M204 Representation Theory Notes

Based on the 2013 spring lectures by Mr J Nadim

The Author has made every effort to copy down all the content on the board during lectures. The Author accepts no responsibility what so ever for mistakes on the notes nor changes to the syllabus for the current year. The Author highly recommends that reader attends all lectures, making their own notes and to use this document as a reference only

Representation Theory

Goal: Represent finite groups as a group of invertible matrices over IF. When you hear/read representation, think group homeomorphism.

Oefinition:

Let IF be a field, then define

 $GL_n(F) = \{A \in M_n(F) : det(A) \neq 0\}$

ie the set of invertible nxn matrices with entries in A.

Note: GLn (F) forms a group under matrix multiplication.

Definition:

Let F be a field, G a finite group and V a finite demensional vector space over FF such that dem V=n Then define an FF-representation of G as the homomorphism

0 MIDUELRIU

 $p: G \longrightarrow GL(V) = \{ p: V \longrightarrow V : p invertible bonear map \}.$

If we fix a basis for V, say $Pe_{1,...,en}$ then $GL(V) \cong GLn(F)$ so we define the F-representation of G as the groups nomomorphism $p: G \longrightarrow GLn(F)$

such that p (gn) = p(g)p(n) Vg, neG.

Definition:

If dum F(V)=n, we call n the dimension/degree of the representation

Examples of C-reps, R-reps

Let G be any finite group, fix ne NU Define p: G -> G Ln (F) q -> In VgEG

2. The trivial representation of cyclic groups Let G= Cm = <x: x^m=1>

Fix n. define g: Cm -> CLn(C)

p(x) = In

Only need to specify where generator goes because of group homomorphism $p(\infty^{s}) = p(\infty)^{s} = \operatorname{In} \dots : \operatorname{In} = \operatorname{In}$ a a tames hour include a part boat hour work work G=C3 = < oc : oc 3 = 1> Denne p: C3 - DGL2 (C) 1 1 --- > (0 i) $C \longrightarrow (0,0) = (A \in M_{0}(CF)) : det(A) + O(0,0) = O(0,0)$ 3. A non-brivial representation of Cm Let G= Cm = < x : x = 1> and fix n define p: Cm - D GLn(C) x -DA what conductors must A satisfy to be a group homorphism The group law: Am = p(x)m = Inb and the The source of the eg p: Cm - DGLn (C) of degree n nth roots of unity eq. Classify all C-reps of Cm of deg 1 $p: : Cm - P GL(C) = C^* = C \setminus SOS$ pi are completely determined by roots of unity x → Fi Osism 4. Recall : Dihedreal group Dan = < x , y > : x n = y2 = 1, yx = x n - y > Define De= <x. y: x 3= y2=1, yac = x 2 > m out, n= (V)= mub ? $= < 1, \infty, \infty^2, y, \infty y, \infty^2 y >$ () Trivial representation of deg 1 $f: D_6 \longrightarrow GL_1(C) = C*$ x mb 1 y---- P1 Check: $p(xy) = p(x^2y) p(x^3) = 1 p(y^2) = 1$

ii) A non-trivial rep of Do of deg 1 agend miles $g: D_6 \longrightarrow GL_1(\mathbb{C}) = \mathbb{C}^*$ and 1 H D Is for and ≥ p: S3 - P{±1} c C* 0 OC F y - p-1 "sign of permutation" Check this is well defined $p(x^3) = p(x)^3 = 1 = 1$ $p(y^2) = p(y)^2 = (-1) = 1$ p(xy) = p(x)p(y) = -1 $p(x^2y) = p(x^2)^2 p(y) = -1$ (u) C-nep of deg 2 for De Denne p: Do - D GL 2(C) always 0 1)a planch = planch 4F $p(x^2) = p(x)p(x)$ Make 0= (000-1 $p(x^3) = (1 0)$ $\mathcal{P}(\mathcal{Y}^2) = \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right) \left(\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right)$ 0 p(x2y)= / -1 p(q)x) = (01)01 $p(xy) = \int -1$:. < p(1), p(x), p(x2), p(y), p(xy), p(xc2y)>

group structure remains

IV) Another 2-dum C-rep of De $\rho: D_{G_{L_2}(\mathbb{C})}$ 1 - D (1 0 0 1) p {1+1 4- 2:0 2 $w = e^{2\pi i/3}$ -D OW, $y \longmapsto \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ Check $p(x^3) = p(y^2) = I_2$ $p(yx) = p(x^2y)$ 5 V) 2-rep of D6 over R Define p: Do - DGL2(R) $- \mathbf{D} (\mathbf{1} \mathbf{0})$ 01/ rotate by x 1-> (cos 2 T/3 - sun 2 T/3 = A detA=1 SLN 27/3 COS 27/3 $2\pi/2$ 4-0(10) reflect x ~ ~ > (cos 2 TK/3 - sun 2 TK/3 SUN 211K/3 COS 211K/3 Define symmetric group Sn, ISnI=n! Let G=S3=<(11, (12), (23), (13), (123), (132)> where S3 = D6 (1,2,3) HDOC $(1,2) \vdash P y = 0$ doe A Example: A rep of S3 of deg 3 miles (100) (00) Using the fact that is acts on the set X = <1,2,3> (by group action) we can construct a 3-dum representation of S3 as follows:-Let V= F3 by egenerated by <ei, e2, e3> the cononical basis over a field F. Then p: S3 - DGL (V)= GL3(F) plokei) = eous Voes3

Definition: This representation is called the permutation representation and it works for any Sn Check p defines a hom/rep: $p(1)ei = e_i(i) = e_i$ P(1) = (100) 0 1 0 100 Look at Let T, OES3 p(oz)ei=Cozci) When cathoodad! $= e_{\sigma(\tau(i))}$ = p(o)ercin = p(o)p(z)ei $p(\sigma z) = p(\sigma)p(z)$ Let 0 = (123) z = (12) Write mainces for and and a $p(\sigma) = p((123)) = 0$ 0 $p(\sigma)ei = e\sigma(i)$ -100 0 $P(\sigma)e_1 = e_{\sigma(1)}$ 0 1 0 R(123)(1) = R2 p(z) = p((12)) = (0 1 0)1 0 0 Check $p(\sigma)^{3} = p(\tau)^{2} = 1$ p(20) = p(022) * There is a vector subspace WEV st plg) WEW Ygess (ie W is invarient under the transformation p(g)) $W = span (e_1 + e_2 + e_3)$ w P(g)w = W YgES3.

The permutation representation ean be generalised Author Let G be a group acting on a finite set X by •: G × X --- > X 1000 = 000 go(hooc) = ghooc Vacex VgiheG. Choose vectors ex for each acex and form V= @ Fex (Fex) F arbitrary span of basis vectors. Then define p(g) ex = egox Provided we know G well enough G= <... >, then we will get a complete answer to the task of classifying all F-reps of G. However there are 2001VOID 1. à always finite 2. F= C (later R) 3. IGI # O. UN IF ie char (IF) XIG) (oK for F=C, R since char =∞) no more provided 4. plg) is diagonalisable type & because In st gn=1 : p(g^) = p(g)^ = I => p(g) salaspes xn-1=0=> mp(x) divides xen-1 (factor) When F= I we know FTA $\infty^{n} - 1 = \pi \left(2c - 5m \right)$ is a product of distinct linear factors for any n $\therefore mp(x) = \dots$ => p(x) 13 diagonalisable. 5. IF F = R p(g) does not have to be allogenalisable 1 2 m-1 does not have to split over R, R ie x3-1 6. If G is infinite, p(g) is not diagonalisable eq if G = ZDenne $p: \mathbb{Z} \longrightarrow \mathbb{GL}_2(\mathbb{Q})$ $p(n) \leftarrow p(n) \leftarrow p(n)$ If man = 0 onen p(n) onlise not diagonalisable because $mp(x)=(xe-1)^2$

Groups we will consider: I. Funite abelion groups in = < x: 2 = 1> and and Cn, x Cn, x ... x Cn: 2. Dihedrial groups Den = < x y 1xn=y2=1, yx=xn-'y> 3. Quaternian groups Qun= <xx 1 y 1 xm= y2 y 1 xy = x 1's 4. Alternating groups An= < o esn Isgn(a)=1> 5. Symmetric groups Sn n \$ 5,60 total Distinguishing between representations. Consider the following popperesentations maps of De $1.0 : D_6 \longrightarrow GL_3(F)$ x = b / 0 0 1 a (123)130 0 0 1 0 y-D an (12 10101 0 0 0 0 2.7:06 - PGL3(F)-0/0/-1 rE 0 0 - - 1 ONIOVIN 1) of reps of De from 0 0 earlier T = 9 UHD. 0 2 dun @1 dun. 0 0 0 0 Choose cononical basis for V= #= 3= Sp = <e1, e2, e3> and define new basis :-Ø3=-e1-e2+e3 2 A Marcia Quello Check < \$1, \$2, \$3> is a basis LI+ span, FF = FZ Z (∞)(e1) = / 0 -1 0 0 = @2 0

 $7(x)(e_2) = -e_1 - e_2$ $\mathcal{T}(\mathbf{x})(\mathbf{e}_3) = \mathbf{e}_3$ Now apply $z(\infty)(\alpha) = z(\infty)(e_1 + e_3/2)$ $= C_2 + C_3 = \emptyset_2$ $7(x)(\emptyset_2) = \emptyset_3$ $\tau(x)(\emptyset_3) = \tau(x)(-e_1 - e_2 + \frac{e_3}{2})$ $\mathcal{D}(\mathcal{D}\mathcal{A})\mathcal{U}\mathcal{R} = -\mathcal{C}_2 + \mathcal{C}_1 + \mathcal{C}_2 + \mathcal{C}_3 = \mathcal{C}_1 + \mathcal{C}_3 = \mathcal{O}_1$ Similarly $Z(y)(\emptyset_1) = \emptyset_2$ $z(y)(\varphi_2) = \varphi_1 \qquad \text{and} \qquad z(y)(\varphi_2) = \varphi_1$ $\sigma(\tau(q)(\varphi_3) = \varphi_3$ T does the same job on < \$1,92,93> as a does on (221) 0 (1 0 0) 4-100 < e1, e2, e3> Recall we chose V=F" we implicitly choose the standard basis < e.,... en> and we alwards change basis by conjugating with an invertible matrix. nave anal P~Ø;V-DV Definition: Two matrices A and B are equivalent IF I TE GLO (F) Such that B= T-'AT mit Omit c Depution: Given 2 representations of same group GOOD p: G - D GLD (F), p': G - D GLD (F) We say p' is equivalent/conjugate/isometric to pif I TEGLACE Such that p'(g) = T'p(g) T VgeG.

Example:

Let $G = D_8 = C$. Denne p: Ds - DGL2(C) x = p(0) + y = p(1) + p(1)(-10) 0 -1/= 0

and $T = \lfloor (1 \circ 1) \land T^{-1} = \lfloor (1 - i) \land T^{-1} =$ o i 12 12 li -il Fund p': Do -D GLa(C) $p'(\infty) = T^{-1}p(\infty)T = (i \theta)$ $p'(y) = T^{-1}p(x)T = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ Exercise: Find T for examples of De $G = C_2 = \langle \infty : \infty^2 = 1 \rangle$ p: C2-DGL2(C) by defining DA= (-5 12) A2= I2 5 -3 Take T = 2 $p' = T^{-1}pT = (1 \ 0) \quad p'(x)^2 = I_2$ 0 -1 which is also a representation of Ce. Let p: G -> GL2(C) be a representation Dehnition: od blassing The kernal of p $\ker(p) = \langle q \in G : p(q) = In \rangle$ * IF Ker(p) < G => G/ = Im(p) C GLn(F) Ker(p) P:G-DGLn(F) I - D In * If ker(p) = <1> => G is a subgroup of GLn(F) G/1) = G = GLn(F)

Dehnihon: If ker(p)=<1> (pinjective) then we say p is faithful representation of G. Examples of fourthull representations: 1 = T (m) + T = (m) + 1. The trivial representation is not faithful unless G=<1> $p: G = O_4 \longrightarrow GLn(F) = D Ker(p) = O_4$ 1 - > In pot faithful. Similar - P In y - D In a real 2. 2-dem representation p: Den - PGL2(R) given by p(x) = (cos ... - sun ...) ? s= / sun... cos...) (s-s)=T ovor p(y) = (10)0 -10 Tariano a contenta that Torian p is faithfull by definition of representation because transformations p(oc) and p(y) don't fix vertices. 3. Permutation representation of Snapping and P: Sn - PGLnCF) and polyalant if The GLOCE p(o)ei = eouis is a fauthful representation proof: Show ker(p) = <1> Let desa be such that $p(\sigma) \in I_n$ (=) p(o)ei = eocis = ei 40 o(i) = i Vi $40 \circ (= (1) \in 1$ such that $0 \circ (0) = T \circ (0) \circ T_{0} = 0$ $(=) \operatorname{Ker}(p) = \langle (1) \rangle$ fourthered. 4. 1- dim rep Den $p: D_{2n} \longrightarrow GL, (C) = C*$ $p(\infty) = 10$ p(y) = -1is not faithful prof: (xx) < Ker (p) p(x)=1

Is ker (p) = < x> or are there other elements in Ker (p) No other elements Let ge Dan g= xiyi isn js2 $p(x^i y^i) = p(x^i)^i p(y^i)^j$ $= |i(-1)^{j}$ $= (-1)^{j}$ Suppose ge ker(p) then (-1) = 1 = 0 = 0 $=0 < \infty > = \ker(\rho) \qquad 0 + (0 -) = 0 = (0 -) to = t$ Cn (cn) C Fr Menu: 1. Given any finite group G. find all C-reps of G up to conjugancy 1 & Contal = & Contrological 2 Charten Theory MIQUELRIUS 3 Construct representations using tensor products 4 Real representation theory. The Read map. G Construct group rung (9) all part FEGI and shuchre - Group pros unt CGT and ready F-rep Classifying matrices OF G over FCGJ

Semisimple rings, modules and algebras Definition: A ring R is a set with two operations + and x such that the following axioms holds Va, bER a+b=b+a2 (a+b)+c = a+(b+c)=a+b+c $3 = 30 \in \mathbb{R}$ at a + 0 = a = 0 + q4 $\forall a \in R \equiv -a \in R$ st at(-a) = 0 = (-a) + a5 JIER St 1. q=a=1.a Va G(hc) = (ab)c = abc7 a(b+c) = ab+ac8(a+b)c = ac+bcIF, also ab= ba, men R is a commutative ring. Examples : i). Commutative rungs R=Z, F, Zn, FEXJ, FEXJ I 2) Non commutative rungs - Matrix ring Mn(R) where R is any ring, n>2 - Upper Nower trangular matrices - Group rings: FEG] are generally non commutative 3). Products of rungs form a rung Let R, S be rings then the direct product, R×S $(\Gamma_1, S_1) + (\Gamma_2, S_2) = (\Gamma_1 + (\Gamma_2, S_1 + S_2)$ $(\Gamma_{1}, S_{1})(\Gamma_{2}, S_{2}) = (\Gamma_{1}\Gamma_{2}, S_{1}S_{2})$ RXS is also a ring.

Depution: A subset I & R is called a (left) ideal, I a R, if I (I, +) is a subgroup of R 2 VICET, VIER DOCET Examples 1. I=nZ <Z T = 27/CZ2. $(p(x)) \in \mathbb{F}[x]$ Depnihon: Let R and S be 2 rings If the map $\phi: R - DS$ satisfies $1 \not \varphi(r_1 + r_2) = \varphi(r_1) + \varphi(r_2).$ VELLER, OOM O MUL $2 \mathcal{O}(r_1 r_2) = \mathcal{O}(r_1) \mathcal{O}(r_2)$ A@ MIQUELRIUS Then \$ 15 called a ring nomomorphism. Q: \$(Ir)= Is always? No unless & 19 surjective (epimorphism) or and and s is an ID (commutative) Counter example : Ø:M2(F) -> M3(F) $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow \begin{pmatrix} a & b & c \\ c & a & c \\ 0 & 0 & 0 \end{pmatrix}$ I2 HA I3 Delinihon: If & is byjechive then & is called a ring isomorphism IE Id-1: S -> R such that Ø. Ø -1 = Is $\phi' \circ \phi = I_{e}$

Example: 12 mass modules and algebras	
A a (Left) Ideal T A R . F	A subset T SR is call
1. \$: Z-pZn 9 30 900	nodue o el (+ 7) un
A Da Ho 2 madn the two operations of	Ind Ska steen mater the g
$\operatorname{Kor}(\emptyset) = n \mathbb{Z}$	
2 latilite = at (bic) = atbte the set fact	
2. Are there any rings homomorphism from	7Ln->7L?
"No. eR = -a ER st a(-a) - 0 = (-a) + a	Frei de Diffei ave a cora d
5 316R st 1= 0 = 1+0 Va	2. (p(sc)) = F[sc]
Modules over rungs	
7 a(b+c) - ab+ac	
Depinition:	
iet R be a ring, a left R-module. M 15 a	an abelion group con
combined with a map	1 \$ (a) by a) b = (a) + a) b 1
P:RXM-DM	
$\varphi(r,m) = rm$	han d is called a prog ha
sabstying	
$1 \cdot m = m \cdot m$	1: \$(Te)=Te on ous ?
2 r(m+n) = rm + (n - 1) rm +	to invises of a surger
3 (r+s)m = rm+sm	S IS ON IL
4 $(rs)m = r(sm)$	The second s
	number example in the second
Definition:	(Rong and (R) M Q
External direct sum of modules	a 0] - (a 0]
Let M and N be 2 modules over	R then MON is a
module over R constructed as follo	suss. and all
As a set MON = MXN (min)	
$(m_1, m_2) + (m_2, n_2) = (m_1 + m_2, n_1 + r_1)$	ne) a Rissiana
$\lambda(m,n) = (\lambda m, \lambda n)$	g is plactice men a is
(r, s,)(r, s2) = (r, r, s, s2) tord	
	T b - b
and the full of the first of the second s	6.6 = Ia

Definition: N is a submodule of M when IDEN 2 nithz EN VninzEN 3 A. NEN VAER VNEN N closed under soalar multiplication. Example: bi 3= a-bi (m) + (m) + (m) = (m+m) 1. Any vector subspace = supmodule 1. M and 2 M = abelian groups, supmodules = subgroups.

MIQUELRIU

Note: I & R is an (left) R-submodule of RR. Definition : Let M and N be 2 R-modules. We say that they are homomorphic/ 3 an R-module nomomorphism if 3 map 9 de Man Ø: M-DN St $\phi(0) = 0$ $2 \ \phi(m_1 + m_2) = \phi(m_1) + \phi(m_2)$ $3 \phi(\lambda m) = \lambda \phi(m) \forall \lambda \in \mathbb{R} \forall m, m \ge eM.$ We say that MERN are isomorphic if 4 & is byechve doe = 2 plubonous pound pound of M ie Id-1: N-DM st dod-1= IdN d-0d= Idm. Examples of left modules and submodules. O. Q IS a Z-module ZXQ-DQ. 1. Any vector space V over FF is an FF-module 2. Any finite abelian group over Z is a Z-module A = Zn, x... x Zn, (no basis) eg ZX × ZL3 -> ZL3. 0 - 3 = G 3. Rangring, M= R"= OR noummands. n>1 is an R-module RXRn-DRn R=Z : Z is a Z-module. 4 If I a R, then I is a left submodule / ideal over R RXI -- PI 5 Let R be any ring, a R mon define the principle ideal gen. by 0, (a) = Sra: rER>= Ra, 15 a left submodule over R 6 Mn (R) is an R-module and an Mn (R)-module R×Mn(R) -D Mn(R) "matrices as Mn(R)×Mn(R) - D Mn(R) vectors" 7. Quaterinions: the real vector space generated by disj. <1, i, j, K> $H = \langle a \cdot 1 + bi + cj + dk \mid ab, c, d \in \mathbb{R} \rangle \quad L^2 = j^2 = 1 \quad ij = k = -ji$ It forms a ring which is a vector space over IR (dum 4) and a C-vector space of dim 2 :propt: Let XE #1 d = 0.1 + bi + cj + dk

 $= (a \cdot 1 + bi) + (cj + dij)$ = (a+bi) + (c+di)j= Z. + Z2.1 By setting C= < x+iy : x; yER> HI = C + Cj, basis Spe < i, j > Left C-modules differ from right C-mods for HI :jz=Zj Check: Let Z=a+bi Z=a-bi jz = ja + bji = aj - bij $\overline{z_j} = (a + b_i) = a_j - b_i$ Deprichon: An R-module M is finitely generated if I finitely many elements «min-ime» st any me M can be written as m= Z limi lieR. Examples of finitely generated modules. 1. Any vector space of finite dimension, over IF is finitely generated by its basis = Any module over a division ring. 2. Mn (F) is fig over IF by Eij 3. Any fg aberian group as a Z-module A = Z' × Zn. × × Znz primary decomposition than. At commutative 4. FEXT is not fig over F 6. Q is not fg over Z proof: Suppose Q is fg by < qui..., q.>. Then let not be st it is coprime to all the denominators. Then In can't be wrotten as a linear combination of <quinge> Note: modules in this course will be fg!

Dehnihon: Let EIN SM be an R-submodule Then define M/N = < x+N : xEM> Rule of equality of cosets: x+N = y+N iff x-y EN. 2000 :D+D Lift of modules differ from upot Comods for the main Proposition / Dehnihon: M/N is an R-module called the quotient module id = id = id tor = st proof in that Ma N an incomprehim prid -in = i(idio) = i obviousbly M/N is an abelian additive group (x+N)+(y+N)=(x+y)+N id = N. R-action? Define as follows between plant and all all bonds $\lambda (x+N) = \lambda p + N \lambda e R$ is this well defined. Let octN = ytN DCty EN Contraction of the second data and the second X(x-y)EN NEM LANX-AYEN RELATION SOME HAND AND TO AND TO AND THE $\lambda x + N = \lambda y + N$ Well define : M/N is an R-module. Example: Zig a Zomodula I & R then the additive quotient group R/I is an R-module by r (a+I) = ra+ I VaeR. denne denne Dennition: If N. Ne < M are R-submodules then their sum by If N. n N2 = < 0>, then we call the sum an (internal) direct sum. Denoted NIENZ where NIENZ is an R-module. Definition ! Say NEM is a direct summand of M IF 3 N'EM st M=NON'

Depninon: IF I & R is both a left and right ideal than I is called a 2-sided Idoal. Definition. A ring R is called simple if its only 2-sided ideals are <0> and R Example of a sumple rung? some intre ballos a M aluborn-9 Any field IF is a mala simple R ring because only 2-sided ideals and <0> and RF Proposition: Let R be an rung, then the 2-sided ideals of Mn(R) are of the form Mn(I) where I is a 2-sided ideal of R. Proof Ex Q I IF R= IF then the 2-sided ideals of Mn(F) are what? The 2-sided ideal of Mn(F) are <0> and Mn(F). ... Mn(F) is a simple ring. I The same holds if R=D is a division ring. Mn(D) is a simple ring. I Does Mn(F) have any non trivial left ideals? If we take $c_j = \int (o a_{ij} o) a_{ij} \in \mathbb{F}_{2}^{2}$ then cj is any lett Mn(F)-module because ? Cj & Mn. Mn(A) × C; C'; Main and Main a eg M2(IF) (2 = $\begin{pmatrix} 0 & q \\ 0 & b \end{pmatrix}$ A = $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & q \\ 0 & b \end{pmatrix}$ = $\begin{pmatrix} 0 & a+2b \\ 0 & 3a+4b \end{pmatrix} \in C_2$. :. Cj absorbs R=Mn (FF) action ! Destable (In fact these are essentially the only left ideals)

Note: Note if we want to consider right ideals just look at rows. IF I a P Is both a left and right platomine I incalled A la stad Dehnihon An R-module (left) M is called simple if its only submodules are <o> and M. Definition: An R-module M is called semisimple if it can be written as M= O M: where Mi's are sumple modules; for some PARAME I. Definition :-Let M be a (left) R-module, then M is call. Examples 1. IF considered as an IF-module (1-dum vs) is simple (I any vector Subspaces) 2. Cj = (0) < MaCIF) considered as left Ma (F)-modules (Mn(F) × Cj - DCj) is a sumple module. Jth 3. Mn(F) considered as an Mn(F)-module is semisimple ? I submodules ci & Mn(F) which are simple (Mn (F) is simple as a ring) Mn (F) = OC; 4. CK is not sumple as an F-module. It is semisimple CK = IF M 5. Fr is semisimple as an F-module Let (e,..., en> be the standard basis Then $F^n \equiv \bigoplus Fei = Fei \oplus \dots \oplus Fen$ supple/F and sufficient F. (F) 6. I considered as a module over itself is not simple because E submodules nZSZ. 7. a considered as a Z-module is not simple, Ja supmodule ZSQ monopo (P) and so monopoint Beware! Some modules are reither simple for semisimple. ey. For example 21/472 as a Z-module Its not simple : 7/27/ 5 2/47/

But 21/271 = Z @ ?. not sumple. Roal Question: 9 Is Z semisimple? as a Z-module? $nZ \leq Z \qquad M = M \oplus \dots \oplus M_n$ 24/471 571 h and a second second second ZL/27/ ⊕ ??? so no. Picall ; held Franzia adoptioner a pice & dant , a +9 gi that words at an a Let M and N be 2 R-mods Then P: M-DN is a R-mod hom if $\varphi(0)=0$ $\varphi(m_1+m_2) = \varphi(m_1) + \varphi(m_2)$ P(arm) = r P(m)Detroiton: MIQUELRIUS Ker (4) - Em EM: 4(m)=03 < MODAL = 0493 Ker (P) = < 0> => P injective Ker(q) measures q injectivity a fill strain 22 min as a 2. Im(P) = {P(m) EN : MEM3 EN Im (P) = N & P surjective Im(p) measures surgechuity. In Traded + PMOTON & READ To bouloolad a Master T Proposition : 3 Kor (P)SM 2 Ham (P) < N proof: 1. P(0) = 0 = D OEKOr and OEIm(P)

Schur's Lemma (VTI)

Let M and N be 2 non-zero, simple modules over R.R. Let 9: M-DN be an R-module homomorphism Then either and Manager Bill and Bill and 19 is an isomorphism or $2 \varphi = 0$

Prot: @ Manuska With and supply modules of the same Bullion Suffices to show that if P=0, then P is an isomorphism So suppose 9=0. Injectivity: Ker (P) SM but since M is simple Ker (P) = <0> or M sunce $P \neq 0$ ker $(P) \neq M = 0$ ker $(P) = \langle 0 \rangle$ = P q injective. Spectivity: Im(P) SN. By sumplicity of N. Im(P) = <0> or M But since IP=0 =D Im(P)= D Im(P)= N => P sugective. => q is an isomorphism. Detruinon: Detruinon: M2 Man : M2 (m) = 10) mE Let M be an R-module, then denne the endomorphism of M by Endre(M) := Homre (M, M) = fq: M-DM : P is R-mod homomorphism }.

* Ende (M) encodes useful info about M.

Proposition : O Fast Fast O Fa

Endre(M) is naturally a ring and too has assessed to company

proof: Let &, B & Ende (M) (2+B)(m) = 2(m) + B(m) VmeM (addution) Multiplication is composition of maps Endr(M) × Endr(M) --- D Endre(M)

 $(\alpha, \beta)(m) \rightarrow \lambda \circ (\beta(m))$

Zero: O(m)= O YMEM Unit: Id(m)=M VMEM

· Can we consider Endre(M) as module over R? Yes iff R is commutative Exorcise Definition: A is called a division rung if VaceD at a Jy st acy = 1 (SKew field) Except not elements do not have to commule). Examples: PON STAPPING 1. Any held IF is a division ring. 2. Z is not a division ring. 3. FIDED is not a division rung. 4. Mn(F) is not a division ring 5. The guaternions over BR is a division rung Let deft, x= a+bi+ci+dk x ≠0 define its conjugate x = a - bi = cj - d, K define $Norm(a) = aa = a^2 + b^2 + c^2 + d^2$ $\alpha^{-1} = \overline{\alpha}$ Norm (a) 5. (3,-1) is a Q-vector space of dum 4 with basis Q / <1, i, j, K> with i2= 3 j2=-1, iK=-K. Note : · Mn(D) is a semisimple module over Mn(D) = OG · Let I a Mn (D), then I = <0> or Mn(D) .: Mn(D) is a simple ring Let de I = d-1 st a a-1=1. Schu's Lemma (V2) Let M be a non-zero sumple R-module Then Endre (M) is a division ring. proof, Let a Ende (M) such that a 70 X: M -DM non zero homomorphism By schur's lemma VI & is an isomorphism MbI = xo'-x='-xox to '-x E da

Note: There is an even more powerful version schur's Lemma, which we'll prove later that applies to FCG)-modules * Ende (M) is a tool to measure simplicity of M. Examples of applications of Ende(M) 1. Let F be a field, define the F-linear map $\varphi_{1}: F \to F$ (F-module F) $x \to \lambda \infty$ x -> loc Then Endre(F) = F (division ring) 9x Hoz. 2. M=FXF as an F-module, is not sumple F2=Fe. @Fez End F(F2) is not a division rung End $F(F^2) = M_2(F)$ 3. Remember Cj = { \$ ck Ekj ! Ck EF } = (0 [0) \$ Mn(F) 13 a lett Mn (F) module. D lent 101= and is sumple. Endmarter (Cj) = division ring. pf: (compute Endmacte) (C;) = {f: c; -pc; If is Mn(F)-homomorphism} and hope that End MACEI (Cj) = IF! By confirming (j is simple => Mn(F)= O(j semisimple. 2 Choose cononical basis < e,....en> . Fn= OFei 3. Identify Cj with F as F-modules f: c; - p #n o por aus = aijei 4. Since f is a linear map => can be represented by matrix. $\exists \overline{d} = (P_{ij}) \in M_n(\overline{F})$ st $f_{\lambda} \left(\begin{array}{c} a_{ij} \\ \end{array} \right) = \left(\begin{array}{c} \varphi_{ij} \\ \end{array} \right) - \left(\begin{array}{c} \chi_{aij} \\ \end{array} \right)$ for some LEFF. lani l' gnn (ani) (Jani) fx: c; -> c; 5. Using prowant \$ A = A\$ VACMOCF) and the only matrix that does this commuting is the scalar matrix $\overline{\Phi} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \quad \lambda \in F$

6. Endmacks (Cj') = {f: c1 - pcj If commutes with all MACF)} = BEMACE) (AB=BA VAEMACE) Solon 20 M $= \{ \mathbf{D} = (\lambda, \lambda) \mid \lambda \in \mathbf{F} \}.$ S. End MAGENCCI) = F. Queron! End (Cj)= F n or Mn (F) I G as an IF-module semisumple G= IF 2. $End_{ff}(C_j) = Mn(IF).$ M Exercise In V2 of Schur's Lemma, the converse statement does not generally hold. ie Endre (M) = D = D M is sumple as shown by following example. 4. Rasa Z-module is not simple because I submodule ZKR compute End z(Q) = {f:Q-DQ IF Z-hom}. Let fe Endz (Q) Take nez $f(n) = f(n \cdot 1) = n f(1) M = M, \Theta M$ $4 n \neq 0 f(\frac{1}{n}) = \frac{1}{n} f(1)$ $f(\underline{B})=f(\underline{U})=nf(\underline{b})$ If $\underline{m} \in \mathcal{Q}$ $f(\underline{m}) = mf(\underline{L}) = \underline{m} f(1)$ So $\forall q \in Q \quad f(q) = q f(1)$ Hence End z (Q) = DQ which is a division f mont (1) rung But Q is not simple as a Z-module.

Proposition:

NOUBLRIUS

If M is a sumple module over IRR, then M is generated by any mem where m = 0

proof: A submering

Let 0 + mem, Rm < M is a shorphasubmodule Man

Rm = 0 sunce m = 0

Since M is simple => Rm = M.

Example: Characterisc all sumple Z modules. Let M be a simple Z module Let mem be st m≠0 Denne Q: Z-DM n - Drom By last proposition, P is surjective. $ke_{\mathcal{X}}(q) \triangleleft \mathbb{Z} \neq ke_{\mathcal{X}}(q) = \eta \mathbb{Z}$: 9 induces an isomorphism 9 : 2/nz/ = M case 1: n=n,m2 (nin2)=1 coprime 24/0 ZL = 24/02L × 24/02L : 24/n2/ is not simple as 21/n. 21 5 21/n21. Case 2 n=p^K p=prime K>1 Z/p^KZ/ is not simple because Z/pZ/ 5 Z/p×Z/ is a proper submed. Case 2 n=pK p=pnme K>1 Case 3. n= 3 p $24/\rho Z \cong F_{p}$ once (p)The simple Z-mods are exactly the Z/pZ as Z-mods So the semisimple Z-mods look like M = Z/p.Z 0... 0 Z/pxZ Classification Theorem of semisimple modules (+)7--()7-(2) Let M be a finitely generated module. Then the following are equivalent of the open of the M is semisimple and a damage of the second second 2 VN SM 3 complimentary submodule N'SM such that $M = N \oplus N'$ Example: M=Fn as an F-module Then for any sub vector space VSM=Fn = V'st Fn = VOV' proof : 1=22 M= OM: for a finite indexing set I Let N&M be a proper submadule Take J&I : J = Ø be a maximal subset

M*=N@ Mi ie Nn @Mi = <0> Show M=M* = D can take N'= @Mi Suppose M ≠ M*, take iE I/J and consider Nn Mi 1. IF NoMi = <0> = D can add Mi to O_Mi =D J is not maximal. contradiction 2. So No Mi = < Mi> => MicNCM* Vie I/J = D contradiction $M \neq M^* = D M = M^*$ &=DI VN SM 3 N'SM St M=NON'=OM: => N and N' are semisimple * Lemma: Any non-zero M satisfying * contains a non-zero simple

Submodule

Let Mos M be a submodule = sum of all simple submodules Show M=Mo By lemma Mo = <0>. Suppose M + Mo

=D 3 W \$<0> St M=M. OW

By lemma W #20> => W contains a non-zero simple submodule contradiction.

... M=Mo = OMi, Mi simple submodules and sum is hnite as M is fg.

Denninon:

Let NSM be a submodule, then N is called maximal if VKSM st NSKSM = D K= N or K=M.

Example:

Let R be an R-module, any maximal ideal is a maximal submod of R.

Fact 1: A submodule of NSM is maximal (=> M/N is sumple

Fuct 2: Any proper submad of a fg mod is contained in a max submod.

Fack 2 feills if not fa

proof of lemma: I. Let M be SE YNEM IN' SE M = NON' 2. Take VEM V = 0 and look at mod homomorphism P: RR ->> RV SM X -D XV- POMP B of M bbo and 4- 4 3. I is surjective : Im(P) = RV and Ker(P) & R is an R-submodule (ideal) 4. By fact 2, we know Ker(P) < I where I is maximal idea/submod 5. .. By defunction, IV is maximal submodule of RV 6. By construction : M= IV'&M' ARV Ry = IV @(M'ARY) M B MAN A E MANY IS S x = y + z unique direct sum. 7. The module M'ARV is simple submodule of M: $M' \cap R' \cong R' \cong R / \cong field, by fact I quotient is sumple as$ $<math>I_v = I_k$ The maximal $I_v \cong R / I_k$ I R maximal. I is maximal. Proposition The manager and the to make a subspanning a set Mar M to I Every submodule and every quotient module of a semisimple module M is semisemple. proof: 1. Let M be semisimple and NSM and show N is semisimple. Let WEN = D WEM also . M = WOW' have a consider to a the the later and the MAN=WANOW'AN $N = W \Theta(W' \cap N)$ n = w + w' unique ... N is semisimple by characterisation Thm. 2. Assume M= WOW' is semisumple and NEWEM · WN SM/N SUD VELLO SOLLE VEM - FR 3 VIST FRE VOVI 9-10 as before $M' = W' \oplus W'$ N = N $\oplus W'$ N $\oplus W'$ By characterisation thin M/ is semisimple.

New concept: an algebra A is a ring which is cultomatically a VS over F

Point: Look at modules over A which are also gorna have a vs /IF. Goal: Classify all semisimple algebras over division rings ≅ Mn; (0;)

Dennihon: An algebra A over IF is a ring which has the structure of a Vs over F, such that.

1 a+b = (a+b)A-ring element $\langle - \rangle$ A = vs over F 1 addition $\langle - \rangle$ Vector addition (= mod element addition) 2. $\lambda(ab) = M(an)(\lambda a)b = a(\lambda b)$ $\forall \lambda \in F \forall a, b \in A$.

Examples 1 F over F is an F-algebra 2 FExJ is an F-algebra 3 FExJ/T is an F-algebra

4 Mn (IF) is a F-algebra with scalar algebra multiplication 5 H is a R-algebra but not a C-algebra since jz=zj.

6. (General) Every rung is a Z-odgebra Endre(M) is a R-algebra if R is commutative rung q: R-D Endre (M)

at a. Idm. ales papara a segmente d'A

Detinition: An algebra A is finite dimensional iff its dimension as an IF-vector space is Finite. Note: P:A, -> A2 algebra homomorphism = ring homomorphism = linear map.

"Proposition"

Let A be an algebra, an A-module, M is a module over A ... it is automatically an F-vector space. Detuninon: An algebra is semi-simple if any non-zero fg A-module. Is semisimple

Example :

1. IF a field is a semisimple algebra since any fg F-module = Vs 1e isomorphic to IFM = @ IFe: which is semisimple.

A is semisimple (as ring) iff A knewed as an A-module is semisimple.

proof: => Trivial by definition.
d= 1. Suppose A is semisimple as a module
2 Let M≠<0> be an A-module (anoner module)
3, Choose a set of generators < m, ..., mrs</p>

4. Let $\varphi: A^{*} \longrightarrow M$ be a homomorphism of A-modules. (aumar) + D Z Rimi Where $A^{*} = A \oplus ... \oplus A$

rinnes. 5. Sune A is semisimple A-module =D A = Si \oplus ... \oplus St Si simple Vi $A^{r} = (S_{i} \oplus ... \oplus S_{t}) \oplus ... \oplus (S_{i} \oplus ... \oplus S_{t})$ 6 Since P is surjective as the mi generate M over A 7 By 1st iso Thm Im(P) = M = A^r/ker(Q) ... M is semisimple since its a quoment of a semisimple So A is semisimple as a ring by definition.

Examples of consequences: 1. D a division algebra, then Mn(D) is semisimple D-algebra. 2. Let $A = Z/p^2Z$ be an algebra over $\mathbb{F}_p = (Z/pZ)$, A is not semisimple as no complement for $Z/pZ/G? = Z/p^2Z$.

Proposition. Let A be a semisimple algebra over IF such that A=A, O... OAr where Ai simple Vi Then any simple A-madule S=Ai for some i

proof: 1. Let S be a su	mple A-module and s	how SEAi
2. LET SES, S=0,	non P: A-DD AS = S	
	0	
	-DAis=S	
	-> aistemma)	notizoga
	≠0 Vi otherwise P=0	
must have some n	on-brial fi-map.	AT LOUGH OD (ODAL
5. Let i be st fi?	Ait San Jubon (1 Any simple Marc
C. Since Ai and S a	re simple and fi = 0	, by Scher's Lemma
= P Pi : Ai = DS 15	isomorphism.	MA (D) IS SEMISU
	dehas Ast by	
Let A be a semisim	ple algebra and {si?	be a collection of
	A TAKA BADANES	
Let M be an A-ma	dule = D M is semisin	nolo 10
Ie M=Si@ @Sr	and decomposition is	Unio pullo se anno
	modula : Cj : D"	and and an arms out
le if M=TM. ⊕ ⊕T	s ms	and a count man
	¥: A ^{op} duis on close	
	^0.0 · · · ·	
3 IP A is commutain		
	Rope BreBr	
	led a division algebra	
	ried a arriston algebic	
Lie A to On F-hight		
	Gen End (A) I A	
		8 - 5 - 12, D - 11- 2 - 6
1 IF is a division clg		
3. Mn (It) is not not	A Neyler Bloom slame	et 5 be an ellapore
11	egrassion and (0) (and more into)	Ton Enda (s) = P
	korem.	
Characterises for div	ision algebras over R	1.100
IF D is a finite di		

1

n

Les angears en England and antipation of England and the

Fact: If D is a Mold for IF-algebra, for any n. Mn(D) is an F-algebra of dimension = nºdim F(D) eg. dim (Mn (+++)) = 4n2 Proposition: Let D be a division algebra, A>1 Mn(D) as usual. Then, 1 Any simple Mn(D) - module is 3 Dr 2 Mn(D) is a direct sum of D's : Mn(D) is semisumple. proof : ofold b () ... both simple Mn(D) modules. Ciet 0 n - D" Ma be a hampled - men here A Amart used W - 11 Dn is the only non-zero Mn(D)-submod of Dn (ie Dn simple) Any simple Mn(D) module = C; = Dn Since Mn(O) = OC; $\cong \mathbb{D}^{n} \oplus \dots \oplus \mathbb{D}^{n}$ Thereby Depution: A field is algebraically closed \$, if every polynomial floc) e FLoc] of degree ≥1 has a root in F. $eq. < C = \overline{R}, \overline{G}, \overline{F}_{P} >$ Burnside's Theorem Let S be an palgebra simple mod over A where A is an algebra over IF Then Endy (S) = F (division ring)

Proof: 1. Let PEEndA(S) P70, S is a F-VS. .: P is F-linees map. Let chp(x) EFT=J be charac. poly

IF algebraically dosed, che(x) has a non-zero eigenvalue AEF Pr = XV for X = 0 $(\varphi - \lambda I d_s) v = 0$ XIds: Shas non zero kernal (VC Ker Not invertible - $2p - \lambda Id = 0$. (sher's lemma $= D q = \lambda T d$. Enda(S) = DF $\varphi \mapsto \delta$. Definition: Let A be an algebra define. A " by: As sets A°°= A 2 + is the same as in $A(A^{\circ p}, +) = (A, +)$ a * b = ba 3. X = * is different in A° MIQUELRIU Proposition: (A°°, +, *) is an algebra. Properties of A" 1. A division algebra (=> A°P division algebra 2 $(A^{\circ \rho})^{\circ \rho} = A$ 3. IF A is commutative, then A°P=A 4. IF B = B, @ B2 then BOP = B, P @ B2 Lemma: March e Let A be an IF-algebra then End, (A) = A°P Proof: o Enda (A) is an F-algebra Let $\lambda \in \mathbb{F} \left[\lambda(fq) \right](x) = \lambda f(g(x))$ = Af(g(x·1)) made (w) $= \lambda g(x)f(i)$ $= g(x) \lambda f(i)$ $= g(c)f(1)\lambda$ Let GEEndA(A) Q: A -DA over A 2 Let be A, by def of ring/algebra homomorphism $\varphi(b) = \varphi(b \cdot 1) = b\varphi(1)$ 3 Lot 9= P(1) EA = D P(b-1) = bP(1) = ba

4. Let 9 = fa be the endomorphism given by right x by a 5. .. + : Enda(A) ~> A ~= { pa : GeA} is a byection. Obviously 4 is surjective and 4 injective if 0 = (1) T = 0) PEEnda (A) st P(1)=0 then P(b)=bP(1)=b.0=0 $b fo(fo(x)) = \infty(ba)$ = Pbg (ac) = Ja+ (x) Y: EndA(A) => AOP $q \rightarrow p(1)$ 1 ommo : If B is an algebra then, Mn(B)^{op} ≥ Mn(B^{op}) Thereas (G) AM (AREA) - (ARA) - (A (A)) Proct: 1 Lot 4: Mn(B) 00 - D Mn(B00) X H X + 2. Clear that I is a byjection. 3. $\Psi(X * Y) = (YX)^T = X^T Y^T$ $= \psi(X)\psi(Y)$ ··· Y is an algebra morphism is a second and and a second and a second and a second =D V is isomorphism. Lemma: Let S be a A-module, then Yn Enda (S") = Mn (Enda(S)) proof : Ex S. Lomma: If M is an R-module and U, U2 & M are submodules with Un U2 = <0> then $End(u, OU_2) = End(u_1) \oplus End(u_2)$. Proot: Boring.

Arbn-Weidderburn Theorem

An algebra A is semisimple if and only if $A \equiv M_n(O_i) \oplus \ldots \oplus M_{nr}(O_r)$ where Di's are division algebras over IF. Proof: 4 By proposition * a direct sum of semisimple Mn; (Or)'s is semisimple. => Suppose A is semisumple ie A = S," @... @ Sr" where each 13 Simple By property 4 Aop is semisimple A°P = Enda (A) = End A (Si' ... OSi') = Enda (Si') O... O Enda (Si') = Mn, (End A(S,)) O... O Mnr (End A(Sr)) Take oppisites $A = (A^{\circ p})^{\circ p} = (M_{n}(End_{A}(S_{1})) \oplus \dots \oplus M_{n}(End_{A}(S_{r})))^{\circ p}$ = Mn. (End A (S1))°r O... O Mnr (End A (Sr))°P Mn, (End A(S,) °P) ... @Mnr (End A (Sr)°P). Since Si's simple modules by Schur's Lemma (VZ), End A(Si) and Endracsi) of ane division algebras So set Di= EndA(Si) P $A = Mn, (0,) \oplus \dots \oplus Mn, (0_r).$ Applications: IF IF is algebraically closed (hint nint C) then Di's = C over C, hen A = Mn, (F) O... O Mnr (F) (T) T ... A is simple as an algebra iff A = Mn(F). IF F= R Di's = R, C, H × Group algebras - show they are semisimple. Dennihon: Let F be a field, G a finite group, define the group ring/ group algebra as FEGJ = { Z lgg : lge F} where lgg = glg

linear comb of group dements / F.

Proposition: FTG] is a rung Proof: Addution: Z log + Z Ngg = Z (lg + Ng)g Multiplication: Z Agg(Z phh) = Z (Agµn)(gh) gives = Z Xg Nnig g Zero: OEFEG] where Zigg=0 = Dig=6 typeG since g: +0 (LI < lig, ..., gn-1> formbasis) Unit : IEFEGJ Thes set (F(G), +, .) is as rung. D. (B) 19 > N/2 (28) ... M B dim F(F(G)) = 1G) since group elements form a basis for P[G] as an R F - vector space. Hence FEGJ is an F-algebra. Fact: The algebra IF[G] is non-commutative unles G is commutative. Fuct: clear that basis elements geg are invertible in FEG] Example Let G=Cz=<xclx2=13 F[C2] = < at bx : a, be F> add obvious an (2+3x)+(6-2x) = 8+x. multiply using group laws: $(2+x)\cdot(3-4x) = 2+x$ 3-430 M=A 91 6+300 - 8x-403-1 =2-5x E FEG] Q What is (1+x)-1? Doesn't exist. (a+bx)(c+dx)=(ac+bd).1+(ad+bc).5c (ZlggXZpunh)= Zlhigg

Lemma: IF IGI>1 then FEG] is not a division algebra.

proof: IF [G]=1, FEGJ=FE(D)=F which is a division algebra. So suppose [G]>1, then its easy to find zero divisors Let geG, since G is finite $\exists n \ st \ g^{n}=1$ In $FEGJ \ (1-g)(1+g+\ldots+g^{n-1})=1-gn$

This is not possible in a division algebra.

Pennihon:

By an FEGI-module, I will always mean a module Vover the ring. FEGI and these will always be finitely generated.

Example :

The left regular FEGI-module (V=) FEGI actuag on itself by left group multiplication,

Depininon:

Let V, W be 2 "FEGI-modules.

A map P: V-DW is called an FEGJ-homomorphism if it is IFEGJ linear, le it sanshes

 $\frac{1}{2} \frac{\varphi(v+v') = \varphi(v) + \varphi(v')}{\varphi(\lambda v) = \lambda \varphi(v)} \int \lambda e F[G] v, v' \in V$

3 P(gv)=gP(v) VgeG

Remember since FEG] is an F-algebra

9: V-DV can be considered as an F-tinear map of vs over F

Proposition:

Let P: V->W be an F[G]-homomorphism

Then Ker (1) and Im (1) are IE [G] - submodules of V and W respectively

Correspondence Theorem

Let G be a finite group, V fd vector space over F p: G -> GL(V) = GLn(F) an F- representation of G. Then there exists 1-1 correspondence between representations of Gover IF and fg left IF Te] - modules { M on FCG] module } & p gp: G - P GL(V) }, proof: FLet V be a fg FEG]-module . V is a fd F-vector space. Vg E G denne an F-representation of G by the F-automorphism V-V V(V) HOGV VVEV= Spr ibin, bn 3 = Fr Write the map & with basis as a matrix [+] = p(g) Show P(g) & GL (V) is a rep/linear map. p(g)(xv+w) = g(xv+w) $= \lambda g v + g W$ $= \lambda p(g(v) + \lambda p(g)) (m) w$ Check p(g) is a homomorphism. Factorise the map pen DV - peg) DV P(gh) p(gh)(v) = (gh)v = q(h(v)) + for T= p(y)(nv)= p(g)p(n)(v)... Composition of p(g) and p(h) as linear meps = mult. of matrices. p(1) is the matrix corresponding to identity map 1d: V-pV p(1) = /'. Show plg) is invertible ! Let get since g.g. = I in G and in FEGI then the map V MOD V MOD V nLi) p(g ') p(g)(v) = p(g ')(qv) = (g-'g) V $= \rho(1) \vee$. p(g-1)p(g) = p(1) :. p(g) is invertible : FEG]-module corresponds to representation of G

=> Let p:G->GLn (F) be an F-map Then associate to it an FEGI-module which we construct from F"-V by keeping the same addition smuch re and defining scaler multiplication on it by letting &= EliggeFEG] VEV= IFT av= (Zlag)(v)= Zlag(gv) = Z Zy p(g)(V) making Fr into an F-module. GEP. Examples babaantes 19 1. Lot G = Ds = < x, y 1 x + = y2=1, yx = x3 y Denne p: Do - DGL2 (R) x+>/01/ y+>/#10 0 1-1 0 Let V= R2 = Spif (VI, Ve) $f(\infty)(v_1) = \begin{pmatrix} 0 & f \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix} = -Vz$ $p(\mathfrak{D}(V_z) = V, \quad p(y)(v_1) = V, \quad p(y)(v_z) = -V_z$ This dennes the structure of V=R² as an RED⁸]-module Conversly using the above, write matrices for p(x) and p(y) wit < bi, b2> to recover the representation from module. 2. Let G=Sn -1 -1 / 1= (W) much anomal 1/2 W(-2) 1/2 2 WF-Define p: Sn - > GLn (C) the permutation rep on Cn=V by p(o)(ei) = eou) where V= C= Spe < e1,... en > 1000 miles have This makes C" into a module over CES"] called the permutation modulo. eq. n=4 B= < e1, ... , e4 > basis of IF 4 Let 0= (1=2) e S4 p(0)(e1)= eou1 = e2 p(o) = (e2) = propage, p(o)(e3) = e3 p(o)(eu) = e4 10 1 0 0 $[p(\sigma)]_{B} = [1 0 0 0]$ 0 0 1 0 0 6 0 1

Dennihon: Let a be a finile group. V for F-vector space, An F-prepresentation p: G - DGL (V) is called irreducible if V × <0> and the only invarient subspace of V under p are the trivial ones (03 & V. The representation is called reducible if JW &V W #O st p(g)W = W Kgee le 3 an invanent subspace. Fuct: By correspondence Thom J:G-DGL(V) vieducide (-DV is simple FEE]-module. Equivalent dennihon: An F-representation p: G-D GLn(F) is called reducible if I TEGLW(F) st type we have an equivalent matrix representation of the form p'(g) = T- p(g)T = [Xg, Ys] where Xg is a dum Wxdum W matrix. 0 : Za / Examples of Irreducible Ireducible merspers. 1. P: DS - DGLa (R) is ineducible 2-dim rep P(0) -> (0 1) p(y) = 0 (10) (-10) (0-1) Apply dennihon: suppose preducible : JNF St p(G-)WSW where dim (W)=1 le Wis plas invariant $p(\infty) W = W \quad p(g) W = W$ Lot W= spen (AVI+ NV2) V=R== <VI, V2) Let W= AVI + NV2 $-p(\alpha)W =$ (p(y) W= and a provision of and in France will get some sort of contradiction. 2. IF $F = F_2^2$ p: Ds - D GL2 (F2) then $W = span_F(V_1 + V_2) \subseteq F_2^2$ is p(G) - stable $p(x)(w) = p(x)(v_1 + v_2) = -v_2 + v_1 = v_1 + v_2$ - p(y)(w)= p(y)(v+v2)= V, -V2= V+ V2 : pis reduable over IF2

3. Let G=C3=<xc1xc3=1> and consider the REGI-module dim(V)=3 . This has a permutation representation on R = V given by :p: C3 - D GL3 (R) PCo-Xei) = eoui Fix B= <e1, e2, e3> = R3 0 0 In standard basis [f(a)] == Claim: this representation is reducible. le V=R3 is a semisimple F[C3]-module Let W=span(w)=Rw where W=ei+ez+ez Wis an REC3]-submodul which is p(G)-stable p(xx(w)=p(x)(e1+e2+e3) eztester=hi p(x) WSW. Choose a different basis B'= Tev, ez, e3 Apply p(x) p(x)w = wp(x)e2 = e3 p(x)e3 = e1 = W-e2 - e3 1.0 0,0 -1 0:1 -1 Algebra 3 projection IF V=UOV, then we can construct a special endomorphism of that depends on the expression V=UOW Fred - homen of phism suchoadan Suppose V= UON, define T: V - VUCV by managering (utw)-pu duel, weW then TT is an endomorphism of V Furthermore: ImTI=U, KerTI=W and TIZ=TI

Definition: An endomorphism π of a vector space V such that $\pi^2 = \pi$ is called a projection of V

Proposition to how a called reducide of the second states of the

Suppose TT is a projection of V, then V=Ker TOIMT

Maschke's Theorem The

Let G be a finite group. IF a field such that char (IF) / IG] (encoded) let V be an IFEG], then for any IFEG]-submodule USV, then I FEG]-submodule W such that V=UOW (an IFEG]-mods)

In english, any FEG7-module V is semisimple /reducible

Proof: Let V be an FEGI-module and USV be a FEGI-subamodule Assume U # 203 or V otherwise nothing to prove Since U is an F-subspace of V I Wo which can be any

other F-subspace

V=UONO (F-vector space)

Choose any projection onto U

T:V-DU is an IF-linear map

U+V -D U

Secret: Turn TI intois an FEGJ-module homomorphism by defining an averaging proven as follows:

 $q(v) = \int \sum_{i \in G} g\pi(g^{-i}v)$ $i \in G_i$

claum: 9 is an FEGI-hom

(check: P(gv) - gP(v) VgEG VvEV)

Let oce G and set h= x - 'g d= > g= ich als grand d=> h-'=g'sc also borne (1973) LOE VEV ∑ g∏ (g (g xv)) 9(xv) = 1 as q 1G1 are all elements of Dea (ach) TT (h-1 V) IGI 5 hT (n-1v) heG Lot A and GI $= \infty P(v)$ Claum: P2= P (1e show ImP=U) 1. Jmp CII sunce T projects onto U, T(v)=u, T(u)=u $P(\mathbf{u}) = \sum_{i \in I} \sum_{j \in I} \frac{(q^{-i} \mathbf{u})}{e\mathbf{u}} \in \mathbf{U}$ MIQUELRIUS since guell Vuell as les an FEGJ-submod 2. UCIMP ę $\Psi(u) = 1 \sum_{\substack{i \in G}} g \pi (g^{-i}u)$ = 1 <u>></u> g(g-1u) IGI geg g(g-1u) $= \frac{1}{|G|} \sum_{g \in G} u = \frac{|G|}{|G|} u = u$: U = Tm P $3 \cdot P^2 = P_{11} + P_{12} + P_{13} +$ Take ve V, $P^2(V) = P(P(V))$ = P(v)Sunce ((v) EU and Imf=11 : Q2 = Queen MA and bob to to the U tont doug VE UE :. P is an FEGJ-hom, U= ImP is then an FEGJ-submod let W=ker P which is also on FEG] - submod . V = ImP @ KerP = UOW OW

Definition: 1. An FEGI-module V is called completely reducible if V= U. J. ... OUV where each U' is an urreducible FEG) submodale of V. (Vaca) to to To To July and 2. An F-representation p: G-DGL(V) is completely reduceble if YUEV which is invarient under p (ie p(g). USU) I another p(g) invarient subspace W such that V=UOW EUILIOMS EWILLINNAS. Then Sullin, um, willing is a basis for V and Yg $p(g) = \left(\begin{array}{c} ug \\ 0 \end{array} \right)$ France (O Wg) The man and With Use (and The I and the So an F-rep is completely reducible if 3 TEGLN (F), p: G-DGLOCF) $T^{-1}p(g)T = \left(X_{g} : Y_{g}\right) \sim \left(U_{g} : O\right)$ O:Zg/ O:Ng/ reducible completely reducible Maschke's Corollary space Keep breaking U. W into irreducibles. IF G is a finite group, char (F) +IGI then for every non-zero FEGI-mod is completely reducible Proof: let V = 303 be an FIG]-module. By induction on dum (V) and use Maschke's Theorem. If dum V=1 => V is irreducible So suppose V is reducible (dumV>1) boo U a log one => JU = V such that U = {of or V and by Maschke's I Well st V=UOW, Since dumUs dum V, thank and dim W < dim V, then we have by induction hypothesis $U = U_1 \oplus \dots \oplus U_S$ $W = W_1 \oplus \dots \oplus W_E$ $= \mathcal{V} = \mathcal{U}, \oplus \ldots \oplus \mathcal{U} \otimes \mathcal{D} \otimes \mathcal{U}, \oplus \ldots \oplus \mathcal{W} \in$ all irreducible submodules of any dimension

Dennihon: Let A, B, C be R-mods. Say a sequence of homos A PD B PDC is exact iff $\operatorname{Ker}(\Psi) = \operatorname{Im} \mathbb{P}$ Øn+1 Øn An-A sequence ... -> An+, -> An 1s exact IFF to Ker Øn = Im Ønti Example: B B A BO Let A and c be R-mods, men O - P A B - P A B C - P C - P Cis exact where i(a)=(a, o), T(a, c)=c Proposition: 0 - PA - PAOC TOC-PO 1s exact if i injective and This surjective An exact sequence O - DA - DB - DC - DO IS a short exact sequence SES Depenhon The brivial SES is exact for any ring R. Let A, c be R-mods. Then Is exact for i (a)=(a,0), Ti (a,c)=c Definition: say that an SES O-DA-DB-DC-DO splits When I isomorphism 4: AOC-DB 0 - D A - D AOC - D B - D O White days wid and by t J.Id $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$

Usually ses don't split.

(is no complement)

PCALL G INV

MIQUELRIUS

Spluting Theorem for Vector Spaces (≧ Basis theorem) IF FF is a held, then every SES of modules over FF (vs) splits Mascrel's Theorem v2 (modern form) Let G be a finite group, FF a field st char (FF) + IGI

IF O - DA - DB - DC - DC

proof: want to find an FEGI-homomorphism st g +(g(a,c)) = g +(a,c) VgEG, + splitting isomorphism and apply splitting theorem for vs.

Mascke's Theorem VI

Let G be a group finite group, F a field st char(F)/IG) het V be an FEGI-module then for any FEGI-submod $U \le V, \exists W \le V \ st \ V = U \ d W$ (ie V is semisumple - characteristic theorem).

Conductors that faisily Masche's Theorem.

1. if G is infinite Let $G = \mathbb{Z}(=C_{\infty})$ and F = CDefine p: Z - PGL2 (C) by nt-p/1 n 01 PISQ C-Nep |(1 m) = p(n)p(m)p(n+m) = (1 n+m) = (1 n)0 Why does Mascke's fail? Let U < C2 be a G-invarient subspace where U= span 1(0) = span fus. :. dem . (U) = 1 recall G invarient subspace VGEG p(g)USU 10 p(g)u= tu U is an eigenerparcesubspace & p(g) and its the only one (ie no complement) If there was a G-invarient complement W, then W would also be Adama.

Indum eigenspace
$$\forall y \in G = P(g)$$
 is diagonalisable
 $\Rightarrow \forall z \in U \in W$
But $(1 \ n)$ is not diagonalisable unless $n \ge 0$
 $(0 \ 1)$ since $m_{F(g)}(\infty) \ge (\infty - 1)^2$
 $\therefore U = span (0) = span iui nas no complement
2. If $IGI \equiv 0$ in F is char(F) IGI
 $(a \ C_p = \infty \subseteq L_2(F_p) = Aut (C_p \times c_p)$
 $z'_{F/Z}$
Derive $p: C_p \longrightarrow C_{L_2}(F_p) = Aut (C_p \times c_p)$
 $z'_{F/Z} = Derive (1 \ 0) = p(1)$
If Mastre is Theorem holds, then V include decompose
 $V = F_p^2 = U \oplus W$ where $U \in F_p^2$ is a 1-dum Governet subspace
 $U = span \{(0)\} = span ius$.
 $V \times z' \in C_p = f(\infty) \sqcup = (1 \ j)(1 \ 0) = (1 \ 0)$
But there is no $F_P(C_p] = submachine W$ as $F_p^2 = U \oplus W$
If $F = W$ such a W , is $N_{-1} \approx also an eigenspace$
but
 $U = span(e, +e_s) \sim span \{(1)\} = span us$.
Then $U \le V$ is $D_p = uncenent$
 $V \in F_2^2$, let $W = Span (w)$
 $z = span (hill) = span us$.
 $Then $U \le V$ is $D_p = uncenent$
 $V = F_2^2$, let $W = Span (w)$
 $z = span (hill) = span us$.
 $Then $U \le V$ is $D_p = uncenent$
 $V = F_2^2$, let $W = span (w)$
 $z = span(he + p_e) \ge (p)$
 $where $\lambda \notin p$ are both mot 0 .
If $A = 0 = p = 1 - P \le w - e_e X$
 $p = 0 = P \lambda \ge 1 = P \le W - e_e X$$$$$

 $|f \lambda_{11} p \neq 0 = p W = e_1 + e_2 = U$. only options for W are spenses and spenses but both are not invarient by G. $\left(\begin{array}{c} 0 & 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} 0 \\ 1 \end{array} \right) = e_2 \neq \lambda e_1$ -10/0/01/ $0 | \langle 0 \rangle = \langle 1 \rangle = e_1 \neq \lambda e_2$:. span(e,) and span(e2) are not @ #2[D8]-submods because they one not Ds invariant e F2 ≠ UOW for D8 10 11 The proof of Mascke's theorem gives us a procedure to find complementary subspace of U (W) if the condutions are satisfied and we know a submodule USV which is G-unvariant arready Example : Let $(r = Sa(= D_6)) = C$ Define p: S3 - DGL3(C) by p(o)ei = eoci) ... V = C² = span < e1, e2, e3 > 15 a CES3] - module has structure given by o. ei = eous Q: Is the rep & irreducible? 3-dem = 1-dem @2-dem or 45-83-thrappage If u=e, +e2+e3 then U=spcniul=spcnil(:)] is Sz-invariant 1. U. IS C[S3]-Submodule ∴ C³ = V = U € W by Mascke's Let TI: V - >> I be the projection map given by $T(e_1) = 0 \quad \text{if } \eta = \eta$ Ker(TI)= Wo F-Subspace TI (e2)=0 = span leirez & is an F-complement of U. $\pi(e_3) = e_1 + e_2 + e_3$ Find Wa unique IFTG]-submodule $S_3 = <(1), (12), (13), (23), (123), (132)$ The FIGI-homo given in the proof of Mascke's VI is $P(V) = 1 \sum_{q \in G} g_T(g^{-1}V)$ computed on GEG

 $P(ei) = 1 \ge \sigma \pi(\sigma^{-1}ei)$ G $2 \sigma \pi (e_{\sigma})$ OESS Compute P(ei) $P(e_1) = \int [(1) \pi(e_1) + (12) \pi(e_2) + (13) \pi(e_3) + (23) \pi(e_1) + (123) \pi(e_2) + (123) \pi(e_2) + (123) \pi(e_3) + (123) \pi(e_3)$ $f(132)\pi(e_3)$ $= 1 (13) \Pi(e_3) + (132) \Pi(e_3)$ $= \frac{1}{(13)(e_1+e_2+e_3)} + (132)(e_1+e_2+e_3)$ 2(e1+e2+e3)] = 1 (e1+e2+e3) 3 Similarly $f(e_2) = f(\mathbf{B}_3) = \int_{\mathcal{Z}} (e_1 + e_2 + e_3)$: W= Kos (P) = { 2 xiei : 2 di = 0 } = span te. - e2, e3-e2 }. dem W = I takes these to 0 :. V= UON

>> Lemma

Let V and W be R-mode such that $Hom_R(V, W) = Hom_R(W, V) = 0$ Then End R(VOW) = End R(V) × End R(W)

proof: End (VOW) = rung of matrices of the form awv where and: V-DV and: V-DW anv: W-DV anw: W-DW Since Hom (V, W)= Hom (W, V)= 0 then End (VOW) == > End (V) × End (V) a Ho (an, and)

Schu's Lemma newsuled for FEGI-modules.

- VI Let V and W be 2 sumple non-zero FEGI-modules Let Q: V-PW be an IFEG]-homomorphism. Then either P=0 or P is an isomorphism.
- V2 IF V is simple FEGI-module then End FEGI(V) is a division ring ie if deEndFEGS(V) wathen if Q = O = > Q = > Id where F is algebraically closed since we need chein) to have at prestrat 1 in F :. 3 9" st 9.9" = 1d

* In VI we don't need IF algebraically closed

Schur's Lemma V3

Let V be a semisimple fg FEGI-module st char (IF) I GI then V is simple = D End FEGJ(V) is a division rung

proof: => By schur's V2 ← Let V=V? . . . @ Vm (V semisimple) where V, ..., Vm are simple IF [G] - modules and Vi = V; if i = j End FEGJ(V) = End FEGJ (V," Vm")) 00 = Ti End & (Vii) Wedder Lomma HW3 = T, Mn; (End FEG2 (Vi)) Schurs V2. g= T, Mni (Di) ub per Kapper De

where Di's are durision rings The only way for the RHS to be a division ring is it I unique v st ni = fill i= pro

itor

=D V = Vr is sumple.

Schur's V3 is a pratical tool for dating detecting irreducible reps 1-> sumple FIGI-modules (of any dim)

1 super Do 2 0

Elegent examples : 1. p: Ds -> GL2(C) is a 2-dim rep of Ds $p(x) = (0 1) \quad p(y) = (1 0)$ (-10) Lets show that this 2-dum nep of Ds is irreducible le C² is a surriple CEDEJ-module, by by computing its endomorphism rung End CED&J (p) ie all complex 2×2 matrices that commute with p(x) and p(y) simultaneously le find 2×2 complex A st Ap(g) = p(g) A VgeG languagen to yook an genonetand Only need to look at generators

 $A p(x) = p(x)A \quad A p(y) = p(y)A$ Let A= (g b)

lcd/ Ap(y) = (a - b) p(y)A = (a b)

= b = 0, c = 0, a = a, d = d $A = \langle a \rangle$

 $A_{p(\infty)} = (0 \ a) \quad p(\infty)A = (0 \ d)$ -a 0/ = D a = dSo End EEDS] (p) =] (a 0) : a e C

≥ C ≥ a which is a division rung.

: p is irreducible by Sha Schur's V3

2. Let 0: D6 - > GL3(C) $\sim (132) \quad \sigma(y) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $\mathcal{O}(\mathbf{x}) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

Q is a irreducible? Compute End (ED.) (a)

le 3x3 mabrices A st

$$10(\infty) = 0(\infty)A$$
 $Ao(y) = 0(y)A$

1

A = d 9 hK Aa(x)= $\sigma(x)A =$ 9 a bc b=f=q, c=d=h=D a=e= b bc acb oly)A= Ac(y) = a ba i. a=a 1000 a End ceooj(0) = C2 dume (End CEDO] (0) 1=0 which is not a division 1. or is reducible 1e the CED6] - module Q3 is semisimple Dehnchon Let P. : G - D GL(U) P2: G - PGL(W) be two IF-neps of G. Denne the O of reps p. Of 2: G -> GL (UOV) of G over F with the rep space UOW by $(f, \oplus f_2)(q) = f_1(q) \oplus f_2(q) \quad \forall q \in G.$ If we choose basis {u, ..., un} and 2W1. ... Nm 3 then pi: G - OGLn (IF) p2: G - OGLm(F) gto A g - B So the matrix rep wit ((u, o), ..., (un, o), (o, wi),..., (o, will). -D GLn+m(F) P. ⊕ P2 : G --> (A:0 q + 0.

Question: How many distinct irreducible reps are for each & over C? ie had all sumple OEGJ-mods for G. Representations of Annie abelian groups over C. $G = Cn, \times \ldots \times Cn$ $C[x]_{x^{n-1}} = C[x]_{x^{-1}} \times \dots \times C[x]_{x^{-n}}$ 115 (CCn] Let E be a finile abelian group and let V be a CEGI-mod. Since Gisabelian: Vorige G, Vve V $(\alpha(g \cdot v) = (\alpha(g) \cdot v) = g(\alpha(v)) = [\alpha(g) + \alpha(g) +$ Fix rea define the CEGI-ends Por: V --- PV $f_{\infty}(v) = \infty v$ Suppose that V is sumple ([G]-mod by Schur's V2 Pr E End (IG) IS such that Par= Nocld for some Noce C. ie for(V) = Loc V VVEV eigenspare :. Any one dum eigenspace of V is a CEGI-submod but since V is simple => dim(V)=1 ... We've proved that all irreducible reps of finite abelian groups have degree 1 le V = C as CEGJ-module. $C[Cn] = C[xn] = C[xn] \times \dots \times$ CEXY (x- in) (xn-1) /(x-1) 113 Let a De GL C C Examples: Recall any hnue abelian group G = Cn, x... × Cnr Good to show f: G - OGLn(C) $i. G = C_n = \langle \infty | \infty^n = 1 \rangle.$ Let $\lambda_n = e^{2\pi i/n}$ then the irreducible reps of G are all of deml, which looks like

Jan : Cn--DGLr(C) OSKEnand p: Cn-DGLaCC is given by 2. G=C2×C2 How many irreducible reps are there? They are all of dim 1. $C_{2} \times C_{2} = \{(\infty_{1}, \infty_{2}) : D_{1}, 2 = 3C_{2}^{2} = 1, \infty_{1}, 3C_{2} = 0C_{2}, D_{1}\}$ There are only 4 = 1C2 × C21 irreducible reps of C2 × C2, which are all of dun 1 DC.U. $p_1: x_1 \rightarrow 1$ R. JC2+ 4-0 p2: x1+D-1 p2: x2+ DAI 112 = 112 P3: X2 P3: X, HD1 -D - 1 P4: x, -D-1 P4: x2 + D-1 C[C2×C2]= UIOUZOU3 OU4 Depution lexample of regular representation) Pres = CEG] as a CEG]-module Let G be a finite group of order in We know V= C[G] is a C-algebra =D C-vector space of demension IGI Let G= {1, g2, g3, ..., gn } be basis of CEGJ=V Define prog: G - P GL(CEGJ) = GLn(C) by pg (gi) = ggi ie assign to each choosen get, a map/matrix fg which acts on the CIG] basis by left multiplication Key point: prog 13 always reducible because the trivial nep. Example of frag

MIQUELRUS

Find image of sc under $p_{reg}: (3 \longrightarrow GL_3(\mathbb{C}))$ $p_{s}(g_1) = p_{\infty}(1) = 3c \cdot 1 = \infty = g_2$ $p_{\infty}(g_1) = p_{sc}(\infty) = \infty^2 = g_3$

 $f_{\infty^2}(g_b) = f_{\infty^2}(g_b) = \Im c^3 = 1 = g_1$ freq(a)= (0 0 1) Find preg (202) (preg (1) - 2): 1 0 0 0101

By correspondence theorem, CEGI viewed as a CEGI-mod is called the regular module. The regular module is always semisimple, Use mascke's.

Example: Let $G = C_3 = \langle \infty | \infty^3 = 1 \rangle$ Let $w = e^{2\pi i/3}$ Define $u = 1 + \infty + \infty^2$ $u_2 = 1 + w^2 \infty + w \infty^2$ $u_3 = 1 + w \infty + w^2 \infty^2$ Apply ∞ to the ui $\infty \cdot u_1 = \infty + \infty^2 + 1 = 1u_1$ $\therefore U_1 = \text{Span } Eu_1^3 \leq CIC_3 - \text{Submod}$

which is a 1-dim $4 \rightarrow Neducable Rep of (s)$ $the trivial rep of (s <math>p, : (s \neq -) GL_{+}(C)$ $\Sigma \leftarrow b_{2} = ... = WU_{2}$ $U_{2} = Span i u_{2} i \leq CE(s]$ Is a simple (s - invariant CE(s) - submod corresponding to $p_{W} \cdot (s -) GL_{+}(C)$ $\Sigma \leftarrow DW$

 $\infty = u_3 = \dots = \omega^2 u_R$ U3 = Spen < U33 ---. pw2: (3 - 0 GL. (C) x mow?

 \therefore C[C3] = U, \oplus U 2 \oplus U3

P. @ Pew @ P.ouz 1 0 Preg 0

The converse for finile abelien groups. () Mo. o () The converse for finile abelian groups If allineps of G over C are of degree I then G is abeliean. proot: I VIEW CEGJ as CEGJ-mod ~> preg 2 Decompose OFGJ=U, O... OUr where each Ui is a simple CIGJ-mod 3 dum (lli)=1 Vi by assumption 4 choose basis Kun , ur> st li= Spoluil. 5 Let g & G, the matrix of g on CTGJ is diagonal on the basis the ui gui = Zjui $p(q) = \lambda q$ 0 0 Ag 6 Diagonal mattice commute => G is commutation =D G/ (D) = G/ G C Diagonals because freg is Faithful Ker (preg GLACC :. G is abelian Consequence Any non-abelian group must have an irreducible rep of degree ≥2 Artim-Wedderburn Theorem newsiled. (D) AMX Let & be a finite group, CEBI is a semisimple algebra (=> CEG] as a CEG] - module is semisumple (by characterisation for semisimple algebras) and by mascke's meanen CEGJ = U. O. ... OUr = S, O. ... OS, sumpo sumple 1 where the si are simple non-pairwise isomorphic (IGJ-mods proof: Let A= CEGJ in Weddetburn for algebras CEG] of = End erez (CEG]) = Endere) (Si' O ... OSr = Enderez (Si) 6 ... @Enderez (Si = Mn, (End (SJ) ... @ Mnr (End (Sr))

= $Mn_1(\mathbb{C}) \oplus \ldots \oplus Mn_r(\mathbb{C})$ $(\mathfrak{A}(\mathfrak{G}))^{\circ p} = \mathfrak{C}[\mathfrak{G}] = (\mathfrak{M}_n, (\mathfrak{C}) \oplus \ldots \oplus \mathfrak{M}_n, (\mathfrak{C}))^{\circ p}$ = $Mn, (\mathcal{Q})^{\circ \rho} \oplus \ldots \oplus Mnr(\mathcal{Q})^{\circ \rho}$ = Mail (C) D... O Mar (C) = $M_{n_1}(\mathbb{C}) \oplus \dots \oplus M_{n_r}(\mathbb{C})$: · @[G] = S' = $M_{n_r}(\mathbb{C}) \oplus \ldots \oplus M_{n_r}(\mathbb{C})$ GED. Depininon: Hope dim c (s:)=n: are the degrees of all the irreducible reps of Gid and another to The op a to water and a and Corollary 2003 $|G| = n_1^2 + \ldots + n_r^2$ proof: IGI = dume C[G] = demo ((MniCa)) 5 dina (Mni (Q)) $\sum_{i=1}^{2} n_i^2$ Tact: The bivial CEGJ-module, V=C + trivial rep J:G - DGLICC) (Is I dum and hence sumple Galways has a I dim rep So we can always set n, = 1 VG $n \mathbb{C}[G] = M_{n_1}(\mathbb{C}) \times \cdots \times M_{n_r}(\mathbb{C})$ = $C \times Mn_2(\mathbb{Q}) \times \ldots \times Mn_r(\mathbb{Q})$

Game ame

Rules of the Game) Use wedderburn to decompose CEG3=Mn, (C) x ... × Mn, (C) 2 r is the number of conjugency clasesse in a le number of <x47 = 29 1xg : gEG3. $3|g| = n_1^2 + \dots + n_r^2$ 4 We can always take n=1 = brivial repexists YG 5 Each nillal exactly Goal: find numer for a speake rep. Examples: $f_{-} G = C_{2} = < [, x] x ^{2} = [> 0$ Conjugacy classes :- 512, < >>> Solve $|G| = 2 = n_1^2 \pm n_2^2$ $2 = 1^2 + n_2^2$ =D n2=1 only solution $: C[G] = M, (C) \times M, (C)$ = D Ce has 2 distinct 1-due Degureducible reps Pi Ce - DGLICC) P2: C2 - DGLICC) $x \mapsto 1$ Exangram 2. $G = C_s = \langle 1, D_c, x^2 + D_s^3 = 1 \rangle$ (D) M X D X Cong classes <1>, <x>, <x>> Solve |G|= 3=n12 + n22 + n3 $3 = 1^{2} + n_{2}^{2} + n_{3}^{2}$ ni ≥1 3 = 12+12+12 : CT3]= O × C × C => (3 Co has 3 distinct 1-dum wreducuble neps only $p_1: C_2 \longrightarrow GL_1(C)$ DCMDI pixmiss p3: X-DWZ 3. G = C2 × C2 = <1, 2c, y, 2cy : 2c2 = y2=1 > cy = yx > Conj classes <15, <2c> <y> <2cy> = |2+|2+|2+|2

: C[C2×C2] EC×C×C×C. => 4 ureduable 1-dum reps P.: XHDIY-DI P2: XHDIYHD-1 P3: X-D-1YHDI pu: x+D-1, y+D-1. Del Del del de la compa $4. G = D_{c} = \langle \infty, y | \infty^{3} = \infty^{2} = 1, y \infty = \infty^{2} y >$ Conjelasses: <1>, <x, x2>, <y, xy, x2y> => r= 3 Solve 1G1=6=n,2+n2+n3 6=12+12+22 = $D C [D_G] = C \times C \times M_2(C)$ => Do has 2 distance 1-dum neps p: x+DIY-DI p2:x+DIY-D-1 and 1 2-dim nep y - > (0 1 10 eq ps: x - D/W O 0 w" 5. De = < x, y 1 x 4 = y 2 = 1, y x = x 3 y > 100 Mx (0) M = 100 3 Conj classes: <15, <x2>, <xx3>, <y,x2y>, <xy, x3y> =D (=5 = Ce has 2 distinct lidim Solve $8 = n_1^2 + n_2^2 + n_3^2 + n_4^2 + n_5^2$ $8 = 1^{2} + n_{2}^{2} + n_{3}^{2} + n_{+}^{2} + n_{s}^{2}$ $7 = n_2^2 + n_3^2 + n_4^2 + n_5^2$ 7=1+22+1+1 $\therefore \quad \mathbb{C}[0_8] = \mathbb{Q} \times \mathbb{C} \times \mathbb{C} \times \mathbb{C} \times \mathbb{M}_2(\mathbb{Q})$ => D& has 4 distinct preducible 1-dim Neps and 1 2-dim irreducible rep. 6. Qs = <x, y 1x4=1, x2=y2, y=xy=x=1 + 11+1 Conj classes are same for D8 Solve same equations => same answers $C[Q_{S}] = C \times C \times C \times C \times M_{2}(C).$ 7. A4 = even permutations of 4 letters $= \langle \sigma \in S_{4} : sgn(\sigma) = \pm 1 \rangle$ t = (1234) = DSt = (1234)(8412) = (4321) 1234 21431 4 8 2 1 / 1234 2314

rsn'=st actal =s astal=t Conj classes: <1>, <s,t,st>, < x,xc,xcs,xct,xcst> < x2, x2s, x2t, x2sts =Dr=4 Solve $12 = n_1^2 + n_2^2 + n_3^2 + n_4^2$ 10 = 12 + 12 + 12 + 32 $: CEA_4] = C \times C \times C \times M_3(C)$ Note: Complex reps theory is "easy" since the only associative division algebras that occur over C is C itself No HI over (=) 2= Zj . It is not a C-algebra 2 Real rep theory is harder REGJ= Mn, (Di) X ... X Mn, (Or) Recall: If scele, then its conjugacy class is a f= <g'xg:geg and conjugancy classes are disjoint. Dephiltion: ZZ(CEG])= (ZE OEG]: XZ=ZX VXE CEG]] which is a subalgebra of CEG] and a C-vector subspace of CEG] by dephinon of algebra. Lomma: $\dim_{\mathcal{C}}(\mathcal{Z}(\mathcal{C}[\mathcal{G}]) = r$ proof. We know we have an isomorphism of algebras $C[G] \cong M_{h_{c}}(C) \odot \dots \odot M_{h_{c}}(C)$ which is also an isomorphism of Q-vector spaces $:= Z (C[G]) = Z(Mn, (C)) \oplus ... \oplus Z(Mn, (C))$ C €... €C. since $Z(Mni(C)) = \left\{ \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right\}$ JE COLOS C :. dimc (2/(C[G]))-r

Theorem: If G is finite then CEGJ= Mn. (C) * ... × Mn. (C) € Si'⊕...⊕Sr' where r is ones number of conjugancy classes. proof: Let x = ZAgge Z(C[G]) and conjugate theG h" (Elgg)h= Elgh"gh ZXgq G= ZXn-ghq good and and and and and and and Ag= Ah-199 YgEG YhEG. coefficients of elements of Z (CEG) are constant on conjugacy classes. So a basis for Z(C[G]) is the set of class sums of the form a which is a lineer combinction of Zig where k' are conjugacy classes : dim e 2 (C [G]) = no. of conjugacy classes Woothreelass 15 - 30-Ft red anon 19 + 60 Example of basis for Z (C[DG]) D6= < x y 1 x 3= y2 = 1, yx = x 2 y> 1° = <1> x° = < x, x2> y° = < y, x2y> > < $\mathbb{Q}[\mathbb{Q}_{6}] = \mathbb{C} \times \mathbb{C} \times \mathbb{M}_{2}(\mathbb{Q})$ A basis for Z(C[Do]) is Spe<1, x+x2, y+xy+x2y> :. dem a (Z(C[Do]) = 3. Consequence and the second of If G is knike abelian, each conj classes ki has one element so G has exactly IGI conj classes ... G has exactly IGI irreducible reps ie all ni=1 ey IGI= Zni=Dni=1 G=Cn C[[n] = C × C × ... × C (n conj classes) n times

Nice Formulas for conjugacy classes for Crix. Crs. Den, Sn.

1. If G is fince abelian Let acquer g'ag=a VgeG : a = cas Examples. $G = C_n = \langle \infty | \infty^n = i \rangle$ Let aie Cn the x-'xix=zi Vi $(x^{i})^{c_{n}} = c_{0}c_{i} > c_{0}$ 2i) G dihedral Den nois odd. If n is odd, Ozn has n+3 conjugacy classes $\langle 1 \rangle, \langle 9c, 2c^{-1} \rangle, \langle 9c^{2}, 2c^{-2} \rangle, \dots, \langle 9c^{\frac{n-1}{2}}, 2c^{-\frac{n-1}{2}} \rangle, \langle y, 9cy, \dots, 9c^{n-1} \rangle$ lq. De Dehas 2=3 conjugacy classes ×1>, < x, x 1>, < y, > cy, x 2 y > ii) a dihedral Den, niseven (mak n=2m) If n is even, then Dan has m+3 conjugacy classes $\langle 1 \rangle$, $\langle 0 c^m \rangle$, $\langle 0 c^i \rangle$; $1 \leq i \leq m - 1 \rangle$ $\langle x^{2}iy : 0 \leq j \leq m-j \rangle$, $\langle x^{2}y^{*}y : 0 \leq j \leq m-i \rangle$. eg. Ds n=4=2×2 => Ds has m+3=2+3=5 conjugacy classes <1>, <x 2>, <x , >< , >< , >< , >< , <y , x y , 3. Conjugacy classes in Sn Group elements a that decompose into cycles of the same shape are in the same conj class and there are & p(n) of them, where p(n) = partitions of n. eq. 153 has 3 conjugacy dasses <1>, <(12), (13), (23)> < (123), (132)> 2 84 1541= 4:= 24 S4 has 5 conjugacy classes 4, 3+1, 02+2, 2+1+1, 01+1+1+1 8, 00 = (sw+ w) 8 $\langle (1)^{2}, \langle (12), (13), (14), (23), (24), (34) \rangle$ $<(1,23),(124),(134),(234)\}$ <(1234)7 (products).

Tensor products .

Beware A These are not direct products VXW(SVOW) since fd vs /F. they are the second s OV CITVI is a proper subset for infihite induces but $\tilde{\Theta}$ $V \neq \tilde{\Lambda}$ V: eg. Take $V := \mathbb{R}$ $\forall i$ (1,0,...,0) $\in \bigoplus_{i=1}^{\infty} \mathbb{R}$ but $(1,1,...,1) \notin \bigoplus_{i=1}^{\infty} \mathbb{R}$ however bothe elements are in TR * for finue induces $\tilde{\textcircled{C}}, V := \tilde{f}, V :$ hence no distinction with Tensor product construction for vector spaces. The idea is to construct an IF - vector space V OF W whose elements look like Z VIQWIZ VIQWITVZQWZ +... + VEQWK. where kis arburary, not unique where viewi one the generators called simple tensons and we want - OF - to obey equivalence relations (V+V) & W = V & W + V & W $2 \vee \otimes (W + W') = \vee \otimes W + \vee \otimes W'$ 3 Keynue 2 (VOW)= 2 VOFW = VOAN where AEF, V, V'EV, W, W'EW Generally if v = Z Xivi W = ZNjWj then VOW = ZXiNj (Vi@Vj) 50 (2V1-V2) S(W1+W2) = 2V1 SW1 + 2V1 SW2 - V2 SW1 - V2 SW2 has exectly the participation of the state o and if given a basis service and structure for V and W Nespeanvely, then we want reidfj> isism to be basis for Vorth ower new space :. dem F (VOW) = dim F (V) dim F (W) Example: aim (RMOFR") = dim R(RM) dim R(R) = mn lan we make such a space exist?

Yes & main use is to external scalars

· Tensor products is a machine to turn bilinear forms into linear

Dehnihon: Given a vector space V and W, by a tensor product (V S + W) over A we mean 1 a vector space V&W 2 a bilinear map - OF -: V × W - D VOW (VIN) -DVON ·· VXW - DU, HORD A NHORD - DW 3 given any bilinear map I a unique linear map f: VOW -> Q such that f VXW f V U computes 10 f=fo-8le every billnear map can be factored through This is the universal property U.P Note: 1. To prove two tensor product spaces are isomorphic just define maps that satisfy U.P 2 Calculate using bilinearity (key rule) and don't forget, not all tensors are simple $(v_1 \otimes w_2) + (v_2 \otimes w_2) \neq v \otimes w$. Examples of Z-mods rensoned over Z. 1. Z/27 02 ZZ Z Z Z/27 Use key rule: ra @zb = a @srb Let Z/2Z = le, a} a+a=2a=e $Z_{L} = \{0, \pm 1, \pm 2, \dots, \}.$ => hence two generators e & Z, and a & Z Quintons Consider a 84 = a 82.2 = 2a 82 = 000 =DaQ2m= eom $\alpha \otimes q = \alpha \otimes q.1 = q \cdot \alpha \otimes 1 = \alpha \otimes 1$ Can add $(a\otimes 2) + (a\otimes 2) = (a+a) \otimes 2 = 2a \otimes \frac{1}{2} = e \times 2$ only have 2 elements (aon) = ananonara (eom) if neven and (aok) when k is odd =0 2/97/. 2. 21/221 8 4/321 = 507 lot Z/272 = < e, a> 2a=e

4/37/ = <e, b, 2b> 3b=e

6 elements to consider, ese, esp, eseb, ase, asb, as25. consider CAB = 20 8/2 = CA2b $e_{\otimes}b = 3e_{\otimes}b = e_{\otimes}3b = e_{\otimes}e$ $\therefore e\otimes e = e\otimes b = e\otimes 2b$ $a \otimes a b = 3a \otimes a b = a \otimes 3b = a \otimes e$ $a \otimes e = a \otimes 2e = 2a \otimes e = e \otimes e$ $a \otimes 2b = 2a \otimes b = e \otimes b = e \otimes e$. $\therefore c \otimes c = a \otimes b = a \otimes 2b$ 2/271 8 2/37/ - D fo3. ese to 0 3. Z² 8 Z² = 7/4 since Z² is a 2-dim module over Z/ Formai properties: Let U.W.V be R-mods 9.11 please and some some some some MIQUELRIUS Let R be an R-mod, then R&RV=V 2. $V \otimes W = W \otimes V$ 3. UO(VOW) = (100)OW = VOVOW $u \otimes (v \otimes w) \mapsto (u \otimes v) \otimes w$ $4 U O(V \otimes G W) - (U \otimes V) \oplus (U \otimes W)$ $U \otimes (v, w) \longmapsto P (u \otimes v, u \otimes w)$ Proof L RORV = DV LOV - DLV Danger A Z Liov: - > Zhivi is not well defined since X: Ovi as generators do not form a basis, this is why he need to use U.P. The Mapamap NRVR F: RXV3-DV is buy near $(\lambda, v) \mapsto b \lambda v$ consider - & - : KV - DR &V (Ax) - DI OV is a homomorphism of modules So $\exists a \text{ linear map} \hat{J}: R \otimes e V \longrightarrow v \quad \text{st} \quad \hat{f}(\lambda \otimes v) = \lambda v \quad \text{mutual} \\ \hat{f}(\Xi \lambda : \otimes v_{\varepsilon}) = \Xi \lambda i v_{\varepsilon} \quad \text{an where } - \otimes - \text{ and } \quad \tilde{f} \quad \text{are matching}.$ inverses $-\otimes -\circ f(J\otimes v) = -\otimes -(Jv)$ = XQV

 $\widehat{\mathbf{p}} \circ - \otimes - (\mathbf{v}) = \widehat{\mathbf{F}}(1 \otimes \mathbf{v}) = 1 \cdot \mathbf{v} = \mathbf{v}$

Tensor products of matrices over a field IF.

Let IF be a held, then Mn (IF) & Mn (IF) = Mnm (IF)

proof: Define the "secret" bilinear map $f: Mm(IF) \times Mm(IF) \longrightarrow Mmm(IF)$ by thinking of Mmn(IF) as Mm(Mn(IF)) ie let $A = (ay) \in Mm(IF)$ and $B \in Mm(IF)$ $f(A,B) = / an B a B \dots an B$

amiB - - - · amiB

F: Mm(F) OF Mn(F) - Mmn(F)

which is an isomorphism as it maps basis to basis Let key > and the key > be the basis of elementry mathces of Mm(F) and Mn(F) respectively

From det of \overline{F} , we can see $\overline{F}(e_y \otimes e_{yk}) = an elementry matrix in Mmn(F).$

Further more F is 1-1 mapping of the set sey Den's onto the set of all elementry matrices in Minn (F)

Examples (D) Mar x (BB-0 (D) all Down)

· (ab) & I2 = (cd)	19/10	(a 0	60	(D) .M
lcd/	0/6"	00	do	4×4

Tensor products of algebras ([G] over C.

Let A and B be two algebras over a field IF Then $A \otimes_{\overline{F}} B$ is a vector space over IF which becomes an algebra over IF by defining the following multiplication $(a_1\otimes b_1)(a_2\otimes b_2) = (a_1a_2\otimes b_1b_2)^2$ $(\Sigma a_1\otimes b_2) \cdot (\Sigma a_j \otimes b_j) = \Sigma a_1a_j \otimes b_2b_j$

with identity 101

Examples : 1COCA=C 2. Recall CEGI is a Chalgebra Let V& W be CIGI 105-modules, then one can define a structure of QEGI mods on VOW by defining g. (vew)=gvegw Furthe playtime with wedderburn - decompose direct products of groups using Wedderburn? We know now many irreducible neps & has since $\varphi [G] = Mn, (C) \times ... \times Mn (C)$ What about ([GXH] => CTG] @CEH] (gin) (P gon (P) chego dim a vs./q. Example : 1. We known REDGJ = (x (× Me (()) Think of C as Mill and use Mm(F) @Mn(F)= Mmn(F) CEDEXDEJ = CEDOJ @C CEDOJ $= \mathbb{E}\mathbb{C} \times \mathbb{C} \times \mathbb{M}_2(\mathbb{C}) \mathbb{I} \otimes_{\mathbb{C}} \mathbb{E}\mathbb{C} \times \mathbb{C} \times \mathbb{M}_2(\mathbb{C}) \mathbb{I}$ $= ((C \otimes C) \times (C \otimes C) \times (C \times M_2(C)))$ $(\mathbb{C}\otimes\mathbb{C}\times\mathbb{C}\otimes\mathbb{C}\times\mathbb{C}\otimes\mathbb{C}\times\mathbb{C}\otimes\mathbb{M}_2(\mathbb{C}))$ $(M_2(\mathcal{C})\otimes \mathcal{C}) \times (M_2(\mathcal{C})\otimes \mathcal{C}) \times (M_2(\mathcal{C})\otimes M_2(\mathcal{C}))$ $= \mathbb{C} \times \mathbb{C} \times \mathbb{M}_2(\mathbb{C}) \times \mathbb{C} \times \mathbb{C} \times \mathbb{M}_2(\mathbb{C}) \times \mathbb{M}_2(\mathbb{C}) \times \mathbb{M}_2(\mathbb{C})$ XM4CQ) $2 C^{(4)} \times M_2(\mathbb{C})^{(4)} \times M_4(\mathbb{C})$ 36 = 4 + 16 + 16 = 500. DE x De has 4 distant sumple 1-dum neps 2-dum neps 4 - dum neps 2. Binary Diheadral group D6 = C3 \$ X C4 has order 12 $P_6^* = \langle x, y | x^3 = y^4 = 1, y x = x^2 y >$ Conj classes: <1>, <x, xc2>, <y, >cy, >cy, >cy2>, <y2, x2y2>, $\langle y^3, xy^3, x^3 \rangle = D r = 6$ $12 = 12 \pm n_2^2 \pm n_3^2 \pm n_4^2 \pm n_6^2 \pm n_6^2$ = 12 + 12 + 12 + 22 + 22

 $\therefore \mathbb{C}[D_{0}^{2}] = \mathbb{C}^{(4)} \times \mathbb{M}_{2}(\mathbb{C})^{(2)}$ $\mathbb{C}[D_6^* \times D_6^*] = \mathbb{C}[D_6^*] \otimes \mathbb{C}[D_6^*]$ $= \mathbb{E}\mathbb{C}^{(4)} \times \mathbb{M}_2(\mathbb{C})^{(2)} \mathbb{I} \otimes \mathbb{E}\mathbb{C}^{(4)} \times \mathbb{M}_2(\mathbb{C})^{(4)}$ $(\mathbb{C}^{(4)} \times \mathbb{C}^{(4)}) \times (\mathbb{C}^{(4)} \otimes \mathbb{M}_2(\mathbb{C})^{(2)}] \times (\mathbb{M}_2(\mathbb{C})^{(2)} \times \mathbb{C}^{(4)})$ $\times (M_2(\mathbb{C})^{(2)} \otimes M_2(\mathbb{C})^{(2)})$ $C^{(16)} \times M_2(C)^{(8)} \times M_2(C)^8 \times M_4(C)^{(4)}$ 144 = 16 + 64 + 64.Induced representations. Gal: To construct a representation of G by inducing a known rep of a subgroup of G and using G's structure to make the large rep, a rep of G. Going to pick easy reps of cyclic scubgroups to induce from construction : (10) a present of the present of the Let G be a finite subgroup HCG a subgroup and V a left Thunk of Vas O[H] -module. Then construct a C[G] - module IndA(V) = CCG] @CGHS V. by doing the following .- R gisser = goner = g Make a C-vector space CEGJOCV by considering Y = <ghov -gohr I geg, het, veVs and let Ind fi (V) = CEG] OCV. 1. Define the left cosets G/H = < gH : geG > where gitt = get iff gizg ett. 2. Suppose 19/11 = n, then take <gi1..., gn to be caset representatives, for G/H ie G = II gitt. 3. Let CEGHI be the C-vector space with basis < guingers +. Define the induced CIGI-module Indi (V) = C[G/H) OCV regarding each as a c-vector space.

where g(g: 0 v) = gg: 0 v where ge G (G - action on tensors)

5. Using group relations to express simple tensors as basis in terms of a tensors

Example: $C = D_6 = \langle 1, \infty, \infty^2, y, zcy, \infty^2 y \rangle = z^3 = 1$ H = C₃ = $\langle 1, \infty, \infty^2 \rangle = z^3 = 1$ H & G (but not neccessicily) Let V be the 1-dem CEGI module where x acts by w = e 2 mis (trivially) $f: C_3 \longrightarrow GL(C)$ DC H-DW |9/+1 = 106/C3 = 2 cosesis = DHAG I can construct the induced rep by taking Q = <1, y > as coset reps So $\operatorname{Ind}_{\operatorname{cs}}(V) = \mathbb{C}[D_6] \otimes \mathbb{C}_{\operatorname{IC} \circ 3} V$ = C[0º/G] OC V = C[Q] @eV with basis 1101, yoll How do group doments act? $\infty(101) = \infty \cdot 101 = 10 \cdot \infty \cdot 1 = 10 \dots \cdot 1 = (101) \dots$ $\mathfrak{T}(y\otimes 1) = \mathfrak{T}(y\otimes 1) = y\mathfrak{T}(2\otimes 1) = y\mathfrak{T}(2\otimes 2) = y\mathfrak{T}(2\otimes 2) = y\mathfrak{T}(2\otimes 2) = (y\mathfrak{T}(2\otimes 2) + 2) = (y$ $\begin{array}{c} x \sim (\omega \circ) \\ \hline \rho_{6} \hline \rho_{6} \\ \hline \rho_{6} \hline \hline \rho_{6} \\ \hline \rho_{6} \hline \hline \rho_{6} \\ \hline \rho_{6} \hline \rho_{6} \\ \hline \rho_{6} \hline \rho_{6} \hline \rho_{6} \hline \rho_{6} \hline \rho_{6} \hline \hline \rho_{6} \hline \rho_{6}$ y(101) = y|01 = 10y1=10y (= cz) $y(y\otimes 1) = y^2 \otimes 1 = 1 \otimes 1$ (=e.) $f_{06}(y) = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ So we've constructed a dur 2-dum rep of Do. But is it the irreduable one occuring in CTDoJ = C × C × Me(C). Calculate End (pob) = \$ AE GL2(C) : Aprox) = p(x) A 1 A p(y) = p(y) A $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \sim \begin{pmatrix} a & 0 \\ 0 & e \end{pmatrix} \cong \mathbb{C} = \langle a \in \mathbb{C} \rangle$ Exercise G= Dp, H= < 1, g > = Gener Ep 7 Antiparties bar sayou t Take 1-aim CE(2)-modice mosporoung to the 11-dum Vi= Q with basis does De/ govers sygnescor > The Quer your paired

Real Regissen tabon Theony

Preven to exercise contract i
Notice evant
$$C_{2} \neq D_{0}$$

Take 1-aim $C[C_{2}]$ - uncalled rep V corresponding to the brunch
rep of C_{2}
 $f: C_{2} \longrightarrow C$
 $1 \longrightarrow P$ $g: I = 1$ where $V \ge C$ with basis fill
 $g: J \longrightarrow D$ $g: I = 1$ where $V \ge C$ with basis fill
 $g: J \longrightarrow D$ $g: I = 1$ where $V \ge C$ with basis fill
 $g: J \longrightarrow D$ $g: I = 1$ where $V \ge C$ with basis fill
 $G = < 1, c_{1}, c_{2}, c_{2} > I \ge 0$ we set of cosed reps for D_{0}/C_{2}
Construct the induced rep $:=$
 $I \mod d_{2}^{2}(p) = c CD_{0} \exists C_{1} c_{2} V$
with basis $< I \otimes I, x \otimes I, x \otimes I = x$
 $c(G) \exists C_{1} \otimes C \otimes V$
with basis $< I \otimes I, x \otimes I, x \otimes I = x$
 $c(G) = c + C_{1} = c \otimes I = x$
 $c(G) = c + C_{1} = c \otimes I = x$
 $c(G) = c + C_{1} = c \otimes I = x$
 $c(G) = c + C_{1} = c \otimes I = x$
 $c(G) = c + C_{1} = c \otimes I = x$
 $g: C \otimes I = c \otimes I = x$
 $f: C \otimes C = 0$
 $f: C \otimes C = 0$ which is not a division ring.
 $f: Ind_{c_{1}}^{2}(V) = f(C \otimes D_{1} \otimes I) = a, b \in C$
 $f: C \otimes C = 0$ which is not a division ring.
 $f: Ind_{c_{1}}^{2}(V) = c \otimes I = c \otimes I = x$
 $f: C \otimes C = 0$ which is not a division ring.
 $f: Ind_{c_{1}}^{2}(V) = f(C \otimes D_{2} \otimes I) = a, b \in C$
 $f: C \otimes I = 0$
 $f: C \otimes C \otimes M_{2}(C)$
Example G is non obelian, $\forall H \leq G_{2} = y \otimes I = 1$
 $kt = V = b = 1$ -a. In $C(C_{2}]$ -module where $x = a$ ats as if T
 $f: C_{4} \rightarrow b$ $f: C_{2} = c \otimes I = i$

-

MIS MICUELINUS

 $|Q_e/c_4| = 2$ Let $Q = \langle 1, y \rangle$ $C_4 \triangleleft Q_8$ Construct Ind $C_4(V) = Q [Q] \otimes_e V$ with basis { 101, yol}. $\infty(1\otimes 1) = \infty \cdot 1\otimes 1 = 1 \cdot \infty \otimes 1$ Qi xn = (1@1)i $x(y\otimes 1) = yx^3\otimes 1$ = y @x31 = y⊗-i = (y⊗1)-i. y(101) = y01 $y(y^*\otimes 1) = y^2\otimes 1 =$ $= 2 c^2 \otimes | = 0 c \circ 1 \otimes 0 \vee 1 \otimes 0 \circ 1 \otimes 1$ 11 0 $= 1 \otimes \chi^{2} = 1 \otimes \pi^{2}$ = (1 \oto 1) -1 Let A = (ab) $C[Q_8] = C^{(4)} \times Me(C)$ (cd) of $A_p(\alpha) = p(\alpha) A$ = (ai,-bi) (ai bi abyi lei - di/ (-ci di, A=/ a 0 = (0 - d) = pcy)A = > a= d Ap(y) = (0 - a d $A = (a \circ)$: End $\mathcal{C}(\mathcal{C}_{s})(\operatorname{Ind}_{\mathcal{C}_{s}}^{*}(v)) = \{(a \circ) : a \in \mathbb{C}\} \neq \mathbb{C}$ Oa) which is a division ring ... The rep is irreducide. Note: (13 = G, what indrive Indrive (V) = negular rep of G.

Real Representation Theoney

In general $|G| \neq 0$ in FF and G finite. Maschke's Theorems still holds so FEG] is still semisimple. $FEGJ \cong Mn$, $(D_i) \times ... \times Mn$, (Dr) where D_i are division rings over F. We are not going to put an interpration on r. But over R you can say exactly what the division rings are ?

Frozenus Theorem :

The only finite dimensional assosiative division algebras that occur over R are either i) R or u) C or u) H1.

In REG] aut three types occur. Examples:

 $R[C_{2}] \cong R \times R$ $R[C_{3}] \cong R \times C$ $R[C_{3}] \cong R^{(+)} \times H$ $R[C_{3}] \cong R \times C$ $(a^{3}-1) \qquad (a^{2}+x+1)$

rac R x RWe know REXZ/ $(x^{2}+1)$ rac rac R

 $\frac{R[\alpha]}{\alpha^{2}+\alpha^{2}} = \frac{R[y]}{(y^{2}+1)} \quad \text{if you put } y=\infty$

RECZIEROXCE.

From Wedderburn, we know CEGI = Mar(C) X ... × Mar(C) We are going to construct an explicit isomorphism G=D. WE KNOW CEDE] = C×C×M2CC) work into 1 $p_1: D_6 \longrightarrow C$ $p_2: D_6 \longrightarrow C$ $p_3: D_6 \longrightarrow C(2)$ DC - D Co 21-01 NO Y H 1-4. 4-31 4+

Let $\overline{\Phi}: \mathbb{C}[D_0] \longrightarrow \mathbb{C} \times \mathbb{C} \times \mathbb{M}_2(\mathbb{C})$ Let d= a. 1 tb x tc x 2 + dy texy +f x?y and to 11 as about P. (x) = Gtb+c+d+e+f augmentation map. J2(a) = a + b + c - d - e - f a a a a a a a a $P_3(\alpha) = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix} + b \begin{pmatrix} w & 0 \\ 0 & w^2 \end{pmatrix} + c \begin{pmatrix} w^2 & 0 \\ 0 & w \end{pmatrix} + \cdots + c \begin{pmatrix} w^2 & 0 \\ 0 & w \end{pmatrix}$ $\overline{\mathcal{D}}(\alpha) = (\rho_1(\alpha), \rho_2(\alpha), \beta_3(\alpha))$ Proposition · REQEJ = R × R × R×R×H Proof Write down irreducible reps of Qg P. : Q8 -DR P2: Q8 -DR P3: Q8 -> R act DI 2 - 2 201 SCH y - DI = Orig y - D-1 y ---- > 1 - ---- 9 Pu: Qs - DR Ps: Q - DHI DX SI E COTO TO DE DI MAGO HX CASA A LADIS 0(-)-1 y ->-1 y - Dj Dx A 2 EDJ A $\overline{D}(R(Q_8)) \xrightarrow{\sim} \mathcal{P}(R^{(4)} \times H)$ a - D (p. (a), p2 (a), fs (a), pu (a), p5 (a)). Applications : · REQSXCSJ = R [Q8] & R [C3] $(\mathbb{R}^{(+)} \times \mathbb{H}) \otimes_{\mathbb{R}} (\mathbb{R} \times \mathbb{C})$ What is HIOO? We know RORH = HI $\mathbb{R}\otimes_{\mathbb{R}}\mathbb{C}\cong\mathbb{C}$. 2. $R[Q_8 \times Q_6] = R(Q_8) \otimes R(Q_8)$ $\approx (\mathbb{R}^{(4)} \times \mathbb{H}) \otimes_{\mathbb{R}} (\mathbb{R}^{(4)} \times \mathbb{H})$ What is HI & HI? bar. We have tensored so for over base fields (and R. The distinction is that 2 x ORY = x OXY 2 ER

But I don't know what is 2084 will be.

i can't ship i over in _ OR _ but I can in _ Or ___

m	
	$-\otimes_{R}$ $ R$ C H
	REAL ROLORDON HI CHACED A HOTAL ELENTS
	C $C \times C$ $M_2(C)$ $M_2(C)$
	$M_{2} H = M_{1} M_{2} (G) = M_{4} (G) = M_{4} (G) \times (D_{2} \otimes R) $
	Proposition: $\mathbb{C}\otimes_{\mathbb{R}}\mathbb{C}\cong\mathbb{C}\times\mathbb{C}$ is an isomorphism of \mathbb{R} algebras.
	proof: Let (101, 101, 101, 101) be a basis for COR COVER
	101 is identity on LHS. For an iso I require 101 - (1.1)
	Try $\mathcal{E}_1 = (1\otimes 1) + (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d d \mathcal{E}_2 = (1\otimes 1) - (i\otimes i) d \mathcal{E}_2 = (1\otimes 1) - (i\otimes 1) - (i\otimes i) d \mathcal{E}_2 = (1\otimes 1) - (i\otimes 1) - ($
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	$E_{1} = \{(1 \otimes 1) + (1 \otimes 1)\} = \{(1 \otimes 1) \neq ($
1	$(D) M \times (D) =$
	$= g(101) + g(101) = \varepsilon, \qquad D = 0$
	4. D& (H×(*)A) 2
	: E ² =E, ie E, is independent and and and and
	MARN Summarly check $E_2^2 = E_2$ and dearly $(E_1 + E_2 = 1 \otimes 1)$
JELRIUS	$\cdot q: C \times C \longrightarrow C \otimes_{\mathbb{P}} C \otimes_{$
NIGH MICH	$(1,1) \longrightarrow (1 \otimes 1) \longrightarrow (1 \otimes 1) \longrightarrow (1 \otimes 1) \otimes (1) \otimes (1 \otimes 1) \otimes $
	1 Ma (A) & R (A) (A (A (A) (A) (A) (A) (A) (A) (A) (
	(011) - DE2 (MACAXA) MACAXA) (ALA)
	$i\mathcal{E}_{i} = i((1\otimes)) + (i\otimes c)) = i\otimes i - (1\otimes i - 1\otimes i)$
	2 2
-	$i \cdot \epsilon_2 = i ((101) - (10i)) = i 01 + 10i 000000 0 000 0 0000000000000$
	2 10 22
	9: C×C -=> D CORC 19 b
	$(1,0) \rightarrow \varepsilon_{(1,0)} = 0 \varepsilon_{(1,0)} = 0 \varepsilon_{(1,0)} = 0 \varepsilon_{(1,0)} = 0$
U	$f(0) = (i, 0) \longrightarrow 0$ $i \otimes 1 - i \otimes i$ form basis for $\mathcal{P} \otimes_{\mathbb{R}} \mathcal{L}$
	$(0,1) \vdash 0 \in \mathbb{R}^2$ $D \times D \times \mathbb{R}^2$
	$(0,i) \rightarrow 0 (\otimes 1 + 1 \otimes i)$
	R(G)= R(*)×M-(P)
	Proposition: HORC = M2 (C)
	proof? ilicit's fligs EDIA a competence and in the
	1011010000000000000000000000000000000
-	$(10) \sim (10) \sim (10) \sim (10) \sim (10) \sim (10) \sim (01)$
0	j⊗) j⊗ i () () () () () () () () () () () () ()
	$k \otimes i k \otimes i j \otimes i \sim (-i \circ) j \otimes i \sim (-i \circ)$
	$k\otimes l^{(26)}$ $k\otimes l^{(-16)}$
	These matrices form basis Ma (C) & ansage multiplication.

These matrices form basis M2(C) & preserve multiplication.

We saw that RIC3] = R × C CEC3] = REC37 OR C =(R×C) ORC = (RORC) × (CORC) = C × C × C $\mathbb{R}[Q_{6}] \cong \mathbb{R}^{(4)} \times \mathbb{H}$ $\mathbb{R}[D_{8}] \cong \mathbb{R}^{(4)} \land \mathbb{M}_{2}(\mathbb{R})$ So real rep theory allows us to distinguish between Qs and Ds. whereas CTQSJ=CTOSJ. C[DS] = R[DS] OC C $\Xi \oplus (4) \times M_2 (\mathbb{C})$ CEQ6] = REQSJOR COMPANY = (19)00-10 (10)00 = $\cong (\mathbb{R}^{(4)} \times \mathbb{H}) \otimes \mathbb{R} \mathbb{C}$ ECXCXCXCXC(HQBC) $\Xi \mathbb{C}^{(4)} \times \mathbb{M}_2(\mathbb{C})$ Proposition: Let A and B be algebras over F, then 1 Mn (A) & IF B = Mn (A ØIF B) ay Elij) Qby - (ay Qby) Elij) 2 Mn (A) & Mn (B) = Mn (A×B) [ay Easi), by Easi)] to (ay by) Easi) 3. MacF) OMmcF) = Mmn(F) - 100 = (000) Examples. A and B algebras over F > Di over R C & R Ce UHI Example: Find Wedderburn decomp of RECSXDOXOS] = RECSJOR(DS) @ REQS] Do it in sleps: - RECSTERERTY = REATY X REAL X REEL /(x-1) (32+1-V5xt1) (a2+ 1+15 x+1) 1(x5-1) RXAXCOS 2 1 1 1 2 R× C(2) REDOJ= RC2 X M2(R) (C (2) × (2) - (CXC) O(RXR) R[QG]= R^{C43}XH € (C(4) FIRST STEP: RECSI & RECSI & RECSI $\equiv (\mathbb{R} \times \mathbb{C}^{(2)}) \otimes_{\mathbb{R}} (\mathbb{R}^{(2)} \times \mathbb{M}_2(\mathbb{R}))$ = $(R \otimes R^{(2)}) \times (R \otimes M_2(R)) \times (C^{(2)} \otimes R^{(2)})$ OM2(R) = 1B(2) × M2(R) × C(4) × M2(C)(2)

Second slep: REC=×DoJ&REQ8]=ER(2) × M2(R)×C(4)×M2(C)(2)]×ER(4)×H] = $\mathbb{R}^{(8)} \times (\mathbb{M}_2(\mathbb{R}) \otimes \mathbb{R}^{(4)}) \times (\mathbb{C}^{(4)} \otimes \mathbb{R}^{(4)}) \times (\mathbb{M}_2(\mathbb{C})^{(2)} \otimes \mathbb{R}^{(4)})$ × $(\mathbb{R}^{(2)}\otimes\mathbb{H})$ × $(\mathbb{M}_2(\mathbb{R})\otimes\mathbb{H})$ × $(\mathbb{C}^{(4)}\otimes\mathbb{H})$ × $(\mathbb{M}_2(\mathbb{C})^{(2)}\otimes\mathbb{H})$ = $\mathbb{R}^{(8)} \times \mathbb{M}_2(\mathbb{R})^{(4)} \times \mathbb{C}^{(16)} \times \mathbb{M}_2(\mathbb{C})^{(1)} \times \mathbb{H}^{(2)} \times \mathbb{M}_2(\mathbb{H}) \times \mathbb{M}_2(\mathbb{C})^{(4)} \times \mathbb{M}_4(\mathbb{Q})^{(4)}$ $M_2(\mathbb{C}) \otimes \mathbb{H} = M_2(\mathbb{C}) \otimes \mathbb{H}) = M_2(\mathbb{M}_2(\mathbb{C})) = M_4(\mathbb{C}),$ A® MIQUELRIUS

Character Theory ofer C.

So the theory of IFEGJ is sound so fear The Wedderburn Decomp of $CEC_4J \ge CEC_2 \times C_2J$ but $C+ \ge C_2 \times C_2$, $CEO_8J \ge CEO_8J$ but $O_8 \ge D_8$ So we need some sort of invariant to distinguish between

groups and their group rungs. Character tables!

Theorem:

If two groups G, and G2 have the same character table => OFG,] = OFG,]

Theorem 10-10-10

ZEGJ=ZEHJ=DG=H if finite.

Character Theory of Anite groups over C.

Bosics :

Proposition: Tr(AB) = Tr(BA) IF A, BE Mn(F)

Corollary: If A and B are equivalent Tr(A) = Tr(B)proof: $Tr(B) = Tr(T^{-1}AT) = Tr(A T^{-1}T) = Tr(A)$.

Definition: Let G be 0 finite group, let V be a fd vector space over C of dumn, let $p: G \longrightarrow GLn(C)$ be a rep of G Then define mapping $X_p: G \longrightarrow C$ by $Xp(g) = Tr(p(g)) \quad \forall g \in G$.

Jargon:

1. If p is an irreducible rep, the Xp is called an irreducible character.

2. The degree of the nep $p: G \longrightarrow GLn(\Phi)$ is also called the degree of the character.

 $deq(X_p) = EV: C] = n.$

To find degree compute $X_p(I)$ for $I \in G$. $X_p(I) = Tr(p(I)) = Tr(J_n) = n = deg(X_p)$

3. A character & of degree I is called linear and its irreducible. 4: Characters are not in general group homomorphisms!

XpE: G - DC is not a group homo unless p is linear /1-dum rep 10 p: G - D GLE(C) D CLOID D COMPOSIDION CONTRACTOR Xp(gh) = Tr (p(gh)) = Tr (p(g)p(h)) = Tr (p(g)) Tr (p(h)) = Xp(g) Xp(n).

Example:

 $G = C_3 = \langle \infty | \infty^3 = 1 \rangle$ has 3 conjugacy classes $\langle 1 \rangle$, $\langle \infty \rangle \langle \infty^2 \rangle$ = $\rangle r = 3 = 0 3 = 1^2 + 1^2 + 1^2$ $RE(37 = C \times C \times C.$

Denne p::	$C_3 \longrightarrow GL_1(\mathbb{C})$	pitchol prix-DW
	x - > wir Laissin	

	1200	Conjugacy c	lasses of sund to prov	
Characters	<1>	< >c >	$\langle \infty^2 \rangle$	
X,	1	1	1	
Xz	1	A. BCW. (F)	-w2(A8) T = (8A) T	inonizont
X3	1	W2	W	

Nore: (X, +X2+X3): E-DO is a character ~ Xreg = { 3 g=1

Recall : Two reps $\sigma: G = PGLn(Q)$, p: G = PGLn(C) are conjugate/ equivalent if $\exists T \in GLn(C)$ st $\sigma(g) = T^{-1}p(g)T$ $\forall g \in G$

Ie we can go from p to σ by changing basis in $V = \mathbb{C}^n$

Proposition:

Xo= Xo if and p are equivalent

proof: Since σ and ρ are equivalent $\sigma(g) = T^{-1} \rho(g) T$ $\therefore \chi_{\sigma}(g) = Tr(\sigma(g)) = Tr(T^{-1} \rho(g) T)$ $= Tr(\rho(g) T^{-1} T)$ $= Tr(\rho(g) = \chi_{\rho}(g) \qquad \text{ aeg}$

If Xo + Xp then a and p are inequivalent reps.

Proposition characters are constant on conjugacy classes Xp is constant on conj. classes of G. Proof: Suppose g=x- ha $p(g) = p(x^{-1}hx) = p(x^{-1})p(h)p(x)$ Xplg]= Tr(p(g)) = Tr(p(x-1)p(n)p(x)) = Tr(p(n)) $\therefore \text{ If } he(g)^{6} = b \chi_{p(g)} = \chi_{p(h)}$ QED Need an example with Kg) = 2 Example : De= Kox, y 1 x3= y2=1, yoc= x2 y 2 = <1>11 < x x x 2 11 < y x y x y > 11 Consider p: 06 - BGL2(C) 2t -D(wo)y - D (0 1 (1 0 $= P p(\alpha z) = \int w^2 0$ $\forall X_p(x) = Tr(p(x)) = Tr(w 0) = wtw^2 = -1$ $10 w^2$ $X_{p}(\infty^{2}) = T_{c}(p(\infty^{2})) = T_{c}(p(\infty^{2})) = \omega^{2} + \omega = -1$ Note $\infty^{2} \in (\infty)^{p_{6}}$ Note ac 2 e (2) pe Do the same for < y, xy, x?ys Xp (y)=0 Xp (xy)=0 Conj classes Character Coc. < y, xy, xy> x25 X. X2 X3 2

Theorem : Let G be any group Let p: G - > GLm(C) be a complex rep of G V=C as C[G]-mod. Let Xp: G-DO be the charactered afforded by p The Vgea we have 1 ply) diagonalisable 2 Xp(g) is sum of rooks of unity 3 Xp(g") = Xp(q) 4 1xp(g) 1 5 m = xp(1) = dimeve < 1 p) du domove no be proof : 1. Let a be finite st I al=m. Then I g st gm = 1 so p(q) = In =>p(g) is a root of the poly xm-1 but by FTA acm-1= (x-1)(x-w,)... (x-wm) where wi= e 211 m are the engeneralized mm roots of unity since the minamal poly of p(g) divides ocm-1 it is also a product of distinct linear factors which contain the eigenvalues. 3 basis in CEGI with respect to the matrix is diagonal 0 Xp(g) = Tr (p(g)) = Tr (wi 0 = With ... + Wm works 3. Since eigenvalues associated to g' is wi' => wi' = wi' since the winane roots of unity I wil = 1 Xp(g)= w, + ... + wm p(q) = · wm $\chi_{p(g^{-1})} = \sum_{i=1}^{\infty} \omega_i^{-1} = \sum_{i=1}^{\infty} \overline{\omega}_i = \overline{\omega}_i +$

4) By mangle mequality 1× g(g)) = 1wit... + won1 5 wilt... + lwm = ~ (1) QED consequence. If grane in the same conjugacy class then - Rp(g) & R since g= x= 'g 'x =D xp(g) - xp(g') Z= = (Xp Cq) XpG) ER Xp(g-1 Example: P: Do DGLa(C) plac) = / w o $\left(O w^{2} \right)$ $\chi_p(\alpha) = \chi_p(\alpha) = \omega + \omega^2$ w+w-100.607 base - 10 2 wtw = 2 cos (2TT) ER Example IF E= Sn conj classes = permutations of scine size men each gis such mat g'e (g)" => Xp(g) CR Vg. Proposition 1G1=m Let p: G - D GLn (C) Xp: G-DC Then type G (xp(g)) = 7(1) = GED pigt=wIn WE I WILLING proot: <= Let geg gm=] If p(g)= w In where wm=1, Iw1-Xp(g)=nw

 $|\chi_{p}(g)| = (n w) = |n||w| = |n| = n$ => Suppose 1xp(g)1 = xp(1)=n wit some basis $p(q) = (w_1, o)$ wi roots of 1 lo wn 1xp(g) = 1wit... twn 1 & lwilt... + 1wn 1 ant = not prob proprio and and with equality if and on york all wi he on straight line in C Since roots of 1 => WI=WZ=..= Wn=W p(q) = w In QED. Depution: Let p: G - DGLn(C) The Remai of a character Xp: E-DC is defined as the set Ker (Xp) = KgE E : Xg(g) = Xp(1)=n > Proposition: In fact Ker (Xp) = Ker (p) = <gEG : p(g)=In> $Proof: kor(p) \leq kor(X_p)$ Suppose g is st xp(q) = xg(1) = n $|f | \chi_{p}(g) | = |\chi_{p}(i)| = n = p(g) = w \cdot Tn$ = > xp(g) = w - no = n = D w = 1 ·· p(g) = wIn = In = D geker(p) tond huse on home : Kar(xp) S has Kar(p) ON DOED. JON CO Depution: A character Xp st Ker (Xp) = <1> is called faithful character Example: Ker Do = < 1, x, x, y, xy, xy, xy x² y xy X. Justion date tot and more Xz 1=1 in grance at we allo 2 Xz \bigcirc 0 0 0 Xreg 0 6 0

$$ker (X_1) - ker (g_1) = 60;$$

$$ker (X_2) = ker (g_2) = < x > 2 C.$$

$$(i_x x^{1,2})$$

$$ker (X_2) = ker (g_2) = < 1 > ... X_2 is faithfall in an of rep-
ker (X_{reg}) = ker (g_{reg}) = <1 > ... X_2 is faithfall in an of rep-
ker (X_{reg}) = ker (g_{reg}) = <1 > ... X_2 is faithfall in an of rep-
ker (X_{reg}) = ker (g_{reg}) = <1 > ... X_2 is faithfall in an of rep-
ker (X_{reg}) = ker (g_{reg}) = <1 > ... X_{reg} is faithfall in an of rep-
ker (X_{reg}) = ker (g_{reg}) = <1 > ... X_{reg} is faithfall in an of rep-
ker (X_{reg}) = xer (g_{reg}) = <1 > ... X_{reg} is faithfall in an of rep-
ker (X_{reg}) = xer (g_{reg}) = <1 > ... X_{reg} is faithfall in an of rep-
(0 - 1) y = 0 (0 - 1) (1 - 0) (1 - 0) (0 - 1) (1 - 0) (0 - 1) (1 - 0) (0 - 1) (1 - 0) (0 - 1) (0 - 1) (1 - 0) (1 - 0) (1$$

If you have a non zero diagonal entry in the implace =15 g=gi=gi =>g=1 Only matrix that has non-zero enteres is preg(1) = In = IIGI in X reg and more fore preg are always faithful and decomposcible. Corollary 9=1 Xneg (cg) = } IGI 0 9 = 1 Example: preg : Do -> GL (((Do)) = GLo (C) Pac(gi) = acgi preg(1)= 0 <1, x, x, x, y, xy, xy) 9, 92, 93, 34, 95, 96 0 0 preg(x)=1 Xneg(1)=6 Xneg(x)=C Theorem : "Irreducible X's determine greducible neps Two war uneducible reps of & are equivalent if their charaderishes are equal Proof = > Let p & o be equivalent and imeducible alg) - T'p(g) T and apply brace $\Re \circ (g) = Tr(\circ (g)) = Tr(T' p(g)T)$ Tr (p(q)) FLet U = Si ... O Sar and V=S, "O. O.S two REGI-mode which are semisimple Show ai= bi via X's Let X1,..., X, be the meduable characters of Si's Xu = a. X. + ... + a. Xr Xv= bi X. + ... + br Xr

$$X_{n} = X_{n} = b \ (x = b) \ (x = conservations)$$

$$(conservations) \ (conservations) \ (conserv$$

: span(ez)= W is stable by Q8 Dehne p': Q8 - DGLICO t 4-t oc $P_{a}^{"}: Q_{s} \longrightarrow GL_{i}(\mathbb{C})$ x I-DI $y \leftarrow p - 1 \quad V = Span(e_1) \oplus Span(e_2)$ · p3~ ps' @ps"

IF G and H have the same character tables => CEG] = CEH] #> G=H

Nupotency and Idenpotency

Dehnubon:

Let R be a ring, then say that an element arR is nupotent if $\exists n \in \mathbb{N}$ st $a^n = 0$

Proposition:

If R is an intergral domain the only nilpotent divisor element is 0.

Proof: Let all st an=0 => a (an-1) =0 but if a ≠0 =>

Examples of nupolent elements

1. Za - 10, T, 85 00 00 00 00 00 00000000 600 00 8 30

$$0^{-0}, 3^{2} = 9 = 0, 6^{2} = 36 = 0. = D \mathbb{Z}_{9} \text{ not ID}.$$

2. $R = M\&(F) = a^{2} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = a^{2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = a^{2} \text{ is nilpotent}$

= D M2 (F) is not an ID.

We are interested in central idempolents in group rings.

Definition:

An element is eR is called idenpotent if e2=e.

Thoman : Lader polent formula

Examples: $R = \mathbb{Z}_6 \quad \text{3 is iden potent} \quad 3^2 = 9 = 3 \pmod{6}$ 2. R=M2(F) e= (10) e= (10) e is idenpoient (00) (00) 30 is e'= (00)

> : Norowoou i

Proposition IF R is an intergral elomain then the only idenpotent elements are the trivial ones 0 and 1.

Proof Let eER st e2=e = D e2-E=0

 $p_{1}=p_{2}=p_{2}=0$

But since R is ID e=0 or e=1.

Deknihon : 00 +1 31

The centre of R, Z(R) = {Z G R st \$12=Zr VrER }.

Depuninon:

An element eER is called a central idenpoient if eEZ(R) and ere.

Depnihon:

If ei, ej e R st i + j and ei and ej ane idenpotents with ei • ej = 0 we call ei and ej ormogonal idenpotents.

Example :

Suppose R=Ri×R2×R3 is a product of 3 nngs Then IER decomposes into a sum of orthogonal central idenpotents.

$$1 = (1, 1, 1) = (1, 0, 0) + (0, 1, 0) + (0, 0, 1)$$

+ l2 + l3 erej = | 0 i = j

Theorem:

Aring R can be written as a product of r subrings R.,.., Rr Iff IER can be written as a sum of centeral orthogonal Idenpolents Kei,..., ier> and in this case R:= Rei I=ei+...+er.

Theorem: Vespon (0) esp

A ring R is semisimple iff every left ideal $I \triangleleft R$ is of the form $I = \bigoplus_{i=1}^{\infty} Rei$ where each ei is an idenpotent. $R = \bigoplus_{i=1}^{\infty} Rei$

Proof: Long... show R = Re @ R(1-e) 1=e,+...+er ei=1-Z ej go on induchvely.

Deknihon:

A central inderpotent is called primative if it cannot be written as a sum of 2 central orthogonal idenpotents

Our goal is to write IERERI as a sun of orthogonal central iden potents.

where $S \in [..., Cris is a complete set of ormogonal idenpotents.$

Note: If
$$p_1 \cdots p_r : G \longrightarrow GL_{n:}(C)$$
 are the corresponding
reps of the subalgebra $C[G]$
is defining $p_i: C[G] \xrightarrow{\cong} GL_{ni}(C)$
 $p_i: (\Sigma \alpha_0 g) \longmapsto \nabla \Sigma \alpha_0 p_i(g)$
Then $p_i(Ci) = Ini \xrightarrow{\longrightarrow} Xp_i(Ci)$
 $p_i(Cj) = 0 \quad i \neq j \longrightarrow Xp_i(Cj)$

Theorem : Laden polent Formula. Let p.... for be the distinct simple reps of a finite group G, where pi: G - OGL n: (C) and Xim Xr be the where Xi(g) = Tr(pi(g)) preducible character CEGJE Mn, (C) X... X Mor(C) P, 2434 Let li be the central orthogonal idenpotent of CTG. associated with pi given in terms of Xi by the formula $\chi_i(n^{-1})h$ ei = ni IGI heG Proop: Since eiellGJ: can write E:= Z &gg Eih" = Zag(gh") Evaluate X reg on Eih Recall preg : G - D GLC(C[G7) p(q) - > 99: Then Xneg = PIGI g=1 0 941 We know CEGJ = S." G. .. OS " where Si are simple modules of degree ni corresponding to fi: G - D GLA; (C) Xneg = n.X. + ... + nr Xr = Enj Xj Apply both Kneg formules) and 2 to Eihi Xneg (Eih") = Xneg (Zaggh") = Zag Xreg (gh") g=h Xreg(1) > 1a = an IGI Xneg (Eih") = Zh; X; (Eih") XX ni Xi (h Since Xi (Eih-1) = Tr (Si ->Si) = Xi (h-') Vj(eih-')=Tr(sj ein'sj) i. * = ** an IGI=n: Xi(h-1) One

= Zaga Lann $5 \chi: (h^{-1})h$. IGI neg Example: Calculate central edenpotents of G. G=De = <xx, y 1 x3 = y2=1, y2c=x2y > CEDOJ=CXCXM2(C) P. Sz Sa P.P.2. P.3 usual neps. °€ CtDo]€: <1> < x, x 2> <4, scy, sczys X, Xz 2 W+W-1=-1 0 Xz Ei = ni Z Xich-")h IGI nea $e_1 = n_1 \ge \chi_1(n^{-1})h$ $= \frac{1}{6} \left(X_{1}(1^{-1}) + X_{1}(x^{-1})x^{2} + X_{1}(x^{-2})x^{2} + X_{1}(y^{-1})y + X_{1}(xy^{-1})xy + X_{1}(x^{2}y^{-1})xy \right)$ = 1 (X,(1)-1+X, (x2)x+X,(x)x2+X,(y)y + X(xy)xy +X, (x2y)x2y) $\frac{1}{6}(1+x+x^2+y+3cy+x^2y)$ -Ei=EI E2= = = (1+x+x2-y-x2y-x2y $\begin{array}{c} p_{3}: 0_{6} \longrightarrow GL_{2}(\mathcal{Q}) \\ x \longmapsto 0 \quad \begin{pmatrix} w & 0 \\ 0 & w^{-1} \end{pmatrix} \\ y \longmapsto 0 \quad \begin{pmatrix} 0 & 0 \\ 0 & w^{-1} \end{pmatrix} \end{array}$ (X3(1)·1+X3(x2)(x+X3(x)x2+X3(y)y+X3(xy)xy+X3(x2)xy) \$ 83 = 2 = = = (2-2-202) $\mathcal{E}_{3}^{2} = 2 - \infty - \infty^{2} \times 2 - \infty - \infty^{2}$ 3 3 3 $\frac{6-3x-3x^2}{9} = \frac{3(2-3x-3x^2)}{93} = \frac{23}{93}$ Check EI.Ez =0 E1. E3=0 E2. E3=0 E1+E2+E3=1

2. G=A4= Klis, tistia, asiact, ast, a2, a2siac2t, a2sts x~(123) 5~(12) t=(34) S2= +2= (S+)2=) x3=1 a soc -1= st r + r -1 = s 4 conj. classes <1>, <sit, st>, <x, xs, xt, xst>, <xc3, x25, x2t, x2st> 1A41=12=12+12+12+32 p. : A4 - DC p. (g)=1 VgeA4 p2: A4 - D (p2 (S) = f2(t)=1 p2(oc)=w=e^{2ri/3} p2: A4 - D (p3(5)=p3(2)=1 p3(2)=102 P4: A4 - DGL3(C) 0 1 0 $\int f_{4}(t) = \int_{-1}^{1}$ p4 (s) = (-1 P+(2c) = 0 0 100 Let X, X2, X3, X4 be the corresponding irreducible charaders. associated to pinnipt. Use them to compute the central idenpotents. $e_i = n_i \sum \chi_i(n_i)h$ IA4) hEA4 $f = E_1 + E_2 + E_3 + E_4$ 515 Koc. 200, act, acsts Sit, st> End be the control development of King. X (w2 x Xz (w) X3 (m)2 W 10 10 X4 3 origin sideala) H O e,= 12 (x,(1-1)| + x, (s-1)s +x,(t)t + x,((st))st + x, (x-1)x +...+ x, (x2st) x2st $=\frac{1}{12}(1+3+t+st+x+xs+...+xst)$ $E_1^2 = E_1$ $E_2 = \frac{1}{12} \left(1 + s + l + s + w(x + x + x + x + x + x + x) + w^2 (x^2 + x^2 +$ $E_3 = \frac{1}{12} \left(1 + 3tt + st + w^2 (x + xs + xt + xst) + w(x^2 + x^2 + x^2 t + xst) \right)$ e4 = 3/12 (3-5-t-st) We know that Xj: E-DC are constant on conj. class $\chi_{p}(x^{-1}hx) = \chi_{p}(a)$

SWIND + KIND & E KSWI WKIND

Dennison: A mapping P: G-DC is called a class function of G if g=x-1/2 = p P(q) = P(h) (4.2) Example : Character of group neps Let F= XP: G-> C + & is class Ainchon }. The Fis a C-vector space of dum=r (=namber of conj. classes) Let &= spane {x...., Xr } where x: are uneduable characters of E. Theorem: Every class function P:: G -> C can be written uniquely in the torn q= Z Aj X; Aje C Thus (X1,..., Xr > forms a basis for \$ over C. Proof We Know CEGJ = Mn, (C) x... × Mn, (C) r=no. conj. classes = no. of symple neps = no. of uned on cracles. Let KKIMIKI be the the conj classes of E. Denote by Xi: G-PC the class Auction st Xilg)=1 if geki and X: (g)=0 if get K Suppose Z 2; X; =0 Let (E. Er) be the central idenpotents of CEGI $\therefore 0 = \left(\sum_{\lambda_i \in \mathcal{X}_i} \chi_i \right) (\epsilon_i)$ = $(2 - \lambda) \chi_{i}(ei)$ en = A: X:(Ei) = Lideq(pi) Vi Positive Dephate Hermilian Forms Denninon Let V be a C-vector space, the uner product space (V, <, >) is the map <,>: V × V - D @ statislying KV, W> = KW, VS conjugate knoarchy $2 \langle V_1 + V_2, W \rangle = \langle V_1, W \rangle + \langle V_2, W \rangle$

< XV&, W> = X < VIW >

3 < VIN > > 6 with equality iff V=0

Note: < VI X WI +W2> = X < WE > + < V, W2>

Example: V=Cn <, >: Cn×Cn->	C
<x,y> = yrA</x,y>	dennite 200021 2200 200 A = D M
where A is an Hermitian positive d	examples matrix ay = aji
A = (1 2-3i) AT = (1 2 = 3i	
(2+3:4) (2+3: 4	
Depution	
Let P, V be class runchons of G. Th	en their inner product is the
complex number	
< P, 4 > = 1 > 4(q) + (q)	
Defeninon: IGI gea	= 0 around
since P, +: G-DC give complet	number.
are a leaves /LT.	and the second second
<x1, xr=""> is an orthonormal k</x1,>	Dasis of the space ? with
respect to the inner product 1 & 2	
3. < 9. \$>=1. 2 \$ (g) \$ (g)	et a be limite with (ight off) arass
Line charge in the	
$= \frac{1}{161} \sum 19(9)^{-1} \ge 0 \text{if}$	=0 -> 4(g) =0 ¥g.
Example : man and a composition	
G=C3= < > = 1>	
Western in unduraning of characters	
P 12. be to be considered a sole open	
4 21	Loss form ign tor disput methoden and for
	envering of the state of a set in a set
$\langle \Psi, \Psi \rangle = 1$ $\sum_{1 \leq 3} \Psi(g) \Psi(g)$	
	The x and the second
$= \frac{1}{3} (P(1) + (1) + P(\infty) + (\infty))$	
= 3 (1×2+1. 2:+(-1))= (e)+ (e)× (c) + (e) = (
= = (1-i) = Menser < 4, 4	23
< 4, 9 > = 3(1+i)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<1,1>= 子(1+1+1)=)	
<4,4>= + (2.2+i.i+(1))	
= = (6)=2.	divide by 161 we get
	(iprovipe) = 5 x(qi) y(qi)

MOUELRIUS.

ä.

Example $AA+G=A+= \{\sigma \in S_{4} \mid sgn(\alpha)=+1\}$ Conj class neps g= (1) g= (12)(34) g= (123) g+ = (132) @[A4]= ((3) × M3 (C) 94 X $\langle \chi, \psi \rangle = \frac{1}{|A_{4}|} \sum_{g \in A_{4}} \chi(g) \psi(g)$ = 12 (1.4+1.0 + w(w2) + w2 orthoophal $\langle \chi, \chi \rangle = \frac{1}{12} (1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 1 \cdot 1 + 4 (\omega \overline{\omega}) + 4 (\omega^2 \cdot \overline{\omega}^2))$ Proposition Let a be finite with r conj classes represented by < g.,..., grs. Let X and to be two characters of G. Then < X, Y> = < 4, X> (0) - 0 $\frac{1}{1G1}\sum_{g\in G}\chi(g) + (g')$ <X,+>= Z X&(gi) +(gi) & Calg) = fred : goerg? 16a (gi)) $\langle \chi, \downarrow \rangle \in \mathbb{R}$ Proof: since +(g-1) = +(y) $\therefore < X, \Psi > = \frac{1}{161} \sum X(y) \Psi(y)$ = iGI Z X(g) +(g-1) $= \frac{1}{|G|} \sum \chi(g^{-1}) \psi(g) \gg f(g) + f(g)$ = $\frac{1}{161} \sum \chi(g) \psi(g) =$ < 4, X> 2. 1gial = 1G1 126(9:1) Consider Z X(g) V(g) = Z 1g: 1X(g:) V(g:) divide by 161 we get <X, #S = 5 X(gi) r(gi) 1Ca (gill

5

Organomy Rolamon

3. Since	JAN AAA	< X, +>=<+, X>	הצייטונית מימתספיב
		= <x,4></x,4>	

= 5 < XIYSER.

Monvanon:

We know characters are constant on conj. classes kinning of G. So if we choose class reps of Ki Kgining of gieki, then the characters {Xininx} are completely determined by Ki(gj) =Darrange values in right

Definition:

The character bable of G is the rxr which is invertible as used characters are a basis /LI.

Xi	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	gr Xi(gr)		
χ2	X2(g1) X2(g2)	Xr(gr)	= (X:(g;));;	
Xr	Xi(gi) Xi(gz) ····			

Example: Look at Do E: table.

Theorem on meducibuly of characters.

< X: , X; >=

Let pinnight be disonct simple neps of G. Let XII......Xr. Let XII......Xr be their irreducible characters Then wit inner product, the characters form an orthonormal basis for E. This gives orthogonality relation between the rows of other characters

171

1=1 (0) 00

Orthogonality Relations

Use for constructing unknown characters from known ones, find 191, 1093)

1. The Row orthogonality relation

runs through conjugacy classe By the irreducibility Theorem < Xi, Xj > - Sij, we get $\frac{\chi_i(g_e)\chi_i(g_e)}{\chi_i(g_e)} = Sig$ E= |Calgell

2. The column orthogonality relation

"runs brough characters" X (g:) X (g;) = Sij we get Barre ICa (gi)) Xr(gi) Xr(gj) = Sij Ka(gj)) = { 1 Ca(gj) 1 same column gi~gj conjugale different columns

proof of column orthog, relation:

Depue one class Runchon V; (gi) = Si; for Isisr, (gi..., gr) conj. class neps. Since X's form a basis for the space of class functions &=> +; is a linear combination of 1 x X. 1, say 4; = Z le XE REE.

Using <X:, X;>= Six : 2x=<+j, 2x==1 >+;(g) Xx(g) IGI GEG

Now tigg)=1 if g is conjugate to g; and tigg)=0 otherwise And there are 19;" I = 1G1 elements conjugate to gj IGE(gj)

 $\chi = 1 \sum_{i \in I} \sum_{g \in g_i^{(q)}}$ tj(g) Xz(g)

KK (qj IC G(gi) Sij = 4; (qi) = Z A K K (qi) $\sum_{k=1}^{\infty} \frac{\chi_k(g_i)\chi_k(g_j)}{|CG(g_j)|}$

Examples
1.
$$e = bc = f x_{cy} [x^{3} = y^{3} = 1, y_{c} = x^{2}y^{3}$$

1. $(e = bc = f x_{cy} [x^{3} = y^{3} = 1, y_{c} = x^{2}y^{3}$
1. $(e = bc = f x_{cy} [x^{3} = y^{3} = 1, y_{c} = x^{2}y^{3}$
2. $(x = (q_{c}) + x^{2}(q_{c})) = kq_{c} [cc (q_{c}) + Sq_{c}^{3}]$
2. $(x = (q_{c}) + x^{2}(q_{c})) = kq_{c} [cc (q_{c}) + Sq_{c}^{3}]$
2. $(x = (q_{c}) + (x = (q_{c}) + (x = (q_{c}) + (x = (q_{c}) + (x = (q_{c}))) + (x = (q_{c})) + (x = (q$

proof: Let CEGJ= S,"O... O Sr" as usual with Si meducible CEGJ-modules.

Let m=dumill be the number of CCGJ-mools, Si which are somorphic to. U

Let W= U(m) = UO... OU CO lot d m Let X = sum of remaining CEGJ-submods $\therefore \mathbb{C}[G] = W \oplus X \longrightarrow \mathbb{C}[G] = (G)$ = e1+e2 $X_W = X + \dots + X = m X$ m(m) - ma(i) $\langle \chi_{W}, \chi_{W} \rangle = \langle m\chi, m\chi \rangle$ = m2 < X, X> However by considering the idenpotent e_i of W_i , where $e_i = 1 = \sum X(g^{-1})g$ we save that < Xw, Xw>=mX(1)=m² IGI gea $L = m^2 \langle \chi, \chi \rangle = m^2$ (e²=e₁) < X, X>=1 * Let Y= sum of C[G] -mods \$5: isomorphic to either U or W Let Z = sum of remaining CEGI-submods Si. Let dim (V)=n, dim (U)-m Then $C[G] \cong Y \oplus Z$ U Con la V Con XA=m Xu+nXv Til DelesDay Leanay E=/1 = m X + n 4 $\langle \chi_{y}, \chi_{y} \rangle = \chi_{y}(1) = m(\chi(1)) + n \Psi(1)$ $= m^{2} + n^{2}$ <XY, XY> =<mX+n &+, mX, n+> = $m^2 < \chi, \chi > + n^2 < \psi, \psi > + mn < < \chi, \psi > + < \psi, \chi > \psi$ $= m^{2} + n^{2} + 2mn < \chi, + 3$ $= \mathcal{D} < \mathcal{X}, \Psi > = \mathcal{O}.$ Summary:

If $C[G] \equiv S_1^n \oplus S_1^n \oplus S_1^n$ where Si are sumple C[G]-submods of dum (Si)=ni st X_1, \ldots, X_r are the irreducible characters of G then

1 < X:, X; > = S;

2 If I is any character of G then V= di X, t... + dr Xr

for some numbers non-negative intergers dri... dr st

di=ni

Example	23 of order 12 has the following 4 conf Rein the off History dall
S3 ° {	$(1)_{3} \parallel ((2), (13), (23)_{3} \parallel \{(123), \{(132)\}\}$
C[S3]	$= \mathbb{C} \times \mathbb{C} \xrightarrow{\wedge} M_2(\mathbb{C})$
	$(12) \mapsto (10)$
	$(123) \vdash D(0 \cup 1)$
	(2/2)(13)
X	(1) (12) (123)
X,	< Xw Xw = < mX, mXC> 1? 1 ? 1 ? 1 ? 1
Xz	1 -1 1 1 MEX.X32M = 1
X3	$2 \qquad 0 \qquad -1(\varepsilon_{W}\varepsilon_{W}^{-1})$
	We see that < Xwi Xw >= m Xcl) = m green man annual 61 A.
Recall	$ g^{G} = G $
	(Ca(g))
1Cs3(1)	$1 = 6/1 = 6 + 1C_{33}(12) = 6/3 = 2 + 1C_{33}(123) = 6/2 = 3$
Let 4	p be the character of the 3-durn permutation rep- of S3
P	: $S_3 \longrightarrow GL_3(\mathbb{C}) \longrightarrow \mathbb{W} \times \mathbb{V} \cong \mathbb{C}^3 = S_p(e_1, e_2, e_3)$
p(1) = 1	$(1) p(12) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 6 & 0 \end{pmatrix} p(123) = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$
acima	
Yp(1)=	3 + p(12) = 1 + p(123) = 0
	$\chi_1 + \phi_2 \chi_2 + d_3 \chi_3$
d1 = < 1	$+p, \chi, >$ (i) $+ p + (p) + p + p + p + p + p + p + p + p + p +$
= 5	$\frac{x^{2}}{G} \frac{Y_{p}(g_{i}) \chi(g_{i})}{G} = \frac{3 \cdot 1}{G} + \frac{1 \cdot 1}{2} + 0 = 1$
C=	$\frac{1}{2} \left[C_{\alpha}(q;) \right] = \frac{1}{2} \left[C_{\alpha}(q;$
de = 2	Yp, X2 >= O W X >> min + to y of >= a B K stop A >= O
	$(\Psi_{p}, \chi_{3}) = 1.$
·. 4	$= \chi_1 + \chi_3.$
Idimozdi	n Idin 2 dem

If f(dree) is a best on the induced prove of the interduced between its the dim (Si) in (Si