BASIC HARDWARE

* Program must be

— brought (from disk) into memory and

— placed within a process for it to be run.

* Main-memory and registers are only storage CPLU can access directly.

¢ Register access in one CPU clock.

Main-memory can take many cycles

Cache sits between main-memory and CPU registers

Protection of memory reguired to ensure correct operation.

A pair of base- and limit-registers define the logical (virtual) address space.

L

aprdng

meiem
ERTT

IORAR

e

£ TS | o |

P Loz

- s

120910 | ewwiy |

[PETRER .
RN

12470

A base and a limit-register define a logical-address space

[||:'-B!E- = Ir11|

admss et s ,.-":'H.‘ s
f o e e G
o =Sigiee

ap I npwrabing systam
monber AR S =Ty

Hardware address protection with base and limit-registers

Paging

* Paging is a memaory-management scheme.

* This permits the physical-address space of a process to be non-contiguous.

* This also solves the considerable problem of fitting memonry-chunks of varying
sizes onto the

backing-store.

¢ Traditionally: Suppeort for paging has been handled by hardware.

Recent designs: The hardware & 05 are closely integrated.

Ba sic Method of Pagimg

¢ Physical-memaory is broken into fixed-sized blocks called frames(Figure 5.7).
Logical-memory is broken into same-sized blocks called page s.

* When a processis to be executed, its pages are loaded into any available
memory-frames from the

backing-store.

* The backing-store is divided into fixed-sized blocks that are of the same size as
the memory-frames.

el
sl Frra J
b BRI [[FES s s L]}
£k [T = I d
|
Moo, titd
1 [
!
JE—— I -
Aij-izal
pags lah RIRIHEY

Faging hardware

* The page-table contains the base-address of each page in physical-memory.
* Address generated by CPU is divided into 2 parts (Figure 5.8):

1) Page-number{p) is used as an index to the page-table and
2 Offset(d) is combined with the base-address te define the physical-address.

This physical-address is sent to the memory-unit.

¢ Example: Consider the following references string with frames initially empty.

s 10 3504 30 5 7 fF 0 17 L0 4
7 FF & [2]][]] & @ o NERE
af (el & (4] (3] |3 3 3 'l 1 3
I 1 I e e i ik _1 i &1 |3 |

g ranicy
FIFO page-replacement algorithm

= Al s
L 1 R

=The first three references(7, 0, 1) cause page-faults and are brought into these
empty

frames.

=The next reference(2) replaces page 7, because page 7 was brought in first.
=5ince 0is the next reference and 0 is already in memory, we have no fault for
this reference.

=The firs reference to 2 reaultsin replacement of page 0, since it is now first in
line.

=This process continues till the end of =ring.

=There are fifteen faults altogether.

* Advantage:

1. Easy to understand & program.

* Disadvantages:

1. Performance is not always good (Figure 5.2&).

2. A bad replacement choice increases the page-fault rate (Belady's anomaly).

¢ For some algorithms, the page-fault rate may increase as the number of
allocated frames increases.

This is known as Belady's anomaly.

Example: Consider the following reference string:

1,2, 3,4,1,2,5,1,2, 3,45

For this example, the number of faults for four frames (ten) is greater than the
number of faults

for three frames (nine)!

< Thar ol 3035 *aHs
[=
|

) i -
i
A

(W1 H T R I

FPage-fault curve for FIFO replacement on a reference string

Optimal Page Replacement

* Working principle; Replace the page that will not be used for the longest period
of time (Figure 5.27).

¢ Thisis used mainly to solve the problem of Belady's Anamaoly.

This hasthe lowest page-fault rate of all algorithms=
* Consider the following reference string:

TRTRANSA KN

ol | QL - N . N
71 7] I7] |2]]] 2] T
i] [¥ 4 i i It
i |1 2 3 = i |

e I

—
L]
=
5]
na
L]
=4
[=]

Optimal page-replacement algorithm

=The first three references cause faults that fill the three empty frames.
“=The reference to page 2 replaces page 7, because page 7 will not be used until
reference 18.
=The page 0 will be used at 5, and page 1 at 14.
=With only nine page-faults, optimal replacement is much better than a FIFO
algorithm, which
results in fiteen fault=
* Advantage:
1. Guarantees the lowest possible page-fault rate for a fixed number of frames
¢ Dizadvantage:
1. Difficult to implement, because it requires future knowledge of the
reference string.

LRU Page Replacement

¢ The key difference between FIFO and OPT:

— FIFD usesthe time when a page was brought into memory.

— OPT usas the time when a page is to be used.

* Working principle: Replace the page that has not been used for the longest
period of time.

* Fach page is associated with the time of that page's last use (Figure 5.28).
* Example: Consider the following reference string:

relarems =l

7o 4 @oaa o) : 7
1 [F [7 E [: A a 1] 5] []
gl @ o33 3| 2]
| 4 |4 i E i 2 = 2|

Mapa amas

LEU page-replacement algorithm

=The first five faults are the same as those for optimal replacement.

=When the reference to page 4 occurs, LRL sees that of the three frames, page
2 was used

least recently. Thus, the LELU replaces page 2.

=The LRU algorithm produces twelve faults.

¢ Two methods of implementing LRL):

1. Counters

=Each page-table entry is associated with a time-of-use field.

= & counter{or logical clock) is added to the CPL.

=The clock isincremented for every memaory-reference.

=Whenever a reference to a page is made, the contents of the clock register are
copied to the

time-of-use field in the page-table entry for that page.

=We replace the page with the smallest time value.

2. Stack

=Keep a stack of page-numbers (Figure 5.29).

=Whenever a page is referenced, the page is removed from the stack and put on
the top.

=The mo= recently used page is always at the top of the sack.

The least recently used page is always at the bottom.

=Stack is best implement by a doubly linked-list.

=fdvantage:

1. Does not suffer from Belady's anomaly.

=Dizadvantage:

1. Few computer systems provide sufficent hyw support for true LEL page
replacement.

=Both LRLU & OPT are called stack algorithms.

refsrense #Hirg
R KOS ol O (R i - R SRR [

Uze of a stack to record the most recent page references

LRU-Approximation Page Replacement

¢ Some systems provide a reference bit for each page.

s Initially, all bits are cleared(to 0) by the OS.

*# As 3 User-process executes, the bit assocated with each page referenced is sat
(to 1) by the

hardware.

* By examining the reference bits, we can determine

— which pages have been used and

— which have not been used.

¢ This information isthe basis for many page-replacement algorithms that
approximate LRL

replacement.

Additional-Reference-Bits Algorithm

* We can gain additional erdering information by recording the reference bits
at regular interval=

¢ A B-bit byte is used for each page in a table in memory.

¢ A reqular intervals, a timer-intermrupt transfers control to the OS5,

The OS5 shifts the reference bit for each page into the high-order bit of its B-bit
byte.

* These 3-bit shift registers contain the history of page use, for the last eight
time periods.

* Examples:

00000000 - This page has not been used inthe last & time units (800 ms).
11111111 - Page has been used every time unit in the past & time units.
11000100 has been used more recently than 01110111,

* The page with the lowest number is the LRLU page, and it can be replaced.

If numbers are equal, FCFS is used

Second -Chance Algorithm

¢ The number of bits of history included in the shift register can be varied to
make the updating as fast

as possible.

In the extreme case, the number can be reduced to zero, leaving only the
reference bit itself. This

algorithm is called the secomd chance algorithm.

* Basic algorithm is a FIFO replacement algorithm.

* Procedure:

=When a page has been selected, we inspect its reference bit.

=If reference bit=0, we proceed to replace this page.

=If reference bit=1, we give the page a second chance & move on to select next
FIFO page.

=When a page gets a second chance, its reference bit is deared, and its arrival
time is reset.

Nz poges RN ol

I
w HJ

|2
s =
ot
e B e B
E &
3
m-:rmac':m—:- sraukal qw.t-clm
=3 A

Second-chance {(dock) page-replacement algorthm

¢ A circular guelde can be used to implement the second-chance algorithm
(Figure 5.30).

= A pointer (that is, a hand on the clock) indicates which page is to be replaced
next.

=When a frame is needed, the pointer advances until it finds a page with a 0
reference bit.

=45 it advances, it clears the reference bits.

=0nce avicdim page is found, the page is replaced, and the new page is inserted
in the drcular

queue in that position.

Enhanced Second-Chance Algorithm

* We can enhance the second-chance algorithm by considering

1) Reference bit and 2) modify-hit.

¢ We have following 4 possible d asses:

1. {0, 0) neither recently used nor modified -best page to replace.

2. (0, 1) not recently used hut medified-not quite as good, because the page will
need to be

written out before replacement.

3. (1, 0) recently used but clean-probably will be used again soon.

4, (1, 1) recently used and modified -probably will be used again socon, and the
page will be

need to be written out to disk before it can be replaced.

* Fach page isin one of these four dasses.

* When page replacement is called for, we examine the dass to which that page
belongs.

* We replace the first page encountered in the lowest nonempty class.
Counting-Based Page Replacement

1. LFU page-replacement algorithm

=Woaorking principle: The page with the smallest count will be replaced.

=The reason for this selection isthat an actively used page should have a large
reference

count.

=Problem:

When a page is used heavily during initial phase of a process but then is never
used again.

Since it was used heavily, it has a large count and remains in memaory even
though it is no

longer needed.

Solution:

Shift the counts right by 1 bit at regular intervals, forming an exponentially
decaying

average usage count.

2. MFU (Most Frequently Used) page -re placement algorithm

=Working principle: The page with the smallest count was probably just brought
in and has

vet to be Used.

File Concepts

A file is a named collection of related info. on secondary-storage.
Commaonly, file represents

— program and

— data.

¢ Data in file may be

— NUmeric

— alphabetic or

— binary.

* Fourtypes of file:

. Text file: sequence of characters organized into lines.
. Source file: sequence of subroutines & fundions.

. Object file: sequence of bytes organized into blocks
. Executable file: series of code sections.

File Attributes

1. Name

¢ The only information kept in human-readable form.

2. Identifier

It is a unique number which identifies the file within file-sysem.
¢ It isin non-human-readable form.

3. Type

It is used to identify different types of files.

4. Location

¢ It isa pointer to

— device and

— |location of file.

5. Size

Current-size of file in terms of bytes, words, or blocks.
It also indudes maximum allowed size.

6. Protection

* Access-control info. determines who can do

— reading

— writing and

— executing.

7. Time, date, & user dentification

* These info. can be kept for

— creation

— last modification and

— last use.

* These data can be useful for

— protection

— security and

— Usage monitoring.

¢ Information about files are kept in the directory-structure, which is
maintained on the disk,

o s

File Operations

1. Creating a file

=Two steps are:

i) Find the space in the file-system for the file.

i) An entry for the new file is made in the directory.

2. Writing a file

=Make a system-call specifying both

— file-name and

— info. to be written to the file

=The system searches the directory to find the file's location. (The system keeps
a writepointer|

wp) to the location in the file where the next write is to take place).
=The write-pointer must be updated whenever a write-operation occurs.
3. Reading a file

=Make a system-call specifying both

— file-name and

— location of the next block of the file in the memaory.

=The system searches the directory to find the file's location. (The system keeps
a readpointery

o) to the location in the file where the next read is to take place).
=The read-pointer must be updated whenever a read-operation occurs.
=came pointer (rp &wp) is used for both read- & write-operations. This results
in

— saving space and

— reducing system-complexity.

4. Repositioning within a file

=Two steps are:

i) Search the directory for the appropriate entry.

i) Set the current-file-position to a given value.

=This file-operation is also known as fifle seek.

5. Deleting a file

=Two steps are:

i) Search the directory for the named-file.

i) Release all file-space and erase the directory-entry.

6. Truncating a file

=The contents of a file are erased but its attributes remain unchanged.
=Cnly file-length attribute is set to zero.

(Most of the above file-operations involve searching the directory for the entry
assodated with the file.

To avoid this constant searching, many systems require that an ‘open’
system-call be used before that

file is first used).

 The 0S5 keeps a small table which contains info. about all open files (called
open-file table).

If a file-operation is requested, then

— file is specified via an index into open-file table

— 50 No s=arching is required.

¢ If the file is no longer adively used, then

— process doses the file and

— 05 removes its entry in the open-file table.

* Twao levels of intermal tables:

1. Per-process Table

=Tracks all files that a process had opened.

=Indudes accessrights to

— file and

— accounting info.

=Each entry in the table in turn points to a system-wide table

2. System-wide Table

=Contains process-independent info. such as

— file-location on the disk

— file-size and

— access-dates.

Acce ss Methods

Sequential Access

* Thisis based on a tape model of a file.

* Thisworks both on

— segquential-access devices and

— random-access devices,

* Info. in the file is processed in order (Figure 6.2).

For ex: editors and compilers

* Reading and writing are the 2 main operations on the file.
* File-operations:

1. read next

=This is used to

— read the next portion of the file and

— advance a file-pointer, which tracks the I;/O location.
2. write next

=This iz uszed to

— append to the end of the file and

— advance to the new end of file.

cUTart poatsn

teqiniing &rd

ffu— R
= rzod o weile mee

Sequential-access file

Direct Acce ss (Relative Access)

* Thisis based on a disk model of a file (since disks allow random access to any
file-block).

¢ A file is made up of fixed length logical records.

Programs can read and write records rapidly in no particular order.

* Disadvantages:

1. Useful for immediate access to lange amounts of info.

2. Databases are often of this type.

* File-operations indude a relative block-number as parameter.

* The relative block-number is an index relative to the beginning of the file.
* File-operations (Figure 6.3):

1. read n

2. write n

where nis the block-number

¢ lse of relative block-numbers:

— allows 05 to decide where the file should be placed and

— helps to prevent user from accessing portions of file-system that may not be

part of hisfile.

secueniial aroee impEmenkzbon for direciaccess
eEt o=
190l read riwil it
cpo=igp 1 1;
AT b pest T o
b - T S B

Simulation of sequential acces=s on a direct-access file

Other Access Method s

¢ These methods generally involve constructing a file -index.

* The index contains pointers to the various blodks (like an index inthe back of a
book).

* To find a record in the file(Figure 6.4):

1. First, search the index and

2. Then, use the pointer to

— access the file directly and

— find the desired record,

¢ Problem: With large files, the index-file itzelf may become too large to be kept
in Mmemory.

Solution: Create an index for the index-file. (The primary index-file may contain
pointers to secondary

index-files, which would point to the actual data-items).

aClal racard
[3gTrame TUYREr
&I,
Mhur
Aefar smi John:sozlabzec iy e
: /
Srith o i
Indee e [GE T]

Example of index and relative files

Disk Structure

Modern magnetic disk drives are addressed as large one-dimensional arrays of
logical blocks, where the logical block is the smallest unit of transfer. The size
of a logical block is usually 512 bytes, although some disks can be low-level
formatted to have a different logical block size, such as 1,024 bytes. This option
is described in Section 10.5.1. The one-dimensional array of logical blodks is
mapped onto the sectors of the disk sequentially. Sector 0 is the first sector

of the first track on the outermost cylinder. The mapping proceeds in order
through that track, then through the rest of the tracks in that cylinder, and then
through the rest of the cylinders from outermogt to innermost.

By using this mapping, we can—at least in theory—convert a logical block
number into an old-style disk address that consists of a cylinder number, a track
number within that cylinder, and a sector number within that track. In pradice,

it is difficult to perform this trandation, for two reasons. First, most disks have
some defective sectors, but the mapping hides this by substituting spare sectors
from elsewhere on the disk. Second, the number of sedors per track is not a
constant on some drives.

Let's look more closely at the second reason. On media that use constant
linear velocity (CLV), the density of bits per tradk is uniform. The farther a
track is from the center of the disk, the greater its length, so the more sectors it
can hold., As we move from outer zones to inner zones, the number of sectors
per track decreases. Tracks in the outermost zone typically hold 40 percent
more sectors than do tracksin the innermo=s zone. The drive increases its
rotation speed as the head moves from the outer to the inner tracks to keep

the same rate of data moving under the head. This method is used in CO-ROM
and DVD-ROM drives, Alternatively, the disk rotation speed can stay constant;
in this case, the density of bits decreases from inner tracks to outer tracks to
keep the data rate constant. This method is used in hard disks and is known as
constant angular velocity (CAV).

The number of sectors pertrack has been increasing as disk technology
improves, and the outer zone of a disk usually has several hundred sectors per
track. Similady, the number of cylinders per disk has been increasing; large
disks have tens of thousands of cylinders.

frmaime

Tl ki
Laye O c
all
Fagc 1 1] 1] page L
214 &
ags 2 1 2
faged e kahla 1| page 2
[l g T 4] pagpe 1
TRy
k
L
T e 3
==
meEary

Faging model of logical and physical-memory

* The page-size (like the frame size) is defined by the hardware (Figure 5.9).
If the size of the logical-address space is 2m, and a page-size is 2n
addressing-units (bytes or words)

then the high-order m-n bits of a logical-address designate the page-number,
and the n low-order bits

designate the page-offset.

- . g W
page nuindier Ly il
- 4
P I 2 I
(L L1
Tuer limn bsl nun A bl
4 o - 5
= - 1
W
L 1 1 paaa
I _—
[e e F
i
P prrmil T
FLgm1
[= R
o H|
i L CWEH | F
E s T F jpapgn
E ulis i
—— T|ia
uy] wp paga
3
Ha | AT A b o
14 [{41]

Free frames (a) before allocation and (b) after allocation

Structure (Implementing) of the Page Table
1. Hierarchical Paging

2. Hashed Page-tables

3. Inverted Page-tables

Hierarchical Paging
* Problem: Most computers support a large logical-address space (232 to 264).
Inthese sysdems, the
page-table itzelf becomes excessively large.
Solution: Divide the page-table into smaller pieces.
Two Level Paging Algorithm
* The page-table itself is also paged (Figure 5.13).
* Thisis also known as a forward-mapped page-table because address
trandation works from the
outer page-table inwards.
* For example (Figure 5.14):
o Consider the system with a 32-bit logical-address space and a page-size of
4 KB.
A logical-address is divided into
— 20-bit page-number and
— 12-bit page-offset.
o Since the page-table is paged, the page-number is further divided into
— 10-bit page-number and
— 10-bit page-offset.
Thus, a logical-address is as follows:

o

m]

FAfa rumikar HE L
[k B f
it il iz
——F
o 1 —=1
P -
= . I:lljl1I r
! R L. o
S : e
T — e
- - Toa”
93 L
L] L
mE -
BT
: T
R Ti e | = e - s .
itk " 1 '_E..:r
1 L
@ = H"H. ;
fanand el
iy deles
:
s lalrs &
meray

A two-level page-table scheme

e T B

] d]

Piv
oy —
whia y

I'.\ul- =l
page ok

Address translation for a two-level 32-bit paging architecture

Hashed Page Tables

* Thizs approach is used for handling address spaces larger than 32 bits.

The hash-value isthe virtual page-number.

* Each entry in the hash-table contains a linked-list of elements that hash to the
same location (to

handle collisions).

¢ Fach element consids of 3 fields:

1. Virtual page-number

2. Value of the mapped page-frame and

3. Pointer to the next element in the linked-list.

* The algorithm works as follows (Figure 5.15):

1. The virtual page-number is hashed into the hash-table.

2. The virtual page-number is compared with the first element in the linked-list.
3. If there is @ match, the cormresponding page-frame (field 2) is used to form the
desired

physical-address

4, If there is no match, subsequent entries inthe linked-list are searched for a
matching virtual

page-numbear.

Clustered Page Tables

* These are similar to hashed page-tables except that each entry in the
hash-table refers to several

pages rather than a single page.

* Advantages:

1. Favorable for &d-bit address spaces.

2. Useful for address spaces, where memory-references are noncontiguous and
scattered

throughout the address space.

H O B
agual adrzeE oyt

2l ESER "

.r'"- --H'l\. Trriza
Fash = L iy

L_ (LT ST _'|'|i| |||:'| || ey TRy
- 5 | |

1. bk

Hashed page-table

Inverted Page Tables

* Has one entry for each real page of memory.

* Fach entry consists of

— virtual-address of the page sored in that real memory-location and
— information about the process that owns the page.

1R

A g;ﬁ:'ﬁm
P -
crd —{pd| o d |1 & p— ;'.é':,:“"n,

i
|

pr

ppl fabi
Inverted page-table

* Each virtual-address consists of a triplet (Figure 5.16):

—process-id, page-number, offsets,

* Each inverted page-table entry is a pair =process-id, page-number=

The algorithm waorks as follows:

1. When a memory-reference occurs, part of the virtual-address, consisting of
< process-id,

page-number=, is presented to the memaory subsystem.

2. The inverted page-table is then searched for a match.

3. If a match isfound, at entry i-then the physical-address =i, offset> is
generated.

4. If no match is found, then an illegal address access has been attempted.
* Advantage:

1. Decreases memory needed to store each page-table

¢ Dizadvantages:

1. Increases amount of time needed to search table when a page reference
QCoUrs

2. Difficulty implementing shared-memory.

Segme ntation

Basic Method of Segmentation

Thiz iz a memory-management scheme that supports usar-view of
memory(Figure 5.17).

* A |logical-address space is a collection of segments.

* Each segment has a name and a length.

* The addresses specify both

— segment-name and

— offset within the segment.

Mormmally, the user-program is compiled, and the compiler automatically
constructs segments

reflecting the input program.

For ex:

— The code — Global variables

— The heap, from which memory is allocated — The stacks used by each thread

— The standard C library

=

iqpal o ket

Frogrammer's view of a program

Demand Paging

* A& demand-paging system is similar to a paging-system with swapping (Figure
5.20).

* Processes reside in secondary-memory (usually a disk).

* When we want to execute a process, we swap it into memory.

* Instead of swapping in a whole process, lazy swapper brings only those
necessary pagesinto

Memaory.

: | _:-_r-::'..'-" a2 d]
|.|-.i:::|1| [“-EEEEIJ_-?i-I

s rCwm[C1i]

| E2sCHCiiEd]
i"h“ Y 1n|:|1?|;1|=. I;W;I

20| =] 22| 23 |

- ik !

—_— —

R g

makr
My

Transfer of a paged memory to contiguous disk space

Ba sic Concepts of Demand Paging

Instead of swapping in a whole process, the pager brings only those necessary
pagesinto memory.

* Advantages:

1. Avoids reading into memory-pages that will not be used,

2. Decreases the swap-time and

3. Decreazes the amount of physical-memory needed.

¢ The valid-invalid bit scheme can be used to distinguish between

— pagesthat are in memory and

— pagesthat are on the disk.

If the bit is set to wvalid, the associated page is both legal and in memaory.
If the bit is set to invalid, the page either

— is not valid (i.e. not in the logical-address space of the process) or

— iswvalid but is currently on the disk

]

of A s
vollc—nwalc g ...
& s, W i P '“'_:
* i " et
e EEN
.l 1
|- T eLe W E
In - - T e
= iR |T u
LE] 3 0
J H T al = & &
ECR P .
|I::'.l:'\:k|.-=3 T I_ _I]

shaeion 1Mo

Page-table when some pages are not in main-memaory

Pure demand paging: Never bring pages into memory until required.
* SO0Me programs may access several new pages of memory with each
instruction, causing multiple

page-faults and poor performance,

¢+ Programstend to have locality of reference, so this results in reasonable
performance from demand

paging.

* Hardware support:

1. Page-table

* Mark an entry invalid through a valid-invalid bit.

2. Secondary memory

¢ It holds pagesthat are not present in main-memaory.

¢ It iz usually a high-speed disk.

o It is known asthe swap device (and the =section of disk used for this purpose
is known as

swap space).

Page Replace ment

1. FIFO page replacement

2. Optimal page replacement

3. LRU page replacement (Least Recently Used)
4, LFU page replacement (Least Frequently Used)

Basic Page Replacement

¢ Basic page replacement approach:

— If no frame is free, we find one that is not currently being used and free it
(Figure 5.24).

* Page replacement takes the following steps:

1. Find the location of the desired page on the disk.

2. Find a free frame:

=Ifthere is a free frame, use it.

=Ifthere is no free frame, use a page-replacemeant algorithm to select a
victim-frame.

=Write the vidim-frame to the disk; change the page and frame-tables
accordingly.

3. Read the desired page into the newly freed frame; change the page and
frame-tables

4, Restart the user-process.

famg J'-iﬂTl'l'.-i':“!t

¢ s i
- o
pazaoIt
ce NG T
TR | I\:-I.l.-pr.rJ' I."H.""' -
e L
s =
'._"I S an
R _F..-.""-m-
> ranc tar o=, .
pezazabla M e e
L = "l:l-lp-'il -h;h-':_-_-:__—
HERR L]
sag:

Pl
Famany

Fage replacement

* Problem: If no frames are free, 2 page transfers (1 out & 1 in) are required.
This situation

— doubles the page-fault service-time and

— increases the EAT accordingly.

Solution: Use a modifv-bit [or dirty Bit).

* Each page or frame has a modify-bit associated with the hardware.

* The modify=bit for a page is set by the hardware whenever any word is
written into the page

(indicating that the page has been modified).

+ Working:

1. When we select a page for replacement, we examine it's modify-hit.

2. If the madify-bit =1, the page has been modified. So, we must write the page
to the disk.

3. If the madify-bit=0, the page has not been modified. 5o, we need not write
the page to the

disk, it is already there.

* Advantage:

1. Can reduce the time reguired to service a page-fault.

¢ We must solve 2 major problemsto implement demand paging:

1. Develop a Frame=-allocation algorithm:

=If we have multiple processes in memory, we must decide how many frames to
allocate to

each process.

2. Develop a Page-replacement algorithm:

=We must seledt the frames that are to be replaced.

FIFO Page Replacement

* Fach page is associated with the time when that page was brought into
Memaory.

¢ When a page must be replaced, the oldest page i=s chosen.

* We use a FIFO queue to hold all pages in memary (Figure 5.25).

When a page must be replaced, we replace the page at the head of the queue
When a page is brought into memaory, we insert it at the &il of the gueue.

