M204 Representation Theory Notes

Based on the 2018 spring lectures by Dr J Lamplugh

The Author(s) has made every effort to copy down all the content on the board during lectures. The Author(s) accepts no responsibility for mistakes on the notes nor changes to the syllabus for the current year. The Author(s) highly recommends that the reader attends all lectures, making their own notes and to use this document as a reference only.

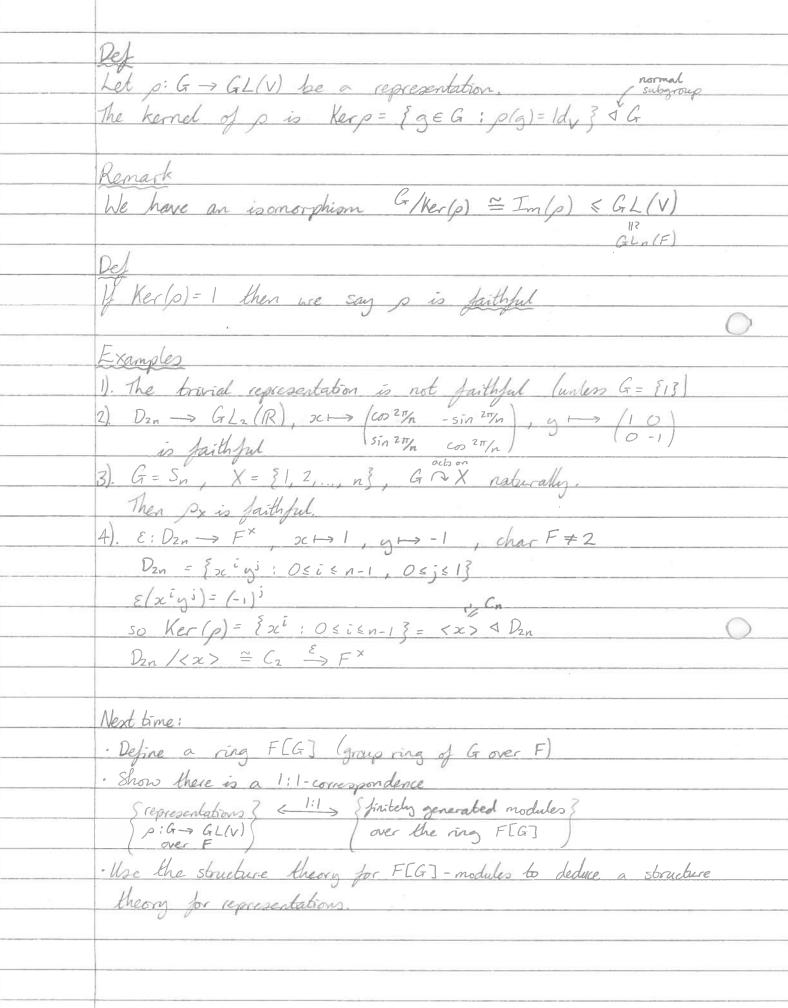
10-01-18	Representation Theory	Exam 90%.
		Coursework 10%.
	Books:	Friday -> Friday Ilam
	Fulton & Harris : Representation Theory,	Problem class: Wed 12pm
	A First Course.	
	James & Liebeck: Representations and	Office hour: Thurs 2pm Room 603
	Characters of Groups	
	la lama ella	
	Voually, given some object X we ask "	11 000 110
	symmetries?" Representation Theory asks	
	G, what objects does G act on? Can	we camp them
	up to isomorphism?"	
	1.	
	Aim /	1.1
	To understand how finite groups can act dimensional vector spaces.	on finite
	dimensional vector spaces.	
	0.7	
	lef	
-0-	Suppose F is a field and V a vector.	
	Then define GL(V) := {0: V -> V 0 is	F-linear and invertible }
	with composition of linear maps being.	the group law.
	Remark	
	If V is a finite dimensional vector space o	ver F (fdvs/F)
	of dimension n, then after choosing	an ordered basis
1	of V, we have isomorphisms V=F"	and
	GL(V) = GLn(F) = EA EMn(F): det A = C	7}
	nxn matrices wi	th weffs in F
	Notation	
	When n=1, write GL, (F)=Fx=F\{0}	

Examples 1). The trivial representation. Grany finite group, Fany field, Va Jdvs /F The boisial representation on V is p:G -> GL(V), g->ldv \qeG When V=F, then call p the trivial representation We often write p = 1 for the trivial representation. $1: G \to F^{\times}, g \mapsto 1 \ \forall g \in G$ 2). Cyclic group. Let G = Cm = <x | 2m=17, F=C, V= En What are the representations p: Cm -> GLn(c)? p is determined by p(x) =: A, since p(xi) = Ai. We also must have Am = In. If A ∈ GLn(C) is any matrix such that A" = In, then there is a representation p: Cm -> GLn(C), xi+> Ai. 3). Pihedral groups Recall: Din = < x, y | x"=1= y2, yx=x-1y) Non-trivial representation of dimension 1: To check & defines a representation, need to check $E(x)^n = E(y)^2 = 1$ and $E(y)E(x) = E(x)^{-1}E(y)$ E is non trivial if char F + 2 (e.g. F2 = 7/27) Recall: Let F be a field and let \$: \$= > F, 1 -> 1 be the unique ring homomorphism. Then charf = {0, if ker \$=0 (\$ injective) e.g. Q. R. C. (p, if ker 0 = p# e.g. Fp, Fp2, Fp(x), ... A 2-dimensional representation over R: p: D2n -> GL2(IR), x +> /cos 27/n -sin 27/n/, y +>/1 0

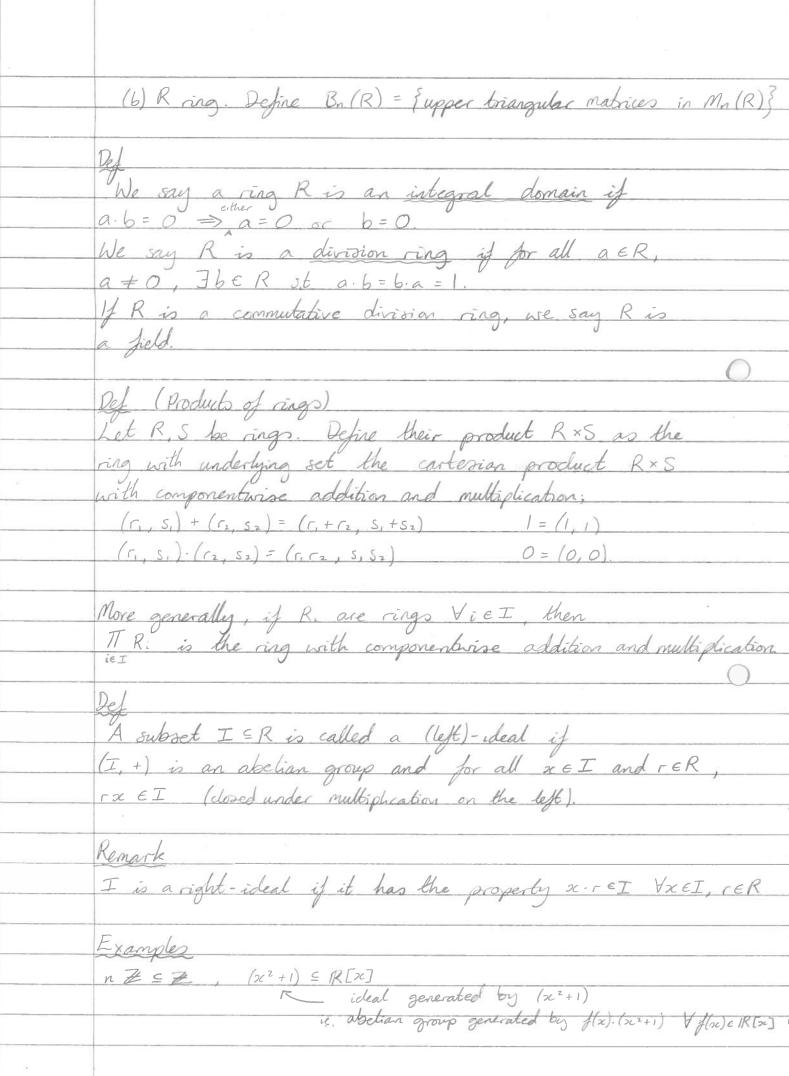
```
10-01-18
                      Check p(x)^n = p(y)^2 = I_2, p(y)p(x) = p(x)^{-1}p(y)

When n = 3, p(x) = \begin{pmatrix} -\frac{1}{2} & -\frac{13}{2} \\ \frac{13}{2} & -\frac{1}{2} \end{pmatrix}
                      Also for n=3
p': x \mapsto \{0-1\}, y \mapsto \{-1,1\}
[1,1]
                     check p'(x)3 = p'(y)2 = Iz and p'(x)p'(y) = p(x)-p'(y)
                     so p' défines a representation.
                     Check that E = det op: Dan => GL2(R) det Rx
                   Permutation representations (the left of)
Suppose G is a group acting on some finite set X,
                   with |X| = n. Let V = F[X] := \bigoplus F \cdot e_X be the free vector space on X (so V has dimension n = |X| over F,
                   and has a given basis, one basis element for each
                   element of X).
                   Define p_X: G \to GL(V) = GL(F[X])

g \mapsto p_X(g) = (e_X \mapsto e_{g,X})


identity in G group action of G on X.
                   Clearly 1 -> Idv because Px(1) ex -> e1.x = ex Vx EX

since G acbon X
                    Also px(gh) = px(g)px(h)
                   since px(gh)ex = eight.x
                   since p_{x}(gh)e_{x} = e_{(gh)\cdot x}
and p_{x}(g)p_{x}(h)e_{x} = p_{x}(g)e_{h\cdot x} = e_{g\cdot (h\cdot x)} = e_{g\cdot h\cdot x}
                  Example
                   Fany field, G= S3 = {e, (12), (13), (23), (123), (132)}
                    X = \{1, 2, 3\}, V = F[X]
                   Gacto on X in the natural way:
p_{\times}(e) = I_3, p_{\times}((12)) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, p_{\times}((123)) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ etc.}
```


MATHM204

Example (ctd) Let W = F[X] be W = F. (e, +ez+e3) and let W' & F[X] be W' = { [aie: | ai+az+a3 = 0] Check (if char F ≠ 3) F[X]= W ⊕ W' as vector spaces. px stabilises Wie. geG, weW then px(g)w EW Write pu for the representation pw:G -> GL(W), g -> px(g)/W. Also Px stabilizes W'. Pick a basis of W': W1= e1-e2, W2= e2-e3
With respect to this basis, check pro((123))=(0-1), pro((12))=(01) A matrix representation is a homomorphism p: G -> G Ln (F). Given a representation p: G -> GL(V), a subrepresentation of p (or V) is a vector subspace W=V such that W is stabilised by G (ie. p(g)w EW YgEG, weW). A subrepresentation is a representation PW: G > GL(W), g > p(g) / VgoG. If the only subrepresentations of V are O and V, we say that V is iceducible. Otherwise V is reducible. Given two representations p: G -> GL(V) and p': G -> GL(V'), and \$: V -> V' a linear map, we say \$ is a G-homomorphism or that & intertwines p and p' if $\phi \circ p(g) = p'(g) \circ \phi$ in $Hom_{F}(V, V') \forall g \in G$ i.e. $V \stackrel{p(g)}{\longrightarrow} V$ $\psi \downarrow \psi$ commutes $\forall g \in G$. $V' \stackrel{p'(g)}{\longrightarrow} V'$ We say that \$ is a G-isomorphism if \$ is bijective. Exercise: Check that if & is a G-isomorphism, so is \$-1

MATHM204	
10-01-18	
	In this case we say p and p' are isomorphic
	(or equivalent or conjugate).
	Definition
	Given two representations of Grover F,
	$p_i: G \to GL(V_i), p_i: G \to GL(V_i),$
	we define the direct sum p. op: G = GL(V, ov),
	$g \mapsto (\rho(g), \rho_2(g)), (v_1, v_2) \mapsto (\rho(g)v_1, \rho_2(g)v_2).$
0	In matrices: $\rho.\Phi p_2(g) \mapsto \{(\rho_1(g)) \bigcirc \{(\rho_2(g))\}\}$
	Def
	Two matrices A, B & Mn (F) are equivalent if 3T & GLn (F)
	such that B=T-AT
	Def.
	Two matrix representations p: G -> Gln(F), p: G -> Gln(F)
	are isomorphic / equivalent / conjugate if $\exists T \in GL_n(F)$ such
	that p'(g) = T'p(g)T \deg G.
	Remark
	For p and p' to be conjugate it is recessary that
	det (x - p(g)) = det (x - p'(g)) + g ∈ G
	(same characteristic polynomials)
	Example
	$G = C_2 = \langle x \mid 2c^2 = 1 \rangle$, $\rho: C_2 \rightarrow GL_2(Q)$
	$2 \longmapsto A = \begin{pmatrix} 7 & -12 \end{pmatrix} \qquad \begin{pmatrix} A^2 = I_2 \end{pmatrix}$ $4 & -7 \end{pmatrix}$
	Let $T = \begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$ check $T'AT = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ $\Rightarrow a = 100$ where $\epsilon \cdot (a \rightarrow 0)^{\times}$ $a \rightarrow 1$
	$\Rightarrow \rho \cong 1 \oplus \varepsilon \text{ where } \varepsilon: C_2 \to Q^{\times}, \varkappa \mapsto -1.$

MATHM204	
12-01-18	
	Last time:
	Defined representations p: G -> GL(V)
	Today:
	Define rings and modules
	Define rings and modules Later we'll describle representations as modules over
	the group ring F[G].
	Rings, algebras and modules
	Def.
	A ring R is a set with two operations + and.
	satisfying Ya, b, c & R such that
	- 30 ER st. (R, +, 0) is an abelian group
	- 31ER s.t. 1.a=a=a.1
	-(ab)c = a(bc)
	-a(b+c)=ab+ac
	-(a+b)c = ac+bc
0	In general ab # ba \frac{1}{a}, b \in R.
	In general $ab \neq ba$ $\forall a, b \in R$. If $ab = ba$ $\forall a, b \in R$, then we say R is a commutative ring.
	E da-
	Examples 1) (and 1) is a first of #17.
	1). Commutative rings: Z, Q, Z/nZ, C, 2). Non-commutative rings:
	(a) Matrix rings. Let R be a ring.
	$M_n(R) = \{(a_{ij})_{1 \leq i,j \leq n} \mid a_{ij} \in R\}$
	addition: $(a+b)_{ij} = (a_{ij}) + (b_{ij})$
	multiplication: (ab) = = = aik bk;
	(1) $ij = \begin{cases} 1 & \text{if } i=j \\ 0 & \text{otherwise} \end{cases}$
	(0) ij = 0 Vi, j

12-01-18

If an ideal is a left ideal and a right ideal then say I is a two-sided ideal

Definition (Quotient Rings) Let I = R be a two-sided ideal.

The quotient ring R/I is defined as follows:

I gives an equivalence relation on R:

arb if a-b EI.

Elements of R/I are equivalence classes under ~

written [a] = a+I.

Addition: (a+I) + (b+I) = (a+b) + I

Multiplication: (a+I)(b+I)= ab+I

Identities: 1 = 1+I, 0 = 0+I

Note that (a+I)=(a'+I) iff $a-a'\in I$, so need to check addition and multiplication is well-defined.

(Need I to be a two-sided ideal for multiplication to be well-defined

Morphisms of ings Suppose R, S are rings. A ring homomorphism Ø:R->S is a map such that \$(r, +rs) = \$(r,) + \$(r2) $\phi(r, r_2) = \phi(r,)\phi(r_2)$

 $\phi(|R) = |s|$

\$ is a cing isomorphism if I 4: S - R a ring homomorphism such that \$04 = Ids and 40\$ = IdR.

In fact, & is a ring isomorphism (=) & is a bijective ring home.

(=) Ker &= 0 (ie. {reR: Ø(r)=0}=0) and Im &= S (ie. {seS: s=Ø(r), reR})

"S)

Examples 1). \$: Z -> Z/nZ Ring, I two sided ideal, \$: R -> R/I, r -> r + I 2). R., Rz rings R. -> R. x Rz, r -> (r,0) is not a ring homomorphism since $1 \rightarrow (1,0) \neq (1,1)$. Modules over Rings Let R be a ring. A (left) R-module M is an abelian group with a map $\varphi: \mathbb{R} \times \mathbb{M} \to \mathbb{M}$, $(r, m) \mapsto r.m$, such that $1 \cdot m = m \quad \forall m \in M, \quad r(m+n) = rm + rn,$ $(r+s)\cdot m = rm + sm$, and $(r\cdot s)m = r\cdot (s\cdot m)$, $\forall r, s \in \mathbb{R}$, $m, n \in \mathbb{M}$. 1). If R is a field, modules are vector spaces.
2). If I = R is a (left) ideal then I is a (left) module Def (External) Direct sums of modules
Let M, N be two R-module. Then M&N is the following
R module: The underlying abelian group is $M \times N$, multiplication is $r \cdot (m, n) = (rm, rn)$. More generally if Mi are R-modules for iEI, define I M: as the module with abelian group TI M:, iEI with componentwise multiplication. Also, \bigoplus M_i is the R-module whose underlying abelian group is $\{(M_i)_{i\in I} \in \mathcal{T} \mid M_i : M_i \neq 0 \text{ only finitely often }\}$. Def (Submodules)
Suppose M is an R-module and $N \subseteq M$. Then we say N is a submodule if $O \in N$, (N, +, 0) is an abelian group, and $\forall n \in N, r \in R$

MATHM204	
12-01-18	
	r.nEN.
	Write N & M when N is a submodule of M.
	If N≤M, we can form the quotient module M/N.
	If $N \leq M$, we can form the quotient module M/N . Elements are equivalence classes, $m_1 \sim m_2$ if $m_1 - m_2 \in N$
	and $r \cdot (m+N) = rm+N$.
	Def (Internal Direct Sum)
	y N, N2 ≤ M are submodules,
0	N, + N2 = { mEM m = n, + n2 , n, EN, n2 E N2}
	N, n N2 = g me M meN, and me N2 3.
	If $N_1 \cap N_2 = \{0\}$ then $N_1 + N_2 \cong N_1 \oplus N_2$, write $N_1 \oplus N_2$ for $N_1 + N_2$. $N_1 \oplus N_2 = \{0\}$ then $N_1 + N_2 \cong N_1 \oplus N_2$,
	Morphisms of Modules
	Suppose R is a ring, M, N are R-modules. An
	R-module homomorphism &: M -> N is a map satisfying
	(i) $\phi(m_1 + m_2) = \phi(m_1) + \phi(m_2)$ $m_1, m_2 \in M$
	(ii) $g(rm) = rg(m)$ $r \in R$, $m \in M$
0	$\operatorname{Ker} \phi = \{m \in M \text{ st. } \phi(m) = 0\} \leq M$
	$Im \phi = \{n \in \mathbb{N} : s, e, n = \phi(m)\} \leq \mathbb{N}.$
	We say & is an isomorphism if I an R-module homomorphism
	We say \$ is an isomorphism if ∃ an R-module homomorphism \(\tau: N \rightarrow M \) st, \(\tau. \phi = Idm \) and \$\phi \cdot \(\tau = Idm \).
	\$ injective (=) Ker \$ = 0
	& is an isomorphism & & is bijective & Ker &= 0 and Im &= N.
	Examples
	1). R= Z . Z-modules are the same as abelian groups.
	2). $R^n := R \oplus \oplus R$ is an R -module
	n times

[modules over fields are vector spaces]
3). Raring, then R" is a Mn(R)-module (think of R" as column vectors).
Def
An R-module M is firitely generated (f.g.) if I a firste subset {m.,, mn} = M such that any m e M is
of the form $M = r_1 M_1 + + r_n M_n$, $r_i \in \mathbb{R}$.
We say M is cyclic if we can take n=1.
Examples 1). Any submodue of It is cyclic, i.e. all ideals of It are
cyclic. (ideals equivalent to submodules - ring module over itself) 2). R = 7 , Q is not f.g. as a #-module.
3). R^n is a f.g. R -module 4). $R[x] = \{ \sum_{n=0}^{d} a_n x^n : d \ge 0, a_n \in R \} $ is not f.g. as an R -module.
Del (simple ing)
A ring R is called simple if its only boo-sided ideals are 0 and R.
Example
Any field (or division ring) is a simple ring.
Resposition Let R be a ring. Then the two sided ideals of
$M_n(R)$ are of the form $M_n(I) = \{(a_{ij}) \in M_n(R) : a_{ij} \in I \ \forall ij\}$ for $I \leq R$ a two-sided ideal.
Part
Suppose $J \subseteq M_n(R)$ is a two sided ideal.
Let $I = \{ \alpha \in R \text{ s.t. } \exists A \in J \text{ s.t. } A_{ij} = \alpha \}$

.

Note	
Mn(F) has non-trivial (left) ideals,	
$M_n(F)$ has non-trivial (left) ideals, e.g. $C_k = \{ \begin{pmatrix} C_{1k} \\ C_{2k} \end{pmatrix} : C_{kk} \in F \}$ (1-th column space)	
is a left ideal.	
is a regional.	
Def (Simple module)	
Let M be a non-zero R-module. Then we say	
M is simple if its only submodules are O and M.	
of the property of the propert	0
Del	
A module M is called semisimple if $M \cong \bigoplus M$; where	
each Mi is a simple module.	
Examples	
1). R=F is a field	
All modules are vector spaces.	
 Simple modules are 1-dimensional vector-spaces	
All vector spaces have a basis, is all modules	
over fields are semisimple.	0_
 leig. R is a Q-vector space)	
$R = \bigoplus Q_i \mathcal{Q}_i$	
ICT	

MATHM204	
17-01-18	
	Recall:
	· A non-zero R-module M is simple if its only submodules
	are O and M
	·A module M is semisimple if M= @ Mi, where each
	A module M is semi-simple if $M = \bigoplus M_i$, where each M_i is a simple submodule.
	Examples
	1). Every module (vector space) over a field is semisimple.
	2). Consider R= Mn(F) as an R-module.
_0	As an R-module, Mn (F) = c, D D cn, each ci is the
	ith column space. In fact ci is a simple R-module
+	\Rightarrow $M_n(F)$ is a semi-simple $M_n(F)$ -module.
	Notation warning:
	Mn(F) is a simple ring but Mn(F) is not a simple
	Mr(F)-module.
	3) R= # , It is not semisomple because its submodules
	are of the form n Z for n & Z.
	As Z-modules, nZ = 50, n=0
0	$(\mathbb{Z}, n \neq 0)$
	B 7/47 is not semisimple because its submodules
	are 0, 27/47, 7/42
	# 127 = simple, (the only one).
	Schur's Lemma
	Let M, N be two non-tero simple R-modules and
	let Ø: M -> N be an R-module homomorphism.
	Then either
	(i) & is an isomorphism
	(ii) of is tero, ie. o(m)=0 Vm EM.

Recall \$ is an isomorphism \(\int \ker \phi = 0 \) and Im \$\phi = N. Suppore that & + O. Consider: Ker & & M is a submodule of M, so Ker \$ = 0 or M because M is simple. Since \$ \$0, Ker \$ \$ M => Ker \$ = 0. Consider: Im \$ < N is a submodule of N, so Im \$ = 0 or N because N is simple. Since \$ = 0, Im \$ = 0 => Im \$ = N Ker \$= 0 and Im \$= N => \$ is an isomorphism Suppose R is a ring and M= S, D. .. D Sm, N= S, D ... D Sin are R-modules with each Si, Si' simple R-modules Then if $\phi: M \to N$ is an isomorphism, we have m=n and after reordering $S_i \cong S_i'$ for i=1,...,m. Proof

Let $Y: N \to M$ be the inverse. Define $i_i: S_i \to M$, $S \mapsto (0, ..., 0, s, 0, ..., 0)$, $\pi_i: M \to S_i$, $(s_{iiii}, s_{iii}) \mapsto s_i$. $\tau: th$ place Note that $\pi_{j} \circ \iota_{i} : S_{i} \rightarrow S_{j}$, $\pi_{j} \circ \iota_{i} = \{ Ids_{i}, i = j \}$ and $\sum_{i=1}^{m} \iota_i \pi_i = Id_{M_i} (S_{1,...}, S_{m}) = (S_{1,0,...}, O) + ... + (O,..., O, S_{m}).$ Similarly define 1: 'S' N, T; N > S'. Let $\phi_{ij} = \pi_{i} \circ \phi \circ \iota_{i} : S_{i} \rightarrow S_{j}'$, $S_{i} \xrightarrow{\lambda_{i}} M \xrightarrow{\phi} N \xrightarrow{\pi_{j}'} S_{j}'$ and $V_{ij} = \pi_{i} \circ V \circ \iota_{j}' : S_{j}' \rightarrow S_{i}$ Fix i, e.g. i=1.

Consider $\sum_{j=1}^{n} \psi_{ij} \circ \phi_{ji} = \sum_{j=1}^{n} (\pi_i \psi_{1j})(\pi'_j \phi_{1i})$

```
17-01-18
                = \pi_i \psi \Big( \sum_{j=1}^n \iota_j' \pi_j' \Big) \phi \iota_i
                = \pi_i \mathcal{L} \phi_{ii} = \pi_i \iota_i = Ids_i
             For each 1 € j € n, Y; Øji: S; → S;
             and E Yis & = Idsi
             => for some 1 ≤ j ≤ n , 4; Ø; ≠ O.
             Since Si is simple, 4; $; : Si -> Si is an isomorphism
             Vijoji is the composition Si is Si Vijo Si
             and both Si and Si' are simple and neither
             Tis nor Yis can be zero
             a $ ; and 4; are isomorphisms.
             W.log. 4, $1 : S. -> S. is an isomorphism
             Let B = Sz ⊕ ... ⊕ Sm and B' = Sz' ⊕ ... ⊕ Sn'.
             Let I be the composition
             BCBM BN TB B'
         ? (se, ..., Sm) -> (0, sz, ..., Sm) -> (0, sz, ..., Sn) -> (sz, ..., Sn)
            Claim: of is an isomorphism.
            Kerf = 0:
             Suppose b∈ B st. f(b) = 0. Then Ø(b) ∈ S,'
             and Y, $\phi(b) = (\pi,' \cdot \cdot \cdot \cdot) \pi,' \phi(b)
                          = T, 4 (2, 'T, ') $ (b)
                                  Id on S_1 \leq S_1 \oplus ... + S_n = N
                          =\pi, \Psi \phi(b) = \pi, (b) = 0 \qquad (B = \ker \pi, )
            Since 4, is an isomorphism, $(6) = 0.
            Since & is an isomorphism, b=0
            => Kerf = 0.
            Imf = B':
             Given b' & B'.
```

MATH M204

Let $\Psi(b') = b + s_1$ for $b \in B$, $s_1 \in S_1$. Choose $s_1' \in S_1'$ s_2t . $\Psi_{ii}(s_1') = s_1$ (because $\Psi_{ii}: S_1' \rightarrow S_1$ is an isomorphism). Then $Y(b'-s') = Y(b') - Y(s') = b^* \in B$ since $\pi_1(Y(b') - Y(s_i')) = s_1 - s_1 = 0$. Ø(6*) = Ø4(6'-si) = 6'-si $\Rightarrow f(b^*) = \pi_{g'}(b'-s') = b'$ ⇒ Im f = B' → f: B → B' is an isomorphism. ⇒ done by induction on m. Definition Suppose M is an R-module. We define End (M) to be the ring {Ø: M -> M, R-module homomorphisms} with (\$\psi + 4/(m) = \$\psi(m) + 4(m), \$\psi(m) = \$\psi(4(m)),\$ I = ldy (ldylm) = m Vm), 0=0 (O(m) = 0 Vm). Raing, Ende (R) = $\{ \phi: R \rightarrow R, R - module homomorphisms \}$ Note that $\phi \in End_R(R)$ is determined by $\phi(1)$, since then $\phi(s) = s \cdot \phi(1) \quad \forall s \in \mathbb{R}$. Moreover, for each rER we can define or End (R) $\phi_r(s) = sr$, note that $\phi_r(i) = r$. => R -> Ende(R), r -> & is a bijection Clearly & + \$pr = \$pr+r since (\$pr+pr)(1) = r+r' = \$pr+r'(1). However, $\phi_r\phi_{r'}(1) = \phi_r(\phi_{r'}(1)) = \phi_r(r') = r'\phi_r(1) = r'r$ So fr fr = frir. Given a ring R, we define R of the opposite ring to be
the ring with the same elements and addition as R but r.s=sr
mult. 1 (mult.in
R op

17-01-18	
	Then Rop -> End (R),> Ør, Ø(1) < &
	is an isomorphism of rings.
	Examples
	1). $M_n(R)^{op} \cong M_n(R^{op})$
	A -> AT when R is commutative.
	$a_{ij} \longmapsto a_{ji}$
	2). If D is a division ring, so is DOP.
	3). $End_R(R^n) = M_n(R)^{op}$ (exercise)
	4). (R op) op = R
	Schur's Lemma (2)
-/	If M is a simple R-module, then EndR(M) is
	a devision ring.
<u>uno esserviron de la cons</u>	0.1
	Proof
	Suppose $\alpha: M \rightarrow M$ is non-zero. Then by Schur's Lemma (version!) α is an isomorphism; so
	$\exists \alpha'': M \rightarrow M$ s.t. $\alpha'' \alpha = \alpha \alpha'' = Id M$.
0	=> Ende(M) is a division ring.
	D D
	Examples
	1. If D is a division ring then Endo(D) = DOP is
	a dimina man
	2). Fis a field, $End_{\mathcal{F}}(F^2) = M_2(F)$ is not a division ring.
	(=) F2 is not simple.)
	3). $R = \mathbb{Z}$, $M = \mathbb{Q}$, $End_{\mathbb{Z}}(\mathbb{Q}) \cong \mathbb{Q}$, $\varphi \mapsto \varphi(1)$ $\mathbb{Q}^{op} = \mathbb{Q}$
	but Q is not a simple #-module, so the
	converse to Schur's Lemma does not hold,
	41. End (Z/nz) = (Z/nz) = Z/nz, n>,1.
	which is a field (n is prime.

MATAM204

Prop (Classification of simple modules) If M is a simple module over R then M is a cyclic module (i.e. M = R·m for some mEM) and M = R/I where I is the left ideal Anng(m) = 3 r ∈ R: rm = 03 for all m s.t. M=Rm. Let O≠m∈M. Then Rm ≤ M is a submodule of M ⇒ Rm = M since M is simple and m ≠ 0. >) M= R·m ∀ O≠m ∈M. Pick O + m ∈ M. Define I = Amp(m) = 3 r ∈ R: r.m = 0} Claim: B: R/I -> M, (r+I) -> rm, is an isomorphism of R-modules. Note that φ is well defined, since $(r+I) = (r'+I) \Leftrightarrow r'-r \in I$ SO $rm - r'm = (r - r')m = 0 \Rightarrow rm = r'm$ when (r+I) = (r'+I)It is surjective because M= Rm. Also if $\phi((r+I))=0 \Rightarrow rm=0 \Rightarrow r\in I \Rightarrow (r+I)=(0+I)$. The good shows that if M is cyclic, then M=R/I for some ideal I. Let R be a ring and I be a left ideal, then R/I is a simple R-module \Leftrightarrow I is a maximal left ideal (i.e. $I \neq R$ and if J is an ideal $I \leqslant J \not\in R \Rightarrow J = I$). We have a one-to-one correspondence { submodules ? <> sideals ? of R/I } (I < J < R } N < R/I -> J = {r < R: (r+I) < N}

MATH M204	
17-01-18	
	This shows that R/I is simple (=> I is maximal.
	Example
	R= Z. The maximal ideals in Z are of the form
	p# for p poine.
	p ≠ for p prime. ⇒ the simple ≠-modules are ≠/p≠ for p prime.
	Example
	Example $R = C[X] = \{ \sum_{i=0}^{d} a_i X^i : d>0, a_i \in C \}.$
0	i=0
	By the FTOA, the maximal ideals of C[X] are $(X-Z)=(X-Z)C[X]$, $Z\in C$
	$(X-z)=(X-z)C[X], z \in C$
	=> sinde C[X]-modules are of the form C=C[X]/(X-z)
	=> single $C[X]$ -modules are of the form $C \cong C[X]/(X-z)$ with $f(X) \in C[X]$ acts on C by multiplication by $f(z)$.
19-01-18	
	Characterisation of semisimple modules
	Recall: an R-module M is semisimple if M = @ Mi
0	Recall: an R -module M is semisimple if $M = \bigoplus M_i$ where each M_i is a simple submodule.
	Theorem
	Let M be an R-module. Then the following are equivalent:
	(i) M is a direct sum of simple submodules (M semisimple)
	(ii) M is a sum of simple submodules
	(iii) Every submodule N & M is a direct summand of M
	ie. There exists a complement P ≤ M s.E. M=N⊕P.
	Prost
	Proof Omitted. (see later)
143	

Example	
 F is a field, V a vector space over F, then	
V= EF.v.	
07 v EV	
Since (ii) => (i), V has a basis.	
Remark:	
By (iii) every quotient of a semisimple module is	
isomorphic to a submodule and vice versa. (If M = NOP	
then $M/N \cong P$).	
 Proposition	
 Every submodule (and therefore every quotient) of a	
semisimple module is semisimple.	
Proof	
Suppose M is semisimple and N & M.	
If P≤N is a submodule, take Q≤M such that	
POQ= M (M is semisimple) and let W = Q∩N.	
Claim: P&W=N.	
P, W & N so P+W=N and PoW=O since PoQ=O	
 and $W \subseteq Q$.	
 So we must show P+W=N.	1-21-11-11-11-11-11-11-11-11-11-11-11-11
 Suppose $n \in \mathbb{N}$, then $n = p + q$ where $p \in \mathbb{P}$, $q \in \mathbb{Q}$.	
 Then $q = n - p \in N$, so $q \in N \cap Q = W$.	
Hence (iii) holds for N, so N is semisimple.	
Def	
A ring R is (left) semisimple if every non-zero left) R-module is semisimple.	

19-01-18	
	Prop R is a semisimple ring \Leftrightarrow R is a semisimple R-module.
	Roof [⇒] by definition. [€] Let M ≠ 0 be an R-module.
	Choose a surjective R -module homomorphism $ \begin{array}{ccc} \varphi \colon \oplus R \longrightarrow \mathcal{M} & \text{(e.g. } I = \mathcal{M}) \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & $
0	Since $R = \bigoplus S$; with each S ; simple, we have a surjection $\varphi: \bigoplus (\bigoplus S) \longrightarrow M$ $i \in I (j \in J) \longrightarrow M$
	⇒ M is a quotient of a semisimple module (M=(⊕ ⊕ S-)/Ker 4) ⇒ M is semisimple.
	Prope Let R be a semisimple ring and let $R = \bigoplus_{i \in I} R_i$ where each R_i is a simple R -module.
0	Then any simple R-module is isomorphic to Ri for some iEI.
	Proof Suppose S is a simple R-module. Pick $0 \neq s \in S$, then we have a surjection $9: R \rightarrow S$, $r \mapsto rs$ and so we have a surjection $9: P : R: \rightarrow S$. Consider $9: P : R: \rightarrow S$. Each is an R -module homomorphism between simple
	R-modules, so either $4:=0$ or $4:$ is an isomorphism. Since 4 is surjective, not all $4:=0$, so $4:$ is an isomorphism for some $i \in I$.


MATHM204

Definition Let R be a commutative ring. An (associative) algebra over R (an R-algebra) is a ring A with the stombure of an R-module s.t. (i) a+b = a+b Va, b \(A, b \) A ring addition R-module addition (i) (2.a)b = 2(ab) = a(2.b) Va, b ∈ A, ZER. Equivalently, A is a ring together with a ring homomorphism 4: R -> A st. 4(R) is in the centre of A (ie. aftr) = ftr)a VrER, a EA), rmor. IA Examples J. Any ring R is a Z-algebra, 4: Z -> R, I -> IR. 2). R is a commutative ring, then R[X], the polynomial ring over R, is an R-algebra. Also Mn(R) are R-algebras, 4: R -> Ma(R), r -> r. In Note: y M is an A-module, where A is an R-algebra, then M also has the structure of an R-module. (Define r.m:= P(r)m). 3). H - quaternion algebra over R: H = R ⊕ R; ⊕ Rk, with multiplication R-bilinear and i : j = k, $j \cdot k = i$, $k \cdot i = j$ $j \cdot i = -k$, $k \cdot j = -i$, $i \cdot k = -j$ In fact H is a division ring (division algebra over R) since if a = a + bi + cj + dk let B= a-bi-cj-dk and then $\alpha\beta = \beta\alpha = \alpha^2 + b^2 + c^2 + d^2$ \Rightarrow if $\alpha \neq 0$, β is a left and right inverse.

MATHM204	
19-01-18	
	Def
	If A is an F-algebra where F is a field, then we say that A is finite dimensional
	then we say that A is finite dimensional
	if dim = A < \in , and say dim = A is the dimension of A.
	Oef.
	We say a field F is algebraically closed if every
	We say a field F is algebraically closed if every polynomial $\rho(x) \in F[x]$ has a root (i.e. $\exists x \in F : t. \rho(x) = 0$).
0	Theorem
	Let A be a finite dimensional algebra over an
	algebraically closed field F. Then if S is a
	simple A-module we have
	Enda(s) = F
	A
	Post
	Note that A-modules are F-vector spaces.
	Let 0≠ 4: S→S, 4 ∈ End _A (S), and let
	ch \(\(\times \) \(\in \) \(\times \) be its characteristic polynomial
0	as an F-linear map.
	Since F is algebraically closed, che(X) has a
	root a E F.
	Then 4- x lds is not invertible
	=> 4- alds = 0 by Schur's lemma
	$\Rightarrow \varphi = \alpha \text{ Ids}$
	Remark
	In general (when F is not algebraically closed)
	In general (when F is not algebraically closed) then End (S) is a division algebra over F.

	Lemma	
	Let M be an R-module, n >, 1, M" = 0 M.	
	Then we have $\operatorname{End}_{R}(m^{n}) \cong \operatorname{Mn}(\operatorname{End}_{R}m)^{i=1}$	
	$\phi \longmapsto (\phi_{ij})$	
	where \$i; = Ti \$i; where Ti: M" -> M, (m, ma) -> m;	
	1; : M -> M", m -> (0,, 0, m, 0,, 0)
	Proof jth summand	
	Omitted.	
	Lemma)
	If Si,, Si are pairwise non-isomorphic simple R-modules	
	and $n_{1,,n_{k}} > 1$ then $End_{R}(S_{1}^{n_{1}} \oplus \oplus S_{k}^{n_{k}}) = End_{R}(S_{1}^{n_{1}}) \times \times End_{R}(S_{k}^{n_{k}})$	
	The state of the s	
	= Mn, (EndpSi) × × Mn, (EndpSk)	
	as rings.	
	Q_1	
	Proof	
	Previous Lemma and Schur's Lemma	
	Theorem (Artin-Wedderburn decomposition theorem)	7
	Suppose A is a finite dimensional F-algebra	
	for some field F. Then A is a semisimple ring	
	$A \cong M_n(D_1) \times \times M_{n_k}(D_k) \qquad (as rings)$	
	where each Di,, Du are finite dimensional division	
	algebras over F.	
-		
	Remark	
	In the case when F is algebraically closed then	
	each D: = F and all semioimple finite dimensional	
	F-algebras are of the form IT Mn; (F).	

MATH M204	
19-01-18	0 /
	Proof
	[] on problem sheet 2 (show Mr. (Di) is semisimple Vi).
	Suppose A is a semisimple ring.
	Then $A = S_1^n \oplus \oplus S_k^k$ where $n_1,, n_k \ge 1$
	with S., Sk pairwise non-isomorphic.
	(The sum is finite because din A < 00 and
	$\dim_{\mathcal{F}} A = \sum_{i=1}^{n} n_i \dim_{\mathcal{F}}(S_i),$
0	Then EndA(A) = EndA(S," \oplus \oplus S, "h)
	≈ EndA (S, ") × × EndA (Sk"k)
	= Mn, (End (Si)) x x Mn/ (End (Sk))
Linesado	Let D: = Enda(S:).
	By Schur's Lemma each are division algebras over F.
	(Note that when F is algebraically closed each
	$End_{A}(Si) = F).$
	Endy A = AOP
	$\Rightarrow A = (A^{op})^{op} \cong (M_{n_k}(D_k) \times \times M_{n_k}(D_k))^{op}$
	$\cong M_{n_k}(D_i)^{op} \times \times M_{n_k}(D_k)^{op}$
0	= Mn. (O, op) x x Mnn (Ox op)
	Since Di is a division ring, so is Diop.
	Representations and FCGJ-modules
	Def
	Suppose G is a group, then the group ring
	of G over a field F is the following F-algebra:
	The F-vector space is FLGJ= + F.g
	The multiplication is defined to be t-trilinear
	and g.h=hg mult. in 5 grap mult in G
	Elements of F [G] are of the form \(\sigma_{\text{agg}} \) (ag \neq 0 only finitely often)

So x (Bv) = (xB)v. Conversely, if we are given an FIGI module V, then we need to show p(g): V -> V gives a representation p: G -> GL(V). (= F. e where e is the group b). Firstly note that F lies in the centre of F[G], ie if $\lambda \in F$, $\alpha \in F[G]$ then $\lambda \alpha = \alpha \lambda$ $\Rightarrow g(\lambda v + \mu u) = g(\lambda v) + g(\mu u) \qquad g \in G, \ \lambda, \mu \in F, u, v \in V$ $= (g \lambda) \vee + (g \mu) \mu$ = (Agh + pagu (Fishecentre of F(G)) = Ag(v) + pag(u) So p(g): V → V, v → gv is an F-tirear map. Since V is an F[G] - module, (gh).v = g(h.v) => p(g) . p(h) = p(gh). Also since V is an F[G]-module => e.v=v ∀v∈V where e∈G is the group identity: => ple) = ldy Note that p(g) is invertible because $p(g)p(g')=p(e)=\mathrm{id}_V$ So we have shown that $p:G\to GL(V)$ is a representation. The maps given in the proposition are mutual inverses of each other, so this is a one-to-one correspondence. Marchke's Theorem (coming soon!) The aim of this section is to prove that if G is a finite group and F is a field with char (F) X |G|, then FEGI is a semioringle ring. We'll show that if V is an FCGJ-module, and WEV a submodule, then there exists U & V another submodule with UDW=V(ie, U+W=V, UnW=0)

MATH M204	
24-01-18	
	Definition
	Let R be a ring, Man R-module, We say
	Let R be a ring, Man R-module, We say $\pi \in End_R(m)$ is a projection (or idempotent) if $\pi^2 = \pi$.
	Note
	$ \int_{-\pi}^{\pi} \int$
	Proposition
	Given an R-module M, we have a one-to-one
	Children dence:
ordered = POQ + QOP	{ordered decompositions} \iff {projections $\pi \in End_{\mathcal{R}}(m)$ } $M = P \oplus Q$
	$P \oplus Q \longmapsto \pi: M \rightarrow M, m \longmapsto p$
	where $m = p + q$, $p \in P$, $q \in Q$.
Wall Transfer	$lm\pi \oplus Ker\pi \leftarrow -1\pi$
	Proof
	$[\rightarrow]$
0	Given M = POQ, define $\pi: M \to M$ st. $\pi(m) = p$ where
	m = p+q, p∈P, q∈Q. Note that this is well defined
	since M = POQ so p, q exist and are unique.
	Suppose m=p+q, then
	$\pi^2(m) = \pi(\pi(m)) = \pi(p) = \pi(p+0) = p$
	$\Rightarrow \pi^2 = \pi$
	$\Rightarrow \pi$ is a projection in End _R (M).
	(-)
	Given TTE Ende (M) a projection, we must show
($O(m(\pi) + Ker(\pi) = M$ and (ii) $Im(\pi) \cap Ker(\pi) = 0$.
	(i) Note that m = mm + (1-11)m, Vm &M and
	$\pi(1-\pi)m = (\pi-\pi^2)m = 0$ so $(1-\pi)m \in \text{Ker }\pi$
	$\Rightarrow lm\pi + Kei\pi = M.$

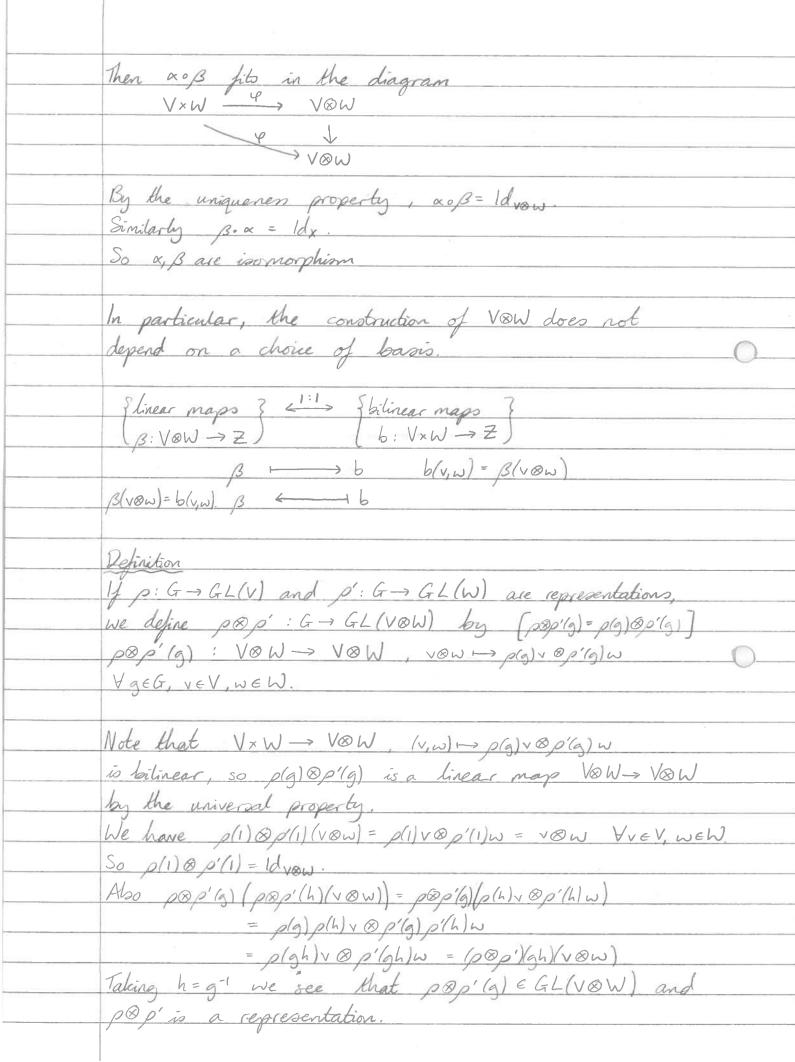
_	
	(a) Suppose m E Im An Ker IT.
	Since m & Im Ti, m = TI (n) for some n & M.
	Also $m \in \ker \pi \Rightarrow 0 = \pi(m) = \pi^2(n) = \pi(n) = m \Rightarrow m = 0$
	=> Iman Kern = O, as claimed.
	Each of the maps are inverses of each other, so
	this is a one-to-one correspondence.
	Q
	Theorem (Maschke)
	Let G be a finite group, Fa field with
	char (F) XIGI. Let V be an FGJ-module.
	Then for any F[G]-submodule U & V 3 an F[G] - submodule
	$W \leq V$ s.t. $U \oplus W = V$.
	In particular F[G] is a semisimple ring.
	Proof
	Assume U = O. Consider U, V as F-vector spaces.
	Fis a field => V is a semisimple F-module
	(V has a basis)
	=> 3 Wo ≤ V s.t. U ⊕ Wo = V as F-module (as vector spaces).
	Let To E End (V) be the corresponding projection, O
	TO2 = TO, IM TO = U, Ker TO = Wo.
	We been to into an F[G]-module homomorphism by
	an averaging process.
	Define . TI: V > V , V -> TGI JEG 3 TO (g-1V)
	note that we use IGI < 00 and IGI is invertible in F
	(char F X I G I)].
	Claim: TIZ= TE End F[G] (V) and Im(T) = U.
	Then we are done since $W := \ker \pi$.

We'll now prove the classification theorem for finitely generated semisimple modules over a finite dimensional F-algebra where F is a field. Proposition Let R be a finite dimensional F-algebra, for a field F. Let M be a finitely generated R-module (=) dim = M < 00). If R = P Fe; and Mis generated over R by rim, rm, then {eir; }, i=1,...,n, j=1,...,m span M as an F-vector space. Then the following are equivalent: (i) M = I Mi for simple submodules (ii) M = @ M: for simple submodules (ii) Y P < M, 3 N < M s.E. PON = M (ii) => (i) is clear. $(i) \Rightarrow (ii)$: Suppose that M = I Mi with Mi simple submodules. By considering dim = M, we can assume I is finite. Choose a maximal subset K = I (maximal w.r.t. inclusion) such that I Mu is a direct sum. Claim: 1 Mn = M. If not then BiEI such that Mi & DML. Consider Min (MR Mn). This is some submodule of Mi, and Mi simple, Mi & DR MK SO MIN DR MK = O. ⇒ (⊕ Mu) ⊕ Mi is a direct sum, which contradicts the maximality of K (KC Ku [i]) (ii) ⇒ (iii) Suppose M = @ Mi with Mi simple submodules. Note that I is finite. Suppose P = M. Let J = I be maximal such that Pn (m;) = 0

	We'll prove later that if F=R, then each Di is
	either R, C, or H.
	As an $M_n(D)$ -module, $M_n(D) \cong S^n$ where $S = D^n$
	and Mn(D) acts on S low matrix multiplication on
	column vectors.
	\Rightarrow $F[G] \cong S_i^{n_i} \oplus \oplus S_r^{n_r}$ as an $F[G]$ -module, where each S_i is simple, $S_i \cong D_i^{n_i}$.
_	each Si is simple, Si = Di.
_	=) each simple module over F[G] is of the form Si
	for some i.
	(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
	We have dim (Si) = dim (Dini) = ni dim (Di).
	Now assume F= a (char F= O and F algebraically closed).
	$\Rightarrow C[G] \cong M_{n_{\epsilon}}(C) \times \times M_{n_{\epsilon}}(C)$ as rings (dx)
	= S," x x S" as C[G] modules
	and dim (Si) = ni
	Take dima of both sides of (*)
	$\Rightarrow G = n_1^2 + \dots + n_r^2$
	We'll now show that r = # conjugacy classes of G.
	Definition
	The centre of a ring R is Z(R) = {rER : xr = rx \tank{x} \tank{x} \text{ER}}
	It is a ring itself.
	For R = C[G] it is clear that Z(C[G]) is a C-algebra,
	and so is a C-vector space.
	5

N/A1 H111204	
26-01-18	
San	Lemma
	Suppose C[G] = Mn, (C) x x Mn, (C), then
	dime (Z(C[G])) = c
	Proof
	$Z(C(G)) = Z(M_{n_{\epsilon}}(C)) \times \times Z(M_{n_{\epsilon}}(C))$
	But $Z(M_n(C)) = C \cdot I_n \cong C$ is the subring of scalar matrices.
	⇒ Z(C[G]) ≈ C×× C (r times)
	⇒ dime Z(C[G]) = r'
0	
	Theorem
	dim (Z(C[G])) = # conjugacy classes.
(A) 1 =3	
	Remark: This is true for all fields, not just F = C.
	Proof 5 2 (8507)
	Suppose $x = \sum_{g \in G} \lambda_{g} \in \mathcal{Z}(C[G])$
	9eG ~ 3
	Then for all he G we have h'xh = x
0	E) Z 7, h-gh = E 2, g YhEG
	geG 9eG
	Ag = Angh- Yg, h & G
	Then as a C-vector space Z(C[G]) has a basis
	given by { [gek; g] where { Ki} are the conjugacy classes
	of G.
	⇒ din = Z(C[G]) = # conjugacy classes of G.
	Finite abelian groups
	Suppose G is a finite abelian group. Then G=Ca, x xCd.
	$\Rightarrow G \cong \langle \sigma_i \rangle_{\times,, \times} \langle \sigma_t \rangle.$
	$C[G] = M_{n_{1}}(C) \times \times M_{n_{2}}(C)$
	G = n,2 + + n-2 and r = * conjugacy classes = G .
	V [] J

=> each ni =1 ⇒ C[G] = C× ... × C (rcopies) as rings = C ⊕ ... ⊕ C (r copies) as modules. All simple modules of CCGI are 1-dimensional; and There are I non-isomorphic simple modules. -> There are exactly r=1G1 irreducible representations (up to isomorphism) of G over C, and each are one dimensional. Explicitly if G = Cd, x ... x Cd = (0, > x ... x < 0 t > then for each t-tuple m = (m, ..., mt) \ Zt with 0 \ m: \ d: -1, We have a representation $p_m: G \to \mathbb{C}^\times = GL, (\mathbb{C}),$ $\sigma_j \mapsto e^{2\pi i m_j/d_j} \quad \forall j=1,...,t.$ In the 1-dimensional case, two representations p, p2: G-> GL, (c) = Ex are isomorphic (they are equal. If ITEGL(C) = Cx s.t. Tp,(g) T' = pz(g) tg & G => p.(g) = pz(g) \deg = G (since GL, (I) commutative). There are dix... x dt = |G| choices for m and each gives a different representation. Example $G = D_6 = \langle x, y | x^3 = y^2 = 1, yx = x^2y \rangle$ Notation: If g & G, write g = {h'gh: h & G } for the conjugacy class of g. $1^{06} = \{1\}$, $x^{G} = \{x, x^{2}\}$, $y^{G} = \{y, xy, x^{2}y\}$ $\Rightarrow C[D_6] \cong M_{n_1}(C) \times M_2(C) \times M_3(C) \text{ and } n_1^2 + n_2^2 + n_3^2 = 6$ $\Rightarrow n_1 = n_2 = 1$ and $n_3 = 2$ => Do has exactly 3 ineducible representations over C, up to isomorphism, but are 1-dimensional and there is a unique 2-dimensional representation

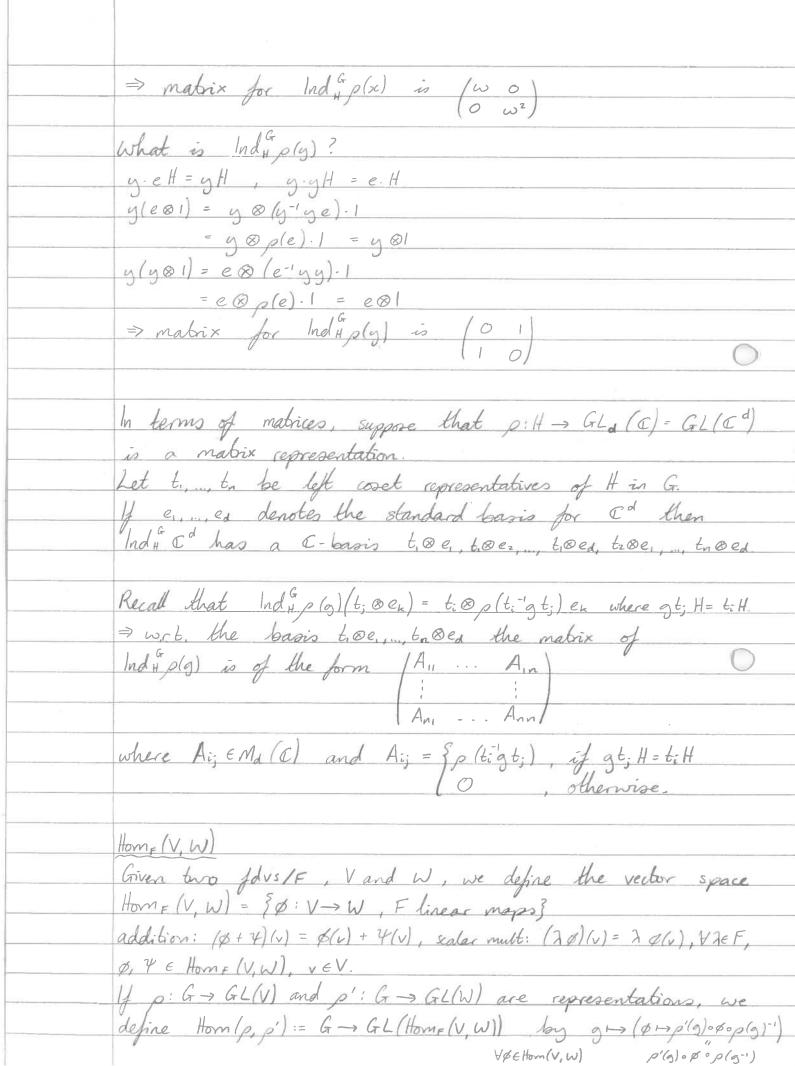

31-01-18	
01 01 10	Recap
	G finite group, $C[G] \cong M_{n_{\star}}(C) \times \times M_{n_{\star}}(C)$ as rings
	(Maschke + Artin - Wedderburn).
	$C[G] \cong S_r^{\oplus n_r} \oplus \oplus S_r^{\oplus n_r}$ as $C[G]$ -modules,
	each Si is a simple C[G]-module and dime Si = ni.
	Under the correspondence
	{repop: G→GL(V)} ←> {f.g. C[G] mods?
	{repop: G -> GL(v)} \iff \{f.g. C[G] mods.}
	irreducible reps <> simple C[G]-modules
0	
	Recall that if R is a semisimple ring and if R = R, D DRm as an R-module with each Ri simple, then every simple module over R is isomorphic
	R=R, O ORm as an R-module with each Ri
	simple, then every simple module over R is isomorphic
	W N. Jor some i.
	=> C[G] is semisimple and so any simple module is
	isomorphie to Si for some i.
	Alternatively, any irreducible representation of G is
	isomorphic to p: G -> GL (Si).
	Any representation p: G -> GL(V) is isomorphic to p. om. D op. om: dime pi = m:
0	p. Dm. Dp. Om. dime pi = mi
	We proved Ini = IGI and r = # conjugacy classes of G.
	Remarks
	1). Since the brivial representation p: G -> GL, (C) = Cx, g -> 1
	is irreducible we may assume n.=1.
	2). C[G] is abelian (commutative) (G is an abelian group
	$M_n(\mathbb{C})$ commutative $\Leftrightarrow n=1$
	So G is abelian \Leftrightarrow C[G] is commutative
	⇔ C[G] ≅ Cx× C (all n=1)
	In particular it G is not abelian there exists an

irreducible representation p: G-> GL(V) with dimp>1.
3). Y G, H are finite abelian groups, C[G] = C[H]
 3). If G, H are finite abelian groups, C[G] = C[H] ⇒ G = H (eg. C[C+] = C[C+C2])
but this isomorphism is non-caronical
New representations from old
Lifting representations
Suppose N & G is a normal subgroup and
p: G/N → GL(V) is a representation
Then we can lift is to a representation
p: G > GL(V), g > p(gN)
To see that p is a group homomorphism, p=pon where
Ti: G -> G/N, g -> gN, is the quotient map, and the
composition of two group homomorphisms is a group hom.
Conversely if p: G > GL(V) is a representation with
N≤ Kerp then p is lifted from some p: G/N→GL(V),
 gN -> p(g) (p is well-defined since N = Kerp).
[g=g'n, nEN => p(g)=p(g')p(n) => p(g)=p(g') since N = Ker(p)]
0
In particular une have a one-to-one correspondence
{ representations p:G >GL(V)? < > Sepresentations ?
Exercisentations p:G >GL(V)? (=) Supresentations? (with Kerp? N) (p:G/N -> GL(V))
 § irreducible reps p: G → GL(V)? <=> \$ irreducible reps. }
Sirreducible reps p:G > GL(V)? () Sirreducible reps. 3 with Kerp ? N) (~ :G/N -> GL(V))
2
y p: G → GL(V) is a representation of G with Kerp ∈ N we say that p factors through G/N. G → GL(V)
we say that a factors through G/N. G - GL(V)
we say that p factors through G/N. G - GL(V)
G/N

Restriction G is a finite group. H=G a subgroup, then if p:G-GL(V) is a representation, we define $Res_{H}^{G} p: H \rightarrow GL(V), h \mapsto p(h).$ We write the corresponding C[H]-module as Res HV. More generally if f: H -> G is a group homomorphism, then if p: G -> GL(V) is a representation, then Dof: H -> Col(V) is a representation. Other examples of f could be f: G -> G = Aut (G). Correction: 02-02-18 Srepresentations? \Longrightarrow Srepresentations? $\wp: G \to GL(V)$ $\wp: G \to GL(V)$ with $N \le Kerp$ Last time: Lifting and restricting representations. $\begin{cases}
1-d_{m} & \text{(eps } 3 \iff \text{Simeducible reps } 3 \\
p: G \to C^{\times}
\end{cases}$ $\begin{cases}
p: G \xrightarrow{ab} \to C^{\times}
\end{cases}$ where Gab = G/(G,G], [G,G] = < [g,h]:g,h & G > , [g,h] = g-'h-'gh Remarks (to help calculate [G, G]) 1). [G, G] is the smallest normal subgroup st. G/CG, G] is abelian, ie if NOG is normal with G/N abelian, then [G, G] < N 2). If g., ..., gt generate G and if NOG is normal in G, then g.N,..., g+N generate G/N. So G/N is abelian ([g:,g;] EN Vi, Hence [G, G] is the smallest normal subgroup containing [gi, gi] Vi; 3). A subgroup H & G is normal (H is a union of conjugacy classes

```
MATHM204
02-02-18
              Example
              Let nyl be even.
              O_{2n} := \langle x, y : x^n = y^2 = 1, yx = x^- y \rangle = \{ x^i y^j : 0 \le i \le n - 1, 0 \le j \le i \}
              Conjugacy classes
                x-1yx = x-2y = xn-2y
              \frac{x^{-1}(x^{i}y)x}{x} = x^{-2}x^{i}y = x^{i-2}y
              y-124 = x-1y2 = x-1 = x1-1
              y'xiy = (y'xy)i = x-i = xn-j
               y-1/xiy)y= x-jy = xn-jy
              The conjugacy classes are
               {1}, {x, x^{n-1}}, {x^2, x^{n-2}}, {x^{n/2}}
               \{y, x^{n-2}y, x^{n-4}y, \dots, x^2y\}, \{xy, x^{n-1}y, \dots, x^3y\}
              So Den has 1/2 + 3 = n+6 conjugacy classes
              21, y generate Dan.
              [x,y] = x-1y-1xy = yx2y = x-2 = xn-2 (y=y-1)
              Let N= < x-2 > = {1, x2, ..., xn-2}.
              Then N is normal (it is a union of conjugacy classes)
              and since N = < [x, y] this is the smallest normal
              subgroup containing [x,y] => N= [G,G]
              INI = 1/2 So IGab = IGI/INI = 4
              => If is even, Drn has exactly 4 1-dimensional representations
                  Gab = C2 × C2 = < × N> × < yN>
              Consider C[Dzn] = Mm, (C) x ... x Mm, (C), m.c. cm.
             We have r = # conjugacy classes = (n+6)/2
              m,=,,=m4=1, m5,,,,m, 32
              We also have |D2n = 2n = m,2+,,+m,2 = 4+ Em;2
                                     > 4+22(r-4) with equality => m5= ... = mr = 2
                                       =4+4\left(\frac{n+6}{2}+4\right)=4+4\left(\frac{n-2}{2}\right)=4+2n-4=2n
              > Ms= ... = m_ = 2
              In conclusion, Drn (even) has 4 1-dim, reps, n-2 ined 2-dim reps. up
```

to isomorphism, and no issed ceps. of dim > 2.
The dual representation
Definition
Suppose that V is a vector space over a field F, then its
dual space is defined by V":= Hom=(V, F)= {Ø:V>F, F-linear maps}
$(\lambda \varnothing)(v) = \lambda \varnothing(v)$, $\forall \lambda \in F$, $\varnothing \in V^*$, $v \in V$, $(\varnothing + \Psi)(v) = \varnothing(v) + \Psi(v)$
$\forall P, \gamma \in V^*, \forall \in V.$
If V is a fdvs/F with basis e, , en then V = V
(but not canonically), ei + ei, where ei * iV -> F, e; +> Sij = {1 i=j.
We call e, en " the dual basis of V" w.r.t. e,, en
y p: G → GL(V) is a representation then the dual representation
is p*:G -> GL(V*) defined by p*(g): V*-> V*, Ø >> p*(g) &
where (p*(g)\$/v) = \$(p(g-1)v) \ \forall g \in G, & \in V*, v \in V.
Exercise
Check p* is a representation, i.e. p*(1) = Idy*, p*(gh) = p*(g)p*(h),
Tensor products
F field, V, W fdvs/F.
dim V=m, dim W=n. Choose a basis {v,, vm} of V and
a basis {w, w, w, of W.
The tensor product V&W = V&W is an mn-dimensional
vector space over F with basis {vi &w ! si sm, sjsn }.
Addition: Exig View; + Emig View; = E(xij+mig)view;
multiplication: 2(∑µi; Vi &w) = Z >µi; Vi ⊗w;
(free vector space on Vi@W;).



02-02-18	
	In terms of matrix representations
	Pick a basis {v,, vm} of V and a basis
	[w, w, w, 3 of W.
	Then {V, & W, V, & W2,, V, & Wn, V2@W, ,, Vm & wn} is
	a basis of VOW.
	Suppose p(g) has matrix A = (a;) & GLm (C),
	and p'(g) has matrix B = (bi;) & GLn (C).
	Then pop'(g) (v; ow) = p(g) v; op'(g) wi
	$= \left(\sum_{i \in I} a_{ij} \vee_{i}\right) \otimes \left(\sum_{k \in I} b_{kl} \omega_{k}\right)$
0	
	= ∑aij bki Vi ⊗Wk
and the second	Label the rows and columns of pop'(g) & GLmn (c) by
direct	pairs (i,k), 1 \(\int i \in m, 1 \in k \in n, corresponding to \(\nu_i \omega \omega_k \omega
	Let C=p@p'(g) & GLma(C).
A 1915	$C = (C_{(i,k)(j,l)})$ with $C_{(i,k)(j,l)} = a_{ij} b_{kl}$
	=> C = \ a_11 B a_12 B a_1m B
	a21 B
0	ami B amm B/
	Example (0-1) (-10)
	p: D8 -> GL2(C), 2 -> (° 0), y -> (° 0),
	$E: D_8 \to \mathbb{C}^{\times}$, $\chi \mapsto 1$, $g \mapsto -1$, then
	$p\otimes \varepsilon(z) = \begin{pmatrix} 0.1 & -1.1 \\ 1.1 & 0.1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$
	$p \otimes \mathcal{E}(y) = \begin{pmatrix} -1 \cdot (-1) & 0 \cdot (-1) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 \cdot (-1) & 1 \cdot (-1) \end{pmatrix}$

07-02-18 How to calculate [G, G] and therefore how to calculate Galo and the 1-dimensional representations of G · Tensor product of representations · Induction of representations · If time permits, Hom (V, W). Induced representations Gafinite group, H & G a subgroup. Suppose that p: H -> GL(V) is a representation. We construct a representation Ind # p of G in the following way: Choose a set of left coset representatives of H, i.e. elements $t_1, ..., t_n \in G$ s.t. $t_1 H \sqcup ... \sqcup t_n H = L(where n = [G:H])$. The underlying vector space for $Ind_H^G V := \bigoplus_{i=1}^n t_i \otimes V$. Here ti &V is the vector space V, but write v EV as Element of Ind H(V) are of the form \$\sum_{i=1}^{n} t_i \otimes v_i for vieV. We define $\operatorname{Ind}_{H}^{G}: G \to GL(\operatorname{Ind}_{H}^{G}(V))$ so that $\operatorname{Ind}_{H}^{G}\rho(g)(t_{i}\otimes_{V}) = t_{j}\otimes_{\rho}(t_{j}^{-i}gt_{i})_{V}$ where $gt_{i}H = t_{j}H$ for some Remark Recall that G acts on the left coacts G/H, so if g, h & G and ht; H = t; H and gt; H = t k H, then (gh) tiH = t k H. Note that since gtiH=t;H, we have that t;gti∈H and so p(t; gti) makes sense.

```
MATHMZOA
07-02-18
              It is clear that Indiff p(e) = Id_{Indiff}(v) where each is the group identity.
              Let's check Ind # p(gh) = Ind # p(g) . Ind # p(h)
              We check that Ind "V is an F[G]-module:
                g(h(ti &v)) = g(t; & t; htiv) where t; H=htiH
                                   = th & (thigt; t; "htiv) where th H = gb; H
                                   = tr& (trightiv)
                                  = (gh) tiev since ghtiH = tn H
             This is true for all i \in \{1, ..., n\} and v \in V, so lnd_H^G p(gh) = lnd_H^G p(g) \cdot lnd_H^G p(h) since elements of the form ti \otimes v span lnd_H^G V
             Taking h = g^{-1} we see that \ln d + g(g) \in GL(\ln d + V) and so \ln d + g is a representation.
              Example G = 0 = (x, y | x^3 = y^2 = 1, y = x^2y)
             Example
              H = \langle x \rangle \cong C_3
              H = \langle x \rangle \cong C3
Let p: H \to C^{\times}, x \mapsto \omega = \exp(2\pi i/3)
              Calculate Ind # p: Do -> GL2 (C)
              G = e \cdot H \cup gH so take b_1 = e, t_2 = g.

Ind_H p acts on (e \otimes C) \oplus (g \otimes C) which has basis
              ell and yel.
             What is Indip (x)?
              We have x. eH = eH and scy H = yH
              x (e81) = e8 (e-1xe).1
                          = e \otimes p(x) \cdot 1 = e \otimes \omega = \omega(e \otimes 1)
              x(y&1) = y&(y-1xy).1 = y&p(y-1xy).1
                                                                                y-1 xy = x2
                         = y0p(x2).1 = y0w2 = w2(y01).
```


-	
	Lemma
	We have an isomorphism of F[G]-modules
	1,1/* 811 = 1 - 1/11
	\$ & w - Tom (V, W) \$ & w - Tom (V, W) Where pw: V -> W is the map V -> \$(v). W
	© F
	Proof
	Note that V* × W -> Hom= (V, W) is a boilinear map,
	Pick a basis Vy, , vm of V over F and a basis
	Wi, m, wa of W.
	Then v, *,, vm* is a basis of V* (vi*(vj) = Sij = {o else}
	Then {v;* & wi} is a basis for V* & W.
	y x: V → W (x ∈ Hom = (V, W)) then there exist
	$a_{ij} \in F$, $1 \le i \le n$, $1 \le j \le m$ s.t. $\alpha(v_i) = \sum_{i=1}^{n} a_{ij} \omega_i$.
	(Hom = (Fm, Fn) = Matarm (F))
	Let $\beta = \sum_{i,j} \alpha_{ij} V_{j}^{*} \otimes \omega_{i}$
	$\bar{\iota}_{i,j}$
	Then $f(\beta) = \alpha$, since $f(\beta)(v_n) = \sum_{i,j} a_{i,j} v_j^* w_i(v_k) = \sum_{i=1}^n a_{i,n} w_i = \alpha(v_k)$
	(Since v; *(Vh) = S; h).
	$f(\beta)$ and α agree on a basis of V so $f(\beta) = \alpha$.
	Suppose f(Ea; v; Ow:) = 0
	Then $f(\Sigma a_i; v_i^* \otimes \omega_i)(v_k) = 0 \ \forall k$
	=> Eainwi = O Vk => ain = O Vi,k.
	Hence f is injective.
	So we have shown f: V*&W-> Hom=(V,W) is an isomorphism
	of F vector spaces.
	To see this is an isomorphism of F [G] - modules:
	1.4 66 11
	$f(g \cdot (\phi \otimes w)) = f(\phi \cdot p(g^{-1}) \otimes p'(g)w) \qquad \forall \mapsto \phi(g^{-1}v) p'(g)w = p(g)\phi(g^{-1}v)w$ $= (\phi \cdot p(g^{-1})) p'(g)w \qquad \qquad \text{since } p'(g) \text{ in } F \text{-linear } b \neq (g^{-1}v) \in F$
	$= (\phi \circ \rho(g^{-1})) \rho'(g) w \qquad \text{since } \rho'(g) \text{ is } F\text{-linear & } \phi(g^{-1}v) \in F$
	= p'(g) · pw · p(g-1)
	= g. (pw) Hence f is an F[G] - module homomorphism.

```
09-02-18
            Let R be a ring, M, N R-modules.
            Then Home (M, N) = { &: M - N, R-module homomorphisms }
            It's an abelian group, ($+4)(m) = $(m) + 4(m).
            Homa (M, M) = Enda (M) is a ring.
            If F is a field, G a finite group, M, N FEGJ-modules,
then Hom=cas(M, N) is an F-vector space, (20/m) = 2/0/m).
            Suppose M, N are finitely generated, din = M = m, dim = N = n.

Then Hom = (M, N) = Hom (Fm, Fn) = Matrix (F)

(after choosing a basis for M, N).
             Homfigs (M, N) & Homf (M, N) = Matrix (F)
            Let p: G -> GL(M) = GLm (F) and p': G -> GL(N) = GLn (F)
            be the matrix representations associated to M. N.
            Suppose A & Mataxm (F) = Hom= (M, N).
            Then A \in Hom_{FGG}(M, N) \iff \forall \alpha = \sum_{g \in G} g \in F[G]
                                           A. ( \( \sum_{gea} a_g \rangle gg) = \( \sum_{gea} a_g \rho'(g) \). A
                                      (=) Apla) = p'lal A Ya & G
                                     ( Aplg) = p'(g) A for generators gel
            In particular when N=M, A E Hom= (M, M) = End=(M)
             A & HomEGS (M, M) = EndEGS (M)
                    (=) p(g) A = A p(g) for generators g ∈ G.
            4 M=Fm, then End = GG (M) = {A & Mm (F): Aplg) = plg) A Yg & G }
            We have isomorphisms
                Homa (NOM, P) = Homa (N, P) @ Homa (M, P)
                             Ø - (ØIN, ØIM)
                Homa (N, MOP) = Homa (N, M) + Homa (N, P)
                            $ + > (Tm · f , Tp · B)
```

Suppose U, V are C[G] modules for some finite group G. Suppose S., ..., Sr are the simple C[G]-modules up to isomorphism (r = # conjugacy classes) and suppose $U \cong S_i^{a_i} \oplus ... \oplus S_r^{a_r} = a_i > 0$, $V \cong S_i^{b_i} \oplus ... \oplus S_r^{b_r} = b_i > 0$.

Then $\text{Hom}_{\mathfrak{CGS}}(U, V) \cong \mathbb{C}^{\frac{\mathcal{E}}{2}a_ib_i}$. Homacas (U, V) = Homacas (\$\overline{\phi} \ S_i^{ai}, \overline{\phi} \ S_i^{ai})

= \overline{\phi} \overline{\phi} \ Homacas (Si, S;)^{aib}; = @ Home(G) (Si, Si) aibi (by Schur's Lemma)
= @ Endergo (Si) aibi = P C ais: (algebraically closed)
= C Enibi Corollary (Schur's Lemma 3) het V be a finitely generated C[G]-module. Then Endergoll (=> V is simple. End c(G) (V) = Hom c(G) (V, V) = C := (in the notation above) = C $(=) \sum_{i=1}^{n} a_i^2 = 1 \qquad (=) \exists 1 \leq j \leq r \text{ s.t. } a_i = S_{ij} = \begin{cases} 0 \text{ else} \end{cases}$ € 315jer st. V=S; ⇔ V is simple. Homecas (U,V) = C Eachi Character theory will give us a quick way of computing dima (Homocas (U,V)) = Eaibi.

MATH M204	
09-02-18	
0 1 0 2 10	Character Theory
	Ga finite group, Fa field.
	Definition
	Let $A = (a_{ij})_{ij} \in M_n(F)$. Define the trace of A to be
	$T_{F}(A) = \sum_{i=1}^{K} a_{ii} \in F$
	Ropontion
	y A, B∈Mn(F) then Tr(AB) = Tr(BA)
0	0 /
	$A = (a_{ij}), B = (b_{ij})$
	$(AB)_{ik} = \hat{\Sigma}_{aij} b_{jk}$
1651	
	$T_r(AB) = \sum_{i,j=1}^r a_{ij} b_{ji} = \sum_{i,j=1}^r b_{ji} a_{ij} = T_r(BA)$
	Corollary
	Two conjugate matrices have the same brace,
0	Two conjugate matrices have the same brace, i.e. if $A \in M_n(F)$ and $T \in GL_n(F)$, then $T_r(T'AT) = T_r(A)$.
	Proof (1-10-1) = (0-10-1) = T (1)
	$T_{c}(T^{-}AT) = T_{c}(ATT^{-}) = T_{c}(A).$
	Definition
	Suppose V is a favo /F with dim = V=n.
	Then if $\alpha: V \to V$ is an F-linear map, if $\alpha \in End_F(V)$,
	then we define $T_{r_{\chi}}(\alpha)$ to be $T_{r}(A)$ where $A \in M_{n}(F)$ is
	the matrix of a wirt, some basis of V (it's well-defined by the previous corollary).
	of previous coronary.

Definition Suppose that p: G -> GL(V) is a representation. Then the character of p is the function Kp: G -> F, g -> Try (p(g)). So if p: G -> GLn(F), then Xp(g) = Tr(p(g)). We say that Xp is the character afforded by p (associated to p). We say that xp is irreducible if p is. We say that the function X: G -> F is a character if 3 a rep p: G->GLn(F) st. Xp=X. If X = Xp for p: G -> Fx a 1-dimensional rep" then we say X is a linear character (in this case Xp=p:G-F*). Warning: Some authors use the word character to mean 1-dim' representations (often in number theory). Basic properties 1). If p: G -> GL(V) is a representation, then $\chi_p(e) = T_{r_p}(Id_p) = n = dim_p V$ So if char F = 0, we can recover dimp from Xp. 2). If p = p' are isomorphic then Kp = Xp. Reason: If p: G -> GLn(F) and p': G-> GLn(F) are equivalent, then ITEGLn (F) st. p'(g) = T'p(g) T and so Tr(p'(g)) = Tr(T'p(g)T) + ge G => Xp' = Xp 3). If X = Xp is a character and g, h & G, then X (high) = X(g) since Tr(p(h)-p(g) p(h)) = Tr(p(g)) Definition y x: G→F is a function with the property X(h-'gh) = X(g) Th, g & G, then we say that X is a class Junction Note: all characters are class Junctions 4). Kp. op. (g) = Xp. (g) + Xp. (g) \ g \in G. il. Xp. 00 p = Xp. + Xp.

VI ATHI11204	
29 22 13	
09-02-18	
	From now on (unless stated otherwise) F = C
	P
	Cop 1 to 10 and
	(i) Suppose that p: G-> G-Ln (c) is a representation and
	get has order d. Then Kp(g) is a sum of exactly
	n d-th roots of unity.
	(ii) $\chi_{p}(g^{-1}) = \chi_{p}(g)$ (where $t \mapsto \overline{z}$ is complex conjugation)
	(iii) $\chi_{p(g)} = dim p (= \chi(1)) \Leftrightarrow p(g) = I_n$.
0	
21-02-18	
	Recall
	If p: G -> SGLn (C) is a representation, the character
	To afforded by p is Kp: G > C, g > Tr (p(g)).
	y x:G→C is a function such that 3 p:G→Gln(a)
	with X = X, then we say X is a character.
	Later we'll show that if p: G - Gln(C), pz: G -> Gln2(C)
0	are representations with Xp = xp2 then p, = p2.
0	\cap . \wedge
	Definition .
	If $X = X_p$ is a character then define $Ker(X) = Ker(p) = Eg \in G \mid p(g) = id $ 3.
	Ner(k) = Ker(p) = 8g & G p(g) = id }.
	P
	Proposition
	Let G be a finite group (i) Suppose p: G -> GLn(C) is a representation and
	ge G has order of then Xplg) is a sun of exactly
	n dth roots of unity. (3 E C: }d=1)
	(ii) $\chi_p(g^{-1}) = \chi_p(g)$ (complex conjugation)
	(iii) $\chi_{\rho}(g) = dim \rho (= \chi(1)) \Leftrightarrow \rho(g) = I_n \Leftrightarrow g \in \ker \rho \Leftrightarrow g \in \ker \chi_{\rho}$

(i) Since p is a homomorphism, we have play = In, i.e. play satisfies the polynomial Xd-1. Xd-1 = TT(X-3) is a product distinct linear factors. By a theorem in linear algebra, p(g) is diagonalisable, say $T^{-1}p(g)T = diag(\lambda_1, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix}$ Since p(g)d=1 => 7:d=1 for all Isisn. => $\chi_{p(g)} = \sum_{i=1}^{n} \lambda_{i}$ is a sum of exactly n + d-th root of unity. (ii) Note that since | \(\lambda_i | = 1, we have \(\lambda_i' = \frac{1}{2i}, \) T'plg-1) T = diag (2,1, ..., 2,1) $= diag(\overline{\lambda}_1, ..., \overline{\lambda}_n)$ $= \chi_p(g^{-1}) = \overline{\lambda}_1 + ... + \overline{\lambda}_n = \chi_p(g)$ (iii) $|\chi_{\rho(G)}| = |\frac{\Sigma}{\Sigma} \lambda_i| \le \frac{\Sigma}{\Sigma} |\lambda_i| = n$ with equality $\iff \lambda_i = \sum_{i=1}^{N} |\lambda_i| = n$ by the A-inequality. So if $\chi_p(g) = n$ then $\lambda_1 = \dots = \lambda_n = \lambda$ say and so $\chi_{\rho(g)} = n\lambda \Rightarrow \lambda = 1$. Conversely, if gekers then $\chi_p(g) = T_r(I_n) = n$. Character tables G finite group. p: G -> GLn(c) a representation, X = Xp. Recall . To only depends on p up to isomorphism · Kp is a class function (Xp(g) = Xp(h-gh) Vg, heG) Let r be the number of conjugacy classes of G Let p., ..., pr be the ineducible representations of G up to isomorphism and let X: = Xpi. The character table of G is the following rxr table: $G = \coprod_{i=1}^{n} x_i^{G_i}$, x_i , x_i are conjugacy class representatives of Gr

Gab = Cr has 2 used representations. Pi: Gab Cx y(x) 1 Pz: Gab > Cx, y(x) -1

=> the one-dim reps of G are piGacx, xml, yml pz: G -> Cx, x -- 1, y -- 1 Recall: ps: G -> GL2(E), x -> (0 02), y -> (0 0) w=e (w+w2 = -1) this is an irreducible representation $T_{r}\left(\begin{smallmatrix} \omega & \circ \\ \circ & \omega^{2} \end{smallmatrix}\right) = -1$, $T_{r}\left(\begin{smallmatrix} \circ & 1 \\ \circ & \bullet \end{smallmatrix}\right) = 0$ X, 1. 1 i X2 1 1 -1 -X3 2 -1 0 Definition For class functions X, $Y:G \to C$, we define the inner product $\langle X, Y \rangle_G = \frac{1}{|G|} \sum_{g \in G} \chi(g) \overline{\psi(g)} = \frac{1}{|G|} \sum_{i=1}^{L} \chi(\chi_i) \overline{\psi(\chi_i)} |\chi_i^{G}|$ where x, , , xr are conjugacy class representatives. Theorem (Row orthogonality) Let X, ..., Xr be the irreducible characters of a fruite group G. Then < xi, x; > = { 0 i + j Roof coming later. Corollary If p_1, \dots, p_r are the irreducible representations of a finite group G, then if $p \stackrel{\sim}{=} p_1^{\oplus a_1} \oplus \dots \oplus p_r^{\oplus a_r}$ with $a_i > 0$, then a: = < X, X; > where X = Xp is the character of p and Xi = Xpi. So $\chi = \sum_{i=1}^{L} q_i \chi_i = \sum_{i=1}^{L} \langle \chi, \chi_i \rangle \chi_i$. In particular, p is inequalible \Leftrightarrow $\exists j : \{ \langle \chi, \chi_i \rangle = \{ 1, i = j \} \iff \langle \chi, \chi \rangle_G = 1.$

```
MATH M204
21-02-18
                 Example
                     \langle \chi_3, \chi_3 \rangle = \frac{1}{2} (2^2 + 2(-1)^2) = 1
                  Proof (of corollary)

X = £aiXi
                 \Rightarrow \langle \chi, \chi_i \rangle = \langle \sum_{i=1}^{n} \chi_i, \chi_i \rangle_{\mathbf{G}} = \sum_{i=1}^{n} a_i \langle \chi_i, \chi_i \rangle = a_i
                 since \langle \chi_j, \chi_i \rangle = \delta_{ji}

\Rightarrow \chi = \sum_{i=1}^{r} \langle \chi, \chi_i \rangle \chi_i
                 Also < x, x> = < £a; x; , £a; x; >c
                                              = E Eaia; < Xi, X;>
                                             = \sum_{i=1}^{n} a_i^2 \qquad \text{since } \langle \chi_i, \chi_j \rangle = \mathcal{S}_{ij}
                 Note that \sum a_i^2 = 1 \iff \exists_j \text{ s.t. } a_i = \{1, i=j \\ 0, \text{ otherwise} \}
                (\Rightarrow) \exists j sb, p = p_s \Leftrightarrow p is irreducible.
                 Depirition
                 If x \in G we define the centralises of x in G to be CG(x) = \{g \in G : [x,g] = e : e, xg = g x \}.
                 Remarke
                 Remark
Gracts on G by conjugation, g. x = gxg-1.
Then CG(x) is the stabiliser of x under this action
                  x is the orbit of x under this action
                  orbit - stabilizer lim => 1x G1. | CG(x) = 1G1.
```

	Theorem (Column orthogonality)
	Let X, , X - be the ineducible characters of a
	finite group Gr. Then 5 X (6) X (1) - 8 1 ((6)) -1 - G = 16
	$\sum_{i=1}^{n} \chi_{i}(g) \chi_{i}(h) = \sum_{i=1}^{n} C_{G}(g) , \text{ if } g^{G} = h^{G}$
	O, otherwise.
	Proof
	Coming later.
	Example
	$G = A_4$
	Conjugacy classes:
	e^{G} , $((1,2)(3,4))^{G}$, $(1,2,3)^{G}$, $(1,3,2)^{G}$
S. 7.20A	
	: 1 3 4 4 4 .: 12 4 3 3
Entrause	
	D / / / 50 07 V 5 (V) (0 V) / V 3 00 0
1	By calculation [G, G] = V4:= {e, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}=C2×C.
	ado a la sur a la l
	Gab = G/(G,G) = C3 (only group of order 3). generated by (1,2,3)V4
	generated by (1, 2, 3) V4
	= A+ 3 1-din con
	$\left(e^{G} / (1,2)(3,4) \right)^{G} / (1,2,3)^{G} / (1,3,2)^{G} $ $\omega = e^{2\pi i/3}$
	χ_1 1 1 1 $1+\omega+\omega^2=0$
	χ_2 1 1 ω ω^2
	χ_3 ω^2 ω
	$\chi_{+} = 3$ $b = -1$ $c = 0$ $d = 0$
	Using column orthogonality,
	$1^2 + 1^2 + 1^2 + a^2 = 12 = A_4 \Rightarrow a = 3$
	$1^{5t} + 2^{nd}$ columns $\Rightarrow 1 + 1 + 1 + 3b = 0 \Rightarrow b = -1$
	$ ^{5t} + 3^{rd} columns \Rightarrow + \omega + \omega^2 + 3c = 0 \Rightarrow 3c = 0 \Rightarrow c = 0$
	1st + 4th column => 1+w2+w+3d=0 => d=0

MATHM204	
21-02-18	
	Formulas for characters
	1). X is a finite set with a G-action, then let
	Xx = Xpx (permutation representation), then
	$\chi_{x}(g) = \left \left\{ x \in \chi : gx = x \right\} \right $
	2). If p, pr are rep"s with characters X, Xz, then
	p. & p. has character x, x2.
	$\chi_1 \chi_2(g) = \chi_1(g) \chi_2(g)$
0	
28-02-18	Formulas for characters
the state of	
	Permutation representations
	If G is a finite group acting on a finite set X = {x,, xm}
	then V = C[X] has basis ex, ex and
	$p_{x}(g)e_{x} = e_{gx} \forall g \in G, x \in X.$
	\Rightarrow matrix of $p_{x}(g)$ is (a_{ij}) where $a_{ij} = \S 1$, if $g(x_{i}) = x_{i}$
	(o, otherwise
0	=> trace of px(g) is Xx(g) = trpx(g) = fix x (g) = {x \in X g(x) = x }
	1-16
	Lifts NOC: 1 1 1 1
	Suppose NOG is a normal subgroup. If $\tilde{p}: G/N \to GL_{\alpha}(C)$ is a representation, its lift is
	the representation p: G -> GLn (a), gr-> p(gN)
	p has character X = Xp given by
	$X(g) = Tr(p(g)) = Tr(\tilde{p}(gN)) = Xp(g)$
	The state of the s
	Restriction
	y H = G is a subgroup and p: G → GLn(C) a
	representation, then Res # p: H -> GLo(C), h -> p(h), is the
	restriction of p to H. It has character
	Rest Xo: = Xoc given by Rest Xo(h) = Xo(h).

Tensor products Suppose that p,: G > GLn(C) and pz: G -> GLn(C) are two representations of Gr with characters X, and Xz. If p, (g) = (ai;) and pr(g) = (bij), then p. 80 pr (g) is the matrix $A_{11} P_2(g)$ $A_{12} P_2(g)$ $A_{13} P_2(g)$ Then $\chi_{p, op_2}(g) = T_r(p, op_2(g))$ = an Trpz(g) + ... + ann Trpz(g) = (an + m + ann) Trp2(g) = Trp.(g) Trp2(g) = Xp.(g) Xp2(g) We often write X, X2 for the character Xp.op. Qual representation Suppose p: G-> GLn(C) is a representation and let V, ... vn be the standard basis of C", let v,", ..., v, * be the dual basis (Recall V; *(v;) = Si;). The matrix for p*(g) with respect to vi*, ii, vi* is p(g-1) t & baropose. Let p(g-1) = (aij) p*(g) v; * = v; * · p(g-1) We have (p*(g)v;* (vk) = v;* (p(g-1)vk) $= \bigvee_{i=1}^{*} \left(\sum_{i=1}^{n} a_{ik} \bigvee_{i} \right) = a_{jk}$ her we have p*(g) v; * = = = a; k Vk * since they both agree on vi, ..., vn.

28-02-18	
	\Rightarrow matrix of $p^*(g)$ is $(a_{ji}) = (a_{ij})^t$ It follows that $\chi_{p^*(g)} = T_r(p(g^{-i})^t)$
	$= T_r \left(\rho(g^{-1}) \right)$
	$=\chi_{\rho}(g^{-1})$
	= Xp(g) (complex conjugation)
	П
	Hom c (V, W)
	Suppose p: G -> GL(V) and p': G -> GL(W) are representations
	with characters X and X'.
0	We proved Home (V, W) = V*&W as C[G]-modules
	> Hom (p,p') ≈ p*8p'
	=> X Hom(p,p) (g) = Xp(g-1) Xp.(g)
undete.	$= \overline{\chi_{p(g)}} \chi_{p'(g)}$
dan Mari	Induction
	Suppose H = G is a subgroup and p: H -> GLm (c) is
	a representation. Let ti,, to be left cooct representatives
	for H in G, and let y, , vm be the standard
	basis of Cm.
0	With respect to the basis to &v,, b, &vm, tz &v,, tnovm,
	(A11 Ain) where Ai; EMm(C) equiv. tigt; EH
	the matrix of Ind H $p(g)$ is $A_{ii} - A_{in}$ where $A_{ij} \in M_m(C)$ equiv. $t_i = t_i + t_i$ $A_{ii} - A_{in}$ where $A_{ij} \in M_m(C)$ equiv. $t_i = t_i + t_i$ $A_{ii} - A_{in}$ and $A_{ij} = t_i + t_i + t_i$ $A_{ii} - A_{in}$ $A_{in} - A_{in}$ A
	(An Ann) (O, otherwise
	=> Ind # Xp (g) = X Ind (g) = Tr (A 11) + + Tr (Ann)
	$= \sum_{i=1}^{n} \chi_{p}(t_{i}^{-1}gt_{i})$
	where Xp: G - C is the function defined by
	$\chi_{\rho}(g) = \chi_{\rho}(g), g \in H$
	O, otherwise.
	Note that xp(tigti) does not depend on the choice
	of coset representative for tiH:
	If ti'= tih for some heH, then & (ti'ati) = & (h'(ti'ati)h)

and ti'gti∈ H ⇔ h'(ti'gti)h∈ H and if tigti et then is (h-'(tigti)h) = Kp (h-'(tigti)h) = $\chi_p(t_i'gt_i)$ since χ_p is a character \Rightarrow class Function => \$\hat{z}\left(\ti'pti) = \hat{z}\left(\ti'gti') In particular XInd is independent of choice of left coct representatives. By a consequence of ow orthogonality, the representation Indip is independent of choice of coret representatives O (up to isomorphism). We can rewrite $\ln d_{H}^{G} p(g)$ as $\chi_{\ln d_{H} p}(g) = \frac{1}{H} \sum_{x \in G} \mathring{\chi}_{p}(x^{-1}gx).$

MATHM204	
02-03-18	
	loof of ow orthogonality for characters
	het G be a finite group, and let V be a fritely
	generated C[G] module.
	Notation: If $\alpha \in C[G]$ we let $T_{r_{\gamma}}(\alpha)$ denote the brace
	of the C-tineac map V -> V , V -> av.
	Note that if $\alpha, \beta \in C[G]$ then $T_{r_{\gamma}}(\alpha+\beta) = T_{r_{\gamma}}(\alpha) + T_{r_{\gamma}}(\beta),$
	and if $\lambda \in C$, then $T_{C_{\mathbf{v}}}(\lambda \alpha) = \lambda T_{C_{\mathbf{v}}}(\alpha)$.
	Definition
0	Let eg E C[G] denote the element eg = 1 \(\subseteq g \)
	161 geG
	Definition
	If V is a C[G]-module, let VG:= {veV:gv=v \deG}
A Committee	Lemma
	We have eg. V = V G
	Proof
	Note that hea = ea & h & G.
0	LHSCRHS:
	If vev then h(eg.v)= (heg).v = egv, so egv ev G
	=> eGV C V G
	RHSCLHS:
	If veva then gr=v tgeG. Then egv= 1 Egv = IGI v = v
	H veva then gv=v VgeG. Then egv= 1/161 Egv = 161 v = v So veeg V => VG = eg V.
	A Company of the Comp
	Corollary
	If V is a finitely generated [[G]-module, then
	Try (eg) = dime Va
	Poof
	Note that ea2 = I E hea = IGI ea = ea
	16-1

```
=> eG E Enda (V) is a projection
=> V= lm (eg) @ Ker (eg)
    = eg V 1 (1-eg) V = V 9 (1-eg) V
Let f: V -> V denote f(v) = eav.
Then fler = Idea and flereny
If we pick a basis for VG and Ker(ea), then wert.
this basis of V the matrix for f is [ Idim a O
=> Try (eg) = Try (f) = dime VG
Definition (recall)
If V, W are C[G]-modules, we let
 Homera (V, W) = { q: V -> W, C(G)-module homomorphisms }
            = { $\phi: V \rightarrow W s.t. \phi(v, +v2) = \phi(v) + \phi(v2) , \phi(\alpha V) = \alpha \phi(v)
                 YV,,VZ,VEV, XEC[G] }
            = {Q: V > W C-linear st & (gv) = ga(v) VveV, geG}
hemma
Suppose V, Ware C[G]-modules. Then
Home (V, W) G = Home [G] (V, W)
Proof
Recall that G acts on Home (V, W) by (g. $)(v) = g($(g-1(v)))
Yaca, gettome (V, W), veV.
het & E Homa (V, W). Then
$ Ettorn (V, W) G = q + g & G
                ⇒ g(ø(g·1v)) = Ø(v) ∀g∈G, ∀v∈V
               (=) go(v) = g(gv) YgeG VveV replace v by gv
               De Homely (V, W).
```

(If Y is a class function Y: G -> C, then Y is the class function Y(g) = Y(g))

Corollary If G is a finite group with irreducible complex characters X, ..., Xr then X, ..., Xr form an orthonormal basis for the C-vector space of dan functions {Y: G→ C | Y(h-gh) = Y(g) \ \ \ g, h ∈ G \ \ w.r.t. <.,.>G. Clearly the space of class functions has a basis 4, where Ki, ..., Ke are the conjugacy classes of G and Y: (g) = { I if g \in K: O otherwise Hence the space of class functions has dimension r. Therefore it is enough to show that χ_1, \dots, χ_r are linearly independent.

If $\Sigma a_i \chi_i = 0$ for some $a_i \in \mathbb{C}$, then $0 = \langle \Sigma a_i \chi_i, \chi_j \rangle_G = \Sigma a_i \langle \chi_i, \chi_j \rangle_G = a_j$ by ow orthogonality $= \sum_{i=1}^{r} a_i \langle \chi_i, \chi_j \rangle_G = \sum_{i=1}^{r} a_i \langle \chi_i, \chi_j \rangle_G = a_j$ ⇒ $\chi_1, ..., \chi_r$ are linearly independent, so $\chi_1, ..., \chi_r$ form a basis. It is orthonormal from the previous theorem. Remark This corollary tells us that if $\Psi: G \to C$ is a class function, then $\exists ! a_1, ..., a_r \in C$ st. $\Psi = \stackrel{\cdot}{\Sigma} a_i \chi_i$.

Moreover $a_i = \langle \Psi, \chi_i \rangle_G$ by row orthogonality Y is a character ⇔ a; ∈ Zno for i=1, ..., n. Some authors say 4 is a virtual character if a; EZ

60	
02-03-18	
	Theorem (Column orthogonality)
	Let G be a finite group and let X, , , Xr be the
	ineducible complex characters of G.
	Let a,, to be conjugacy class representatives of G.
	Then for I = j, k = r we have
	$\sum_{i=1}^{\infty} \chi_i(\chi_i) \chi_i(\chi_k) = \sum_{i=1}^{\infty} C_G(\chi_i) \text{ when } j=k.$
	(O otherwise
	Poof
	For $1 \le k \le r$ let $\forall k : G \rightarrow \mathbb{C}$, $g \mapsto \S 1$, $g \in \times_k G$ 0 , otherwise
	(0, otherwise
	Then by the previous corollary
	$\chi_k = \sum_i \lambda_i \chi_i$ for some $\lambda_i \in \mathbb{C}$
	Since $\lambda_i = \langle \Psi_k, \chi_i \rangle_G = \frac{1}{ G } \sum_{g \in G} \Psi_k(g) \chi_i(g)$
	161 9EG
	$= \chi_{\kappa} G \chi_{i}(\chi_{\kappa})$
	161
	= Xi(xu) by the orbit-stabilizer them.
0	1 CG (XW)
	$\Rightarrow Y_k = \frac{\sum \chi_i(x_k) / C_G(x_k) }{\chi_i}$
	i=1 \
	We have Yk(x;) = S;k
	$\Rightarrow Y_k(x_i) = 1 \qquad \stackrel{\leftarrow}{\sum} \overline{\chi_i(x_k)} \chi_i(x_i) = \delta_{ik}$
	$\Rightarrow Y_{k}(x_{j}) = 1 \qquad \sum_{i=1}^{n} \overline{X_{i}(x_{k})} X_{i}(x_{j}) = \delta_{jk}$ $\overline{ C_{G}(x_{k}) }$
	multiplying both sides by ICa(xu) gives the column orthogonality
	relation.

	Permutation representations
	G is a finite group, X a finite set upon which G acts.
	Px: G -> GL(C[X]), Px(g)(ex) = eq.x
	Recall px has character Xx given by
	$\chi_{\times}(g) = f_{i\times}(g) = \{z \in X : gz = z\} .$
	(See St. 1) (200 -)1.
	Note that a district tries a come of the brigal
7	Note that px always contains a copy of the brivial representation, because
	C[X] contains span { [= ex }
	and $g \cdot \left(\underbrace{\sum e_x} \right) = \underbrace{\sum e_{g,x}} = \underbrace{\sum e_x}_{x \in X}$
	complement is
	$\left\{ \sum_{x \in X} a_x e_x : \sum_{x \in X} a_x = 0 \right\}$
	1. (0 .1.1)
	Lemma (Burnoide's Lemma)
	Let G be a finite group and X a finite set with a G-action
	Then < Xx, I > = # orbits of G on X. where I is the character of the brivial representation.
	aves some contactes of the arman ignesements.
	Poof
	YX=X, U и X, are the G-orbits in X, then
	$\chi_{x} = \chi_{x} + \dots + \chi_{x}$ since $\chi_{x(g)} = \{x \in X : gx = n\} $
	$= \left \begin{array}{c} \bot \\ \{ \varkappa \in X_i : g \varkappa = \varkappa \} \end{array} \right $
	i=1
	$= \sum_{i=1}^{n} \{x \in X_i : gx = x\} $
	(=1
	$= \sum_{i=1}^{L} \chi_{x_i}(g)$
	⇒ wlog we may assume l=1, i.e. G has I orbit on X
	ie. G is travoitive on X.
	Then < Xx, I >G = 1 5 XG(g)
	IGI SEG
	$= \frac{1}{161} \sum_{\alpha \in \mathcal{C}} \left \left\{ x \in X : gx = x \right\} \right $
	1G1 SEG

02-03-18

$$\Rightarrow \langle \chi_{x}, 1 \rangle_{G} = \frac{1}{|G|} \left| \{ (g, x) \in G \times X : g \times = x \} \right|$$

Let G act on two sets X, X2. Then G acts on

 $X_1 \times X_2$ via $g(x_1, x_2) = (gx_1, gx_2)$. The character

$$\chi_{x_1 \times x_2}$$
 is $\chi_{x_1} \chi_{x_2}$ and $\langle \chi_{x_1}, \chi_{x_2} \rangle_G = \#$ orbits of G on $\chi_1 \times \chi_2$.

Poof

$$\chi_{x,*x_2}(g) = |\{(x_1, x_2) \in X_1 \times X_2 : gx_1 = x_1, gx_2 = x_2\}|$$

=
$$|\{x, \in X, : gx, = x, \}| \cdot |\{x_2 \in X_2 : gx_2 = x_2\}|$$

= $X_{X_1}(g) X_{X_2}(g)$.

Note that
$$\chi_{\chi_1}$$
 takes values in $\overline{\mathcal{X}}_{\chi_0}$, so $\chi_{\chi_2} = \chi_{\chi_2}$.
 $\langle \chi_{\chi_1}, \chi_{\chi_2} \rangle_G = \frac{1}{|G|} \sum_{g \in G} \chi_{\chi_1}(g) \chi_{\chi_2}(g)$

Definition Let G act on X with 1X122. Then we say G is 2-transitive on X if G has exactly 2 orbits on $X \times X$, namely $\{(x,x): x \in X\}$ and $\{(x,y): x,y \in X, x \neq y\}$. Let G act on X with |X| >> 2. Then X = I + TT x with Tx a riveducible character ⇔ G is 2-transitive on X. Let Y, ..., Y be the irreducible characters of G.

Then $\chi_{x} = a_{1} + ... + a_{r} + c_{r}$ with $a_{1} > 1$ (assuming $\psi_{r} = 1$). $\Rightarrow \pi_{\mathsf{X}} = (a, -1) \, \mathcal{Y}_{\mathsf{I}} + \, \underbrace{\Sigma} \, a_{\mathsf{I}} \, \mathcal{Y}_{\mathsf{I}}$ TIX is irreducible => < TIX, TIX > = 1 We have < xx, xx > = # orbits of G on X xX. The is a non-brivial irreducible character \Leftrightarrow $\exists 2 \leq j \leq r$ $s \not \in a_j = 1$ and $a_i = 0$ for $i \neq j$, $2 \leq i \leq r$ and $a_1 = 1$. $\langle \pi_{\times}, \pi_{\times} \rangle_{G} = \langle (a_{i}-1)\Psi_{i} + \sum_{i=2}^{L} a_{i} \Psi_{i}, (a_{i}-1)\Psi_{i} + \sum_{i=2}^{L} a_{i} \Psi_{i} \rangle_{G}$ $= (a_1 - 1)^2 + \sum_{i=3}^{6} a_i^2$ The only way this sum can be I , and a = 1, is if I 2 s j s r st. a; = 1 and a; = 0 if itj, 2 s i s r. So Tix irreducible and non-trivial (Xx = 1+ X, X non-birial irred. € < xx, xx>g = < 1+x, 1+x>g = < 1, 17g + < 1, ×7g + < x, 17g + < x, x7g = 1 + 0 + 0 + 1 = 2 $\chi_{x} = \Sigma a_{i} \psi_{i}$ Note that $\langle \chi_{x}, \chi_{x} \rangle = \sum_{i=1}^{n} a_{i}^{2} = 2 \iff a_{i} = 1 \text{ and } \exists 2 \leq j \leq r$ st. a;=1, ai=0 if i#j, 2 = i = r.

07-03-18 Recall G finite group, X, X, the ineducable characters of G. If X: G -> G is a dan function, then I usique $a_{i,...}, a_{r} \in C$ sb. $X = \Sigma a_{i} X_{i}$ If Y = 26; x; then $= \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \langle \chi_i, \chi_j \rangle_{a_i}$ $= \sum_{i=1}^{n} a_i b_i$ $\langle \chi_i, \chi_j \rangle_{\mathcal{L}} = \mathcal{S}_{ij}$ X is a character () a; E # 10 V:

1/ X is a character then $\langle X, \chi \rangle_c = \sum_{i=1}^{r} a_i z^2 = 1 \Leftrightarrow \chi_i s$ irreducible Permutation representation G finite group, 1= x, ..., xr ineduable characters, X finite set with action of G. Suppose 1×172, then G is 2-transitive on X \(\times \chi_x = \chi_+ \chi_i \) for some $2 \le i \le r$. Let Xx = Ea; Xi for some a; E Zzo. Note that a, = < Xx, x, 2a = # orbits of Gon x ?1 Gin 2-bransitive on X () # orbits of G on XxX=2 $\langle \chi_{x}, \chi_{x} \rangle_{G} = 2 \Leftrightarrow \sum_{i=1}^{2} a_{i}^{2} = 2$ (=) a,=1 &]; 2 = j = r, a;=1, a;=0 for i+; , since 9,7,1 € Xx = X, + X; for some 25 jsr

	Ex	amp	le				280		
				moitivel	y on	X = {1,,	n?,		
								charater.	
							Charles		47
		imple							
	G:	- S ₅	, che	racter	table:	10	26	(1234)	
		lė	(12)(34)	(123)	(12345)	(12)	(123)(45)	(1234)	
	7,		1		/	- 1	(
	χ_2	6-1-		2-1=		-1		-1	
	χ_3	4	0	2-1=	-1	3-1 = 2	-	1-1 =	
	χ_{4}	4	0		-/	-2	1	0	
$\chi_{\gamma} - \chi_1 - \chi_3 =$	χ_{5}	5	l	-1	0	-1	-1	1	
X2 X5 =	X ₆	5		-1	0		(-1	
Column orthog.	χ_{7}	6	-2	0	l	0	0	0	
	XyI	10	2	Consumer	0	4	1	0	
	X,	is to	he tru	ial cha	racter.			// ^C 2	
	Let	χ_{2}	be	the sig	n chare	ober, x	2: G-7	S5/A5 → C	
	lift	ed	from to	re non	trivial	characte	es of So	As	
			F				o irreduci		
	X2	is	1-dime	noional,	, so X2	χ_3 is i.	reducible.		
	By	insp	ection	$\chi_2 \chi_3$	+ X, X	, X3. L	let X4 =	$\chi_2\chi_3$	
	Con	order	- Y=	3 S C [1,	2, 3, 4, 5	: 151=2	2 } = {unor	deced pairs of	+ element of x 3
	So	171	= (5) =	10					. ,
	< >	(y,	$\chi_1 \rangle_{S_5} =$	# orbit	of Se	s on Y =	1		
	< >	(y,)	Ky> =	# orbib	of S	5 on /x/			
	orb	its or	n YxY	are of	the fo	m			
	- {	((i, ;)	, {c, j3)	: 1 = = =	j ≤ 5 } ,	E(10, j3,	[i,k]), 1	≤ i,j, k distinct	≤5},
						binct ≤ 5}			
	< -	×, ;	× > =	# orbits	of Ss	on Yxx	= 2		
	orb	46	are {	({ i, ; } , i), 150	, j distinc	£ =5},		
	2 ((i,j)	[, k),	1 \(\ilde{c}_{1} \),	he distin	ct }			
	\Rightarrow	Xy =	· X, + 2	C3 + 77	for son	re irredu	cible c	character of	<u> </u>

07-03-18	
	Calculating TI we see TI + X,, X+, Let X5:= TT.
	Xx on {(12)(34) fixes {1,2} and {3,4}
	(123) 4 {4,5}
?	(12) " {1,23, {3,43, {4,53, {5,3}}
	(123)(45) " {4,5}
	Frobenius reciprocity
	Suppose & is a finite group with a subgroup H, and
	$p: H \to GL(V)$ is a representation over C .
0	Let $X = Xp : H \to C$ and let $Ind_{\mu}^{G}X := X_{Ind_{\mu}p} : G \to C$.
	Recall that Inda X(a) = 1 5 x(x-1-2)
	Recall that Ind # $\chi(g) = \frac{1}{1+1} \sum_{x \in G} \chi(x^{-1}gx)$ where $\chi: G \to C$ is given by $g \mapsto \chi(g)$, $g \in H$
E _e i i i i	O otherwise
	(o overwise
	Theorem (Folo : - Berganite)
	Theorem (Frobenius Reciprocity)
	Let G be a finite group and H = G a subgroup.
	Let X:H -> G be a character of H and Y:G -> C be a
ı	< Ind f x, 4 > = < x, Res f 4 >
0	Ind + ~ , 7 / G - ~ , res + 4 / H.
	Example
	Recall the character table of Aq:
	Recall the character table of A ₄ : e (12)(34) (123) (132) χ,
	χ , $2\pi i/3$
	χ_2 ω ω^2 where $\omega = e^{2\pi i/3}$
	χ_3 1 ω^2 ω $1+\omega+\omega^2=0$.
	X ₄ 3 -1 0 0
	Let Pi, pa be irreducible representations of Aa with
	characters X1,, X4 respectively
	Let H = {e, (12)(34)}= and let p: H -> C * be the
	non-brivial respectation (12)(34) H-1

Put X = Xp: H→ C Find a, ,, a4 s.E. Ind p= p. **a, ⊕ ... ⊕ p4 We have Ind " X = a, X, + ... + a4 X4 and a: = < Ind # x , Xi > By Frobenius Reciprocity, a: = < x, Res + x; > + $\Rightarrow a_i = \frac{1}{2} \left(\chi(e) \chi_i(e) + \chi((12)(34)) \chi_i((12)(34)) \right)$ $=\frac{1}{2}\left(\chi_{i}(e)-\chi_{i}((12)(34))\right)$ $\Rightarrow \{a_1 = \frac{1}{2}(1-1) = 0$ az = ½ (1-1) = 0 a3 = \frac{1}{2}(1-1) = 0 $\left(a_{4}=\frac{1}{2}(3-(-1))=2\right)$ => Ind AAP = PA +PA 09-03-18 Theorem (Frobenius reciprocity) Let G be a finite group and let H = G be a subgroup Let X:H -> C and Y: G -> C be characters. Then we have < Ind # X, 47 = < X, Res # +> H. Recall that Ind # X(g) = 1 = \(\hat{\chi} \hat{\chi} (\pi^{-1}gx)\) where x(g) = { x(g), g \in H < Ind # X, 4 7 = 1 [Ind # X(g) 7(g)] = 1/2 \(\times for fixed x, y= ze gze = 1 [[X (x-'gx) 4/G)] = 1 \(\sum \(\times \times \) \(\times \times \) \(\times \) \(\times \times \) \(\times \times \times \) \(\times \times \times \) \(\times \times \times \times \) \(\times \times \times \times \times \times \times \) \(\times \t 09-03-18 => < Ind# X, Y > = 1 [x(y) Y(y) = 1 \(\S \ \X(y) \(Y(y) \) by def of X <X, ResH Y>H Symmetric square and artisymmetric square Suppose V is a vector space over C with dimension d. Note that Sz = {e, (12)} = {e, o} acts on V⊗V T: VOV -> VOV, NOV -> VOU (or is a linear map by the universal property V×V -> VOV, (u,v) >> V&u is bilinear) We define the subspaces of VOV: S²V = {x ∈ V⊗V st. \(\sigma(x) = >c\)} symmetric square of V $\Lambda^2 V = \{x \in V \otimes V \text{ s.t. } \sigma(x) = -x \}$ antisymmetric square of V eg if u,v EV then uou + vov E52V, uov-vou E 12V Proposition We have (i) VOV = S2VA 12V (ii) If {v, ..., va} is a basis for V, then a basis for S2V is given by {vi@v; + v; @vi : 1 \i, j \le d} (iii) A basis for 12 V is given by {vi⊗v; -v; ⊗vi: 1≤i, j≤d} (i) If $x \in V \otimes V$, then $x + \sigma(n) + x - \sigma(n) = x$ $= \sum_{i=1}^{n} (i) |f(x)|^{2} \times |f(x)|^{2} = \sum_{i=1}^{n} (i) |f(x)|^{2} = \sum_{$ and so VOV = 52V + 12V. Suppose x & S2Vn 12V. Then T(x)=x and T(x)=-x => x = -x => 2x = 0

```
(ii) Let U = span {v; ⊗v; + v; ⊗vi : 1 ≤ i, j ≤ d}
  Then since {viov; :1 = i, j = d} are a basis for VOV,
  there exist linear maps Tis; VOV -> C
 VKOV +> { l if k=i, l=j
              10 otherwise.
 [Viov; + V; ov; : 1 = i = j = d ] is L.I.:
 If I ai (Vi & Vj + Vj & Vi) = 0 then for 1 = k \le L \le d
  \pi_{k,l}\left(\frac{\sum_{1\leq i\leq j\leq d}a_{ij}\left(v_{i}\otimes v_{j}+v_{j}\otimes v_{i}\right)\right)=\left\{2a_{kk},k=l\atop a_{kl},k\neq l\right\}
  =) aij = O Vij
Then \dim_{\mathfrak{C}} \mathcal{U} = |\{(i,j) : | \leq i \leq j \leq d\}\}| = {d+1 \choose 2}
Similarly if we let W = spain {Viov; - Vjovi : 1 = i < j < d}
Since VOV = S2V @ 12V and dim (VOV) = d2
and \dim_{\mathbb{C}}(S^2V) \geq (\frac{d+1}{2}) with equality \iff U = S^2V and \dim_{\mathbb{C}}(\Lambda^2V) \geq (\frac{d}{2}) with equality \iff W = \Lambda^2V.
We have U = S^2V and W = \Lambda^2V because \binom{d+1}{2} + \binom{d}{2} = \frac{(d+1)d}{2} + \frac{d(d-1)}{2} = \frac{d^2+d+d^2-d}{2} = d^2
Now suppose that V is a finitely generated C[G]-module
for some group G.
Let g & G denote the C-linear map g: VOV -> VOV,
VOW HO gv Dgw. Then the following diagram commutes:
    VOV 2 VOV clockwise: VOW- gvogw - gwogv
           J o anticlochenise: V⊗W → W&V → gw &gv
   Vov 3 Vov
If x E S 2V = {x E V & V: ox = x } then o (gx) = g(ox) = gx = gx E S 2V
  x \in \Lambda^2 V = \{x \in V \otimes V : \sigma_x = -x\} then \sigma(gx) = g(\sigma x) = g(-x) = -gx
 =) gx E/2V
```

=
$$X(g)^2 + X(g^2) = \sum_{1 \leq i \neq j \leq k} \lambda_i \lambda_j + 2\sum_{1 \leq i \leq k} \lambda_i^2$$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

= $2\sum_{1 \leq i \leq k \neq k} \lambda_j$

Recall that for an algebraically closed field F

and a finite dimensional algebra. A over F :

If S is a simple A -module, then

End₁(S) = F .

Applying this to $F = C$, $A = C[G]$ for a finite group G , ix have E nd G [G](V) = C

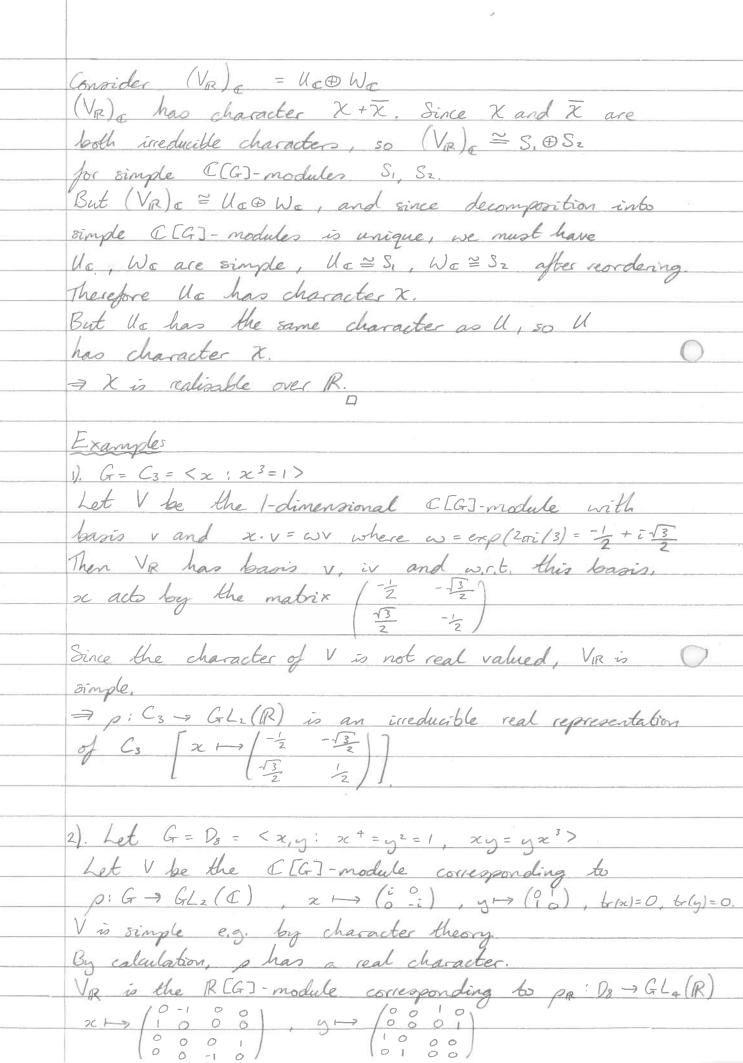
**V simple C [G]-modules V ,

For F a general field, ox know that for a simple C [G]-modules V ,

For F a general field, ox know that for a simple C [G]-modules V , we know C C [G]-modules C [G]-mo

40 0 0	
09-03-18	Recall $H = R \oplus Ri \oplus Rj \oplus Rk$ ($x \in H \Rightarrow x = a + bi + cj + dk$) with multiplication: $i^2 = j^2 = k^2 = -1$ $ij = k$, $jk = i$, $ki = j$ $ji = -k$, $kj = -i$, $ik = -j$
	Let G be a finite group. Then by Mashke's Theorem $R[G] \cong S_i^{\oplus n_i} \oplus \oplus S_d^{\oplus n_d}$ as $R[G]$ -modules for some $d \ge 1$, simple $R[G]$ -modules S_i where $S_i \cong S_j \iff i = j$ $\Rightarrow R[G]^{op} = End_{R[G]}(R[G])$
	= I End _{R[G]} (S;⊕n;)
Varia	$\stackrel{\cong}{=} \text{Tr} M_{n_i} \left(\text{End}_{R(G)} \left(S_i \right) \right)$ $\stackrel{i=1}{=} \mathbb{R}, C, H$ $Applying \left(\cdot \right)^{op} \text{ we have}$ $\mathbb{R}[G] \stackrel{\cong}{=} M_{n_i}(\mathbb{R}) \times \times M_{n_r}(\mathbb{R}) \times M_{p_i}(\mathbb{C}) \times \times M_{p_s}(\mathbb{C}) \times M_{q_i}(\mathbb{H}) \times \times M_{q_t}(\mathbb{H})$ $\text{for some } r, s, t \geq 0, n_i, p_i, q_i \geq 1.$
0	The number of non-isomorphic irreducible representations of G over IR is $r+s+t$. It is not necessarily equal to the number of conjugacy classes. Taking dim of both sides: $ G = \sum_{i=1}^{n} n_i^2 + 2\sum_{i=1}^{n} p_i^2 + 4\sum_{i=1}^{n} q_i^2$ $ G = \sum_{i=1}^{n} n_i^2 + 2\sum_{i=1}^{n} p_i^2 + 4\sum_{i=1}^{n} q_i^2$ $ G = \sum_{i=1}^{n} n_i^2 + 2\sum_{i=1}^{n} p_i^2 + 4\sum_{i=1}^{n} q_i^2$ $ G = \sum_{i=1}^{n} n_i^2 + 2\sum_{i=1}^{n} p_i^2 + 4\sum_{i=1}^{n} q_i^2$ $ G = \sum_{i=1}^{n} n_i^2 + 2\sum_{i=1}^{n} p_i^2 + 4\sum_{i=1}^{n} q_i^2$ $ G = \sum_{i=1}^{n} n_i^2 + 2\sum_{i=1}^{n} p_i^2 + 4\sum_{i=1}^{n} q_i^2$ $ G = \sum_{i=1}^{n} n_i^2 + 2\sum_{i=1}^{n} p_i^2 + 4\sum_{i=1}^{n} q_i^2$ $ G = \sum_{i=1}^{n} n_i^2 + 2\sum_{i=1}^{n} p_i^2 + 4\sum_{i=1}^{n} q_i^2$
	Recall that for a division ring Q , $M_n(Q) \cong (Q^n)^{\oplus n}$ as $M_n(Q)$ -modules, where Q^n is the simple module of column vectors \Rightarrow the simple submodules of $R[G]$ are of the form R^{n_i} , C^{p_i} , H^{1i} , so the dimensions of the irreducible representations of G over G are G ,

MATH M204	
14-03-18	
	Recall:
	E finite group.
	g & G, say g is real if g' & g and if g is
	real we say the conjugacy class is real. (3 = hxh"=g)
	If x & g G where g is real then x = h - gh for some h & G
	and Ike G st. g'= k-1gk since g is real
	$\Rightarrow x^{-1} = h^{-1}g^{-1}h$
	$=h^{-1}k^{-1}gkh = h^{-1}k^{-1}kh$
	= (h'kh)-1 x (h-1kh) so x is real
0	
	De f
	A complex character is real (or real valued) if
	X: G -> C takes values in R.
	Theorem
	The number of real irreducible characters of a
	finite group to is equal to the number of real conjugacy
	classes of G.
	Before proving the theorem, we make some remarks
	about permutation matrices.
	Definition
	Let $\sigma \in S_n$. We define the matrix $P = P_{\sigma} \in \mathcal{M}_n(\mathbb{Z})$ by
	$P = (p_{ij})$ with $p_{ij} = \{1 \text{ if } \sigma(j) = i\}$
	10 otherwise
	We call such matrices permutation matrices.
	Let R be any ing. Note that if $A \in M_n(R)$ then
	$A = (a_{ij})$, $(PA)_{ik} = \sum_{j=1}^{n} p_{ij} a_{jk}$ $p_{ij} \neq 0 \Leftrightarrow \sigma(j) = i \Leftrightarrow j = \sigma^{-1}(i)$
	$= \alpha_{\sigma^{-1}(i)}k$
	ie left multiplication by Po permutes the rows of A by o
	$ie (PA)_{\sigma(j)k} = a_{jk}$


Alos (Affin = E air Pin = air-(h) ? Pju +0 (o(h)=j (j= o-1/k) ie right multiplication by P permutes the columns of A by o. Remark $T_r(P_{\sigma}) = \sum_{i=1}^{n} p_{ii} = \# \{1 \le i \le n : \sigma(i) = i \}$ Proof of Them
Let X = (x; (g;)); eM, (c) be the matrix of the character table of G, i.e. X, ..., Xr are the irreducible characters of G and g, ..., gr are conjugacy class Let X = (x:(a;)); be its complex conjugate Recall that if X is an irreducible character, then It is a character because it is the character of the dual representation corresponding to \times . $\overline{\chi}$ is irreducible because $\langle \overline{\chi}, \overline{\chi} \rangle_G = \langle \overline{\chi}, \overline{\chi} \rangle_G = \overline{1} = 1$ In particular 3 a permutation matrix P such that PX = X.

We also have $\overline{\chi_i(g_i)} = \chi_i(g_i^{-1}) = \chi_i(g_u)$ where $g_i^{-1} \in g_u^{G_u}$ So there exists a permutation matrix Q s.b. $\times Q = \overline{X}$. Note that X is invertible, because its rows are linearly independent by own orthogonality $\Sigma a_i : X_i = 0$ then $a_i = \langle \Sigma a_i : X_i, X_i \rangle = 0$ $PX = X : Q \Rightarrow X^{-1}PX = Q$ But Tr(P) = # real ineducible characters of G and Tr(Q) = # real conjugacy classes of G

4-03-18	
	Definition
	Suppose that X: G > C is a character.
	We say that I is realizable over R if there exists
	some representation p: G -> GLn (R)
	with x, 6) = x6) 4geG
	77(0(9))
	If X is realisable over R then X is real,
	but we'll show that the converse fails.
0	R[G]-modules and C[G]-modules
	Given a real representation p: G -> GLn(IR) then we obtain
	a complex representation po: G -> Gln (c), g +> p(g)
6-19	(using GLn (R) c GLn(C)).
	In terms of notules:
	If V is a finitely generated REGI-module of
	dimension dover R, then if we consider Cas
	a 2-dimensional R-vector space, we can form the
	R-vector space of dimension 2d;
	Vc:= VorC
0	But Vc has the structure of a complex vector space.
	y Ze C and Eai(vi⊗1) + Ebi(vi⊗√-1) = E vi⊗(ai+bi√-1) ∈ Ve
	We define $\lambda \cdot \stackrel{\circ}{\sum} v_i \otimes (a_i + b_i \sqrt{-i}) = \stackrel{\circ}{\sum} v_i \otimes \lambda (a_i + b_i \sqrt{-i})$
	So Ve is a d-dimensional C- vector space with basis
	{v.⊗1, vd⊗1} where {v, vd} is a basis of V over R.
	Ve has the structure of a CCGI-module
	If $g(v_i) = \sum_{i=1}^{d} q_{ij}v_i$ then $g(v_i \otimes i) = \sum_{i=1}^{d} a_{ij}(v_i \otimes i)$
	i=1 $i=1$
	So Try(g) = Lai = Try(g)
	v v c v

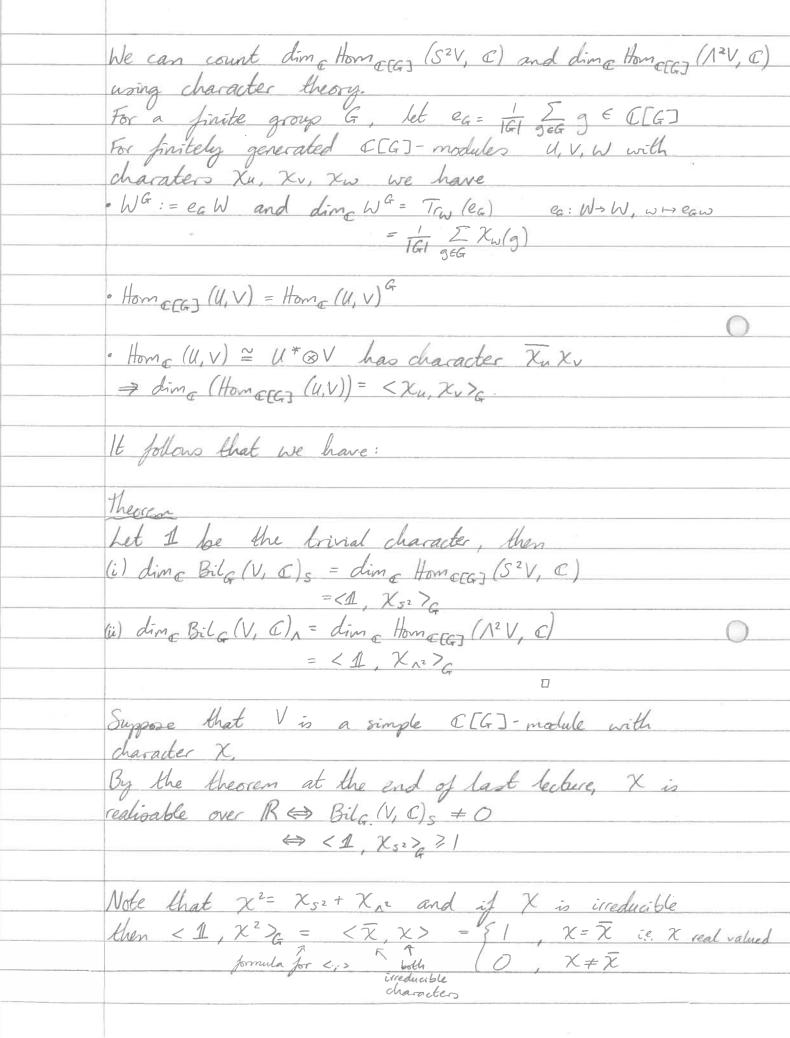
If V is an R[G]-module with character X, then Ve is a C[G]-module with character X. We can also construct an R[G]-module from a C[G]-module. Suppose V is a finitely generated C[G]-module with C-basis Vi, ..., Vd. Then for each ge G 3 Z = (z; n) E GLd (C) st. g(vk) = [= zjk V; Write VR for V considered as an IR-vector space. VR is 2d-dimensional with basis V, Fiv, Vz, Fivz, Vx, Fiva Write each Zin = xin + T-Tyin , xin, yik ER, then g(vn) = \(\int (\pi_{jn} + \frac{1}{2} \mu_{jn}) \varphi_{j} $= \sum_{i=1}^{d} (x_{jk} \vee_j) + \sum_{j=1}^{d} (y_{jk} \sqrt{-i} \vee_j)$ g (\(\tau_{\nu_k} \) = \(\frac{1}{\nu_{\nu_k}} \) \(\tau_{\nu_k} + \sqrt{-1} \gin \) \(\varphi_{\nu_k} + \sqrt{-1} \gin \gin \) \(\varphi_{\nu_k} \) $= \sum_{i=1}^{d} \left(-y_{jk} + \sqrt{-1} \times_{jk} \right) V_{j}$ $= \sum_{j=1}^{k} (-y_{jk} \vee_j) + \sum_{j=1}^{d} (z_{jk} \sqrt{-1} \vee_j)$ In terms of matrices:
The matrix of g: VR -> VR, V -> gv, is given by "replace each z with $\begin{pmatrix} x - y \\ y - x \end{pmatrix}$ where $z = x + \sqrt{-1}y$." => Try (g) = 2x, + ... + 2xdd = 2 Re (Z11) + ... + 2 Re (Zdd) = 2 Re(z,+ ... + Zdd) = 2 Re(Try(g)) = Try(g) + Try(g)

MATHM204	
14-03-18	
	i.e. if V has character X , then V_R has character $X + \overline{X}$.
	Character X + X.
1/ 02 18	C- 1/ 1-11 11 0503 11
	Given V a finitely generated CCGJ-module we
	In terms of modules, VR = V gives the structure
	of an IR[G]-module woing IR[G] = C[G].
	In terms of matrices, if V corresponds to P: G-> GLn(C),
	then Vir corresponds to pir: G -> Glin(R),
0	which is the composition p: G -> GLn (C) with
	which is the composition p: G -> GLn (C) with GLn(C) -> GLzn (R), (a;) -> (Re(a;) - Im(a;)) Re(a;) Re(a;)
	Given V a fritely generated R[G] - module, we
	constructed Ve a CCGJ-module.
	In terms of modules, Ve= VORC
	In terms of matrices, if V corresponds to p: G -> Gln(IR),
	then Ve corresponds to pa: G -> Gln(c). using Gln(R) = Gln(C).
	Gen (II) - Gen (C).
0	Page
	y V is a finitely generated CCGJ-module with
	character X, then
	(i) VR is a fig. RCGJ-module with character X+X
	(in particular dim VR = 2 dim V)
	(ii) If V is a simple CCGI-module and VR is not
valued case	simple as an R[G]-module, then X can be realised over R.
Vac	
	Koof
***************************************	(i) We have already proved this
	(ii) Suppose V is a simple C[G]-module with character X and suppose that VR = UDW as R CGI-modules
	with U, W + O.

MATH M204	
16-03-18	
	Claim:
	Claim: $U = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in \mathbb{R} \right\} \text{ is a subsepresentation}$
	$\left(\left(\begin{array}{c} 6 \\ a \end{array} \right) \right)$
	$P_{IR}(x) \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -b \\ a \end{pmatrix} \in U$ and $P_{IR}(y) \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} b \\ a \end{pmatrix} \in U$
	so Il is a subrepresentation
	≥ VR is not simple
	=> The character of V is realisable over R
0	
	Bilinear forms
	V a vector space over F (= R or C)
	Recall:
	A brilinear form B on V is a map
	B: VxV -> F st. B(-, vz): V-> F, V, -> B(v, vz)
	is F-linear triev and B(v, -): V -> F, V2 -> B(v, v2)
	is F-linear YVIEV.
	We say B is symmetric if B(v, v2) = B(v2, v1) Vv, v2 EV
O	We say B is Skew-symmetric if B(V2, V1) =- B(V1, V2) VV1, V2 EV.
	If V is an F [G]-module for a finite group G,
	then we say B is G-invarient if
	B(gv, gvz) = B(v, vz) Vv, vz EV, YgEG
	Theorem
	If V is a finitely generated REGJ-module,
	Ga finite group, then there exists a real
	Symmetric brinear form B on V st. B(v,v)>O VO + v EV.
	In particular these exists a non-zero real symmetric
	G-invarient boilinear form on V.

If v_1, \dots, v_n is a basis for V over R, then for $u = \sum_{j=1}^{n} \lambda_j v_j$, $v = \sum_{j=1}^{n} \mu_j v_j \in V$ then we define βo(u, v) = = = λ; μ;. Then Bo is symmetric and Bo (u,u) = £ 2;2 >0 () 2; not all zero (=> u +0. But B. may not be G-invarient. Define B(u,v) = E Bolgu, gv) Vu,veV Then B is symmetric, B(u,u) = E Bo (gu, gu) > 0 [gu not zero \def G G \widetilde u + 0] and B is G invarient. Let V be a fig. R[G]-module for a finite group G and let & be a G-invarient bilinear form on V. If It is an RCGJ-submodule of V then so is W= { w ∈ V : β(u, w) = 0 Vu ∈ U}. Clearly W is an R-subspace since B is bilinear. If well and ge G and uell then B(u, gw) = B(g'u, w) = 0 since B is G-invarient and g'uEU. 7 gw EW YWEW, gEG => W is an R[G]-submodule.

MATHM204	
16-03-18	
	Lemma
	If $A \in M_n(\mathbb{R})$ is a real symmetric matrix then
	I an orthogonal matrix $P \in GL_n(R)$ (i.e. $PP^{\epsilon} = I_n$)
	S.t. PtAP=D where D is a diagonal matrix
	Proof
	Omilted.
	Lema
0	If B is a symmetric bilinear form on R" such that B(v,v)>0 & 0 \neq v \in R", then there exists a basis
	B(v,v)>0 & 0 = v & R", then there exists a basis
w.=11	Ji, gn of R" such that B(gi,g;) = Si;
	Proof
	Let BEM, (R) be defined by B= (bij) where bij = B(ei, ej)
	Let BEM, (R) be defined by B= (bij) where bij = B(ei, ej) where ey, on is the standard basis of Rn.
	Then B(u,v) = u + Bv \ \(u,v \in R^n \)
	B is Symmetric because B is symmetric.
	By the previous lemma 3P s.t. P+P=In and
	PEBP = D for some diagonal matrix D = (0". 2")
	Then B (Pu, Pr) = (Pu) t B (Pv) = utPt BPv = atDv
	ie if we put fi=Pei for i=1,
	then B(f., f;)= B(Pei, Pe;) = e; De; = { \lambda i , i= j
	(0, ; +;
	Note that B(fi, fi)> 0 by assumption on B, so 7i>0 ti
	Now define gi = fi for i=1,, n
	Then $\beta(gi,gj) = \delta ij$.


Suppose y is a G-invarient symmetric bilinear form on an IR [G] - module V and suppose 3 u, v EV 56. j(u,u)>0 Nout j(v,v)<0. Then V is reducible (not simple) as an R[G]-module. Chare B a G-invarient symmetric bilinear form on V st. B(w, w)>0, ∀ 0≠w ∈ V. Choose a basis e, ,, en for V s.t. Blei, e;) = Sij Let C= (ci;) ∈ Mn(IR) be given by ci; = y(ei, e;) Choose Porthogonal St. P*CP = D = (2.2) Then wirt the basis Pei = fi , i=1, , , the matrix of B is PtInP= In since P is orthogonal and the matrix for y is P+CP = D=(0.2) ie B(fi, f;) = Si; Since In st. flant o I i s.t. 2i >0, say 2, >0 Since Iv st. f(v,v)<0 Ii st. 2:<0, say 22<0. (So y (f, f) = 2, >0, f (f2, f2) = 22 <0. Now consider the bitinear form S(w, w') = B(w, w') - \frac{1}{2} \gamma \lambda w'). Then S is G-invarient and symmetric since both B and In are. If w = Eaifi EV then $S(w, f,) = \beta(w, f,) - \frac{1}{2}\gamma(w, f,) = a_1 - \frac{\lambda_1 a_1}{2} = 0.$ So if we define W:= {weV s.t. S(w,w') = 0 \ \ W' \ e V } then W is an R[G]-module, W +O since f. EW.

So Vir has a G-invarient symmetric bilinear form B and u,ve VR with B(u,u)>0, B(v,v)<0 => VR is not simple => X is realisable over IR Suppose X is realisable over R. Let U be an R[G]-module with character X Let $\beta: \mathcal{U} \times \mathcal{U} \to \mathbb{R}$ be a nonzero G-invarient symmetric bilinear form
Let $V=\mathcal{U}_{\mathcal{C}}$ then V has character χ . If U has basis u, un over R then V=Uo has
basis u, un over C.

Then define B.: V×V-> C, (\(\sum_{\sum_ and by choice of B).

21-03-18	
2. 02.10	Define the C-vector spaces
	Bil _G (V, C) _S := { $\beta \in Bil_G(V, C) : \beta$ is symmetric } ($\beta(u,v) = \beta(v,u)$) Bil _G (V, C) _A := { $\beta \in Bil_G(V, C) : \beta$ is skew-symmetric } ($\beta(u,v) = -\beta(v,u)$)
	Lemma
	We have Bilg (V, C) = Bilg (V, C) & Bilg (V, C),
	Poof
0	Given $\beta \in Bil_{\mathcal{C}}(V, \mathbb{C})$, define $\beta' \in Bil_{\mathcal{C}}(V, \mathbb{C})$ by $\beta'(u, v) = \beta(v, u)$. Then $\beta = \beta + \beta' + \beta - \beta$
	Then $\beta = \beta + \beta' + \beta - \beta'$ $= \frac{\beta}{2} + \frac{\beta}{$
A ans	Moreover if $\beta \in Bil_{\mathcal{C}}(V, \mathbb{C})_{s} \cap Bil_{\mathcal{C}}(V, \mathbb{C})_{A}$, then
	$\beta(v,u) = \beta(u,v) = -\beta(v,u)$
	symmetric skew-symmetric $\Rightarrow \beta(v,u) = -\beta(v,u) \forall u,v \in V \Rightarrow \beta(v,u) = 0 \forall u,v \in V$
	$\Rightarrow \beta = 0$
	Lemma
0	The bijection 4: Homaca (VOV, C) => Bila(V, C)
	gives as isomorphisms
	Ps: Home(G) (S²V, C) → Bile (V, C)s
	P _A : Home[G] (A ² V, C) → Bil _G (V, C) _A .
	Roof
	For 9s: (proof for 4a is similar).
	Recall that Homera (8°V, C) = { & E Homera (VOV, C) : \$ /2 = 0}
	Let $\varphi \in Hom_{\mathcal{C}(G)}(V \otimes V, \mathcal{C})$ and let $\beta = \varphi(\varphi)$.
	Then \$/12v = 0 (& \$(uov - vou) = 0 Vu, veV
	(since elements of this form span 12V).
	$\Rightarrow \phi(u\otimes v) - \phi(v\otimes u) \forall u, v \in V$
	⇒ B(u,v) = B(v,u) VuveV ⇒ B∈ Bitg(V, C)s

MATH M204 21-03-18 Let < 1, x 52 > = a ∈ Z20 and < 1, X12>=6 = 270 Then arouning X is irreducible, a+b= { 1 if X is real valued 10 otherwise If X is real valued either a=1, b=0 or a=0, b=1 Define the (Frobenius) Schur indicator Junction of an irreducible complex character as: (X) = {1 if < 1, xs2>=1, < 1, x2>=0 0 if $\langle 1, \chi_{52} \rangle = \langle 1, \chi_{12} \rangle = 0 \leftarrow \chi$ not realizabled -1 if $\langle 1, \chi_{52} \rangle = 0$, $\langle 1, \chi_{12} \rangle = 1$ Then we have $\iota(\chi) = \{ 1 \text{ if } \chi \text{ is realisable over } R$ o if X not real valued but not realisable over IR 1(X) = <1, Xs2) - <1, X12> = <1, Xs2- X,2> Recall Xs:(g) = 2(X(g)2 + X(g2)) X12(g) = = (x(g)2 - x(g2)) so (Xs2 - Xn2/(g) = X(g2) => 1(X) = < 1, Xs1 - Xn2> = 1/16/ 266 X(g2) = 1/4 5 × (g-2) = 1/16/ 266 × (g2)

23-03-18	
	Recall that if G is a finite group and X is an irreducible character, then
	$i(X) = \{1, X \text{ is realisable over } R$
	1 , X is real valued but not realisable over IR
	We have $\iota(\chi) = \frac{1}{ G } \sum_{g \in G} \chi(g^2)$
	Definition
	Suppose G is a finite group and X is an irreducible O character, which is real valued.
	If $\iota(X)=1$ then we say X is orthogonal. If $\iota(X)=-1$ then we say X is symplectic.
	Example $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	χ_3 - - χ_4 - -
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$\Rightarrow i(\chi_5) = \frac{1}{8}(2 + 2 + 2(-2) + 2(-2)) = 1$ So χ_5 is symplectic.
	Lemma If X is a linear character, $\iota(X) = \{1 \text{ if } X \text{ is real valued.} \}$

23-03-18	
~ 0 0 0 10	Port
	$\frac{Poof}{I(X)} = \frac{1}{IGI} \sum X(g^2) = \frac{1}{IGI} \sum X(g) X(g)$
	$= \langle \chi, \overline{\chi} \rangle_{\alpha} = \sum_{\alpha \in \mathbb{Z}} if \chi = \overline{\chi} $ $= \langle \chi, \overline{\chi} \rangle_{\alpha} = \sum_{\alpha \in \mathbb{Z}} if \chi = \overline{\chi} $ $= \langle \chi, \overline{\chi} \rangle_{\alpha} = \sum_{\alpha \in \mathbb{Z}} if \chi = \overline{\chi} $ $= \langle \chi, \overline{\chi} \rangle_{\alpha} = \sum_{\alpha \in \mathbb{Z}} if \chi = \overline{\chi} $ $= \langle \chi, \overline{\chi} \rangle_{\alpha} = \sum_{\alpha \in \mathbb{Z}} if \chi = \overline{\chi} $ $= \langle \chi, \overline{\chi} \rangle_{\alpha} = \sum_{\alpha \in \mathbb{Z}} if \chi = \overline{\chi} $
	(O otherwise
	Remark*
	If X is an irreducible symplectic character with
	C[G]-module V, then V has a (G-invarient)
	Sken-symmetric bilinear form.
0	This boilinear form is non-degenerate because
*	V is a simple C[G]-module.
	If W is a I-vector space of dimension of with a
	non-degenerate shew-symmetric bilinear form, then d is even.
	In particular, 1(X) = -1 only when X(e) & 27.
	Let G be a finite group and define 12: G > 7 to
	Let G be a finite group and define \(\tau_2: G \rightarrow \nothing to\) be \(\tau_2(g) = # \{h \in G : h^2 = g\}\) (is, the size of the set)
	We call an element an involution if h'= e, so
	(2) counts the number of involutions in G.
	hemma
	12 is a class pinction.
	Proof
	If g'= x'gx then if h 6 G we have
	$h^2 = g \Leftrightarrow (x^{-1}hx)^2 = x^{-1}h^2x = x^{-1}gx = g'$
0.	Hence him x ha is a bijection between
	{h ∈ G: h2=g} → {h'∈ G: h'2=g'} → σ2(g)= (2(g'))

Theorem (Frobenius - Schur count of involutions) $(2(g) = \sum_{\chi} \chi(\chi) \chi(g)$ $\chi \text{ ineducible}$ Fince C_2 is a class function, we have $C_2 = \sum_{\chi \text{ ined.}} a_{\chi} \chi \quad \text{for some } a_{\chi} \in \mathbb{C}.$ Then $a_{\chi} = \langle r_2, \chi \rangle_G = \frac{1}{1GI} \sum_{g \in G} r_2(g) \chi(g)$ $= \frac{1}{1GI} \sum_{g \in G} \frac{\sum_{h \in G} \chi(h^2)}{h^2 = g}$ $= \frac{1}{1GI} \sum_{h \in G} \frac{\chi(h^2)}{h^2 = z(\chi)} = z(\chi) \text{ (since } z(\chi) \in \mathbb{R})$ $= \frac{1}{1GI} \sum_{h \in G} \frac{\chi(h^2)}{h^2 = z(\chi)} = z(\chi) \text{ (since } z(\chi) \in \mathbb{R})$ Suppose that G has no symplectic ineducible characters, then T2(e) >, T2(g) & g ∈ G Proof

By assumption, $\iota(X) = 0$ or $| \forall \text{ irreducible characters.} \bigcirc$ $| \tau_2(g) = | \tau_2(g) | = | \sum_{X \text{ irred}} \iota(X) | \chi(g) |$ $| \chi(g) | \leq | \chi(e) | = | \chi(e) |$ $| \chi(g) | \leq | \chi(e) | = | \chi(e) |$ $| \chi(g) | \leq | \chi(e) | = | \chi(e) |$ $| \chi(e) | = | \chi(e) |$ $| \chi(e) | = | \chi(e) |$ $| \chi(e) | = | \chi(e) |$ Artin-Wedderburn decomposition of REGI Let G be a finite group. Recall that $R[G] \cong M_{n_1}(R) \times ... \times M_{n_n}(R)$ * Mp.(C) x ... x Mp. (C) * Mq (H) * ... x Mq (H) a, b, c > 0, ni, pi, qi >0 Then a+b+c is the number of irreducible repo of Gover R up to isomorphism.

```
2= <Yi+ Yi, Yi+ Yi> = dimp (EndRED (Vi))
=> Endrigg (Vi) = C
Also ding (Vi) = 2 ding (Mi) = 2pi
· Pi is not realisable over R, so 3 simple R[G]-module
We with character 9: + 4: = 24:
Note that <24,24:>= 4 => Endirect (Wi)=H
dimp (Wi) = 2 P:(e) = 4qi and Wi= Hdi for some di
So ding Wi E 4 # > 49; E4 #
=7 9, € Z
These characters are all distinct by considering < x, 4%
So R[G] has characters:
· X, , Xa, Endress () = 1R, ding()=1, , , na
Y, + Y, ..., Yo + Yo, EndREG () = C, dimp() = 2p, ..., 2ps
· 29, 29c, EndREG ()= H, dimp()= 4q, 4qe
So R[G] = Mn, (R) x. x Mn (R) x Mp, (C) x. x Mp, (C) x. x Mq, (H) x. x Mq. (H) x Q
where Q = TT Mn; (Oi), Di = R, C, H
but since (taking dimp (LHS) - dimp (RHS))
|G|= Eni2 + 2 Epi2 + 4 Zgi2 + dim R(Q)
but |G| = Eni2 + 2 Epi2 + 4 Eqi2 = dimp(a) = 0
C[G]
          O Ma (C) × Mn (C) ~ Mn (C)
          -1 Man (c) ~ Mn (H)
REGT
Example
G = Cn = <x>, where n is odd
The irred characters of G are Xo, ..., Xn-, X; (xc) = exp(2mis)
Since n is odd the only real valued character is X
X, , , Xn-1 are not real-valued, 1(X)=0.
⇒ R[C,]=R× C×...× C
```