J=p

TM is a 2n-dim manifold. Proof: Let $f(u:, P_i): i \in I \}$ be an atlas for M and $\pi: TM \longrightarrow M$ be $\pi(P_i X) = p$. • TM is a second countable metric space (by topology) • Let $V_i = \pi^{-1}(U_i)$ open in TM by definition. and $U_{i \in I} V_i = TM$

• $\psi: V_i \longrightarrow \mathbb{R}^n \times \mathbb{R}^n$ be $\psi_i(\rho, \mathbb{E}(\mathcal{U}_i, \varphi_i, u)] = (\mathcal{P}_i(\rho), u)$

P: diffeomorphism,
$$d(P_i)_p$$
 is an isomorphism
=> $\psi_i : \forall_i \longrightarrow \psi_i \times \mathbb{R}^n$ is a noneomorphism.
• Notwork if $\forall_i \land \forall_j \neq \emptyset$ then $\psi_j \circ \psi_i^*(P_i(p), d(P_i)_p(X))$
 $diff = (P_j(p), d(P_j)_p(X))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), d(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), q(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), q(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), q(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), q(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), q(P_j \circ \varphi^{-1}_i)_q(u))$
=> $\psi_j^* \circ \psi_i^*(q, u) = (P_j \circ \varphi^{-1}(q), q(P$

Dennibon: 2.20

If $f: M \to N$ is a smooth map, then the pushforward $f_*: TM \to TN$ is $f_*(p, X) = (f(p), df_p(X))$.

Remark: If f: M-DN is a diffeomorphism then f*: TM-DTN is a diffeomorphism st f*: TpM-D TropiN is an isomorphism. le it is a bundle isomorphism.

Remark: Chain rule = D (fog) * = f * og *

Deknihon 2.219 (S. Onlard Sport (Del pol noup) Du-

- A manifold E is a vector bundle over M if there exists:
 - · a smooth surjective map TI: E PM
 - TT- (p) is a vector space for all pEM
 - · Ypem 3 open U>p and diffeomorphism 4: T-"(U) -> UXR"
 - st h: TI-'(p) > ipj × Rm is an isomorphism

In is the same YpeM and is called the rank of blace E E is the total space and M is the base.

(ntm) dim manifold

Example 2.22 Given any M let E= MXR^m is a vector bundle. Simplest example is the cylinder S'XR Example 2.23 in the mailsonate TM is a vector bundle of rank n over M (an n-dum manifold) Definition 2.24 A vector puncle E of rank m over M is bivial if 3 diffeomorphism Y: E-DMXRM SE Y: TT'(p)-DSp} × RM is an isomorphism Kpem Y is a bundle isomorphism. Example 2.25 $TS' = \{(\cos \theta, \sin \theta, -\lambda \sin \theta, \lambda \cos \theta) : \lambda, \theta \in \mathbb{R}\}.$ = S' XR = D TS' is trivial. Similarly TTN is trivial (or I (M×N) = TM×TN) Deputition 2.26 Let E ToM be a vector bundle over M. . . Ma-M.) A section of E is a smooth map S: M-PE st TT. S(p) = P YpEM ! Let T(E) = {sectors of E} is a vector space. Example 2.27. LOE C=S'XR Then s: S'-DC given by S(0)=((0S0, sin0, 2) For Z fixed is a section. Another section is S(2) = (coso, sino, coso) (slanled errole) -Picposition 2.28 A sold vector bundle of rank m is trivial if and only if it has m uncarly independent sections. Adof: Problem shoot 2.

Vector fields

Example 2.29 We have a linearly independent sections of TRA given by dipi= eie TPRn=Rn VpeRn If $f: \mathbb{R}^n \longrightarrow \mathbb{T} \subseteq \mathbb{R}^{2n}$ is $f(\partial_1, \dots, \partial_n) = (\cos \partial_1, \sin \partial_1, \dots, \cos \partial_n, \sin \partial_n)$ suberne silf(p)) = dfp (ei) e Tfip) Tr is well defined because dfp=dfq if f(p) - f(q) and si (TTM) everywhere => TTM is trivial.

Vector Reids

Dehnution: 3.1

A vector field X on a manifold M is a section of TM le a smooth mapping X: M - & TM st X(p) = TpM + pEM

Example 3.23

On \mathbb{R}^n we have **states** vector fields $\partial_i : p \mapsto \forall e_i, \quad \partial_i(p) = [\alpha_i]$ where $\alpha_i(t) = p + te_i$ = $p \propto i'(0)(f) = (f \circ \alpha_i)'(0)$

$$= \frac{d}{dt} f(p + te:) \Big|_{t=0}$$

= <u>df</u> (p)

=> di is the differential operator <u>d</u> on functions on R^h to R. dati

If
$$X \in \Gamma(TM)$$
 and (U, P) is a chert
then $dP(X(p)) = \sum_{i=1}^{n} X_i (P(p)) \partial i (P(p))$ for some smooth
 $X_i : P(U) = D R$
So we can identify $X \mid_u$ with $\sum_{i=1}^{n} X_i \partial i$ on $P(U)$

Example 3.3

On Sna vector field is a smooth map X: Sn-p Rnti such that X(p) & Span & p3 + Yp & Sn

Hurry Ball Thrn: Every vector held on S²ⁿ has at least one zero. => no linearly independent vector fields on S²ⁿ => TS²ⁿ is not bivial.

Depnihon: 3.4

Let $f: M \rightarrow N$ be a diffeomorphism. Then the pushforward $f_*: \Pi(TM) \rightarrow \Pi(TN)$ is given by $f_*(X)(f(p)) = df_p(X(p))$ $\forall p \in M$ Well defined because f is a diffeomorphism.

Example 3.5

Let $f: \mathbb{R}^+ \times S' \longrightarrow \mathbb{R}^2 \setminus \{(0, 0)\}$ be $f(r, \partial) = (recos \partial, recos \partial)$

f is a diffeomorphism.

$$df(r, 0) = \left(\cos \theta - r \sin \theta \right) = \left(\sin \theta - r \sin \theta \right) = \left(\frac{1}{2} \sin \theta - r \sin \theta \right) = \left(\frac{1}{2} \sin \theta - r \sin \theta \right) = 0$$

=>
$$f_*\left(\frac{\partial}{\partial r}\right) = \cos \theta \partial \omega + \sin \theta \partial \psi$$

f. $\left(\frac{\partial}{\partial r}\right) = \cos \theta \partial \omega + \sin \theta \partial \psi$ + $t\cos \theta \partial \theta \partial \psi$
f. $\left(\frac{\partial}{\partial r}\right) = -\sin \theta \partial \omega + t\cos \theta \partial \psi$
f. $\left(0, \pi\right) = (\sin \theta \cos \theta, \sin \theta \sin \theta, \cos \theta)$
f. $\left(\frac{\partial}{\partial r}\right) = (\sin \theta \cos \theta, \sin \theta \sin \theta, \cos \theta)$
f. $\left(\frac{\partial}{\partial r}\right) = \cos \theta \cos \theta \partial \omega$, $t\cos \theta \partial \psi = \sin \theta \partial \omega$
f. $\left(\frac{\partial}{\partial r}\right) = \cos \theta \cos \theta \partial \omega$, $t\cos \theta \partial \psi = \sin \theta \partial \omega$
f. $\left(\frac{\partial}{\partial r}\right) = \cos \theta \cos \theta \partial \omega$, $t\cos \theta \partial \psi = \sin \theta \partial \omega$
f. $\left(\frac{\partial}{\partial r}\right) = \cos \theta \cos \theta \partial \omega$, $t\cos \theta \partial \psi = \sin \theta \partial \omega$
f. $\left(\frac{\partial}{\partial r}\right) = \cos \theta \cos \theta \partial \omega$, $t\cos \theta \partial \psi = \sin \theta \partial \omega$
f. $\left(\frac{\partial}{\partial r}\right) = \cos \theta \sin \theta \partial \omega$, $t\cos \theta \partial \psi = \sin \theta \partial \omega$
f. $\left(\frac{\partial}{\partial r}\right) = \cos \theta \sin \theta \partial \omega$, $t\cos \theta \partial \psi$
Remark: $\psi_{x,x} = \frac{2}{2\pi} \times (\partial \omega^{-1}) =$

(a,b,c) - DaX+sY+cZ is an isomorphism between R ³ and Spen {x, y, Z}.
$[a_{X+b}Y+c_{Z}, a'X+b'Y+c'Z] = (bc'-cb')X + (ca'-ac')Y + (ab'-ba')$ = f ((a,b,c) x (a', b',c'))
fidentifies Lie braket with vector cross product on IR 3 here.
Proposition 3.10 pite:
If f: M-DN is a diffeomorphism, then f* EX, YJ = Ef* X, f* YJ VX, YE F(TM)
Proof: Let (U, P) be a chart in M. Then (f(U), Pof-') is a chart on N
Chain rule => (Pof") * of * [X, Y] = P* [X, Y] i It is enough to show that P* [X, Y] = [P* X, P* Y].
But this is the by dennihon 3.7.
Example: Mar 3.11
Let (U, P) be a chart on M . Then we have vector field $X_i = (P^{-i})_* \partial i$ on U
μ. (φ-')* (φ
Given X, Y & T(TM) Die Blaket [X, Y] = XY - YX
$[x_{i}, x_{j}] = [(P^{-1})_{*} \partial_{i}, (P^{-1})_{*} \partial_{j}] = (P^{-1})_{*} [\partial_{i}, \partial_{j}] = 0$
Proposition 3.12

The Lie braket sabshes the Jacobi identity: EX, EY, ZJ7 + EY, EZ, XJ3 + EZ, EX, YJ] = 0 $\forall X, Y, Z \in P(TM)$ Proot: Local coordinate calc. but we'll see nicer proof in Sheet 2.

Given a curve $\alpha: (-\epsilon, \epsilon) \longrightarrow M$ we can define $\alpha'(t) \in T_{\alpha(t)}$ \Rightarrow we have a vector field α' along α . Let $\mathbf{x} \in \Gamma(TM)$ and $p \in M \exists$ unique, curve $\alpha_p: (-\epsilon, \epsilon)$ through p $(\alpha(o) = p)$ such that $\alpha'_p(t) = \mathbf{x}(\alpha_p(t)) \dagger \forall t \in (-\epsilon, \epsilon)$ because $\alpha_p(t \in F \mid \epsilon_p \mid s \text{ contained in a chart } (U, P)$ then $P_i(\mathbf{x}_p'(t)) = (P \circ \alpha)'(t)$

$$P_{*}(X(\alpha_{p}(t)) = \sum_{i=1}^{2} X_{i}(\alpha_{i}(t)) \text{ and}$$

$$P_{*}(X(\alpha_{p}(t)) = \sum_{i=1}^{2} X_{i}(\alpha_{i}(t)) \cdot \sum_{i=1}^{2} P_{*}(X = \sum_{i=1}^{2} \infty_{i})$$
hence T is $\alpha_{i}(t) = X_{i}(\alpha_{i}(t))$ and

and (a, (o),..., an (o)) = P(p) is a system of 1st order ODEs with initial conductors and this has a unique solution.

36

Definition 3.13 (HES (HED) DE (HED) = (S. BADE (BOD))

Let $\chi \in \Gamma(TM)$ and $p \in M$, $\exists open U \Rightarrow p$ such that $\forall q \in U$ we have a unique curve $\chi_q : (-\varepsilon, \varepsilon) \rightarrow pM$ such that $\chi_q(o) \Rightarrow q$ and $\chi_q'(t) = \chi(\chi_q(t))$

These curves are called the intergral curves of X in U.

Example 3.14, with verter former x y Z then I y = Exercise X

Let $X = z \partial y = y \partial z$ in \mathbb{R}^3 and let $(a,b,c) \in \mathbb{R}^3$ Intergral curves $\alpha(t) = (x(t), y(t), z(t))$ of X satisfy $t = \alpha'(t) \partial x + y'(t) \partial y + z'(t) \partial z$

 $a \neq a = p \propto (t) = 0$ y'(t) = z(t), z'(t) = -y(t)If a(0) = (a, b, c) then a(t) = (a, bcost - csunt, cost - bsunt)which is a circle in $\infty = a$ plane.

Dehninon: 3.15

Let X, p, U be as in definition 3.13 We define the flow of X on U as $i \not q \stackrel{*}{\iota} : U \longrightarrow M$ It $e(-\epsilon, \epsilon)$? given by $\not q \stackrel{*}{\iota}(q) = \chi_q(t)$ The $\not q \stackrel{*}{\iota}$ are smooth by theory of ODEs

Example 3.16

Let Z=ydx-xdy in R3

This restricts to a vector field on C=f(x,y,z) ER3: x2+y2=13

The intergral curve of Z through (a,b,c) is x(t) = (acost + bsunt, bcost-asunt, c) so the Mows of zon C is given by ϕ_t^2 (cos0, sun θ , 2) = (cos(θ -t), sun (θ -t), 2) ie rotation clockwise around the circle Z= constant Take W=gda=xcdy+dz which is also a vector held on C. Intergral curves of W sabsty $(\alpha(t) = \alpha(t), y(t), z(t))$ $\infty'(t)=y(t)$ $y'(t)=-\infty(t) z'(t)=1$ => x(t) = (acost+bsunt, bcost-asunt, c+t) so the flow of W on C is, $\Phi_{t}^{W}(\cos\theta, \sin\theta, z) = (\cos(\theta - t), \sin(\theta - t), z + t)$ $T(\alpha_{i}y_{i}z_{i}) C = \{(u, v, w) \in \mathbb{R}^{3}\} : < (u, v, w), (\alpha_{i}, y, o) > = 0\}.$ $= span 2(y, -\alpha, 0), (0, 0, 1)$ ((1) = (1)and W and Z are just linear combinations of this Proposition 3.17 Let {\$\$\$`: U - D M : t \in (-E, E)} be the flow of X on U. The $\phi_{s}^{*} \circ \phi_{t}^{*} = \phi_{s+t}^{*} = \phi_{s}^{*} = 1d$ and ϕ_{t}^{*} is a local diffeomorphism. $Proof: \phi_{s}^{*} \circ \phi_{t}^{*}(q) = \phi_{s}^{*}(\alpha_{q}(t)) = \alpha_{\alpha_{q}(t)}(s)$ \$ ste (q) = ox q(s+t) is the unique solution to + x'(a) = x(a(a)) with a(o)=q but then it also solves the equation with $x(t) = \alpha_q(t)$ any daget (s) is the unique solution to + with daget (0)= ag(t) SO Xxqct) (S)= Xq(Stt) $\phi_{\circ}(q) = \alpha_q(0) = q = D \phi_{\circ}^{\times} = id$ $\phi_{-t}^{\times} \circ \phi_{t}^{\times} = \phi_{0}^{\times} = 1d$ $= p d(\varphi_{t}^{*}) \varphi_{t}^{*}(q) \cdot d(\varphi_{t}^{*}) q = 1d \qquad (g, g) = 1d$ => d (pt) g is invertible => by prop 2.14 that d' is a local defermorphism.

Offerendal Form

X, YET (TM), PEM then Y(\$\$ (\$p))ET \$\$ (p) M $d(p_{t}) \neq_{r}(p) \vee (p_{t}) \in T_{p}M$ V(p) ast - p0 So we can compare this to YCp) Detripon: 3.18 and another and the second and the second and the For XIYET (TM), the Lie derivative of Y with respect to X is $\mathcal{L} \times \mathcal{V}(p) = \lim_{t \to 0} d(\mathscr{Q}_{t}^{\star}) \mathscr{Q}_{t(p)}^{\star} \mathcal{V}(\mathscr{Q}_{t(p)}^{\star})) - \mathcal{V}(p)$ Lx YE M(TM) Proposition 3.19 Matex boo approved attances $\mathcal{L}_{X}Y = [X, Y].$ Example 3.20 Z= ydx - xdy on R3 Laz Z = [2z, Z] = 0 Example 3.21

Example 3.9 with vector Relats X, Y, Z then $\lambda_{x} Y = [X, Y] = Z$

Example 3.22

then if (U, q) is a chart on M and $X_i = (q^{-i})_x \partial i$ are the coordinate vector fields (so ∂i are the standard vector fields on \mathbb{R}^n) then $\mathcal{L}_{xi} : X_j = \mathbb{E} : X_i, X_j] = 0$ by example 3.11

Differential Forms	7
DAT	
Dehauboo 4 Li	
Depinition 4.1:	
For pEM let Tp*M be the dual space of TpM TpM = flinear maps E: TpM - pIR }	
Tp M is an n-dum vector space	
If x1, Xn is a basis for TpM (ie a frame) then I define	
5,, En a basis for Tp M by	
$\overline{\Sigma}i(X_j) = S_{ij}$	
Tp M is the cotangent space of M at p.	
Example IL Q	
Example 4.2 If $f: M \rightarrow PR$ is a prove the Construction of $X: f \mapsto p(f \circ \alpha)^{\prime} 6$	5 1
where x= a'c	0)
But we can also define $X \mapsto X(f) \in \mathbb{R}$ which is a cotangent	
Vector Tem OD	
If (U,P) is a chart and XIIIII Xn coordinate Frame for TpM and we write X = 2 ai Xi then	
and we write $X = \sum_{i=1}^{n} a_i X_i$ then $X(f) = \sum_{i=1}^{n} a_i X_i(f) = \sum_{i=1}^{n} a_i \frac{\partial f}{\partial f} = \left(\frac{\partial f}{\partial f}, \dots, \frac{\partial f}{\partial f}\right) \begin{pmatrix} a_i \\ \vdots \end{pmatrix}$	
- I and	
S decet M	
So depetem	
Becall - C. M-DN and C. TANK NT	
Recall: f: M-DN ~DdFp: TpM-D TropiN.	
Detrainer :	
Depnition:	
Let f: M->N be a smooth map	
The pullback df "p: Trop N - p Tp M is given by	
$df_p(\eta)(X) = \eta(df_p(X))$ $\eta \in T_{f(p)}N X \in T_pM$	
which is a linear map.	
Debachen:	
Definition: $T^*M = UT^*M$ is a second sec	
T* M = U Tp M is a rank n vector bundle over M (so 2n-dum manife	(bid
called the cotangent bundle	

Proof that T*M is a manifold is the same as them 2.17 with (d gp) - instead of (d gp)

Dennihonit.5 A 1-form is a section of T*M

Example 4.6 hand the hierder produce

Example 4.7 J Mistoria (4.9)

On \mathbb{R}^n we have a basis for the 1-forms denoted doci so that $dx_i\left(\frac{\partial}{\partial x_j}\right) = S_{ij}$

In a chart (U, P), given a l-form \overline{s} then $P^* \overline{s} = \sum_{i=1}^{n} \overline{s}: doci \quad on \quad P(U) \subseteq \mathbb{R}^n$ Example 4.8 Given a smooth Runchon $f: M \longrightarrow \mathbb{R}$ we get a l-form df on M by

 $df_{cp}(X) = df_p(X) \in \mathbb{R}$ peM, $X \in T_pM$

Dephibon 4.9

Let $f: M \to N$ be a smooth map If m is a 1-form on N then the pullback f^*m is the 1-form on M given by $(F^*m)(p)(X) = m(f_{ep})(df_p(X))$ peM, $X \in T_pM$

Remark: $(F \circ g) = f_* \circ g_*$ Claum: $(F \circ g) = g^* \circ f^*$ $M = D N = F \circ P$ $g^* = f^*$

 $(f \circ g) = m((f \circ g)(p))(d(f \circ g)_p(X))$ = $m(f \circ g(p))(df_g \circ p)(dg_p(X))$ = $(f * m)(g \circ p)(dg_p(X))$ = $g * (f * m)(\rho)(X)$

Dennihon 4.10

K

The tensor products & T, M is the set of multilinear maps T: TpM X... × TpM --- > R

Remark: If $S \in \otimes T_p^*M$, $T \in \otimes^* T_p^*M$, the tensor product $S \otimes T(X_1, \dots, X_{k+1}) = S(X_1, \dots, X_{k+1}) T(X_{k+1}, \dots, X_{k+1})$ $S \otimes T \in \otimes^{k+1} T_p^*M$

We define St Tp M = symmetric tensors on & tp M by ie T (Xo(1),..., Xo(k)) = T(X1,...,Xk) VOESK At Tp M = alternating tensors in & Tp M ie T(Xo(1),..., Xo(k)) = sign (0) T(X1,...,Xk) VOESK.

Example 4.11

If $g \in S^2 T_p^* M$ then $g(X, Y) = g(Y, X) \quad \forall X, Y \in T_p M$ If $w \in \Lambda^2 T_p^* M$ then $w(X, Y) = -w(Y, X) \quad \forall X, Y \in T_p M$ (In particular w(X, X) = 0)

We can form bundles & T*M, SKT*M, AKT*M over M rank (R) vector bundle.

Define the tensor product on these bundles pountwise and and

Dennihon 4.12 a per sponting and have M

A section of A "T"M is a K-form

Nonce that A'T*M=T*M

Example 4.13

A O*-form is a smooth map 5 on M such that supple M slp) & A° Tp* M = R

Example 4.14

A" T*M is a rank I vector bundle over M but it is not necessarily trivial (ie Mx R)

This will be important later.

- this last one is the bundle of (K, L) - togoths.

In \mathbb{R}^n we defined the wedge product of forms, so if ω is a K-form, mis an L-form, then $\omega \wedge m$ is a (K+L)-form $(\omega \wedge m)$ is the auternating part of $\omega \otimes m$)

Remen have a basis for the k-forms on Rn doci have a basis for the k-forms on Rn inc.

If $W \in \Gamma(\Lambda^{k}T^{*}M)$ and (U, P) is a chart, then $P^{*}W = \sum_{u \in V} W_{i,u} i_{k} dx_{i}, \Lambda \dots \Lambda dx_{i_{k}}$

eq On R4 = dx, Adx2 + dx3 Adx4 is a 2 form.

Definition 4.15 If $f: M \longrightarrow N$ is a smooth map and m is a k-form on N then $(f^{*}m)(p)(X_{1,...,X_{k}}) = m(f(p))(dfp(X_{1}),...,dfp(X_{k}))$ $\forall p \in M X_{1,...,X_{k}} \in FM$ defines a k-form $f^{*}m$ on M which is the pullback. fMm

Example 4,16 nort 11 no trong a 21 (9,11) pap month a 21 at

IF c: M->N is the inclusion map and m is a k-form on N then i * m is called the reatraiction of m to M If m is a 1-form then

(i* n)(p)(X) = n(p)(dip X) = n(p)(X) (since di = id) for pe M, XeTPM

So i * M m is monly evaluated on the tangent vectors to M. In particular if $M = R^n$, $N = R^n \times R$ $i : M \longrightarrow N$ then

Vinq i * docn+i = 0.

Example :

Let $\xi = \underline{x}dy - ydx$ be a 1-form on $\mathbb{R}^2 | sos,$ $x^2 + y^2$ Let $i: s' \longrightarrow \mathbb{R}^2$ be the map i(0) = (cos0, sun0)Then $i_*(a_0) = -sun0dx + (cos0dy = xdy - ydx on s')$ $(i^* \xi(d_0) = \xi(i_*d_0) = (\underline{x}dy - \underline{y}d_2)(\underline{x}dy - \underline{y}dx) = 1$ $\underline{x}^2 + \underline{y}^2$

=b i + 5 - dd the i form dual to b.
Recall on Rⁿ we have an operation from K-forms to (k+i)-forms
called extenor dorivative

$$d(fdx_i, n \cdots ndx_{i_k}) = \int_{g^{+}}^{2} \frac{\partial t}{\partial x_j} dx_j ndx_i, n \ldots ndx_{i_k}$$
and extend linearly.
Example 4.18
Let 7. be as in Example 4.17.
Then df = $\frac{\partial}{\partial x} \left(\frac{x}{\partial x_{+}y^{+}} \right) dx ndy + \frac{\partial}{\partial y} \left(\frac{x}{\partial x_{+}y^{+}} \right) dy ndy$

$$+ \frac{\partial}{\partial x} \left(\frac{x}{\partial x_{+}y^{+}} \right) dx ndy + \frac{\partial}{\partial y} \left(\frac{x}{\partial x_{+}y^{+}} \right) dy ndx$$

$$df = (\frac{1}{y^{2}-x^{2}}) (dx ndy + dy ndx) = 0.$$

$$(x+ty)^{2}$$
Theorem 4.19
Ne can define the extension derivative
 $d : F(A^{*}T^{*}M) \longrightarrow F^{*}(A^{**}T^{*}M)$ by requiring that F
w is a K-form and (U, P) is a crart on M then

$$dw|_{u} = P^{*}df(P^{-})^{*}(w|u)]$$
Then

$$(ddw)=0$$

$$w to form , m to form then d(wnn) d = dw nn + (-1)^{k}w ndn$$

$$if f : M = PN smooth map = b f^{*}an = d(f^{*}m)$$
Proof the propenses of d all follow bicause d has these properties on
R⁰, as long as d is well defined, so that is we now to prove.
Suppose we have two overlapping crartes (U, P) and (v, P)

$$(f^{*})^{*}w = (f^{*} \circ F^{*} \circ f^{*})^{*}w$$

$$f^{*} \circ f^{*} is a smooth inap on R^{*}$$

$$= P d((f \circ F^{*})^{*}(w)^{*}((f^{*})^{*}w)$$

$$= f^{*} d((f^{*})^{*}(w))$$

Example 4.20 Let $f: M \rightarrow R$ be a smooth through function. The 1-form df satisfies $df(p)(X) = (P^* d(P^{-1})^* f)(X)$ $x \in T_PM$ $= (d(P^{-1})^* f)(P(p))(dP_p(X))$ $= d(f \circ P^{-1})_{P(p)}(dP_p(X))$ $= d(f \circ P^{-1} \circ P)_{P}(X)$ $= d(f \circ P^{-1} \circ P)_{P}(X)$

So d: f b df as defined before

Remark: We say wis closed if dw=0 and wis exact if w=dm.

Example 24.21(19) (1) x - (2) m grance ((1))2)

Example 4.18 shows that the 1-form do on S' is closed. but do is not exact because $\int_{S^1} d\theta = RT \neq 0$ and by stokes this do is not exact.

Example 4.22

Let $\pi: T^*M \longrightarrow M$ be the projection $\exists \in T^*M \implies d \pi(x, \eta)^* \exists \in T^*(x, \eta) T^*M \quad \forall (x, \eta) \in T^*M$ Define $\tau(x, \overline{s}) = d\pi^*(x, \overline{s}) \exists \in T^*(x, \overline{s}) T^*M$ T^*M

= $D \ge 15 \ a \ 1 - form on T * M$ In local coordinates $(x_1, \dots, x_m, \overline{s_1}, \dots, \overline{s_n}) \ge 15 \sum_{i=1}^{n} \overline{s_i} dx_i$ Let w = -dz so dw = 0 w in local coordinates is $-d(\sum_{i=1}^{n} \overline{s_i} dx_i) = \sum_{i=1}^{n} dx_i dx_i$ $= b w^n = w \land \dots \land w$ is locally (proportional to) $dx_1 \land \dots \land dx_n \land d\overline{s_i} \land \dots \land d\overline{s_n}$

which is nowhere variashing, so whis nowhere variashing (call it nondegenerate)

So wis a non degenerate closed Q-form on T*M

=> (T*M, w) is a symplectic manifold.

Deputition 4.23

X vector field, wis a k-form then the Lie derivative of w in the amection of X is

 $\mathcal{L}_{x}\omega(p) = \lim_{t \to 0} \frac{(\varphi_{t}^{*})}{\psi} \frac{(\varphi_{t}^{*}(p)) - \omega(p)}{\psi} e^{-\Lambda^{*}T_{p}^{*}M}$

Where
$$\{\phi_{x}^{*}, t \in (\epsilon, \epsilon)\}$$
 is the flow of X map.
 d_{x} w is a k-form.
Example 4: 24::
Let $f: M \rightarrow R$ be a smooth function.
 $d_{x}f(p) = \lim_{t \to 0} \{(\phi_{x}^{*}(p)) - f(p) + (p) + (\phi_{x}^{*})^{*} + (\phi_{x}^{*}(p)) + (\phi_{x}^{*}(p))$

Proposition: A. 26 (Cartan's formula Let X be a vector field and w a k-form on M. Then we define having we be the interior product of X and w ix w (Y1,.... Ye-1) = w(X, Y1,... Ye-1) for tangent vectors Yum Ye-1 so LXW is a (K-1)-Form Then Z, w= d(i,w) + ix dw Proof: Example 4.24 & 4.25, local coords + induction give result. Example: 4.27 Let 3 = ady-yda on R3 15030 monthing a lydd gal un say manuthan scity200) (1.9 (1.0) con By Ex 4.18, d\$=0, 2x 3=d(ix 5) If $X = x\partial x + y\partial y = b$ ix $\tilde{S} = 0 = \left(\frac{xy}{x^2 + y^2} - \frac{yx}{x^2 + y^2}\right) = D \lambda \times \tilde{S} = 0$ If Y = xdy - ydx = D iy 3 = 1 => Lys = d(i,s) = d(1)=0. 10 \$ 15 invarient under X, Y

5. Orientation and Riemannian metrics.

Theorem 5.1 Let M be a manifold with atlas P(Ui, Pi) ie I }] an equivalent atlas {(Vj. Kj) : JeJ? and smooth functions {fe: M-DR, keK} st · Vie J Fiel st WMMaper Vie lie lopen represent) · YPEM 3 open Wap at WAV; = & for only E Anitely many JEJ (locally finite) · fx > O on M YKEK · Vkek JjeJ such that suppfk = {peM : fk(p) ≠ 0} ≤ V: · Z fr(p) = 1 tpeM (always finile by local finiteness) Wes call if keks a partition of unity (woondanators subordunate to the atlas {(ui, Pi)} (and {(Vi, +;)}) Moreove we can choose J=K=N 4; (V;) = B3(0) and W; = 4; (B, (0)) such that Proposition 5.2 Let Br (0), Br (0) = R" be the open and closed balls of radius r>0 I smooth gr: R" - P R such mat 9. 20 gr = 1 on Br/2 (0) 00 gr= 0 R" 1Br (0) (=> suppore Br (0)) Proof: Wannado Consider h: R->R given by hit)= { e 1/6 t>0 $h'(t) = 1 e^{-\frac{1}{4}} > 0$ for t > 0 so h is increasing and we know h is smooth Consider hr (t) = h(r2-t2) $h(r^2-t^2)+h(t^2-\frac{1}{2}r^2)$

This is well defined because of h(r2-t2)= 0 then It] >r

MB MC

 $50 t^2 - 1 r^2 > 0 = 0 h(t - 1 r^2) > 0 (solve) = (s (a + 0) + 3 h (a$ and summary if $h(t^2 - tr^2) = 0$ then $h(r^2 - t^2) > 0$ =Dhr is smooth Now Oshrel and hr(t)=0 <> It)>r and hr(t)=14=> 1+15 1/2 Let qr (x) = hr (1x1) Definition 5.3 o ballon Man A manifold M is orientable if I an atlas ((ui, fi) i E I) whenever Uinly # & det (d(4jo fi')))>O Vge fillinly) An orientation is a choice of such an atlas. Example 5.4 march (and) stude application and store (14,11)4 Take the atlas for sn given in example 1.3 Then the transition map is the map F: y -> y/1y1" for y e R" 1803 / 1y12 -2y,2 - 2y, y2 - ... - 2y, yn -24142 1412-2422 - (-b.bann dFj = uni inothe at los - 2yiyn - - - - 1y12-2y2/ To discover the sign of the determinant it is enough to check one point, so choose $y=(1,0,\ldots,0)$ then dFy = (1, 0) = D det dFy < 0 So we change PN to PN (x1,...,xn+1) = (-x1,x2,...,xn) =) det dFy >0 everywhere (as we changed sign of first column. Example 5.5 Let C= {(coso, sund. Z) : D. ZERS. Let U=C/ [(-1,0,2): ZER3. P(coso, suno, z)= (0+TI, z) so P: U-D(O, 1) × R is diffeomorphism

 $\Theta \in (-\pi, \pi)$ $\psi(\cos(\partial +\pi), \sin(\partial +\pi), z) = \left(\frac{\partial +\pi}{2}\right)$ so $\psi(V - b(0, 1) \times \mathbb{R}$ is diffeomorphism = D 4 0 9 - 1 = 1 30 det (9 (4 0 9 - 1)g) > O Vge(0,1) × R =D C is orientable WINADAN VIS US LODGOOD Example 5.6 min and 2 still destelding bag The mobiles band and the klien bottle are not orientable. Theorem 5.7 For an n-dum manifold M the following the equivalent · M is mentable · I nowhere vanishing n-form on M (called a volume form) · _A T*M is mill. Proof: The last two are equivalent by Proposition 2.28 Suppose Jul nowhere vanishing n-form on M. Let {(Ui, fi) i e] be an atlas st fi (Ui) is connected. Let Dio = dx. n. ... dx. on R. ... Then (P;)* L = li Lo for some nowhere zoro function li: P:(Ui) - DR = D li>O everywhere or li< O everywhere (because filli) is connected) If xi<0 we change f:: p+ D(x,(p),..., xn(p)) to $\varphi:: p \mapsto (-\infty, (p), \infty; (p), \ldots, \infty; (p))$ which then changes li to - li (as xit->-xi changes who to - who). Now $(q; q; q;)^* \mathcal{L}_o(q) = det (d(q; q; q;)_2) \mathcal{L}_o (on R;)$ so $(q_j \circ q_i)^* \circ (q_i)^* \mathcal{L} = (q_i^* \circ q_j \circ q_i^*)^* \mathcal{L}$ =) det (d(?; o?i')))); =): =) det (d(?;o?i'))) = i >0 Vge ?:(u:nuj) So M is orientables Suppose that M is orientable and let {(u; f;): i e I } be an orientation Let ife: kENS be a partition of unity subordinate to f (ui, Pi)ieIs given by Thm 5.1 VRENJEIST St Suppfresuit Sonce Efr=1, Vp& M = ken st fe(p) +0 =>pelli(k) So Ulice) = M and f (lice, fine) · k ENS. is an orientation

Define $\Omega_{k=1} = \sum_{k=1}^{n} f_{k} f_{i(k)} \Omega_{k}$ where $f_{k} f_{i(k)} \Omega_{k}$ is zero outside U(i) Which is a n-form because the sum if finde near any given point Let $p \in M$ and open $W \Rightarrow p$ st $W \cap supp f_{k} \neq p$ for only finitely Many \mathbb{E}_{k} .

By taking the intersection with a coordinate chart if necessary, we can assume $\exists j \in I$ at $W \subseteq U_j^{(*)} \cap (P_j(p)) = \sum_{i=1}^{\infty} f_{K}(\mathcal{B}_{i}(p))(P_j^{(*)})^* \cap (P_{i}(p))^* \mathcal{A}_{i0}$

 $= \sum_{i=1}^{n} f_{\mathcal{E}}(p)(f_{i(\mathcal{E})} \circ f_{j}^{-1})^{*} \Omega_{i0}$ $= \sum_{i=1}^{n} f_{\mathcal{E}}(p)det(d(f_{i(\mathcal{E})} \circ f_{j}^{-1}) \circ f_{j}(p))\Omega_{i0}$ Since $det(d(f_{i(\mathcal{E})} \circ f_{j}^{-1}) \circ f_{j}(p)) \circ 0$ and $f_{\mathcal{E}}(p) \neq 0$ for some $\mathcal{K} \in \mathbb{N}$. $= \mathcal{D}(\mathcal{P}_{j}^{-1})^{*} \Omega_{i}(\mathcal{P}_{j}(p)) \neq 0 = \mathcal{D}(\Omega_{i}(p) \neq 0.$

Example 5.8

On \mathbb{R}^n , we have the standard orientation $\mathbb{B}_{k_0} = d \approx \mathbb{A} \times \mathbb{A}$... $d \approx \mathbb{A}$ We say an ordered basis $\{X_1, \dots, X_n\}$ for \mathbb{R}^n is positively oriented if $\mathbb{B}_{k_0}(X_1, \dots, X_n) \ge 0$ = \mathbb{P} if $\infty := \Im i$, then this is positively oriented and given an ordered basis $\{Y_1, \dots, Y_n\}$ we can write $Y_i = \sum_{i=1}^{n} a_{ij} \Im^i$ so $\mathcal{Q}_{k_0}(Y_1, \dots, Y_n) = \det(a_{ij})$

and hence [Y1,..., Vn 3 are positively oriented if det(ay)>0

The usual notion of orientation on R^n is an equivalence class of ordered bases $2 \times 1, ..., \times n^3$ with $2 \times 1, ... \times n^3 - 2 \times 1, ... \times n^3$ If $Y_i = \sum_{q=1}^{n} a_q \times j$

Hence the definition of orientation using Ω_{10} conserves with the usual one in \mathbb{R}^n Similarly for an n-dim oriented manifold M with Volume, form Ω_1 , we define an ordered basis $\{X_1, \dots, X_n\}$ for TpM to be positively oriented if $(\Omega_1 cp)(X_1, \dots, X_n) > 0 = D \Omega_1$ defines an orientation on TpM varying smoothly with p.

Deputition 5.9

Two orientations on M given by volume form 12, and 12' are the same if $12' = \lambda 12$ for some positive smooth Runchon $\lambda: M \longrightarrow R$.

A diffeomorphism f: M-DN between onented manifolds is

Note: The key point here is that definition 5.9 is norrible to say in charts, this is why we use volume forms

Remark: $(f^* \colon \Lambda : n) (p(X_1, \ldots, X_n) = \Lambda : n) (d Fp(X_1), \ldots, d Fp(X_n))$ so if $\{X_1, \ldots, X_n\}$ is a basis for TpM then $\{d Fp(X_1), \ldots, d Fp(X_n)\}$ is a basis for $T_{fcp} \colon \Lambda$ as d fp is an isomorphism. Hence $(f^* : \Lambda : n) \neq 0 \forall p \in M = b f^* : \Lambda : n is a volume form.$

Example 5.10

The identity $id: M \to M$ is orientation preserving since $id^* \mathcal{A}_i = \mathcal{A}_i$ for a volume form \mathcal{A}_i However consider. - $1d: \mathbb{R}^n \to \mathbb{R}^n$, then $(-1d)^* \mathcal{A}_{i0} = det(-1d)\mathcal{A}_i = (-1)^n \mathcal{A}_i$

So -Id : is orientation preserving/reversing if n is even/odd

Deputition 5.11

A Riemanian metric on a manifold M is a section g of S^2T^*M which is positive definate, ie VPEM gp is a symmetric bilinear positive definate map from $TpM \times TpM - PR$ (so an inner product on TpM) varying smoothly with p. In particular if X, Y vector fields on M then if $(X,Y) = g(Y, X) : M \longrightarrow R$ is a smooth function and $g(X,X)(p) \ge 0$ and = 0 iff X(p) = 0.

Note: So we are taking each tangent space (which is a vector space) and making it an uner product space

Remark: dp(X,Y) = Jgp(X-Y, X-Y) is a metric on TpM

Example 5.12

On Rⁿ we have the standard Riemanian metric go defined by go (di, dj)=Sij ie go is dot product.

Example 5.13

H (p)(q) p(X,X) =0. Vi

Let $M \subseteq \mathbb{R}^{n+m}$, we can define the induced Riemanian metric on g as M by $g_{P}(X,Y) = g_{o}(X,Y)$ $\forall X, Y \in T_{P}M \subseteq \mathbb{R}^{n+m}$ $\forall P \in M$

In particular S" has a Riemannian metric induced from Rn+1

recall Example 3.9 it easy to see that an IR3 the vector fields X, Y, Z satistyman.

 $g_{\circ}(X,Y) = g_{\circ}(Y,Z) = g_{\circ}(Z,X) = 0$

Proposition 5.14

Let $f: M \rightarrow N$ be an immersion (ie derivative is injective at every point) and let h be a Riemannian metric on N. Then $g = f^*h$ is a Riemannian metric on M.

Proof her $(S^{*}T^{*}N) = P g = f^{*}h \in \Gamma(S^{2}T^{*}M)$ so we only need to check that g is positive definitie. Let pEM, X ETPM then $g_{P}(X, X) = h_{F}(p) (d_{F}(X), d_{F}(X)) \ge 0$ and equality iff $d_{F}(X) = 0$, but f is an unimersion is $d_{F}(Y) = 0$.

Theorem 5.15 zoro alf (and) (x, x) = 0 = (an) (U.U.

Every manifold has a Riemannian metric.

Proof: By theorem 5.1 Ia countrible locally finite atlas $\{(v_i, v_i) \ i \in I \}$ with $v(v_i) = B_{\mathfrak{Z}}(0)$ and $w_i = v_i^{-1}(B_1(0))$ such that $\widetilde{U}, W_i = M$ and partition of unity $i \in V_i$ subordinate to the atlas with h = 1 on W_i On $V_i, g_i = v_i^{+1}, g_0$ is a Riemannian metric. Define $g = \widetilde{\sum} f_i g_i$ (well defined because atlas is locally finite so sum is finite near any point & fi=0? So $g \in \prod(S^2 T^*M)$ Let $p \in M, x \in TpM$ $g_p(X_iX) = \widetilde{\sum} f_i(p)(g_i) p(X_iX) \ge 0$ and equality iff

 $f_i(p)(g_i)_p(X,X) = 0 \quad \forall i$ But $\exists X \in \mathbb{N} \quad \text{st} \quad f_j(p) = 1 \quad \text{since} \quad \bigcup_{i,W} W_i = M$ So $(g_j)_p(X,X) = 0 = D \quad X = 0$ QED.

6. Riemannian manifolds, definitions and examples.

Depriction 6.1: And 6 born (a.M) music no short a so (P.M) and

A Riemannian manifold (Mig) is a manifold M with a Riemannian metric q ie a positive definate section of S? T*M

HULSALD STE YOU

Example 6.2

 $M \subseteq \mathbb{R}^3$ is a surface then the first hindemental form is a Riemannian method on M ie X, Y \in T_p M \subseteq \mathbb{R}^3 = D g_p(X, Y) = g_o(X, Y) + dot product. If $i: M \longrightarrow \mathbb{R}^3$ is continues the $g = i * g_o$.

Example 6.3

Let (M, g_M) , (N, g_N) be Riem. manifolds $T_{(p,q)}(M \times N) = T_p M \times T_q N$ = $P define g on M \times N by$ $g_{(p,q)}((X, U), (Y, V)) = (g_M)_p(X, Y) + g(M(g_N)_q(U, V))$ $X \cdot Y \in T_p M U, V \in T_q N.$ Clearly g is bilinear, symmetric and smooth because g_M, g_N are. $g_{(p,q)}((X, U), (X, U)) = (g_M)_q(X, X) + (g_N)_q(U, U)$ ≥ 0 ≥ 0

and it equals zero iff $(g_M)_p(X, X) = 0 = (g_N)_q(U, U)$ iff X = 0 = U.

Sog is a Riem. metric.

Example 6.4

Suppose G is a discrete group along Preely and properly discontinuously on a manifold M Suppose h is a Riem. Method on M/G. Then $g = \pi^*h$ is a Riem. Method on M, where $\pi: M \to M/G$ is projection map. (Since $d \neq p$ is an isomorphism $\forall p \in M$)

Riemanning manifolds, definitions and examines

Let (U, P) be a chart on n-dum (M,g) and di be the standard vector fields on Rn for 1=11....n. Then we have vector fields X;=(P-1), 2; on U which form a basis for (TU), called the coordinate frame field, and X; are coordinate vector fields. So IF Y, Z E T (TU) We can write Y= Zy X; Z= Z Z X; and $g(X, Z) = g(\overline{Z}, Y; X; , \overline{Z}; Z; X;)$ $= \sum_{x_i=1}^{\infty} y_i z_j g(x_i, x_j)$ We let go = g (X: X;) : U - > R Then $(q^{-1})^* q = \sum_{i=1}^{n} g_{ij} dx_i dx_j$ on P(U)So g is given locally by matrix of smooth Functions (gis) Example 6.3 For \mathbb{R}^2 , $g_0 = 0 \infty^2 + dy^2$ So the matrix is $((g_0)_{ij}) = (0)$. $e \quad g_{\circ}(\partial_{x}, \partial_{x}) = g_{\circ}(\partial_{y}, \partial_{y}) = 1 \quad g_{\circ}(\partial_{\infty}, \partial_{y}) = 0.$ Let (1,0) be palar coordinates (Ex 3.5) g. (dr. dr) - g. (cosoda + sun odg, cosoda + suno dy) = 1 go (do, do) = go (-rsunddog + 10000dy, -rsunddog + 10000dy) = 12 -go (dr, do) = 0 => in polar coordinates go = ar2 + r2d 02 ie the matrix is $((g_{0})_{ij}) = (1 0)$ Sel Opri² loome bab on longing loon So go = dr2 + r2gs' on R2) 203. In general on Rn+11203 go=dr2+rzgon Example 6.6 Let $(0, \phi)$ be coordinates on S^2 ie pe S2 is given by p= (sunacoso, somasino, cosa) Example 3.6 = $D = (\cos \theta \cos \phi, \cos \theta \sin \phi, -\sin \theta)$ $\partial_{\phi} = (-\sin \theta \sin \phi, \sin \theta \cos \phi, \sigma)$ Let g be the induced Riem. method on S2 Then $g(\partial_{\theta}, \partial_{\theta}) = 1$ $g(\partial_{\theta}, \partial_{\theta}) = \sin^2 \partial g(\partial_{\theta}, \partial_{\theta}) = 0$ => in these coordenates q is given by 2 do" + sin20dd", or as a matrix $(q_{ij}) = (1 \ 0$ O sun2 2

Definition 6.7:

A smooth map $f: (M,g) \longrightarrow (N,h)$ is an isometry if f is a diffeomorphism and $f^*h = g$ f is a local isometry pat peM if \exists open $U \Rightarrow p$, open $V \Rightarrow f(p)$ such that $f: U \longrightarrow V$ is an isometry f is a local isometry if it is a local isometry at all peM.

Example 6.8 months

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be linear on $f(\infty) = A_{\infty+y}$ for $A \in M_n(\mathbb{R})$, $y \in \mathbb{R}^n$ Then $df_{\infty}(u) = Au$ $= D(f^*g_0)(\partial(i,\partial_j)) = g_0(A\partial(i,A\partial_j))$ $= g_0(\sum_{k=1}^{\infty} \alpha_k; \partial_k, \sum_{i=1}^{\infty} \alpha_k; \partial_i) = \sum_{k=1}^{\infty} \alpha_k; \alpha_{ij} = (A^*A)ij$ $= \sum_{k=1}^{\infty} \alpha_k; \alpha_{ij} g_0(\partial_k, \partial_i) = \sum_{k=1}^{\infty} \alpha_k; \alpha_{ij} = (A^*A)ij$ So $f^*g_0 = g_0 \Rightarrow e^*A^*A = I = A \in O(n)$ Moreover f is orientation preserving iff det $(df_u) > O$ iff det (A) > Oiff det (A) > Oiff det (A) > O

Suppose (U, P) is a chart on (M, g) and (V, t) is a chart on (N, h)with $P(U) = t(V) = W \leq \mathbb{R}^n$ (M, N are n-dim) and $(P^{-1})^*g = (t^{-1})^*h$ on W. Then $(t^{-1} \circ P)^*h = P^*E(t^{-1})^*h$] $= P^*E(P^{-1})^*g$] $= (P^{-1} \circ P)^*g$

= $D f = \psi^{-1} \cdot \varphi : U - PV is an isometry$ $Equivalently gij(p) = hij(f(p)) <math>\forall p \in U$ So we can detect local isometries using coordinates.

Example 6.9

Let G be a Lie group. Then TG is brivial and bundle isomorphic to $Q \times g$ where g = TeG is the Lie algebra of G. Suppose he is an uner product on g Then define hg(X,Y) = he(d(Lg=i)g X, d(Lg=i)g Y) X, Ye IgG h is a Riem. metric on G such that $Lg^{\circ}h = h \forall g \in G$ So h is left invarient and Lg is an isometry $\forall g \in G$

Example 6.10 more and man (Mar) and a property to the Let SU(n) = { A ∈ Mn(C) : A TA = I, det A = 1 }. which is a Lie group, with Lie algebra such) = {A = Mn(C) : AT = - A br (A=0}. Define a map su(n) × su(n) -> R by (X,Y) -> tr(X,Y) clearly this is symmetric and bilinear and $tr(XY) = tr(\overline{XY}) = tr(X^{T}Y^{T}) = tr((YX)^{T}) = tr(YX) = tr(XY) \in \mathbb{R}.$ Let scillion be columns of X, then $-\mathrm{tr}(X^2) = \mathrm{tr}(\overline{X}^T X) = \sum_{i=1}^{2} |\mathrm{arg}_i|^2 \ge 0 \quad \text{and} = 0 \quad \text{iff} \quad X = 0$ =Dhe(X, Y) = -tr (XY) is an inner product on such) So define left-invarient Riem metric h on SU(n) by example 6.9 In fact, h is also righ invariant Usa So h is bi-invarient h(EX;YJ,Z) = -tr((XY-YX)Z) = -tr(X(YZ)-Z(YX))-br(X(YZ) - X(ZY))OS (A) HOLD = h (X, EY, Z]) This is the for any bi-invarient h. Example 6.11 22 (1.V) bos (a.W) or pode plan (2.11) The helicoid { (scost ssint, t) ters and the catonoid { (coshzcoso, coshzsino, z) : z, o e IR3 are locally Isometre (Can check by s = coshz, t= 2 in det of helicoid). Example 6.12 Let $M = \{(t - tanht, cosht, sing) : t, gerr \}.$ be the pseudo sphere. Let f: R* × S' - > M be the map fx (2t) = (tanh't, - 600 D sucht, - sundsucht) coshet coshet $f_{\alpha}(\partial_{\theta}) = (0, -sin\theta, cos\theta)$ cosht cosht The induced Riem. metric g on M is denied. (f"g)(dr. dr) = tanh "t + tanh2tsech2t - tanh2t (t* g)(dordo) = sech2t $(f^{\circ}q)(\partial \epsilon, \partial a) = 0,$

So $f^*(g) = tanh^2 t dt^2 + sech^2 t d\theta^2$ Let $x = \vartheta$, y = cosht then in these coordinates g is given locally by t. The LEVE- Crusta Connection

dx2+dy2 xeR, y >)

(M) ?(0, coso, suno)}, g) is locally sisometric to the upper half plane with the hyperbolic metric (Problem sheet 3)

Theorem 6.13

Let G be a discrete group acting freely and properly discontinuisly on a Riem. Manifold (Mig) such that the diffeomorphism Φg for all ge G are isomethes. Then 3 Riem. Methic h on M/G such that $\pi: M^* - \flat M/G$ is a local isometry is π^+h^-g .

Proof: Define hq(X,Y) = gp ((dTTp) XX), (dTip) (Y)) geMG, X, YeTqM, T(p)=q. Suppose $T_1(p) = T_1(p') = D p' = \phi_g(p)$ for some geG. = $d(\pi p')^{-1} = d(\phi_g)_p \circ (d\pi p)^{-1}$ since $\pi(p) = (\pi \circ \phi_g)(p)$ $= p_{gp} ((d \pi p')^{-1} \times (d \pi p')^{-1} \vee) = g \phi_{g}(p) (d(\phi_{g})_{p} \circ (d \pi p)^{-1} (\chi) d(\phi_{g})_{p} \circ (d \pi p)^{-1} (\chi))$ $= (\varphi_{g}^{*} g) ((d\pi_{P})^{*}(X), (d\pi_{P})^{*}(Y))$ $= g_p((a \pi_p)^{-1}(x), (d \pi_p)^{-1}(y))$

So hg is well defined hg is bilinear and ujective because g_p is and $(d\pi p)^{-1}$ is linear hg(X,X) = $g_p((d\pi p)^{-1}X, (d\pi p)^{-1}X) \ge 0$

and equality if and only if $(d \pi p)^{-1} X = 0$ if and only if X = 0Since $(d \pi p)^{-1}$ is an isomorphism. It local diffeomorphism => I open U>q open V>p such that $\pi : V = > U$ is a diffeomorphism.

Let $f = \pi^{-1} : U \longrightarrow V$

Then $\forall q' \in U$, $hq(X,Y) = (f^*g)q'(X,Y)$ since $(f^*g)q'(X,Y) = g_{f(q')}(dfq X, dfqY)$ $= g_{p'}((d\tau_{p'})^T X, (d\tau_{p'})^T Y)$ where $\tau_{\tau(p')} = q'$ $h|_{u} = f^*(g|_{v}) = b$ is smooth as g is smooth, f is a diffeomorphism = b h is a Riem. metric and $\tau_{t} = h = g$ by definition \Box_{t}

Example 6.14

Since id, -id are isometries on \mathbb{R}^{n+1} , we have that $\mathbb{R}(\mathbb{P}^n)$, Mobius band, Klien bottle obtain Riem. methods from S^n , eylinder and $T^2 \leq \mathbb{R}^3$ representiely.

Example 6.15 Problem sheet I=D R²/2° unheruts a Reem. metric Atoms g from R° since translations are isometines of A.M. if f: R^/2/n - p Tn is diffeomorphism from problem sheet 1 and has Riem. metho $T^n \leq R^{2n}$ then $f^*h = 4\pi^2 g$. => f is conformal, but rescaling translations (ie Z"-> 217Z") makes f an isometry.

7. The Levi-Civita connection

A

Deprimon 7.1 (V M) P(d) S+ (X M) P(S) S+	
For XETPM let X ET M be X C	
For SETAM let 3" ETPM be st 5(Y) = Gp(3", Y) for YETpM
men more exist Ainchard I' of	
Suppose X = O = X * (Y) = O VY = > gp(X,Y)	=0 =b gp(X,X)=0
=> X=0. X -> X " is linear injective	
dem TpM = dem TpM => X H > X > 150mo	
ξ+−−» ξ #. V.X as and annue and k	
Example 7.94 4= (5. EX.X3) = (5.X	
Example 7.2 2 0 0 0 0 0	
On \mathbb{R}^n go $(\partial_i, \partial_j) = \delta_{ij} = d\infty_i (\partial_j) = 0$	dx: and dx: = 2:
Sectoral ESG Which has shole and a shole and	
Theorem 3.7 Fundemental Theorem of Riemanni	
Then MA TIM THE and is present	
$\exists : \nabla : \Box (TM) \times \Box (TM) \longrightarrow \Box (TM)$	
(X, Y) -> VXY such that if X, Y	
a, b are smooth functions on M then:	
$i \nabla a x + b y Z = a \nabla x Z + b \nabla y Z$	
$(\nabla \times (Y+Z) = \nabla \times Y + \nabla \times Z$	
$iii \nabla x (aY) = a \nabla x Y + X(a) Y$ diff o	in direction of x. and sw
$iv X(g(Y,Z)) = g(\nabla_X Y,Z) + g(Y,\nabla_X Z)$	
$\nabla \nabla_{\mathbf{x}} \nabla_{\mathbf{x}} \nabla_{\mathbf{y}} = \nabla_{\mathbf{y}} \mathbf{x} = \mathbf{E} \mathbf{x} \cdot \mathbf{y}$	
We call Vx the covarient derivative of	
and V the Levi-Civita connection.	
Frany Fishe & Fill group to an I non	LOE X.Y.ZEPCTM). T
Proof: Suppose V exists (S.V)	$(\overline{V_{z}}Y^{*}Y_{z}) = \chi(Y^{b}(\underline{z}))$
1V=>×(g(Y,Z)) + Y(g(Z,X)) - Z(g(X,Y))	
$V = 2g(\nabla x Y, Z) + g(x, [Y, Z]) - g(y)$	
So $g(\nabla_x Y, z) = \prod (X(g(Y, z)) + Y(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) - z(g(z, X)) - z(g(z, X)) - z(g(z, X))) - z(g(z, X)) $	-
+ g(Y, [Z, X]) + g(Z,	
* = D D is unique if it exists.	
Goal: Define Vx Y by # and show that i	
Let WEM(TM) as well	
$g(\nabla a \times + b \vee Z \cdot W) = \frac{1}{2} ((a \times + b \vee)(g(Z, W)) + 2$	
-W(g(ax+by, Z))-g(

-W(g(ax +by, Z)) - g(ax+by, LZ,WJ) +g(Z, [W, ax+by]) - g(W, [ax+by, Z]))

The Levie Civita Connection

= $g(a\nabla_x Y + b\nabla_x Z, W) + \frac{1}{2}(Z(a)g(W, X) + Z(b)g(W, Y)) - W(a)g(X, Z)$ - W(b)g(Y,Z) + g(Z,W(a)X + W(b)Y) - g(W,Z(a)X + Z(b)Y) $= g(a\nabla_x y + b\nabla_x z, W) = Di$ IL IS Obvious in similar to i Defendence and a second w last four terms in * are skew symmetric in Y,Z $= \forall g(\nabla x Y, Z) + g(Y, \nabla x Z) = X(g(Y, Z)) = \forall i \forall$ V. first five terms in * are symmetric in X, Y $= D g(\nabla_X Y, Z) - g(\nabla_Y X, Z) = g(EX, YJ, Z) = D V.$ Example 7.4 pro probation = (10) pop = 12 = (16,16) pop 0.9 po On R" Edi, 2;7=0 and go (di, 2;) = Sij which have is a constant Anction. =>g. (Vadjiak) =0 => Vaiaj=0 T) T · P(TM) × P(MT) - V / F Example 7.5 Let G be a Lie group with a burinvarient Reim. metho Problem sheet 4 => $\nabla_x Y = \frac{1}{2} [X, Y] \forall X, Yeg$ We can define $\nabla: \Gamma(TM) \times \Gamma(\otimes^{m} T^{*}M) \longrightarrow \Gamma(\otimes^{m} T^{*}M)$ by $(X,T) \mapsto \nabla_X T$ where pm supplies to be the second state of $\nabla_{\mathbf{X}} \mathsf{T}(Y_{1}, \dots, Y_{n}) = \mathsf{X}(\mathsf{T}(Y_{1}, \dots, Y_{n})) - \sum_{j=1}^{n} \mathsf{T}(Y_{1}, \dots, Y_{j-1}, \nabla_{\mathbf{X}} Y_{j}, Y_{j+1}, \dots, Y_{m})$ YY YME F(TM). Example 7.6 Let X, Y, ZEM(TM). Then $(\nabla_x Y^{\flat})(Z) = \chi(Y^{\flat}(Z)) - Y^{\flat}(\nabla_x Z)$ $= X(q(Y,Z)) - q(Y, \nabla_{X}Z) = ((X,Z)) + ((Z,Y)) + ((Z,Y$ $= q(\nabla_x Y, Z) \quad by \quad iv$ $(\nabla_{\mathbf{x}} \vee)^{\circ}(\mathbf{z}) = (\nabla_{\mathbf{x}} \vee)^{\circ}(\mathbf{z}) = (\nabla_{\mathbf{x}} \vee)^{\circ}(\mathbf{z}) = (\nabla_{\mathbf{x}} \vee)^{\circ}(\mathbf{z}) = (\nabla_{\mathbf{x}} \vee)^{\circ}(\mathbf{z})$ $(\nabla_x \gamma^b)^{\#} = \nabla_x \gamma (\Gamma_y x \sigma_y s) \rho + (\Gamma_x s) \sigma_y \rho +$ Example 7.7 or up v-i ton work but to to any soft of the $X, Y, Z \in \Gamma(TM) = D(\nabla_x g(Y,Z) = X(g(Y,Z)) - g(\nabla_x Y,Z) - g(Y, \nabla_x Z))$ = O by property iv of 7

Definition 7.8
Suppose (U:P) is a oracle on n-dum (U,g) and let
X: = (P⁻) + 2i be conductive vector field on U.
Then there exist functions
$$\prod_{i=1}^{n}$$
 on U given that
 $\nabla_{x_{i}} X_{j} = \sum_{i=1}^{n} \prod_{j=1}^{n} X_{x_{i}}$.
 $\prod_{i=1}^{n}$ are the christofeut symptots of g (U:P)
Caveat: $\prod_{i=1}^{n}$ depends on P!
Example 7.9
On (Rⁿ ∇_{B} , ∂_{y} : + 0 = P $\prod_{j=0}^{n}$ = 0.
Proposition 7.0
Let (U:P) be a chart on (M,g), let g * (g_{ij}) on U.
Then Uly $\prod_{i=1}^{n} \cdots \prod_{j=1}^{n} g^{n}(g_{ij})$ on U and use
write $\partial_{x_{ij}} = X_{x_{i}} (g_{ij})$ then
 $\prod_{i=1}^{n} (\prod_{i=1}^{n} \prod_{j=1}^{n} \sum_{i=1}^{n} g^{n}(g_{ij}) + \partial_{j}g_{i}(\dots - \partial_{i}g_{ij}))$
Proof: $\nabla_{x_{i}} X_{i} - \nabla_{x_{i}} X_{i} = [X_{i}, Y_{i}] = 0$ by extent
 $g \neq \sum_{i=1}^{n} (\prod_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} g_{i}(g_{i} \times x_{i})) + X_{i}(g(X_{i}, X_{i})) - X_{i}(g(X_{i}, X_{j})))$
Using the formula for es ∇ and $[X_{i} + X_{i}] = 0$
Finally $\prod_{i=1}^{n} \sum_{m=1}^{n} \sum_{i=1}^{n} g_{m} (g_{m} \oplus g_{m})$
For S^x take (0,4) coords as in (X 6.6 so X_{i}, X_{i} inverses of
 $\partial_{x_{i}} \partial_{x_{i}}$ and $(g_{i}) = (1 \ 0 \ 0 \ (0 \ cosoc^{2}))$
 $\prod_{i=1}^{n} \prod_{i=1}^{n} \sum_{m=1}^{n} \sum_{i=1}^{n} g^{n}(\partial_{y_{i}} + \partial_{y_{i}} g_{m})$
 $\prod_{i=1}^{n} \prod_{i=1}^{n} \sum_{i=1}^{n} g^{n}(\partial_{y_{i}} + \partial_{y_{i}} g_{m})$
 $\prod_{i=1}^{n} \prod_{i=1}^{n} \sum_{m=1}^{n} \sum_$

g12=0 gigui=0 since guits lor 0 constant

$$g_{12} \neq 0 \quad \text{only} \quad \text{if } l = 2$$

$$T_{12}^{2} = \frac{1}{2}g^{22}\partial_{+}g_{22}$$

$$= \frac{1}{2}(\operatorname{cosec}^{2}\partial_{-}\partial_{0}(\operatorname{sun}^{2}\partial))$$

$$= \frac{1}{2} - \frac{1}{2}\operatorname{sun}\partial_{0}(\operatorname{sun}^{2}\partial)$$

$$= \frac{1}{2} - \frac{1}{2} - \frac{1}{2}\operatorname{sun}\partial_{0}(\operatorname{sun}^{2}\partial)$$

$$= \frac{1}{2} - \frac{1}{2} - \frac{1}{2}\operatorname{sun}\partial_{0}(\operatorname{sun}^{2}\partial)$$

$$= \frac{1}{2} - \frac$$

 $\alpha = \chi(\alpha(t)) \in T_{\alpha(t)}M$ It and $t \mapsto \chi(\alpha(t))$ is smooth The covariant derivative of X along α is $DX = \nabla \alpha_{i}X$

X is parallel if DX = O.

Suppose α is contained in a check (U, P)Write $\alpha(t) = \varphi^{-1}(a_1(t), \dots, a_n(t))$ $X(t) = \sum_{i=1}^{n} x_i(t) X_i$ $(X_i = (Q^{-1})_* \partial_i)$ Then $\alpha' = \sum_{i=1}^{n} a_i' X_i$ and $DX = \nabla \sum_{i=1}^{n} a_i' x_i : \sum_{j=1}^{n} x_j X_j$ $= \sum_{i=1}^{n} a_i' \nabla_{X_i} : \sum_{j=1}^{n} x_j X_j$ $= \sum_{i=1}^{n} a_i' X_i(x_j) X_j + \sum_{k \in i, j \in I}^{n} T_{ij} X_{k}$ $\alpha'(x_j) = \sum_{i=1}^{n} a_i' X_i(x_j) = \alpha_* (\frac{d}{dt})(\alpha_j)$ $DX = \sum_{i=1}^{n} dx_i : (x_j) = \alpha_* (\frac{d}{dt})(\alpha_j)$ $DX = \sum_{i=1}^{n} dx_i : (x_j) + \sum_{i=1}^{n} T_i' x_i' x_j X_k$ $= \sum_{k=1}^{n} (\frac{dx_k}{dt} + \sum_{i=1}^{n} T_i' x_i' x_j) X_k$

In paracular, $\underline{D\alpha'} = \sum_{i=1}^{n} (\alpha''_{i} + \sum_{j=1}^{n} \Gamma_{j}' \alpha_{i}' q_{j}') X_{k}$ Example 7.13 On R", Ty=O so DX = dock dt Dt K=1 Example 7.14 On S2 fix Do, do E R and let a(t) = (sunt cos \$, sunt sun \$, cost) B(t) = (sin∂, cost, sin∂, sin€, cos∂,) a'= X, as in ex 7.11 and B=X2 $\stackrel{on \alpha}{=} DX_1 = \nabla_{X_1} X_1 = O \quad DX_2 = \nabla_{X_1} X_2 = Cott X_2$ VI DE XI DE $DX_1 = \nabla x_2 X_1 = COt \Theta_0 X_2 = -sun \Theta_0 cos \Theta_0 X_1$ DŁ XI is parallel along Q, X, X2 cre parallel along B IF D. = The Theorem 7.150000 Let pige (Mig) let &: [0, L] - > M be a curve such that & (o)=p, x(L)=g and let X. ETPM =]! parallel vector held X along & such that X(p) = X. The map Zx: ToM - P TaM given by $\tau_{\alpha}(X_{\alpha}) = X(q)$ 15 an isometry ie gp(Xo, Yo) = ga (Za(Xo), Za (Yo)) called the paralles transport along x. proof. It is enough to consider cuives contained in charts, borause we can cover a with charts and since [OIL] is compact we can take junitely many and the unqueness of X implies agreement on overlapping charts. X is parallel along & 4=> RHS of * is zero. But this equivalent to n first order ODEs in mariables (201..., ocn) with n initial conductors $(x, (0), \dots, x_n(0)) = X_0$. =>]! solution X as claimed. So Za: TPM - P TgM is well defined Let B(t) = a(L-t) and consider ZB : TgNI - D TPM

3. parallel vector field avised Y along A such that
$$Y(q) \ge X(q)$$

But $p'(t) = \omega''(t-t)$ so $\nabla \omega' x = \nabla p \cdot x = 0$
Y is unique $\mathscr{D}(p) \le X_0$ so $z_0 \le z_0 \le t \le s$ an isomorphism
Let X if be vector fields along α' .
 $d : (q(X,Y)) = \alpha''(q(X,Y))$
 $f : (q(X,Y)) = (q(X$

Geodesics

Definition 8.1: A curve & is (M,g) is a geodesic if V, & = 0 Since $q(x', x') = 2q(\nabla_{x'}, x', x') = 0$ so q(x', x') is cons dt & is normalised if g(8', 8')=1 parametrised by ardength. Recall if a chart (U,P), if we write S(t) = P' (a, (t), ..., an(t)) men & is a geodesic apair + 2 Ty aiaj = 0 + These are the geodesic equations of Example 8.20000 On R", T'y=0 so t + ak = 0 + & geodesic is a straight line Example 8.3 On S², take $\chi(t) = (\sin \varphi(t) \cos \varphi(t), \sin \varphi(t) \sin \varphi(t), \cos \varphi(t))$ Ex 7.11 => & is a geodesic if and only if $\partial'' - \sin \partial \cos \partial (\phi')^2 = 0$ $\phi'' - \cot \phi \phi \phi' = 0$ If \$ '= 0 then O(t)=attb, \$(t)=\$, satisfy the equations =) great circles with & constant are geodesics 52 maximal radius

Example 8.4 PI-(0) (100 Mp) 10 310 1

This 6.13 = projection map $T: S^2 - PRP^2$ is a local isometry. The condutions to be geodesic is local so if d is a geodesic on S^2 then $X = T \cdot \alpha$ is a geodesic in RP^2 Notice α 2π -periodic = $P \times IS T$ -periodic.

Example 8.5 We have a bi-invarient Rem. methic on SU(e) by Ex 6.10 Problem sneet 3 = P If $X = (i \ 0) \in SU(GR SU(e))$

then $\nabla_X X = 0$, so intergral curves of X are geodesic ie curries & st &'(t) - X(&(t)) = p &(t) = / et 0 is a geodesic through I x(0)=I x(0)=X 10 e-it

Creanasics

Example 68.6

On the standard n-torus Tⁿ = R²ⁿ we have a global coordinate frame given by

X: =-sin $\partial_i \partial_{2i-1} + \cos \partial_i \partial_{2i}$ then on this frame $g = (g_{ij}) = (S_{ij}) = D \Gamma_{ij}^{*} = 0$ so geodesic equations are : $\partial_i = 0 = D$ geodesics are curves with $\partial_i = a_i + b$.

Theorem 8.7 Let pe(M,g). $\exists open U \ni p, \epsilon > 0$ and a smooth map $\Gamma: (-2, 2) \times V \longrightarrow PM$ where $V = \{(q, X) : q \in U, X \in B_{\epsilon}(0) \leq T_{q}M\}$ at $\delta(q, X)(t) = \Gamma(t, q, X)$ is the unique geodesic with $\delta(q, X)(0) = q$, $\delta(q, X)'(0) = X$

Proof: The geodesic equations are a system of der ODEs linear
in second derivatives so
$$\exists$$
 open $u \ni p \in 1 > 0, \leq 5 > 0$
so that $\forall q \in U$, $\forall \in B_{\mathcal{E}'}(0) \leq T_q M$.
 \exists ' geodesic $\forall c_q, v_j : (-\delta, \delta) \longrightarrow M$
Moneover, the map $\not = (t, q, v) \longmapsto \forall (q, v)(t)$ is smooth
 $If \delta \geq 0$ we are done.
Suppose $\delta < 2$.
Define $\forall c_q, v_j(t) = d(q, \frac{2x}{\delta}) \left(\frac{\delta t}{2}\right)$ for $t \in (-2, 2)$, $x \in B_{\mathcal{E}}(0) \leq T_q M$
where $\mathcal{E} = \frac{\delta \mathcal{E}'}{2}$

 $= \nabla \delta(q, x)(0) = q, \quad \delta'(q, x)(0) = \frac{\delta}{2} \alpha'(q, \frac{2x}{2})(0) = \frac{\delta}{2} \frac{2x}{8} = X$ and $\nabla \delta' \delta' = \frac{\delta^2}{4} \nabla \alpha' \alpha' = 0 = \nu \delta(q, \frac{2x}{2})$ our required geodesic

and is unique because & is unique

Example 8.8

Let $p \in S^n$ and $X \in T_p S^n = \langle p \rangle^{\perp}$ Consider plane $T > span fp: Xs \in \mathbb{R}^{n+1}$ Then the intersection $TT \cap S^n$ is a great circle through p and by appropriate parmiteristation has tangent vector X at p. Let X be the unique geodesic st Y(0) = p, Y'(0) = XLet g be a rotation in the plane TT = y g is an isometry $= b p \cdot Y$ is a geodesic of T or Y

Thm 8.7 po &= & = D &= x

Example: 8.9. month and an a second and a second second second for the second of the second of the second of the second s

 $\exists : geodesic & in RP^n such that <math>\delta(0) = Ep \exists \in RP^n and \\ \forall : (0) = X \in T Ep \exists RP^n$ Take pe S^n and $\exists : Y \in TpS^n st d \pi p(Y) = X = b d\pi p is an$ $so <math>\exists : g neat$ cucle α and $(0) = p, \alpha'(0) = \delta$ then $(\pi \circ \alpha)(0) = \pi(p) = Ep \exists and (\pi \circ \alpha)'(0) = d\pi p(Y) = X$ Then $(\pi \circ \alpha)(0) = \pi(p) = b \pi \circ \alpha$ geodesic Then $\vartheta : T = P \pi \circ \alpha = \delta$

So geodesics in RPM are projection of groat circles in Sh.

Delachers

Dehnibon 8.10

Use the notation of This 8.7. Define the exponential map expp: V - > M by expp (q, X) min = S(q, X) (1) We often restrict to expp: BE(0) STPM -> M $le exp_{p}(x) = \delta(p(x)(1) - Jg_{p}(x,x) < \varepsilon$

Theorem 8.11

Given $p \in M \exists open W \Rightarrow p, S > O \quad such that <math>\forall q \in W$ expq: $B_{S}(O) \leq T_{2}M \longrightarrow W$ is a diffeomorphism onto is image.

Proof: Let U, V, \succeq be as in Thm 8.7 Define $F:V \subseteq TM \longrightarrow M \times M$ by $(q, x) \longmapsto (q, exp_q(x))$ Let $x \in T_{\circ}(TpM) = TpM$ then

 $d(exp_{p})_{o}(X) = \frac{d}{dt} exp_{p}(tX)\Big|_{t=0} = \frac{d}{dt} V(p(X)(t)\Big|_{t=0}$

$$= \delta_{(0)X}(0) = X$$

d (expp) = 1d TPM

Hence dFipion: TpM × To(TpM) - DTpM × TpM dFipion = (I I) is an isomorphism

So F is a local diffeomorphism at (p, 0). Thus that I se (0, E), opsen Û=U, open ŵ SM×M such that if $\hat{V} = \{(q, X) : q \in \hat{U}, X \in B_{S}(0) \leq T_{q}M \} \leq V$ then $F: V \longrightarrow \hat{W}$ is a diffeomorphism. Choose open W=p st W×W=W

Deputition 8.12

A piecewise smooth curve α : $[0, L] \longrightarrow M$ is a continuous curve such that $\exists 0 = t_0 < t_1 < ... < t_k < t_{k+1} = L$ with α smooth on $[t_i, t_{i+1}]$ for i = 0, ... k.

Depution 8.13

Lengen of a pierewise smooth curve it is $L(\alpha) = \int_0^\infty |\alpha'(t)| dt$

Example 8.14 Let a(t) = at+b be a straight line in Rn for te [oil] then

 $\mathcal{L}(\alpha) = \int_{\alpha}^{L} |\alpha'(t)| dt$ $= \int_{\alpha}^{L} |\alpha| dt$

et sig = Liar (tig x) is the lingue geodes

Example 8.15

Let $\delta(t) = (costcos \neq costsin \neq costsin \neq cost)$ for $t \in [0, L]$ be a geodesic in S^2 . Then $\delta'(t) = (-sintcos \neq cost)$ =D $[\delta'(t)] = 1$ =D $[\delta'(t)] = 1$ =D $L(\delta) = L$ (= $\int_{0}^{\infty} 1 dt$) Since $\delta(t+\pi) = -\delta(t)$ so a half-curcle has length T.

Definition 8.16

Let per An open state Usp is a normal abd of p if I open the
VS TPM such that expp: V - PU is a diffeomorphism
If BE(0) = V then we call BE(p) = expp(BE(0)) and
Se(p) = 3BE(p) = expp(3 BE(0)) the geodesic ball and
geodesic sphere of volume & nosphanning around p,
respectively.

Open WEM is a totally normall nod of p if it is a normal nod of every gew

Remarks ?" and X < To S No FROM TO - (M.T) TO

• Thm S.II = P totally normal nods exist

· Geodesics in a normal nod starting at p are called radial geodesic

· Given q on in normal nod of p, the radial geodesics from p' to q is the unique geodesic from p to q.

Example 8.17 month of an electron 7 1 and 7 1 and 1 and 1 and 1

For $p \in \mathbb{R}^n$, $X \in T_p : \mathbb{R}^n = :\mathbb{R}^n$ exp(tX) = p + tX and $exp_p(T_p : \mathbb{R}^n) = :\mathbb{R}^n$ so \mathbb{R}^n is totally normal nod of all all $p \in :\mathbb{R}^n$ and B = (p) is the usual metric ball.

Example 8.18

IF $N \in S^n$, $X \in T_N S^n$ such that |X| = T then $exp_N(X) = S$ = $b exp_N : B_T(0) \in T_N S^n - b S^n I S Is a diffeomorphism and$ $<math>S^n I S Is a normal nod of N$

Lemma 8.19 (Gauss Lemma)

VYETXTPM - TPM.

gexpe(x) (d(expp)x(X), d(expp)x(Y)) = gp(X,Y)

Remark: Lemma 8.19 says that radial geodesics from p are orthogonal to geodesic spheres around p.

Proof Write Y=YT+Y where YTESpan SX3 and Ytespan SX3 Then $gexpp(x)(d(expp)x(X), d(expp)x(Y^T) = gp(X, Y^T)$ because deexpr)x(XX) = XX, so it is enough to show the lemma for V= Y + 0 IE>O such that if X(t) = Xcost + Y sunt then exp (\$X(t)) is well defined V SE [0,1] VEE (- E, E) Let f(s,t) = expp(sX(t)) so stop f(s,t) are raid pol radial geodesics OF = d(expp) sx(t) (X(t)) OF = d(expp) sx(t) (sX'(t)) dt af (1,0) = d(expe) x (Y OF(1,0) = dexpo)x(X) Note g (d(0× p)x X, d (0× pe)x X -Logidte press 25 9(8'(1), 8'(1)) First D OF = O as stof(s,t) is a geodesic a(s(0), s(0)) Ds as Choose a chart (U, P) around f(so, to) and write $q \circ f(s,t) = (x, (s,t), \dots, x_n(s,t))$ and di Then D OF = D 5 Ds at Ds J=1

$$= \int_{a}^{b} \frac{\partial^{2} \mathbf{x}_{j}}{\partial s \partial t} \frac{\partial j}{\partial s} + \int_{a}^{b} \frac{\partial \mathbf{x}_{j}}{\partial s} \frac{\partial \mathbf{x}_{j}}{\partial s} \frac{\partial j}{\partial s}$$

Theorem 8.00

Geodesics $\delta: [O,L] \longrightarrow M$ in BE(p) with $\delta(0) = p$ are minimising in if $\alpha: [O,L] \longrightarrow M$ is a piecewise smooth curve with $\alpha(0) = p$, $\alpha(L) = \delta(L)$ then $L(\alpha) \ge L(\delta)$ Moreover, if $L(\alpha) = L(\delta)$ then $\alpha([O,L]) = \delta([C,L])$

Proof: Suppose wlog that $\delta(0) \neq \delta(L)$ and let α be a compansion curve. Suppose $\alpha(TO(L)) \notin BE(p)$. $\exists T \in TO(L)$ least such that $\alpha(T) \in S_{E}(p)$. Then $L(\alpha) \ge L(\alpha \mid CO(T))$ and $\alpha \mid CO(T)$ is contained in $B_{E}(p)$

We can reparmetrise $\mathcal{A}(\mathcal{A}|_{(0,T)})$ so that it is defined on $\mathbb{E}_{0,L}$ and not change its length, so it is enough to consider a such that $\mathcal{A}(\mathbb{E}_{0,L},\mathbb{I}_{T}) \subseteq \mathbb{B}_{e}(p)$. We would give can assume $\mathcal{A}(t) \neq p$ $\forall t > 0$ write $\mathcal{A}(t) = \exp_{p}(r(t)X(t))$ for $te(0_{2},L]$ with $r:(0,L] \longrightarrow \mathbb{R}^{+}$ piecewise smooth and X(t) a curve on $T_{p}M$ with |X(t)|=1

Proof of Gauss Lemma => a(t) = f(r(t), t) =D Q'(t) = OF F' + OF 2S Gauss Lemma = $g\left(\frac{\partial F}{\partial s}, \frac{\partial F}{\partial t}\right) = 0$ and $g\left(\frac{\partial F}{\partial s}, \frac{\partial F}{\partial s}\right)$ = |X(t)|So |x'|2 = |r'|2+ So L(a) = Jo la'(t) dt > Jo li'(t) l dt Jo r'(t) dt = r (L because &(L) = expp(r(L)X(L)) -8(5) - expp(sr(L)X(L) = x (L) L(8) = r(L) by Gauss Lemma L(d) ≥ L(8) and so & is minimising =D Moreover L(x) = L(x) = D of = 0 and Ir' = r' = 0 = b X'(t) = 0 = b X(t) = X constant So alt) = expelicit) X) &(s) = expp (Sr(L)X

 $r' \ge 0 = D \propto 13$ a monotonic reparametrisation of 8 so $\alpha(TO_{LJ}) = \delta(EO, LJ)$

Proposition 8.21 RPS, T' and the kinen both a new of

and locally minimising then it is a geodesic.

Problem Sheet Romp 1/10

The Vpe(M,g) I chart (U,P) st gij(p)=Sij and Ty (p)=O and geodesics through p and straught lines on P(U)

2. RPM is orientable iff n is odd.

3. $\left[(x_{1},...,x_{n+1})\in \mathbb{R}^{n+1}, \sum_{i=1}^{n} x_{i}^{2} - x_{n+1}^{2} = -1\right]$ with restriction of $\sum_{i=1}^{n} dx_{i}^{2} - dx_{n+1}$ is Riem. and isometric to B, (0) $\in \mathbb{R}^{n}$ with $\sum_{i=1}^{n} \frac{d}{dx_{i}^{2}}$ and isometric $(i=1,(1-\sum_{i=1}^{n} y_{i}^{2}))$ to upper half plane H^{n} with $\sum_{i=1}^{n} \frac{dz_{i}^{2}}{z_{n}^{2}}$. 4 Exponential map is the exponential function on the Lie algebra.

proof: Let te EO, L]. Let W be a totally normal mod of x(t). 35>0 such that & ([t+s, t+s]) ≤ W = > 8 × jours & (t+s) to & (t+s) and lies in a geodesic ball around & (t-8). Thin 8.20 40 (Slar) = b & (s) = expp (r(s) X) (p=r(t-s)) with r'>0 for some X. 1811 constant => r' constant => r(s)=ks for some kER =D & is a geodesic on [t-S, t+S] =D & is a geodesic. 1(a) = 1 faired dt 3 - 1 faired

9. Completeness

Assume (Mig) is a connected Riem. manifold.

Deputition 9.1

(Mig) is (geodesically) complete if every geodesic exists Vt le expp(X) is defined VXETPM VpEM.

Example 9.2

 \mathbb{R}^n is complete but \mathbb{H}^n is not complete with the standard Riem. metric Consider $\delta(t) = ten = (0, ..., 0, t)$ is only defined for t > 0. $(\mathbb{H}^n = \{ (\infty_1, ..., \infty_n) \in \mathbb{R}^n : \infty_n > 0 \}$.

Example 9.3

S' is complete but Stini is not complete. Great arcles are defined it but any great circle that went through N (ie any one through S) is now not defined it in S'ISN?

NO MICOELRIU

Example 9.4

Prodem sheet 3 => any Le group with a bi-invanent Riem. Metric is complete => eg. So(n) is complete.

Problem sheet 4 => RPn, Tn and the Klien bottle are complete.

For piqe(M,g) define d(piq) = inf[L(x), & piecewise smooth curve from p to q]. The RF(M,d) is a metric space.

Proof: $d(p_i p) = 0$ clearly If $p \neq q \equiv geodesic bau Be(p)$ such that $q \notin Be(p) = D d(p_i q) \geq E \neq 0$. $d(p_i q) = d(q_i p)$ clearly.

Let p,q,r EM the d(p,r) < L(x) + L(B) such that & is from p to q B is from q tor

True for every curve $\alpha, \beta = D d(p, r) \leq d(p, q) + d(p, r)$ Metric balls are geodesic balls, which are open sets. If U is any open set in M Vpell $\exists \epsilon > 0$ such that $B\epsilon(p) \in U$ = 0 metric d is equivalent to the original metric on M

Theorem 9.7 (Hopf-Rinow Theorem) Let (M,g) be a connected Riem. manifold. The following ane equivalent, q (Mig) is complete b expers defined on all of TPM for some pEM c closed bounded subsets of M are compact d (M,d) is a complete methic space. Moreover, if (Mig) is complete then UpigeM 3 geodesic & from p to g such that L(8) = d(p,g) Proof: a=Db is trivial by definition bat want to show : Yge M 3 geodesics , from p to g such that $L(\delta) = d(p,q)$. Let geM and let d(pig) = R mon Let S>O 58(p) The map octod(q, oc) is continuous since dis a metric =D = Joco E SS(p) such that d(q, sco) is minimal. =Dx0 = expp(SX) for some XETPM with IX1=1 Let &(s) = expo(sX), defined VSER. Let $A = \{s \in [0, R] : d(\delta(s), g) = R - s\}$ OEA since & (0) - p and A is closed because d is continuous Want to show: A B open = DA = [O, R] = D & (R) = q tob (D M) = V is a geodesic from p to g such that L(8) = d(p,q) = R. Suppose Soe A with Soc R Let 2>0 be such that BE (8(so)) is well defined Let yo e SE(S(so)) be such that d(yo, q) is minimum of the Then $d(\delta(s_0), q) = \varepsilon + m un d(y, q) = \varepsilon + d(y_0, q) = \varepsilon - s_0 since s_0 \in A$ $y \in s_{\delta}(\delta(s_0))$ => d(yo,q) = R - (so + E) If yo = δ(so+ε) = D so so + ε e A so A is open. Now d(p, y₀) ≥ d(p,q) - d(q,y₀) = R- (R- (s₀ + ε)) = s₀ + ε Curve & from p to & (so) then & (so) to yo has rength so tE is minimising, and d(p, yo) = So tE = D & is a geodest = DX = 8 by

uniqueness

Let $S \subseteq M$ be closed and bounded = $B \subseteq B^{d}(p) = \{q \in M; d(p,q) \le r\}$ but $B^{d}(p) \subseteq exp(Br(0))$ for some R
ie there exists geodesic from p to any ge Br(p)
expp (Br(0)) is compact because expp continuous and Br(0) compact => S is compace =: (b)=>(c)
a =>d Let (pn) be a Cauchy sequence in (Mid) => (pn) bounded
=> S= {pn:ne N} is closed bounded => S is compact
=> spns has convergent subsequence => (Mid) complete
=D] normalized geodesic & defined for S <so but="" for="" not="" s="So</td"></so>
Let (Sn) be an incheasing sequence in EO, so] converging to so
= D (sn) is Eauchy. = D (S(Sn)) is Eauchy since d(S(Sn) (S(Sn))
$d(\delta(sn); \delta(sm)) = [sn - sm] \rightarrow 0$ as $n(m - b = 0$
=> => convergent subsequence of (M, d) is complete
$\partial g(s_{n_k}) \longrightarrow p_o \in \mathbb{M}$
Choose totally normal nod hi of po such that for some \$>0
exp2(BS(0)) 2W VQEW. OW STYDDD (W.S.X.)
Choose N large such that d (&(sn_k), &(sn_l) < S YK, 1>N
Choose Kil>N. I exists unique geodesic & u W from & (sn x) to
V(Sn:) = 5 & and & coincide where they are defined
Since exposed: BS(0) - PM contains W, X extends & past so,
giving us a contradiction.
Final conclusion is obvious from b->c geodesic argument.
X = - f - d = - (an h B an k C - an h B cost 0 - 0)
Remark : Minimising geodesios need not be unique. and 1911)
eg Stand take SiN.
For the upper half space. I minimising geodesic between any two
points, but it is not complete.

Example 9.8 This such acquired the flix of the xide - 10, 9 and 0

Any compact manifold is complete (by c of Thm9.8) d hanseng el 9 de => T ",s", IRP", CIP" are complete. 10. Curvature

Let (Mig) be a Riem manifold with Levi- Crivota connection V.

Proposition 10.1 (a)

For vector X, Y, Z on M we define $R(X, Y) Z = (\nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{EX, YJ}) Z$.

 $R(\cdot, \cdot)$ is bilinear, R(X,Y) is linear and (R(X,Y),Z)(p) only depends on X(p), Y(p), Z(p)R(X,Y) is the Riemann curvature operator R(X,Y) = -R(Y,X)

Example 10. 2 months and an incompany of the second second

on Rn, Vai aj = 0 = Eai, aj] = DR(ai, aj) az = 0 = DR(XiY) = 0 V vector herds X, Y on Rn

Dennihon 10.3

Define REFI(&4T*M) by R(X,Y,Z,W)=g(R(X,Y)Z,W) for vector fields X,Y,Z,W Well defined because per only dependent on gp and values of X,Y,Z,W at p. R is the Riemannian curvature tensor

Example 10. St

On \mathbb{R}^n , $\mathbb{R}=0$ (Mig) with $\mathbb{R}=0$ is called flat but Let (Uip) be a chart on (Mig) and let $Xi = (P^{-1}) * \partial i$ Then $\mathbb{R}(Xi, Xj)X_k = \sum_{k=1}^{n} \mathbb{R}_{ijk} \times X_k$

Proben Sheet 4 = D Ryz = di Fiz - di Fit + S (Fim Fix - Fim Fit)

Define Ryci = R(Xi, Xj, Xe, Xi) = $\sum_{m=i}^{m}$ Ryc gim = D R is preserved by local isometries.

Example 10.5

Projection $\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^n/\mathbb{Z}^n$ is a local isometry = $\mathcal{T}^n \in \mathbb{R}^n$ which is isometric to $\mathbb{R}^n/\mathbb{Z}^n$ is flat

Example 10.6 The map $f: \mathbb{R}^2 \longrightarrow S' \times \mathbb{R}$ given by $f(0,z)=(\cos \theta, \sin \theta, z)$ is a local isometry = b ctycylinder S' × \mathbb{R} is Plat.

Example 10.7 Some per day any p

Take coordinates (θ, ϕ) on θ^2 as usual. Let X_1, X_2 be the image of $\theta_{\theta}, \theta_{\theta}$ So $\theta_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2 \theta \end{pmatrix}$ and $\prod_{i=1}^{1} = \prod_{i=1}^{2} = 0$, $\prod_{22}^{1} = \sin \theta \cos \theta$, $\prod_{22}^{2} = \prod_{22}^{1} = 0$, $\prod_{22}^{1} = \cot \theta$. $R(X_1, X_2) X_1 = \sum_{i=1}^{2} R_{121}^{1} X_1$ Formula = 0, $R_{121}^{1} = 0$, and $R_{121}^{2} = \theta_1 \prod_{21}^{2} - \theta_2 \prod_{12}^{2} + \sum_{m=1}^{2} (\prod_{i=1}^{2} \prod_{21}^{m} - \prod_{2m}^{2} \prod_{i=1}^{m})$ $= \theta_1 \prod_{21}^{2} + \prod_{22}^{2} \prod_{21}^{2}$ $= \theta$ (cot θ) + $\cot^2 \theta = - \csc^2 \theta$ + $\cot^2 \theta = -1$

99

 $= PR(X_1, X_2) = -X_2 = PR(X_1, X_2, X_1, X_2) = -g(X_2, X_2) = -g_{22} = -sun^2 0$ Sumularly $R(X_1, X_2, X_2, X_1) = sun^2 0$.

Example 10.80

Let $H^2 = f(x_1y_1z_2) \in \mathbb{R}^3$: $\alpha c^2 + y^2 - z^{2z} = -1$, z > 0 is with Riem. method given by respection of $d\alpha c^2 + dy^2 - dz^2$ to H^2 Let $f(0, \phi) = (\sinh \theta \cosh \phi, \sinh \theta \sinh \phi, \cosh \theta)$ $X_1 = f * \partial \theta = (\cosh \theta \cosh \phi, \cosh \theta, \sinh \theta \sinh \theta)$ $X_2 = f_0 \partial \theta = (\sinh \theta \sinh \theta, \sinh \theta \cosh \phi, 0)$ $g(X_1, X_2) = 1$ and $g(X_2, X_2) = \sinh^2 \theta$ and $g(X_1, X_2) = 0$ so $g_{ij} \begin{pmatrix} 1 & 0 \\ 0 & \sinh^2 \theta \end{pmatrix}$

 $g(X_1, X_1) = (Osh^2 \partial cos^2 \phi + cosh^2 \partial sun^2 \phi - sunh \theta$ = cosh 2 - sunh2 = 1

 $\prod_{i=1}^{n} = \prod_{i=1}^{2} = 0 \quad \prod_{i=1}^{2} = \operatorname{sub} \Theta \cosh \Theta \quad \prod_{i=2}^{2} = \prod_{i=2}^{2} = 0 \quad \prod_{i=2}^{2} = \operatorname{coth} \Theta$ $R(X_{i}, X_{2})X_{i} = \sum_{i=1}^{2} R_{i2i}^{2} X_{i}$ $Formula \geq 0 \quad R_{i2i} = 0 \quad \text{and}$

 $R_{121}^{2} = \partial_{1} \Gamma_{21}^{2} - \partial_{2} \Gamma_{12}^{2} + \sum_{m=1}^{2} (\Gamma_{1m}^{2} \Gamma_{21}^{m} - \Gamma_{em}^{2} \Gamma_{11}^{m})$ = $\partial_{1} \Gamma_{21}^{2} + \Gamma_{12}^{2} \Gamma_{21}^{2}$

 $= \frac{1}{2\theta} (\cosh \theta) + \cosh^2 \theta = -\cos \sinh^2 \theta + \cosh^2 \theta = +1$

= $PR(X_1, X_2) X_1 = X_2 = PR(X_1, X_2, X_1, X_2) = +g(X_2, X_2) = +g_{22} = such = 2$ Similarly $R(X_1, X_2, X_2, X_1) = -such = 2$

O. EDIVORUM
Example 10.9 particular but the contraction of Mighting T
For the Lie groups SO(n) and su(n) with Riem. method g(X,Y)= h(X,Y)
R(X,Y,Z,W) = -1 br $((XY-YX)(ZW-WZ))$ problem sheet 4
K(K)/ CIVY + a K / / // CIV / // CIV
Proposition 10,107,7, 7,7, 7,7, 9) 2 501 10000
Let X, Y, Z, W be vector fields on (M,g)
d R(Y, X, Z, W) = -R(X, Y, Z, W)
$b_{R}(X,Y,W,Z) = -R(X,Y,Z,W)$
c R(Z,W,X,Y) = R(X,Y,Z,W)
d Bianchi identity R(X,Y,Z,W) + R(Y,Z,X,W) + R(Z,X,Y,W) = 0
Formation to Pill and have been the international
Deknipon 10.11
Let o = Span 1X, Y3 = TpM be a 2-plane
The sectional aurvature of or 15 menore as and letters of
$K(\sigma) = K(\chi, \chi) = R(\chi, \chi, \chi, \chi) $
$\frac{1}{ X ^{2}} + \frac{1}{ X ^{2}$
R (X, Y, Z, W) = g (R(X, Y TZ, W) = a horasolitate, a horas (M) = 2 junoumi2
This is independent of choice of X and Y.
Example 10.811 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
Proposition 10.12 minution & provenue at endert too: "State or prof - it the
Let REF((+ T * M) with the same properties as R given in
prop 10.10. Then if (Balans games days (Bennance) - (b. 8)] to
$\overline{K}(\sigma) = \overline{R}(X, Y, Y, X) = K(\sigma)$
$ X ^2 Y ^2 - g(X,Y) former opposed we have a figure of the figure operation $
Vo= Spon SX, YS = TPM YPEM
Then R=R
e-i (asinos a)
Sechonal curvature determines memerin currvature.
Proof: K=R = PR(X+Z, Y, Y, X+Z) = R(X+Z, Y, Y, X+Z)
$\overline{R}(X,Y,Y,X) + \overline{R}(Z,Y,Y,Z) = R(X,Y,Y,X) + R(Z,Y,Y,Z)$
+2R(X,Y,Y,Z) * +2R(X,Y,Y,Z)
= P R(X, Y, Y, Z) = R(X, Y, Y, Z) + X, Y, Z
= $P \overline{R}(X, Y+W, Y+W, Z) = R(X, Y+W, Y+W, Z)$
= P R(X, Y, W, Z) + R(X, W, Y, Z) = R(X, Y, W, Z) + R(X, W, Y, Z)
-R(X,Y,Z,W) + R(Y,Z,X,W) = -R(X,Y,Z,W) + R(Y,Z,X,W)
= PR(X, Y, Z, W) *- R(X, Y, Z, W) = R(Y, Z, X, W) - R(Y, Z, X, W)
= N/2 V White T (2 X V W)

= R(Z, X, Y, W) - R(Z, X, Y, W)

1. Constant Gueranino

Branchi	RCX, Y, Z,	W) + R(YI	Z, X, W) + R	(5, *, >	(,W) = 0
= PRCX,	Y. Z.W) =	= R(XIYI	ZIW)		

Example 10.13

For R", K=O. Same for any any Plat manifold.

Example 10.14 From ex 10.7, for S² we have $TpS^2 = Span \{X_1, X_2\}$ where $g(X_1, X_1) = 1$, $g(X_2, X_2) = Sin^2 \partial$, $g(X_1, X_2) = O$ =D $K(TpS^2) = R(X_1, X_2, X_2, X_1) = Sin^2 \partial$ $g(X_1, X_1)g(X_2, X_2) - g(X_1, X_2)^2 = Sin^2 \partial$ Moreover, the same is true for RP² since $Ti: S^2 - PRP^2$ is a local (sometry)

Example 10.15 From ex 10.8, for H² we have $T_{p}H^{2} = \text{Span}\{X_{1}, X_{2}\}$ where $g(X_{1}, X_{1}) = 1 + g(X_{2}, X_{2}) = \text{sunh}^{2}\partial + g(X_{1}, X_{2}) = 0$ $= \flat K(T_{p}H^{2}) = R(X_{1}, X_{2}, X_{2}, X_{1}) = -1$ $g(X_{1}, X_{1})g(X_{2}, X_{2}) = g(X_{1}, X_{2})^{2} = -1$

Example 10.160 A Kersen (A M) (E(SN)) 96 (SA EN) 6 X End

Let $(M_{1}g_{M})$, $(N_{1}g_{N})$ be Riem. manifold = $D(M \times N, g)$ is a Riem. manifold where g is the product memic If (X, Z), (Y, W) are vector fields on $M \times N$, then $\nabla_{(X, Z)}(Y, W) = (\nabla_{X}^{*}Y, \nabla_{Z}^{*}W)$ =P(X, Z) = 0 since $\nabla_{(X, 0)}(0, Z) = 0 = \nabla_{(0, Z)} = [(X, 0), (0, Z)]$ (X, 0), (0, Z) = 0so product $M \times N$ always has zero sechenal eurvalue leg $S^{2} \times S^{2}$ cf. Hopf conjecture). Proposition 10.17

Let M be an onented surface on R³. Then K(TpM) = K(p) the Gauss curvature of M at p.

Proof: Immediate from Christoffel symbol formula to R.

Example 10:180= (W.Y.X.S) 9+ (W.X.S.W.9+ (W.S.Y.X)9) For $T^2 \subseteq \mathbb{R}^3$ if $p = ((2 \pm \cos \theta) \cos \phi, (2 \cos \theta) \sin \phi^2, \sin \theta)$ $= \mathcal{D} \operatorname{KCP} = \operatorname{KCTP} T^2 = \cos \theta$ 2+ 000

= $PT^2 \subseteq \mathbb{R}^3$ is not isometric to $T^2 \subseteq \mathbb{R}^4$.

Let pE(Mig), let or E TpM be a 2-plane, let U be a normal the nod of p is 3 open VSTPM at exp: V-> U is a duffeo morphism. Let S= expp(OnV) is a surface in M and K(o) is the Gaussian curvanine of S at p. (xxx) (xxx)

Depriction 10.19

Define Ric ET (S2 T*M), the Rici tensor by

Ric (X, Y)(p) = R(Xp), Ei, Ei, Yg) = R(E, Xp), \$Y(p), Ei) where Ei,.... En are an orthonormal basis for TpM In coordinates $R_{ij} = R_{ic}(X_i, X_j) = \sum_{k, i=1}^{n} R_{ik} y_{ij} g^{kl}$

Example 10.20

For a 2-dum Riem. manifold (Mig), if E., Ez is an orthonormal basis for TPM $K(TpM) = R(E_1, E_2, E_2, E_1)$ = RIC $(E_1, E_1) = RIC (E_2, E_2)$

5(x, x))0(x, x) · ((x, x))

In dimension 3, Ric encodes all of R, but in higher demensions they are different. V=0=(5,0)(0, V 0000 0==(5,0)

Remark: Manifold with Ric = 2g are called Einstein. Deprison 10.21

The scalar curvature S of
$$(M,g)$$
 is
 $S(p) = \sum_{i=1}^{n} R(E_i, E_j, E_j, E_i)$

41 where ELL. En is an orthonormal basis For TPM Course an lating of M strange way and In coordinates

11. Constant curvature

Proposul	Some IR [" Through O land me nest are found many monorhisming
(Mig)	has constant sectional curvature K if and only if
R($X, Y_{i,z,W} = K(g(X,W)g(Y,Z) - g(X,Z)g(Y,W))$
	So IF M has construct account auronuce (10) Paper pronou
	: the Let σ be a 2 -plane on TpM, σ = Span 1X, Y3, then $K(\sigma) = R(X, Y, Y, X)$
	$g(x, x)g(x, y) - g(x, y)^2$
	$M = \frac{K(q(X,X)q(Y,Y)-q(X,Y)^2)}{K} = K$
	$g(x, x)g(y, y) - g(x, y)^2$
	$me \ \bar{R} = (X, Y, Z, W) = K(g(X, W)g(Y, Z) - g(X, Z)g(Y, W))$
	pan(X,Y3) = K (Span (X,Y3) since M has constant sectional
	ure HK? KS Soluting Contil (op 12) "hyperpersion of the
	the same properties as R oun prop 10.10, so prop 10.12
	R some properties as a por a report of although
	· Its geodesics are greated allow given the marsh from sh
	non 110 2 Lander (105h 8 - 50 ha) appoint "29 ou T
	(g) has constant sectional curvature k, then
	= (n-i)kg (and S=ncn-i)K holy provide Beller
	1º a) is complete
	Ric(X, Y)(p) = Z R(X, Ei, Ei, Y) * Ei ormornomal basis for TpM
Beach	KE(g(XX)g(ELEi) -g(X,Ei)g(Y,Ei))
	= K(ng(X,Y) - g(X,Y))
S=2	R(E, Ej, Ej, Ei) 201 sand - B D ad to toles 22 ag to
LIJ=1	Suppor (Carto) I avai reconstrike / KIA ana motoreceste Attematin G
= 2	(n-1)Kg(Ej,Ej) = n(n-1)K
	$f = \sum_{i=1}^{n} g(X, Ei)g(Y, Ei) = proposition (Question - Q) = Q - bno$
geni	(binne f(8.6) = (anna (anna (anna) - (anna) - (anna)
Exame	Cor Be(0) T) Je(0,2 T) so mat (f(G,g) = 0 = E (11)
	constant sectional curvature o so Ric=0=S
	(une parter and the ford shades for a stand with the ball and by
-	le 11.4
S2 bas	constant someonal curves and and sea

S2 has constant sectional curvature 1 so Ric = g and S= 2

Example 11.5 H? has constant sectional curvature -1 so ketg Ric=-g and S= 2

(aastant Curvabure

Remark :

If $g_t = tg$ where $t \ge 0$, then $g_t^{-1} = t^{-1}g^{-1}$ the Christoffel symbol formula = P Rt = tR and Kt = $t^{-1}K$ so Ric $t = Ric and St = t^{-1}S$. So if M has constaint sectional curvature K, then we can always rescale to that RES-1, 0, 18.

Remark (Man) ... let of st ToM be: a Manpion approxime U be a

IR" is complete with constant sectional arrature 0 and 0(n) together with translations give the isometries

Theorem 11.6- monence battop one (1x X mone) y = (1x x more) y =

The unit share sphere. (Sⁿ, g) with its induced Riem method from Rⁿ⁺¹, Sⁿ = §(x1,..., (xn+1) & Rⁿ⁺¹: 2 x² = 13 is

- eomplete
- its geodesies are great circles given by TINSⁿ for 2-planes,
 T in Rⁿ⁺¹ through 0.
- " it has constant sectional curvature +1
- · Its isometries are given by OCn+1) = [AEMA+1(IR): ATA=I]

Proof: Completness and geodesics where snown earlier O(n+1) gives isometimes of Rn+1 and these are the only ones which preserve. Sn.

Let $p \in S^n$, while or be a 2-plane. TpSⁿ. Since O(n+1) gives isometries, we can rotate so that p = (-1, 0, ..., 0)and we rotate such that $0 = \text{Span } \{E_1, E_2\}$ where $E_1 = (0, ..., 0, 1)$ and $E_2 = (0, -1, ..., 0)$ since $\sigma \leq \text{Span } \{p\}^2$

Define $f(\vartheta, \phi) = (\sin \vartheta \cos \vartheta, \sin \vartheta \sin \vartheta, 0, \dots, 0, \cos \vartheta)$ for $\vartheta \in (0, \pi), \phi \in (0, 2\pi)$ so that $f(\vartheta, \phi) = p \neq \vartheta = \pi/2, \phi = \pi$ Then $f \ast \partial \vartheta = E$, and $f \ast \partial \vartheta = E_2$ Hence by our calculations for S^2 , $K(\sigma) = 1$

Theorem 11.7

The hyperbolic n-space (H^n, g) where $H^n = \{(x_1, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n} x_i^2 - x_{n+1}^2 = -1, x_{n+1} > 0\}$ and the g is the restriction of 2 daci'- dacit, 13. · complete

• the geodesics through (0,...,0,1) are TInth for 2-planes

m	
	TT in 12 ⁿ⁺¹ , through O land the rest are found thising sometries)
	· It has constant sectional aurvature -1
	(parsa its isometries are given by O(n;1)= PAEMAti(R): AtgA=g]
	where $g = (I 0)$
	descript for all (OP-I)
	Proof:
	Very similar to Sn and a second secon
	The isometries are as a stated because O(n, 1) preserves the metric g
	by depression and Hr.
~	Given pEH", XETPH", let & be the unique geodesie such that
1.00	8(0)=p, 8'(0)=X. Let pe O(n,1) be the "hyperbolic" rotation
	In TT = Span fp, X3 then p is an isometry so pox is a geodesia
	with the same properties as & so por = > = > >= Th the
	eg. 1f X=(0,,0,1,0) p=(0,,0,1) then
0	$P = (I O)$ where $A = (cosh \partial + such \partial)$ (o A) (such \partial cosh \partial).
NOTEN	elo A/ (accession sunha cosha)
N BW	So in this case &(t) = (0,, 0, sinhticasht) defined bit R
	=> (n',g) is complete.
	Same mak as for s" => section at eurvature of a = To 11"
	for any 2-plane or is k(o) = - I since it is the same as
-	the sectional curvature of M2.
3	Recar unegon + storgen (Brfst - 3; Ft + 5 (Ft Pt - G"Ft))
	(H^{n}, g) where $H^{n} = \{(x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} : \sum_{i=1}^{n} x_{i}^{2} - x_{n+1}^{2} > 0\}$
	and g is the nestriction of $\sum_{i=1}^{n} dx_i^2 - dx_{n+1}^2$
	is called the hyperbolid model of hyperbolic h-space
	$\frac{1}{E \times ample + 10.8 \times apr a 2 mil arde hub anne on traxis toporcuse$
	Mr Problem sheet B = D = isomeby f: (11, g) - D (B", h) where
	$B^{n} = \{(y_1, \dots, y_n) \in \mathbb{R}^n : \sum_{i=1}^n y_i^2 < i\}$ and $h = \sum_{i=1}^n \frac{4}{4} \frac{4}{4} \frac{y_i^2}{y_i^2}$
	$\frac{1}{2} = \frac{1}{2} \left(1 - \sum_{j=1}^{\infty} y_{j}^{2}\right)^{2} H(p_{j} = 1) H(p$
	given by $f(x_1, \dots, x_{n+1}) = (x_1, \dots, x_n)$
1	(B", h) is called the foundare disc model of hyperbolic n-space.
	The Back and the second and the second and the second seco

Example 11.9
Protein event 3 = b = an isomobily RVM f (H², g) = p(H², h) where
H^A = f(z_1,..., z_n) \in Rⁿ : z_n > 0 g
h =
$$\sum_{i=1}^{n} \frac{dz_i^2}{z_i^n}$$

f(z_1,..., z_n) = (z_{1,..., Z_{n-1},1})
 $\sum_{i=1}^{n} \frac{dz_i^2}{z_i^n}$
(Hⁿ, h) is the upper half space model of hyperbolic n-space
Example 11.10
Let H² = {(x_1, y) \in R² : y>0} and g = dx² + dy³ therefore
be the hyperbolic Riem, meme
be the hyperbolic Riem, meme
 $(y_i^2, 0) = (y_i^2, 0)$
 $T_{i=1}^{n} = \frac{z}{z_{i=1}^{n}} g^{u_i}(\partial_i g_{ij} + \partial_j g_{i}; -\partial_i g_{ij})$ where $2_i + \frac{2}{z_i} + \frac{2}{z_i} = \frac{z}{z_i}$
Cleanly $2_i g_{ij} = 0$ and $g^{ij} = g^{ij} = 0$ if (x_j)
 $T_{i=1}^{n} = 0 = \Gamma_{x_i}^{i_i}$, $\Gamma_{i=1}^{n} = \frac{1}{z_i} = \Gamma_{x_i}^{i_i}$
Recall $R_{g_{2,1}} = \sum_{m=1}^{n} g_{im} (\partial_i \Gamma_{im}^m - \partial_j \Gamma_{m}^m) + \sum_{m=1}^{n} (\Gamma_{m}^m) \Gamma_{m}^m)$
The only one that matters is
Rizz_i = gu ($\partial_i \Gamma_{i=1}^{i_i} + \frac{z}{z_i} (\Gamma_m^m \Gamma_{i=1}^{i_i} - \Gamma_{m}^m \Gamma_{m}^{i_i})$)
 $= \frac{1}{y^2} (0 - \frac{1}{y_2} + (-\frac{1}{y_1})^{-1} - (-\frac{1}{y_2})^{-1})$
 $= \frac{1}{y^2} (0 - \frac{1}{y_2} + (-\frac{1}{y_1})^{-1} - (-\frac{1}{y_1})^{2})$
 $= \frac{1}{y^2} (0 - \frac{1}{y_2} + (-\frac{1}{y_1})^{-1} - (-\frac{1}{y_1})^{2})$
 $= \frac{1}{y^2} (y_1 = 0)$
 $y^n + \frac{1}{y} ((\infty z_1)^{2} - 2x_1y_1 - (y_1)^{2}) = 0$

SALLANT using
$$x i' + \sum_{i=1}^{n} \left[\frac{1}{2}x_i x_j' = 0 \right]$$

Clearly $x = constant and $y \cdot e^x$ is a solution and the defined for all tell.
So verticed for all tell.
Let $z = x + iy$, so $g = dzdz$
 $f^*g = \frac{f'(z)}{(z)} dzdz = -\frac{1}{(z)} |f'(z)|^2$
 $f^*g = \frac{f'(z)}{(z)} dzdz = -\frac{1}{(z)} |f'(z)|^2$
So $f^*g - \frac{g}{(z)} (\frac{1}{(z)} dzdz] = -\frac{1}{(z)} |f'(z)|^2$
Let $f(z) = \frac{1}{(z+z)}$ where $ad - bc = 1$, $a, b, c, d \in \mathbb{R}$.
 $(z+d)$
 $f(z) = f(x+1y) = ax + b + iay$
 $(x+d+iay)$
 $(z+d+iay)$
 $(z+d)^2$ $(z+d)^2$
So $\frac{f'(z)}{(z+d)^2} = \frac{1}{(z+d)^2}$
 $and f(z) - ad-bc = 1$
 $(z+d)^2$
 $(z+d)^2$ $(z+d)^2$
 $(z+d)^2$
 $(z+d)^2$ $(z+d)^2$
So $\frac{f'(z)}{(z+d)^2} = \frac{1}{(z)^2 + dz - b}$ which is also smooth,
 $(z+d)^2$
 $(\frac{1}{(z+d)^2} = \frac{1}{(z+d)^2} = \frac{1}{(z)^2 + dz - b}$ which is also smooth,
 $(z+d)^2 = \frac{1}{(z+d)^2} = \frac{1}{(z)^2 + dz - b}$
So what is the timage of the nation (x, e^z) under P ?
 $f(iy) = \frac{a(y^2 + bd + iy)}{(z^2 + dz)^2} = 1$
So if $cd + 0$ we get a semi arise with come on ∞ -axis, otherwise
get anotice half - time.
Hence the geddesics and of (H^2, g) are$

Example N.II Problem sheet 3 => we have an isometry f from H1 to B" with hyperbolic Riem, methic given by: f(z1,--, zn) = (221, ..., 22n-1, 1- 222) $\sum z_i^2 + (\mathbf{Z}_{n+i})^2$ Notice f maps z=0 to sn-1 60 since f preserves angles and f(0, et) = (0, 1-e^{2t}) me - p (0, =1) as t - p ± 0 $(1+e^{\tau})^2$ geodesics of Poincare disc model. mame ((s)m H+ SISME) Theorem 11:12 U(od-bp)) + (bd++ upp + 200) ac i o by Let (Mig) be a complete Riem. maintfold with constant sectoral curvature KE {-1,0,13. Then I descrete group G acting by isomethes freely and properly discontinuously such that (M,g) is isometric to either S_{G}^{n} , \mathbb{R}^{n}/G or \mathcal{M}^{n}/G .